
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Sample-Efficient Deep Reinforcement Learning
with Visual Domain Randomization

Author:

András Béres

Advisor:

Dr. Bálint Pál Gyires-Tóth
Róbert Moni

2020

Contents

Kivonat i

Abstract iii

1 Introduction 1

2 Theoretical Background 2

2.1 Deep Learning . 2

2.2 Autoencoders . 4

2.2.1 Overview . 4

2.2.2 Denoising Autoencoders . 6

2.2.3 Variational Autoencoders . 7

2.2.3.1 Deep Learning View . 8

2.2.3.2 Variational View . 9

2.2.3.3 Information-Theoretic View 10

2.3 Reinforcement Learning . 10

2.3.1 Overview . 10

2.3.2 Sim-to-Real Gap . 13

2.3.3 Visual Domain Randomization . 14

2.3.3.1 Direct methods . 15

2.3.3.2 Indirect methods . 16

3 Proposed Method 18

3.1 Baseline . 18

3.2 Drawbacks of the baseline . 19

3.3 The Method . 19

3.3.1 Motivations of Design Choices . 20

3.4 Applications . 21

3.4.1 Visualization of the Latent Space . 21

3.4.2 Evaluation of Sim-to-Real Transfer Capability 21

3.4.2.1 Quantitative . 21

3.4.2.2 Visual . 22

3.4.3 Regularization with Latent Augmentation 22

3.5 Extensions . 22

3.5.1 Segmented Image as Canonical Observation 22

3.5.2 Augmented Image as Randomized Observation 23

4 Implementation 24

4.1 Reinforcement Learning Task . 24

4.1.1 The Duckietown platform . 24

4.1.2 Observation space . 25

4.1.3 Action space . 26

4.1.4 Reward function . 27

4.1.5 Evaluation metrics . 27

4.2 Dataset . 28

4.3 Variational Autoencoder . 30

4.4 Hyperparameters, architecture . 30

5 Results 33

5.1 Analysis of the Autoencoders . 33

5.1.1 Evaluation . 33

5.1.2 Visualization of the Latent Space . 35

5.1.3 Sim-to-Real Transfer Capability . 35

5.1.3.1 Quantitative . 35

5.1.3.2 Visual . 36

5.2 Comparisons with other Methods . 37

5.2.1 Domain Randomization Methods . 37

5.2.2 Sample-Efficient Methods . 37

5.2.3 Extensions . 39

5.2.4 Latent Augmentation . 39

5.3 Discussion . 40

6 Conclusion 41

Bibliography 43

Kivonat

Napjainkban az önvezető járművek témáját a tudományos közösség és a közvélemény ré-
széről is nagy érdeklődés övezi. Mivel a mély tanulás területe eszközöket kínál a nagy
mennyiségű szenzoradat feldolgozásához, a megerősítéses tanulás pedig a megfelelő dön-
tések meghozatalában segíthet komplex, interaktív környezetek esetén, felhasználásuk az
egyik módja lehetne annak, hogy az önvezetés feladatát megoldjuk. Vannak azonban ne-
hézségek, amik hátráltatják ezeknek a módszereknek valós környezetben történő felhasz-
nálását.

Az egyik ilyen probléma a megerősítéses tanulás adatéhsége. Mivel a tanuláshoz fel-
használható egyetlen jelzés az aktuális jutalom nagysága, rengeteg felfedezésre, kísérlete-
zésre van szükség, hogy meghatározzuk a felhasznált háló paramétereinek megfelelő ér-
tékeit. Egy lehetséges megoldás a felügyelet nélküli tanulás, melynek során a bemeneti
adatot úgy tanuljuk meg hatékonyabban reprezentálni, hogy olyan feladatokat oldunk
meg, melyek megoldását már a nyers, címkézetlen adat is tartalmazza.

Mivel a mesterséges intelligenciát használó ágensek valós környezetben történő tanítá-
sa sokáig tart, ezért sokszor túl drága lenne, néha még veszélyes is, így előnyös lehet erre a
célra szimulált környezeteket használni. Azonban a szimulátorok csak tökéletlen modelljei
a valóságnak, ezért a valós alkalmazásukkor az ágensek teljesítménye általában jelentősen
csökken. Ezt a jelenséget nevezzük a szimuláció és valóság közötti résnek. Egy lehetsé-
ges megoldás a véleletlenszerű környezetek módszere, mellyel a tanítás során a szimuláció
bizonyos paramétereit véletlenszerűen megváltoztatjuk, így kényszerítjük az ágenst arra,
hogy robusztus legyen környezetének változásaival szemben. Ezáltal növelhetjük a valós
alkalmazás sikerének esélyét, azonban így általában még több tanító adatra van szükség.

Dolgozatomban egyszerre alkalmazom a véletlenszerű környezetek módszerét a szi-
mulátor kinézetének változtatására, és a felügyelet nélküli tanulást, melynek során a be-
meneti képeket tömörítem majd rekonstruálom variációs autóenkóderek segítségével. Az
így kapott tömörebb reprezentációt a felhasználva lehet a megerősítéses tanítást minta-
hatékonyabbá tenni.

Dolgozatom célja, hogy egy új módszert mutassak a két technika együttes alkalma-
zására, mellyel az előnyeik kölcsönösen megőrizhetők. Megvizsgálom, hogy miért lehet a
naiv kombináció szuboptimális, és új megoldást javaslok a tapasztalatok alapján. Munkám
fő ötlete az, hogy a módosított kinézetű bemeneti képek alapján ne önmagukat, hanem
önmaguk módosítatlan (kanonikus) verzióját rekonstruáljuk.

i

A bemutatott megoldás lehetőséget nyújt a tanítást követő valós alkalmazás minősé-
gének becslésére kvantitatív és vizuális módon, címkézetlen valós képek felhasználásával.
Továbbá előzetes szakértői tudással is segíthetjük a rendszer tanulását úgy, hogy mi vá-
lasztjuk meg a kanonikus képek kinézetét.

A bemutatott módszert a Duckietown önvezető környezetben alkalmazom, ahol sáv-
követés a megoldandó feladat egy differenciális meghajtású jármű irányításával, mindössze
egy kamera képe alapján. Az algoritmusokat a PyTorch nyílt forráskódú mély tanuló prog-
ramkönyvtár segítségével valósítom meg.

ii

Abstract

Recently the topic of self-driving cars has received great attention both from academia and
the public. While advances in the field of Deep Learning provide us tools for processing
vast amounts of sensor data, Reinforcement Learning methods promise us the ability to
take the right actions in complex interactive environments. Using these tools could be one
way to solve the self-driving task, however some problems make the real world application
of these techniques difficult.

One such problem is the sample-inefficiency of Reinforcement Learning. Since the only
source of information for learning is a reward signal, it can take several exploratory steps
to find the right parameters for the network. A proposed solution is to use Unsupervised
Learning on the input data, which means learning from the raw data without any labels,
generally by solving tasks whose solutions are inherently present in it.

Since AI agents collecting large amounts of experience while interacting with the real
world is usually too expensive and sometimes even dangerous, it is beneficial to train the
agents in a simulator, and then transfer them to the real world. However, our simulators
can only be imperfect models of reality, so the performance of agents is usually reduced
after the transfer. This problem is called the Sim-to-Real Gap. A proposed solution is
Domain Randomization, which perturbs certain parts of the simulation during training,
therefore forcing the agent to be robust against changes in its environment. This can make
a succesful transfer more probable, usually at the cost of requiring even more training
samples.

I apply Visual Domain Randomization simultaneously with the Unsupervised Learning
task of compressing input images to lower dimensional representations and reconstructing
them with Variational Autoencoders. These compressed representations can be used as
inputs to the reinforcement learning agent to make the training more sample-efficient.

The goal of this work is to propose a new technique to combine these methods while
retaining their respective advantages. I inspect why the naive combination can be sub-
optimal and propose a new method based on those findings. The main idea of this work
is to reconstruct a non-randomized (canonical) version of the input image based on the
visually randomized one.

iii

The proposed technique provides a quantitative and a visual way of estimating the quality
of a future sim-to-real transfer using only unlabeled real images. It can also provide a
way of injecting priors into the system by letting the user define the visuals of canonical
images.

The method is evaluated in the Duckietown self-driving car environment, where the task
is to follow lanes by controlling a differential drive vehicle based only on camera images.
The algorithms are implemented using the PyTorch open-source deep learning library.

iv

Chapter 1

Introduction

Achievements of deep learning methods are followed with greater and greater popular
interest nowadays. Learning agents capture the public imagination by promising systems
that learn from their errors and improve day by day. Systems powered with AI can provide
huge benefits by outperforming humans in more and more tasks.

However there are still hurdles in they way of applying artificial intelligence and deep
learning in a lot of real life application. These systems are generally not robust enough to
changes in their environment, and can respond to these changes by behaving unexpectedly.

They also need much larger amounts of data to learn tasks that humans can master from
a few examples. Overcoming both these problems would be an important step towards
the application of deep learning systems more broadly.

In this work I explore ways to make the training of reinforcement learning agents more
sample-efficient and to improve their robustness simultaneously, to prepare them for ap-
plication in the real world. To do that, I combine two methods that are well known and
used separately. I show a combination based on them which helps them to mutually retain
their respective advantages.

In the following chapters I present the relevant background and results from the literature,
then propose my method, comparing it to a more naive baseline solution. I will show
possible extensions as well.

I also present an implementation, which I evaluate in the Duckietown self-driving envi-
ronment. After that I present the experimental results and analyse them as well. I close
my work with discussing the topic of sample-efficiency in the light of pretraining methods
and determine future research directions.

1

Chapter 2

Theoretical Background

2.1 Deep Learning

Deep Learning [1] is a subfield of machine learning and the broader field of artificial
intelligence, in which we train artificial neural networks [2][3] for solving tasks. It recently
has successfully been applied for image processing [4], natural language processing [5], and
speech recognition [6], and is also capable of solving generative tasks [7].

Artificial neural networks are modular computation graphs, whose outputs are partially
differentiable by their parameters (weights), and their layers contain nonlinear activation
functions. If the graph is acyclic, i.e. it does not contain any directed circles, it is called
a feedforward neural network, otherwise it is a recurrent [8][9] one.

By using several input-output data examples, the weights can be adjusted such that the
network will produce outputs that are on average closer to our desired outputs, with the
aim that it will be able to generalize to unseen data samples as well. That way the
networks can be used as general nonlinear function estimators, and are useful tools in
settings, where we have enough data samples to train a network with sufficient capacity
to solve the task at hand.

During training, we iterate over the items of the training dataset, and based on the dis-
crepancy between the network outputs and the desired outputs, we calculate a loss value
using a loss function. Since the partial derivatives of the output by the weights can be
calculated, the parameters of the network are adjusted in the negative gradient direction
in order to decrease the average loss.

Partial derivatives can be computed using the backprogation of the error [10][11], by
applying the chain rule from calculus from the output of the network towards the input.
The weights are changed proportionally with their partial derivatives, i.e. with the sen-
sitivity of the loss on them. This algorithm is called gradient descent [12], and the
proportionality constant is called learning rate.

2

As calculating the partial derivatives of the loss over the whole training dataset before every
optimization step is infeasible and inefficient, we generally take a subset of the dataset,
called a minibatch, and use it for an optimization step. This makes the optimization
stochastic because the mean loss over the dataset is only estimated by a random subset
of it, therefore we call the algorithm stochastic gradient descent (SGD) [13]. Nowadays
we generally use improved versions of this optimization procedure, such as the Adam
algorithm [14].

The deep adjective in the field’s name refers to the fact that the networks we tend to use
are deep in the graph-theoretic sense, i.e. the amount of layers between the input and the
output is numerous, in practice it spans a range from a few layers to even a thousand [15].
The reason is that for the representation ability of the networks, depth is more useful than
width [16].

From a theoretic point of view, the universal approximation theorem [17] states that a
network with two layers and an appropriate activation function can approximate any Borel
measurable function with a desired nonzero error, given enough width. This function space
is broad enough, since any continuous function on a closed and bounded subset of Rn is
Borel measurable [18]. It has been shown that for a shallow network to have the same
representation ability as a deeper network, it has to be exponentially wider [16][19].

This effect can also be seen in practice, deeper networks are generally more powerful, but
also harder to optimize [18][20]. An intuitive example for the advantages of depth is image
processing, where the first layers of a network learn low-level features such as edges or
textures, later ones recognize simple structures based on those, while the final ones can
even perceive complex stuctures [21].

A great depth can also make the training process quite difficult, by the problem of van-
ishing or exploding gradients [20], so it cannot be chosen to be arbitrarily large. The
maximum depth achievable in practice however, grows year by year, thanks to architec-
tural improvements [15].

The field of Deep Learning has three main subfields: supervised learning, unsuper-
vised learning and deep reinforcement learning. In supervised learning, for each
data sample we have a corresponding label, and for each input the network is trained to
predict the its label. This can be optimized in a straightforward way, similar to what has
been described above. A drawback of these family of methods is that they require the
labeling of the datasets, which usually requires human effort, can be expensive, and also
sometimes unfeasible if the correct labels are not known.

Another subfield is unsupervised learning, which means learning from the raw input data
without any labels, generally by solving tasks whose solutions are inherently present in
it. Examples of such tasks are corruption-restoration processes, where either the class
of corruption has to be predicted or the original input has to be restored, generative
modeling, where the intermediate features of a similar-but-novel data sample generator

3

Figure 1: Architecture of an autoencoder

network can be used, and contrastive learning [22], where augmented versions of the same
data sample have to be distinguished from augmented versions of other samples.

The last one is deep reinforcement learning, which is also a subfield of reinforcement
learning. In this setting an agent can make decisions in an interactive environment, and
it receives a scalar reward in every timestep based on its performance. Here the task is to
optimize the behaviour in this time-dependent, stateful, non-differentiable environment,
to receive as much reward as possible. This topic will be further discussed in Section 2.3.

2.2 Autoencoders

2.2.1 Overview

An autoencoder [23][18] (classically called autoassociator) is a neural network whose task is
to represent the identity function, i.e. to map its input to its output. Since this task would
be trivial, it always contains a bottleneck layer, which in some way forces it to compress its
input, making the task nontrivial. We can then map our data to these learned compressed
representations and use them in other tasks.

We call the part of the network until the bottleneck layer encoder, and the other part
the decoder. The output of the bottleneck layer is called the latent code, and generally
it is used for the representation of the data. The structure of an autencoder is shown on
Figure 1.

4

As training an autoencoder does not require any labels only the data samples, autoencoders
are trained in an unsupervised manner.

z = encoder(x)

x̂ = decoder(z)

x̂ = decoder(encoder(x))

L = d(x̂, x)

(2.1)

pdata(X)

pencoder(Z|X = x)

pdecoder(X̂|Z = z)

pautoencoder(X̂|X = x)

LAE = − log pautoencoder(X̂ = x|X = x)

(2.2)

In Equation 2.1 we can see the components of a deterministic autoencoder, with x being
the input data sample, h the latent code, x̂ the reconstructed data sample on the output,
LAE the value of the loss, and d(x, x̂) is a distance metric, e.g. L1- or L2-norm of their
difference. As we will see in Sections 2.2.2 and 2.2.3, one can generalize the concept to
stochastic mappings as well, with the notations shown in Equation 2.2, with the upper
case letters being random variables and the lower case letters being their corresponding
samples. In these settings the loss is usually the negative log-likelihood of the input sample.

To simplify notation, here and in further equations I will only write the value of the loss
for a single data sample. One has to keep in mind that the loss is actually the expectation
over all loss values for all examples in the training dataset, and is calculated as a mean
over the data samples in a minibatch during training in the batched setting.

Bottlenecks are generally realized in two ways. We can make the latent code lower dimen-
sional than the input, in which case we talk about undercomplete autoencoders [23],
or we can regularize some part of the network in the case of regularized autoencoders.

By regularizing the latent code we can force sparsity in the latent codes (sparse autoen-
coders) [24], small gradients of latent representations at the data points (contractive au-
toencoders) [25], or limited information content and a simple latent manifold structure
(variational autoencoders) [26][27]. By corrupting the input data and trying to reconstruct
the uncorrupted version (denoising autoencoders) [28], we can also force the network to
implicitly learn the structure of the data distribution [29][18].

5

Figure 2: Architecture of a denoising autoencoder

Undercomplete autoencoders, i.e. when the latent code is lower dimensional than the
output, are so common, that when someone uses simply the term "autoencoder" they
usually refer to undercomplete autoencoders.

Since the dimensionality of the latent codes and corruption of the input is an architectural
choice, and the regularization of latent codes is usually implemented with adding penalty
terms to the loss function, these methods can be applied simultaneously as well.

2.2.2 Denoising Autoencoders

Denoising autoencoders (DAE) [28] use a usually stochastic corruption process, which
introduces noise to the input data. Then the task of the network is to reconstruct the
original version of the input data sample, as can be seen on Figure 2.

pdata(X)

pcorruption(X̃|X = x)

pencoder(Z|X̃ = x̃)

pdecoder(X̂|Z = z)

pautoencoder(X̂|X̃ = x̃)

LDAE = − log pautoencoder(X̂ = x|X̃ = x̃)

(2.3)

In Equation 2.3 we can see the components and the loss of a denoising autoencoder, with
the new notations x̃ being the corrupted data sample, and pcorruption() being a stochastic
corruption process. The loss is the negative log-likelihood of the input sample, given the
corrupted sample.

It has also been shown that solving this task implicitly forces the network to learn to
represent the probability distribution of the data [29][18].

6

Figure 3: Architecture of a variational autoencoder

The theoretically most understood corruption process is the additive uncorrelated gaussian
noise, however in practice salt-and-pepper noise [30], uncorrelated masking noise [30], and
for images correlated masking noise (occlusion) [31] has been used as well.

In this work I will show that for image-type input data it is also feasible to use:

• different renderings of the same image with different textures

• augmented versions of the original image

2.2.3 Variational Autoencoders

A variational autoencoder (VAE) [26][27] is a type of autoencoder that employs a specific
latent code regularization scheme, which makes it capable to be used as a generative model.
It has other interesting properties too, which we will discuss in this section.

As it is shown on Figure 3, the encoders of variational autoencoders produce a parametriza-
tion of a latent code distribution, from which the input of the decoder is sampled. That
means, that the model is stochastic and the latent code samples will be noisy, which makes
it necessary for the decoder to be robust to latent code perturbations.

platent(Z)

pdata(X)

pencoder(Z|X = x)

pdecoder(X̂|Z = z)

pautoencoder(X̂|X = x)

LV AE = LAE +DKL(pencoder(Z|X = x)||platent(Z))

(2.4)

In Equation 2.4 we can see the components and the loss of a variational autoencoder,
with the new notations platent being the prior latent distribution, and DKL() being the

7

KL-divergence of two distributions. The loss is the negative log-likelihood of the input
sample plus the KL-divergence of the posterior latent distribution from the prior one.

Generally the prior platent(Z) is chosen to be a multivariate Gaussian distribution with an
identity covariance matrix.

Since the naive implementation of the sampling operation from the posterior latent distri-
bution pencoder(Z|X = x) would not be differentiable, we have to use a method called the
"reparametrization trick". First we sample a noise vector from a unit Gaussian, then we
multiply that with the standard deviation of the posterior, and add the mean. That way
the computations based on our parameters are completely deterministic, beacuse the noise
vector is treated as a separate input, and therefore gradients can be propagated through
the operation.

Variational autoencoders have proved to be powerful generative models, and they and their
extensions have been successfully applied to natural image generation [32], high-resolution
human portrait generation [33][34], video generation [35] and even language modeling [36].
Its training procedure is generally considered more stable than the other popular method,
Generative Adversarial Networks (GAN) [7], however it is also known to produce blurrier
samples [37].

A possible explanation for the blurriness of the generated images is the choice of
pdecoder(X̂|Z) since this distribution is not known, it is generally assumed to be a multivari-
ate normal distribution with a constant valued diagonal covariance matrix. As generally
pixels that are close to each other are correlated, this choice is actually a limiting factor.

Concurrent work [38] has shown that the variance values can be calibrated based on
the training dataset either by estimating variance on the fly during training from each
minibatch, or by iterating over the dataset before training. That way no hyperparameter
is needed to set the strength of the KL-divergence term in the loss function. In my work I
will use the latter method for estimating the variance for every pixel of the output image
separately.

In the following I will present 3 different views of variational autoencoders to help the
reader build intuition for them.

2.2.3.1 Deep Learning View

From a practical deep learning point of view, the variational autoencoder is a regularized
autoencoder.

The KL-divergence term in the loss function is actually a regularization term, that penal-
izes deviation of the latent representations of the input samples from the unit Gaussian
distribution. And since the KL-divergence term can be arbitrarily large for arbitrarily
low variance values, it prevents the network to collapse its latent distributions to very low

8

variance Gaussians (Dirac delta distributions in the limit). Therefore the network has to
be robust to the noisiness of the latent codes.

Since the latent representations cannot differ too much from unit Gaussians, the stochastic
latent sampling ensures that the decoder generates plausible samples from all latent codes
near the prior distribution, ensuring that it will produce plausible samples during inference
for latent codes sampled from the prior distibution.

These two properties together ensure that the structure of the latent space is relatively
simple, since the noisy sampling procedure prevents sharp boundaries between close regions
of the latent space.

Lβ−V AE = LAE + βDKL(pencoder(Z|X = x)||platent(Z)) (2.5)

An extension of variational autoencoders has been proposed based on this view: the Beta-
VAE [39]. It modifies the loss function by adding a hyperparameter β, which is a scaling
factor of the KL-divergence term, as can be seen in Equation 2.5.

From this view, it controls the strength of the regularization, and is widely used in prac-
tice. By tuning it, one can find a good balance between regularization and representation
capability. It has also been shown that tuning it is equivalent to tuning the variance of
the decoder distributions and using a constant β.

In this work, since I used calibrated decoder distributions following [38], I will only use
the original VAE loss function (i.e. β = 1) since it is theoretically more grounded.

2.2.3.2 Variational View

From the variational point of view it is only a coincidence, that the variational autoencoder
is an autoencoder, since it is a generative model by design [40]. Being an autoencoder is
only a side-product of efficiency considerations.

From this view, the main part of the model is the decoder, which could also be called the
generator. During inference, it receives a sample from the prior latent distribution, and
generates a sample according to it.

To optimize such a model we would like to make the samples more probable, i.e. increase
pdecoder(X̂ = x). This can be achieved by simply using the negative log probability of
the data samples as a loss function, as can be seen in Equation 2.6. However since we do
not know which latent codes produce which data example, optimizing this quantity would
not be efficient, since pdecoder(X̂ = x|Z = z) would be zero for most latent codes, and we
would have to integrate over all z-s.

9

We can however derive a lower bound for the log probability, called evidence lower bound.
In this case since we optimize the negative log probability, it is an upper bound, which
becomes the loss function of the variational autoencoder.

Ldesired = − log(pdecoder(X̂ = x))

Ldesired ≤ −LELBO = LV AE

pencoder(Z|X = x)→ z

LV AE = − log pdecoder(X̂ = x|Z = z) +DKL(pencoder(Z|X = x)||platent(Z))

(2.6)

The main idea from that view is that we need to have an inference network (an encoder),
that is only used during training and estimates the latent code for each data example that
could have produced it. So we only optimize the log probability for data generated from
those latent codes that are considered to be good candidates.

This is actually the way that both papers [26][27] introducing variational encoders have
proposed them.

2.2.3.3 Information-Theoretic View

One could also look at variational autoencoders from an information-theoretic perspective.

The term − log pdecoder(X̂ = x) can be seen as the amount of information need in nats
(Euler’s-number-based bits), to construct the data sample from our decoder [40].

What we do instead is, we first estimate a latent code from the image, whose extra
information content is given by DKL(pencoder(Z|X = x)||platent(Z)) compared to that, if
we would simply have sampled from platent(Z). Then we need to add − log pdecoder(X̂ =
x|Z = z) which is the information needed to reconstruct the sample from the latent code.
So the sum of these two terms is a good estimation of the amount of information that
is needed to construct the data sample. It is only an upper bound however, because our
encoder is not ideal, so we "waste" some amount of nats.

2.3 Reinforcement Learning

2.3.1 Overview

Reinforcement learning [41] is a subfield of machine learning, in which the task is to train an
active agent of an environment to be able to act more optimally in the sense of maximizing
its cumulative future rewards. The main components reinforcement learning are shown on
Figure 4. I will introduce the most important concepts in the next paragraphs, following

10

Figure 4: The main components of reinforcement learning

the lectures of David Silver for the course on reinforcement learning at University College
London [42].

An agent is an active actor, who receives an observation from its environment, and
based on it and its policy (strategy), takes an action. During training it tries to improve
its behaviour in order to get more reward.

The environment can be modelled az a Markov Decision Process (MDP) [43]. "MDPs
are a classical formalization of sequential decision making, where actions influence not
just immediate rewards, but also subsequent situations, or states, and through those future
rewards. Thus MDPs involve delayed reward and the need to tradeoff immediate and
delayed reward." [41, p. 37]

A finite MDP is defined by the tuple of its finite set of possible states (S) and actions (A),
its state-transition probability matrix (P), its reward function (R), and its discount factor
(γ).

State consists of those parameters of the environment, that, together with the actions,
provide sufficient information to determine the future events. In a simulated environment
all of the internal variables of the system can be considered a part of its state, however they
could also contain implementation-specific irrelevant information as well. Therefore, we
generally only consider those internal variables a part of the state, that contain meaningful
information about the process and its future.

In case of an MDP the state can be observed completely, therefore it is called fully ob-
servable, and the states and observations can be considered the same. If this condition is
not met, then it is a partially observable markov decision process [44].

The dynamics, behaviour of an environment can be described using its state-transition
probability matrix. The matrix determines for every possible action in every state
the probability of getting into a given next state, for all possible next states. The state-
transition matrix can be used to directly solve the MDP, however its size is huge even for

11

simple problems, for more complex ones it is unfeasible to even be determined. In practice
we generally tend to try to omit using the state transition probability matrix.

P ass′ = P(St+1 = s′|St = s,At = a) (2.7)

P ass′ is an element of the matric, whose value is the probability of s′ corresponding to a
current s state and a action.

The reward is a scalar feedback signal in every timestep, which shows the agent, how
well it is doing in the current task.

The reward corresponding to a given timestep is determined by the reward function. It
outputs for all state-action pairs, how much reward they are worth. In theory we tend to
assume that it is a part of the environment, however in practice one usually has to find
a correct way to give rewards to the agent. We have to find a reward function for which
the expected behaviour is actually the optimal one, i.e. it cannot be easily exploited, and
which helps the learning enough, i.e. by not being to sparse.

Ras = E(Rt+1|St = s,At = a) (2.8)

Ras is an element of the reward function, whose value is the expected value of reward in
the next step Rt+1, for the current s state and a reward.

Gt =
∞∑
k=0

γkRt+1+k (2.9)

Return Gt is for a timestep the sum of all future rewards discounted by the discount
factor γ. This is analogous to the present value in economics, if we consider the future
rewards analogous to future cash flows, and our interest rate is constant. The discount
factor represents that we consider future rewards closer in time more valuable, since farther
ones are more uncertain.

A recurring element of reinforcement learning algorithms is, that we try to estimate the
value of either the states, or the state-action pairs for a given policy, based on the returns.
Another frequently used method is to estimate the optimal policy as a function, that maps
actions to observations. And in model-based algorithms we can estimate a dynamics model
of the environment, which maps next states to a current state-action pair, which can then
be used for planning. If we use deep learning for these function estimation tasks, then it
can be called deep reinforcement learning.

Recently reinforcement learning has been successfully applied to create professional- or
even superhuman-level agents in classical games such as go [45], chess [46], or Atari [47],
and in modern computer games such as Dota 2 [48] and Starcraft 2 [49].

12

2.3.2 Sim-to-Real Gap

It can generally be stated that model-free reinforcement learning algorithms are not using
gathered experience efficiently, so they need several interactions with their environment
to learn to complete certain tasks. That makes training in the real world slow, and since
it also usually needs human supervision, it is generally too expensive and sometimes even
dangerous to train in the real world. A common solution to this problem is that the agents
learn in simulated environments and are then transfered to the real world.

Sim-to-real transfer has already been successfully applied in robot arm manipulation [50],
robot locomotion [51] and simple self-driving tasks [52].

However, our simulators can only be imperfect models of reality, so the performance of
agents is usually reduced after the transfer, sometimes they are unable to complete the
same task that they have already completed in the simulated environment. This is called
the sim-to-real gap, and one has to take it into account if they want to apply agents trained
in simulation to the real world.

The Sim-to-real gap can be decreased using the following techniques:

• More realistic simulator environments

– More realistic rendering and textures [53]

– System identification and calibration [50]: more accurate dynamics parameters
based on measurements

• Domain adaptation [54]: performance difference between the simulated and real
environment can be decreased by fitting certain statistics to be more similar, by
using auxiliary lost functions, or with transfer learning

• Domain randomization [55][56]: random perturbation of some parameters (e.g. vi-
suals) of the simulated environment in every training episode, to broaden the range
of environments, in which the agent performs properly (will be further discussed in
Section 2.3.3)

• Regularization:

– Observation-noise [50]: can make the agent more robust to discrepancies in its
observations

– Action-noise [50]: can force the agent to plan more robustly or behave more
conservatively

– Network reguralization [57]: application of techniques typically used against
overfitting in deep learning, such as L2 regularization [58] and droupout [59]

13

Figure 5: The scopes of visual domain randomization and dynam-
ics randomization

2.3.3 Visual Domain Randomization

Domain randomization is a technique where we randomly perturb some selected parame-
ters of the simulator we use, in every training episode. The aim of this technique is that
by training a reinforcement agent in a diverse set of virtual environments, the range of
environments in which it performs well is broadened, which increases the probability of a
successful sim-to-real transfer.

The two main methods of domain randomization are visual domain randomization [55][56],
where visual parameters are perturbed, such as textures, lightning, background, and dy-
namics randomization [60], where the parameters of the process dynamics are changed.
Their respective scopes are illustrated on Figure 5.

In the case of visual domain randomization and image observations, one could also use
image augmentation methods instead of rerendering the images. These however should
not distort the underlying state of the simulator, as observed by the agent. A simple
example is Gaussian noise, but one could change the brightness, contrast or the saturation
of the image as well.

These two methods are quite different, and promote generalization in different aspects.
In this work I will only consider the method of visual domain randomization, and will
introduce the most relevant works in the following sections.

The technique of visual domain randomization can usually only be used for high-
dimensional sensors, it is applied mainly for cameras, however it can easily be generalized
for LIDARs as well.

Using cameras as sensors has the advantage that they are cheap, easy to acquire and can
be used for a broad range of tasks. Their main difficulty however is, that they are high

14

Figure 6: Visual domain randomization: A [55], B [56], C [64]

dimensional, their images contain a lot of data, and it is not easy algorithmically to get
meaningful information out of that.

Since we generally have large quanitities of training data in image processing (images),
and the classical algorithms have only been useful on a narrow range of tasks, it provided
a fertile ground for neural networks and deep learning. With the help of convolutional
neural networks [61], a family of networks specializing in image processing, remarkable
achievements have been made in image processing tasks such as image classification [4],
image segmentation [62], and object detection [63].

An agent that uses a camera sensor can be trained in simulator by rendering an image
of a simulated camera and using that as input. The difficulty of transferring to the real
world stems from the fact that the diversity of images in a simulator is much less than
in the real world. There is a danger that the model learns some specific properties of
the simulator (like the colors and textures of some objects), that will not be the same in
reality, or will be much more diverse. In that case since these inputs are different from
anything the network has seen, its outputs become unpredictable.

Examples of visual domain randomization can be seen on Figure 6, other applications will
be shown in the following sections.

2.3.3.1 Direct methods

In this section I will present such applications of visual domain randomization from the
literature, in which the randomized environments are used in the same way as the original
one: as a training environment.

One of the first applications of the technique, in which the goal was to ensure general-
ization by visual diversity and not to make it visually more realistic, was for the task of
indoor camera-based drone control [55]. The authors carried out the training in simulated
indoor environments, in which they placed lightsources, furniture, closed and open doors
in random pozitions and directions. They also randomly choosed realistic wall textures.

15

Though their network was pretrained on realistic images, they did not use any further real
images during training, and their algorithm was capable of flying in the reality as well,
with approximately one crash every minute.

The technique was also successfully applied in robotics, for object localization [56]. The
task of the network was to determine the positions of objects on a table, with other dis-
tracting objects present, based on camera images. The training was carried out without
any real images, with a random amount of objects with randomized shape, texture and
position, and with a random amount of lightsources with randomized direction, temper-
ature and position. They also perturbed the position and direction of the camera, and
the parameters of noise added to the images. They used multiple thousand nonrealistic
textures with randomized colors. Based on the ablation study, the randomized texture and
camera positions had the highest impact, which is a finding that I have seen in multiple
robotics applications.

The method has also been applied for object detection [64], where the authors also used
a wide range of image augmentation techniques. Findings show that their model has an
accuracy similar to as if it has been trained on a highly realistic virtual dataset. In their
case the randomized lightsources and textures had the greatest impact on the result.

2.3.3.2 Indirect methods

In this section I will present some indirect applications of visual domain randomization,
that do not use the randomized environments for training, but for network regularization
or domain adaptation instead.

One of the techniques [65] is based on the following idea: the robustness of a policy can
be measured by calculating the average distance of the policy outputs in the case of a
randomized observation and its originial counterpart. So we can just simply add this term
to the loss function, and use it for optimization, thereby ensuring robustness of the learned
strategies.

A similar solution is the one, where we do not calculate the distances between the outputs,
but between the activations of the last hidden layers instead [66], which can be seen as
a high level representation of the input. This helps to avoid the situation, where the
two parts of the loss function have opposite effects, therefore in this case increasing the
strength of the regularization parameter does not cause in performance drop. Another
work proposes this same method [67], however an interesting detail is that they use a
randomly initialized convolutional layer for data augmentation.

Visual domain randomization can also be used for domain adaptation [68]. In this case a
network is trained to generate a canonical observation (an observation that is similar to
the observations of the original environtment) based on the randomized observation. We

16

Figure 7: Domain adaptation based on domain randomization [68]

then train our agent based on images adapted by this network, and we can also use this
network to adapt the real observations. The method is shown in Figure 7.

This work can be seen as the closest to my work, and I will also use the same idea of
randomized and canonical obervations.

17

Chapter 3

Proposed Method

3.1 Baseline

The goal of this work is to propose a novel method which combines visual domain ran-
domization and unsupervised learning for increased sample efficiency using autoencoders.
In order to do that we have to establish a baseline solution, which combines both these
techniques in a straightforward naive way.

The architecture of the baseline solution is the following (see Figure 8):

A dataset is generated by gathering visually randomized observations from the simulator.
Then I train a variational autoencoder on these images to be able to create a compressed
representation of them.

Using the encoder of the network, I implement an observation wrapper for the simulator,
which compresses the observations during the training of the reinforcement learning agent.
I use the means of the latent code distributions as the latent representation. That way

Figure 8: Overview of the baseline architecture

18

the agent can learn more sample-efficiently using the compressed representations of the
visually randomized image observations.

3.2 Drawbacks of the baseline

Although this baseline method already improves sample-efficiency, it actually is not com-
pletely efficient, and also does not make a successful transfer the easiest possible.

The main reason is the following: when applying visual domain randomization, we pur-
posefully change parts of the input image observation, that are irrelevant to the task,
i.e. the visuals of the environment. By changing these parameters stochastically in ev-
ery training episode, we force the reinforcement learning agent to be invariant to these
perturbations.

However when we use variational autoencoders to compress and reconstruct the observa-
tions, the visuals will become relevant, they will actually become quite important, since
they inflict large changes in pixel-space. Therefore the variational encoder will have to
encode the current values of these visual parameters to its latent space, to be able to
reconstruct them accurately.

This has two drawbacks. The first is that the variational autoencoder will waste its latent
capacity to encode information that we know is irrelevant, therefore it will only have
less capacity to encode useful information for the reinforcement learning task. One could
counteract that by increasing the dimensionality of the latent space, but this makes the
reinforcement learning procedure less sample-efficient by increasing the dimensionality of
the observation space.

The second is that by encoding information about visual features to the latent space, we
risk the possibility that if the agent does not become completely invariant to them it can
hinder its performance in the real world.

The conclusion is that we should modify the unsupervised learning objective of the varia-
tional autoencoder in a way, that prevents, or at least does not promote the encoding of
features that are perturbed by the visual domain randomization.

3.3 The Method

The main idea of this work is that in order to prevent the encoding of the values of
randomized visual features, we should reconstruct the non-randomized (canonical) image
observations.

One can recognize that this changes the variational autoencoder’s objective to a denoising
one, by interpreting the visual domain randomization as a corruption process over the
canonical image, which makes the perturbed visuals to be considered noise.

19

Figure 9: Overview of the proposed architecture

This lines up exactly with the consideration, that we only perturb visuals that are irrele-
vant to the task. This will encourage the autoencoder to ignore these perturbed features,
and utilize its latent capacity in the most effective way. Based on these considerations
I would argue that this is a more natural and effective way of combining domain ran-
domization with unsupervised representation learning, than the naive baseline solution
introduced above.

The architecture of the proposed method is shown on Figure 9.

3.3.1 Motivations of Design Choices

Because of the fact that the method proposes the usage of a denoising variational autoen-
coder in conjunction with a reinforcement learning agent and visual domain randomiza-
tion, which can be seen as quite convoluted, I would like to discuss the motivations behind
these design choices. I would also like to give intuition and clarify the role of each element
of the proposed technique. The theoretical background and further explanation of these
statements are provided in Chapter 2.

Motivations for each element of the method:

• Visual domain randomization: to decrease the sim-to-real gap and increase the
chances of a successful sim-to-real transfer

• Undercomplete autoencoder: to increase sample efficiency by compressing the ob-
servations to a lower dimensional space

• Variational autoencoder: to regularize the latent space and make the model more
explainable by being able to draw unconditional generated samples from it

• Denoising autoencoder: to be able to utilize full capacity when combined with visual
domain randomization and to encourage meaningful representation learning

20

3.4 Applications

The general application of the method is of course in settings where one would like to
increase the sample efficiency of the reinforcement learning training procedure, while also
using visual domain randomization simultaneously.

This application has been implemented in the Duckietown self-driving car environment,
and the results are discussed in Chapter 5.

In this section I would like to propose further use-cases of the method, that are made
possible by the design choices discussed above.

3.4.1 Visualization of the Latent Space

Since the variational autoencoder is a generative model, it provides an opportunity to
make the model more explainable. One can observe the quality of unconditional generated
samples during and after training, simply by drawing samples from the latent prior (unit
Gaussian) and performing a forward pass on the decoder. Using this method, one can
evaluate the performance of the decoder visually, I have used this method to evaluate
progress during training.

Another possibility is that when using only 2 latent dimensions (i.e. encoding a full input
image into only 2 noisy variables), one can visualize the whole latent space by plotting
generated images based on a grid of latent codes in the latent space to a grid of images.

3.4.2 Evaluation of Sim-to-Real Transfer Capability

3.4.2.1 Quantitative

As we have seen from the information-theoretic view of variational autoencoders (Sec-
tion 2.2.3.3) the KL-divergence term of the loss function can be interpreted as the extra
information in the posterior latent distribution conditioned on an image over the prior
one.

This can be used as a tool to evaluate the amount of information the model needs, to
encode a specific image. We can gather images from the real world and interpret them as
visually randomized observations. Then by performing a forward pass on them, we can
monitor the KL-divergence term of the loss function. If it is considerably higher than what
was seen during training on simulated images, that means that a successful sim-to-real
transfer is not too likely. However if it does not differ to much, that signals that the
encoder does not use considerably more information for encoding them, which means that
they fit into the model’s latent structure well.

21

An advantage of this application is that is does not require any label for the real images,
which makes the real world data collection simple.

3.4.2.2 Visual

Another possibility is, somewhat similarly to the method mentioned above, to evaluate
the reconstructions of real world images. Since these images are interpreted as visually
randomized observations, the network will try to produce their canonical versions, i.e. as
if these scenes would have been rendered in the simulator with canonical textures.

One can perform a forward pass on the real world images and evaluate their "canonical"
versions visually. If they have an acceptable quality and seem to be feasible visually,
that means that the complete network was capable of encoding and decoding them, which
means that the autoencoder is likely to work well on these types of real images even after
a sim-to-real transfer.

3.4.3 Regularization with Latent Augmentation

Even though regularization is not as widely used yet in deep reinforcement learning as
in supervised learning, recently it has been shown in [69], that reinforcement learning
encoders overfit too if given enough capacity, which hinders their performance.

This method provides an elegant way to augment the latent codes to regularize the network
of the reinforcement learning agent, thereby preventing it from overfitting. The idea is
that we should not use mean of the posterior latent code distribution, but instead sample
from it.

That way we can achieve a higher diversity in the input observations of the agent, thereby
regularizing it and making it more robust, with possibly some loss in the final performance.

3.5 Extensions

By interpreting the notions of "randomized observation" and "canonical observation"
broadly, one can use the methods with the following two extensions as well.

3.5.1 Segmented Image as Canonical Observation

An advantage of the method is its flexibility in terms of what we consider as a "canonical
observation". In the standard setting it was an observation that has been rendered with
the original, non-randomized textures of the simulator.

But what if we consider other textures canonical? We could use this as a tool inject
prior knowledge into the system, e.g. by changing the texture of all objects such that we

22

render a segmented image. This can be achieved by using black textures for everything
unimportant, and only using single colors for important objects.

3.5.2 Augmented Image as Randomized Observation

A limiting factor of the method is that is randomized and canonical rendering of the same
scenes. This could be hard to implement if the code of the used simulator is either highly
complex or unavailable.

Therefore here I propose a solution to these problems. One could also use image aug-
mentations as a corruption process. That way the only thing needed are the canonical
observations, which can simply be the standard observations of the simulator, while the
randomized observations will be augmented versions of them.

One should however take great care when designing the augmentation pipeline, and should
only use those augmentations, for which it makes sense to be interpreted as noise. E.g.
random shifts are not useful augmentations in a self-driving setting, since they change
the underlying observed state (the position of the car), and can not be denoised without
memory.

23

Chapter 4

Implementation

4.1 Reinforcement Learning Task

I have implemented and evaluated the proposed method in the Duckietown self-driving
car environment [70], using the Stable-Baselines3 [71] reinforcement learning library which
uses the PyTorch [72] open-source deep learning library as its backend. I have used the
PPO algorithm [73] for the training of the agents.

4.1.1 The Duckietown platform

The Duckietown self-driving platform consists of multiple main parts, one of which are the
Duckiebots, which are small-sized autonomy-capable vehicles, that are controlled by a
Raspberry Pi, and are equipped with a single camera. They are differential drive vehicles,
which means that they do not use a servo motor for steering, instead their motors are
independent on their sides, and they can turn by driving their motors at different speeds.

Another part of the system is the Duckietown, which is a small scale physical driving
environment, which can be used by the Duckiebots for driving, therefore their performance
can be evaluated in a real environment.

The last main part is the Duckietown Gym, which is a self-driving car simulator, imple-
menting the OpenAI Gym interface. The simulator contains multiple maps that provide
tasks such as lane folloving (sometimes with other vehicles), navigation in junctions and
pedestrian (duck) and obstacle avoidance.

An important feature of the simulator is that it implements visual domain randomization
by optionally perturbing the following components:

• Position and color of the lightsource

• Camera position, angle, and field of view

• Color of the sky

24

Figure 10: The Duckietown platform [74]

• Texture and color of road tiles

• Amount, type, position and color of environment objects

I have perturbed all of these components when training the reinforcement learning agent
with visual domain randomization.

One can create wrappers for the simulator, which can be "wrapped around" it, meaning
that they generally override or modify some feature of the simulator, creating a new
simulator with a slightly modified set of features.

Wrappers enable the user to customize the observation space, the action space, the reward
function, and also to add new custom functionality. I have used this feature extensively,
it enabled me to create a codebase that does not require any modification of the original
simulator codebase.

4.1.2 Observation space

Following the work of [75], I have downscaled the 640x480 input image by a factor of 4
by both its sides to a size of 160x120 then I cropped the upper third of the image, which
generally only contained information about the background objects and the sky, which
yielded an observation of size 160x120.

25

It has been shown in [75], that stacking multiple past frames can be useful, as this enables
the network to infer information about its speed and angular velocity (which need at least
2 frames), and its acceleration and angular acceleration (which need at least 3 frames).
These theoretical considerations have been reinforced by this prior work, and it has also
been shown that stacking more than 3 frames does not yield considerable benefits, therefore
I have stacked 3 past frames together for every observation. Since I used the images as
colored images, the final size of the input image observations became 9x160x80.

I did not apply any other preprocessing on the input images, such as tresholding certain
colors or filtering, I let the neural network to explore what features will be useful on its
own.

4.1.3 Action space

A differential robot is usually controlled by diriving its motors on its sides at different
speeds. In the case of the Duckiebot, one can control the duty cycles of the PWM (pulse
width modulated) signals that drive its DC motors.

That means that the space of possible actions is two-dimensional and by each dimension
it spans the range of [−1.0; 1.0]. This action space is rather large, and it also contains
some actions that are not too useful, for example we do not want drive the vehicle drive
backwards or to drive much more slowly than it is capable of.

As my initial experiments have shown that using a discrete action space is suboptimal,
and since the task at hand is inherently continuous, I have chosen to use a continuous
action space. I have followed prior work [75], and have defined a 1-dimensional action
space. The only thing the agent can directly influence is its steering angle, which is then
mapped to two target speeds of its two motors. These speeds are chosen to be as high as
possible while still having a difference that is proportional to the steering angle. This has
the effect that when taking sharp turns the car has to slow down to be able to provide the
needed difference between the wheel speeds.

The exact derivation is described in Equation 4.1, where unom is the desired maximal duty
cycle (nominal duty cycle), uavg is the average duty cycle of the two motors (this depends
on the desired steering angle), uleft and uright are the duty cycles of the corresponding
motors, and φ is the desired steering angle, while clip(value,min,max) is a function that
clips its input to be between a minimimal and maximal value.

For small values φ can actually be interpreted as a steering angle in radians, however for
larger values it should be interpreted as a scalar value that is proportional to the angular
velocity of the vehicle, with |φ| = 1 meaning that either one of the motors stops completely

26

while the other one runs at full speed, meaning that the vehicle goes at half of its maximal
speed.

unom = 1.0

uavg = min(unom,
1

1 + |φ|)

uleft = clip(uavg(1 + φ),−1, 1)

uright = clip(uavg(1− φ),−1, 1)

(4.1)

4.1.4 Reward function

I have chosen to use a reward function that is physically motivated. In each timestep the
reward of the agent is the speed at which it is progressing in its lane. A more accurate
description is that the reward is the speed of a virtual vehicle that moves exactly in the
middle of the lane, is exactly parallel to it, and completes its route at the same rate as
the actual car.

The exact formula of the reward function is shown in Equation 4.2, where v is the physical
speed of the car, δ is the signed angle of the car and lane, r is the signed radius of the
turn, c is the signed curvature of the turn (c = 1/r), and p is the signed distance of the
car from the lane.

R = vprogress = v · cos(δ) · r

r + p
= v · cos(δ) · 1

1 + cp
(4.2)

The formula can be understood in the following way: v · cos(δ) is the component of the
vehicle’s speed that is parallel to the lane, v · cos(δ)/(r + p) is the angular velocity of the
vehicle in a turn, and v · cos(δ)/(r + p) · r is the circumferential velocity of the equivalent
virtual vehicle in the turn, that is moving exactly on the middle of the lane.

This reward function has the advantage that it penalizes high angles and turns taken in
the outer regions of the road, while it promotes high speeds and turns taken on the inner
regions of the road. In practice the value is generally quite close to simply the speed of
the vehicle, which has also been shown to be a plausible reward function [75].

When using this reward function however, care has to be taken to limit how much the car
can leave its lane, otherwise it will tend to take left turns by going over to the other lane.

4.1.5 Evaluation metrics

I used the following metrics to monitor the performance of lane following agent during
and after the training:

27

• The mean absolute angle between vehicle and the lane (δ̄)

• The mean absolute distance between vehicle and the center of the lane (p̄)

• The mean speed of the vehicle (v̄)

• The mean magnitude of the component of the speed that is parallel to the lane (v̄f)

• The mean reward per timestep, which is equivalent to the mean progression speed
(R̄)

• The average length of the evaluation episodes (t̄)

The means have been taken over the whole process of the evaluation, which generally
consisted of multiple episodes. The following metrics were only used in the single episode
evaluation setting:

• The maximal absolute angle between vehicle and the lane

• The maximal absolute distance between vehicle and the center of the lane

• The median signed distance between vehicle and the center of the lane (to detect
asymmetries)

The means have been taken over the whole process of the evaluation, which generally
consisted of multiple episodes.

4.2 Dataset

I have generated and saved 200.000 images during the training of a simple convolutional
reinforcement learning agent, and I have saved 3 different renderings for each image: a
visually randomized, a canonical, and a segmented (Section 3.5.1) one. For saving and
loading, the pickle package has been used. I have also saved the corresponding speeds,
angular velocities, lane angles, lane distances, and lane curvatures for future work. The
generated dataset has a 22.6 GB storage size.

Four different maps were used, all being a part of the official duckietown simulator: 4way,
loop_empty, udem1 and zigzag_dists, as can be seen in Figure 11.

I have also implemented a fourth type of observation, the augmented observation, which
is always generated on the fly by applying a random convolution [67] to the canonical
observation, and then min-max scaling it to be between 0 and 1. This has been used to
implement the extension to my proposed method, discussed in Section 3.5.2.

Examples of the four types of observations can be seen in Figure 12.

28

Figure 11: The maps that were used: 4way, loop_empty, udem1
and zigzag_dists

Figure 12: The mean and variance images corresponding to each
observation type, with 3-3 corresponding samples

29

Using the dataset, the mean and variance observations for each image type have been
determined before the training, to enable to use calibrated decoders in the variational
autoencoder.

I have created another dataset as well, which contains 19.000 real images, downloaded
from online logs of Duckiebots.

4.3 Variational Autoencoder

I have implemented the denoising variational autoencoder in the PyTorch deep learning
framework, ith the usage of the PyTorch Lightning library, which is lightweight PyTorch
wrapper that removes boilerplate code and makes the remaining code more organized,
therefore more readable.

I have used pixelvise calibrated decoder distributions following the work of [38], but I have
iterated once over the whole training dataset instead of estimating the variances of the
distributions based on the minibatches.

I have used a unit Gaussian as a latent prior, and another Gaussian as the latent pos-
terior whose parameters are produced by the encoder based on the input image x. The
distibution of the decoder is considered Gaussian as well, with its mean outputted by the
decoder based on the latent code z, and its variance calculcated beforehand.

Making these assumptions, the calculations needed for the autoencoder are simplified to
those shown in Equation 4.3, with N being the normal distribution, and µ and σ2 being
the means are variances of their corresponding distibutions.

platent = N (0, I)

pdata → σ2
x

encoder(x)→ µz, σ
2
z

pencoder = N (µz, σ2
z)

decoder(z)→ µx̂

pdecoder = N (µx̂, σ2
x)

LV AE =
∑
x

1
2((µx̂ − x)2/σ2

x) +
∑
z

1
2(µ2

z + σ2
z − log(σ2

z)− 1)

(4.3)

4.4 Hyperparameters, architecture

During my work, I tried to use default hyperparameters wherever possible. I have exten-
sively tuned manually the hyperparameters of the reinforcement learning agent, however

30

could not achieve meaningful improvements. The final hyperparameters I used can be
found in Table 1.

For consistency, the feature extractor of the reinforcement learning agent has been replaced
with a custom encoder, that is quite similar to the encoder of the variational autoencoder,
with the exception that is has a 64 wide feature space in the last layer.

The value and policy networks have been kept at their default values, i.e. as separate 2
layered fully connected networks with Tanh activations.

An important note is that for the segmented image generation task the final activation
of the decoder had to be changed to Tanh + ReLU, that way the network starts after
initialization from a black image and therefore does not converge to completely black local
optimum.

31

Table 1: Hyperparameter values used for the PPO algorithm

Name Value
Optimization steps 50.000 - 400.000

Learning rate 0.0003
Number of steps between updates 2048

Batch size 64
Optimization epochs 10

Time horizon (discount factor) 0.8 s (0.96)
Gradient clip range 0.2
Entropy coefficient 0.0 (std dev has been kept constant instead)

Initial log standard deviation -1.2 (and kept constant)

Table 2: Encoder architecture

Layer Output dimensions
Conv(kernel=3, stride=2, padding=1) + ReLU width x 40 x 80
Conv(kernel=3, stride=2, padding=1) + ReLU width x 20 x 40
Conv(kernel=3, stride=2, padding=1) + ReLU width x 10 x 20
Conv(kernel=3, stride=2, padding=1) + ReLU width x 5 x 10

Linear() 2 x latent dim

Table 3: Decoder architecture

Layer Output dimensions
Linear() + ReLU width x 5 x 10

Upsampling(scale=2) + Conv(kernel=3, padding=1) + ReLU width x 10 x 20
Upsampling(scale=2) + Conv(kernel=3, padding=1) + ReLU width x 20 x 40
Upsampling(scale=2) + Conv(kernel=3, padding=1) + ReLU width x 40 x 80
Upsampling(scale=2) + Conv(kernel=3, padding=1) + Sigmoid width x 80 x 160

Table 4: Autoencoder hyperparameters

Name Value
Learning rate 0.001

Number of epochs 5
Width 64

Latent dimensions 8 (2 for latent visualization)
Standard deviation parametrization as the log of the standard deviation

32

Chapter 5

Results

5.1 Analysis of the Autoencoders

During my work I have implemented 5 different types of autoencoder-based models who
will be indicated in the following ways:

• VAE: the baseline solution (ordinary variational autoencoder, maps from randomized
to randomized)

• DVAE: the standard implementation of the proposed methoed (denoising variational
autoencoder, maps from randomized to canonical)

• DVAE-SEG: a denoising variational autoencoder that maps from randomized to
segmented observations

• DVAE-AUG: a denoising variational autoencoder that maps from augmented to
canonical observations

• DVAE-REG: the standard model, however when used for observation compression,
the latent distributions are sampled instead of just taking the mean

5.1.1 Evaluation

In this section I evaluate all the variants of the proposed method based on two main
components. The first is the visual quality of the reconstructions, which can be seen in
Figure 13, the second is the final values of their loss functions, that can be found in Table
5.

Visually we can see that the assumption that the baseline solution would not be using its
latent capacity most effective can be true, since it is the only method whose reconstruction
of the red line from the sample 2 is barely visible. Generally it can be sad that all methods
exhibit an acceptable visual quality for these images, possibly DVAE-AUG distort the most

33

Figure 13: Target and reconstructed image pairs for each method

features among them. A interesting note that neither of them reconstructs the yyellow
rubber duck from ample 4. Maybe the dataset does not contain enough of them?

The loss table shows similar values for the KL-divergence terms, with somewhat different
reconstruction errors. Interestingly, the reconsturction error of DVAE is lower than DVAE-
SEG’s eventhough it has to reconstruct a more complex image (a canonical one instead if
the segmented). DVAE-AUG shows the highest reconstruction error which lines up with
our visual observations.

Table 5: Loss components for the autoencoder variants

Loss [nat] Reconstruction error [nat] KL-divergence [nat]
VAE 6651 6608 42.6
DVAE 5720 5678 42.2

DVAE-SEG 6453 6412 40.6
DVAE-AUG 7596 7556 39.8

34

Figure 14: The latent space of a 2-dimensional denoising varia-
tional autoencoder, sampled from a grid

5.1.2 Visualization of the Latent Space

I have trained an autoencoder with a two-dimensional latent space as well, to be able to
visualize it on a 2D-grid with a grid of generated images from the correstponding latent
codes. The visualization can be seen on Figure 14.

We can generally see straight road sections, with differing lane angles and positions, which
supports the assumption that these representations can be useful for solving the lane
following task. Towards the top left corner we can see generated images with unclear
structures. Maybe these are exactly inbetween two regions, or maybe the network was
forced to make these representation because of the highly reduced latent capacity.

5.1.3 Sim-to-Real Transfer Capability

I have discussed it as a possible application of the method, that we can also use real world
images as the network’s input. In this section I show the two ways of evaluating sim-to-real
transfer capability based on real images.

5.1.3.1 Quantitative

The quantitative measurements show that the difference between the KL-divergence terms
of simulated and real images is actually not that high. The VAE model has the highest
discrepancy, which could signal a less probable sim-to-real transfer.

35

Table 6: KL-divergence terms for simulated and real images

Validation KL-divergence [nat] KL-divergence on real images [nat]
VAE 42.6 51.8
DVAE 42.2 42.7

DVAE-SEG 40.6 34.6
DVAE-AUG 39.8 41.0

Figure 15: Reconstructed versions of real images with each
method

Interestingly the DVAE-SEG model produced lower KL-divergence latent codes for the
unseen real images, than on the ones that is has been trained on. This phenomenon might
require further investigation.

The DVAE and DVAE-AUG models show a relatively low KL-divergence discrepancy
which makes them good candidates for sim-to-real transfer.

5.1.3.2 Visual

Another option is to inspect the outputs of the networks visually, and draw conlcusions
from that. The general quality of reconstructions, that I have seen from the models
when they have a real image as input, is lower. The blurry spot-like sturctures are more
prevalent.

However, the models still manage to give meaningful reconstructions of these real images,
which means at least that they can extract some information, so they should not fail
completely in these new environments.

36

5.2 Comparisons with other Methods

To provide proper comparisons, the following end-to-end reinforcement learning models
will be used as baselines to the proposed models:

• CNN-DR: a purely reinforcement learning agent with a convolutional feature extrac-
tor, that tries to learn from the randomized observations

• CNN-CAN: a purely reinforcement learning agent with a convolutional feature ex-
tractor, that tries to learn from the canonical observations. It can be interpreted as
the method of [68], with the adaptation network being a perfect oracle

• STATE: a purely reinforcement learning agent that is fully connected and learns
directly from the physical states (lane-angle, lane-distance, lane-curvature, speed,
angular velocity)

All of these baseline methods are end-to-end, which means that they do not utilize any
pretraining, and learn representations based only on the reward signal.

The agents that utilize representations learned by unsupervised pretraining will be indi-
cated by the name of the pretraining method used: VAE, DVAE, DVAE-SEG, DVAE-AUG
and DVAE-REG. A more detailed description is provided in Section 5.1.

5.2.1 Domain Randomization Methods

When comparing the proposed method with other methods, that deal with visual domain
randomization in a different way, we can see that the proposed method is on one hand
more sample-efficient since it reaches higher performance with less training examples. This
can be attributed to its unsupervised pretraining objective.

For fair comparison, the end-to-end methods CNN-DR and CNN-CAN were given twice the
amount of training examples during training to offset the advantages in sample-efficiency
caused by the pretraining.

On the other hand we can also see that it achieves higher performance, then the other
methods. Looking at Table 7, we can se that it’s average episode length is significantly
faster, along with its average speeds and reward.

This show that the proposed method is a capable tool for solving tasks in the visual domain
randomization settings.

5.2.2 Sample-Efficient Methods

If we compare the model to other sample efficient methods, one thing can be seen clearly:
the method is still far away from both the sample-efficiency, and the pure performance

37

Figure 16: Comparison with other domain randomization meth-
ods

Table 7: Comparison with other domain randomization methods

δ̄[rad] p̄[m] v̄[m/s] v̄f [m/s] R̄[m/s] t̄[1]
DVAE 0.116 0.032 0.494 0.485 0.491 166.3

CNN-DR 0.187 0.032 0.439 0.424 0.414 110.8
CNN-CAN 0.225 0.031 0.424 0.406 0.399 139.7

of such an agent, that can access the true physical state of the environment. This means
that there is still room for improvement on the representation learning side of things.

An other interesting observation is that the proposed technique is only slightly better than
its baseline, the simple VAE model. It achieves only slightly higher speeds and episode
lengths.

Figure 17: Comparison with other sample-efficient methods

38

Table 8: Comparison with other sample-efficient methods

δ̄[rad] p̄[m] v̄[m/s] v̄f [m/s] R̄[m/s] t̄[1]
DVAE 0.116 0.032 0.494 0.485 0.491 166.3
VAE 0.127 0.024 0.485 0.476 0.473 152.7

STATE 0.071 0.031 0.497 0.495 0.494 278.6

Figure 18: Comparison with the extensions

5.2.3 Extensions

When comparing the method to its extensions, we can see that they provide a really similar
performance. This can tell us, that even though the target images differ greately between
these methods, what the network learns is still similarly useful as a latent representation.

5.2.4 Latent Augmentation

Lastly, if we take a look at the version of the method, where the reinforcement learning
network is regularized by only getting access to the noisy distributions of the latent space
from which it can sample latent codes, we see that the performance of this regularized
method is slightly lower.

This means that we were not overfitting, therefore the regularization only made the prob-
lem a bit harder. Even though it did not help in this setting, it can still be a useful tool
in tasks where our reinforcement learning encoder is overparametrized.

Table 9: Comparison with the extensions

δ̄[rad] p̄[m] v̄[m/s] v̄f [m/s] R̄[m/s] t̄[1]
DVAE 0.115 0.031 0.494 0.485 0.490 165.0

DVAE-SEG 0.120 0.025 0.501 0.491 0.480 165.9
DVAE-AUG 0.136 0.026 0.478 0.468 0.464 150.9

39

Figure 19: Comparison with the use of latent augmentation

Table 10: Comparison with the use of latent augmentation

δ̄[rad] p̄[m] v̄[m/s] v̄f [m/s] R̄[m/s] t̄[1]
DVAE 0.116 0.032 0.494 0.485 0.491 166.3

DVAE-REG 0.163 0.028 0.471 0.458 0.472 133.2

5.3 Discussion

I would like to discuss the term "sample-efficiency", when used in settings with unsuper-
vised pretraining. When I evaluated the other methods that have not been pretrained, I
did not take into account that the pretrained autoencoders have already seen quite a few
data samples.

Though from a theoretical point of view this argument is right, these samples have different
cost associated with them from a practical viewpoint.

Those samples that were needed for the pretraining can always be reused, such as I did
not have to generate a new dataset every time I had to retrain the autoencoders. I can
also add, that if a feature extractor is pretrained properly, it can be used for multiple
reinforcement learning experiments consecutively.

One has to take into account that applying deep learning is always an iterative process,
and it is useful if we can save on retraining. On- and even off-policy reinforcement learning
agents will always have to gather new data when being retrained. This however can change
in the future with the help of offline reinforcement learning techniques.

40

Chapter 6

Conclusion

In this work I proposed a novel method that combines visual domain randomization and
unsupervised autoencoding pretraining in an effective way, by utilizing denoising autoen-
coders.

I have summarized the related literature, and have given intuitive explanations of denoising
and variational autoencoders, that play an important role in the proposed method. I
also presented the problem of the sim-to-real gap, which is an important obstacle in
the way of applying reinforcement learning in the real world, and have shown possible
countermeasures from the literature.

I proposed my method by comparing it to a naive baseline, considered its inefficiencies,
and argued that this new technique is even more natural to apply, since it promotes
robustness against visual perturbations, just like visual domain randomization does. I
have given motivations for all the design choices behind the new method, and showed
multiple extensions and further applications.

I have implemented and evaluated this method in the Duckietown self-driving environ-
ment. I have gathered a dataset for pretraining tasks, which has been built with further
applications in mind, as it contains pieces of information about the physical state of the
simulator that is not used in this work.

Since the method provides multiple ways of evaluating it, I have tested and analysed
its variants in numerous settings, the fact that it is a generative model, helped with its
interpretabilty and explainability.

The results show that the proposed method outperforms the baseline, and without knowing
the complete physical state, it narrows the performance gap with the the ideal setup,
where the complete state of the system is known. The extensions achieved a similar
performance while extending the possible use-cases of the method. With the help of image
augmentations the technique can be used even in settings where domain randomization is
not implemented at all in the simulator.

41

Future work could explore whether extensions of variational autoencoders such as hier-
archical or vector-quantized ones can be useful in this setting by learning higher level
representations of the input data. It would also be useful to investigate how these dif-
ferent image reconstruction objectives shape the latent space and why do they lead to
solutions with similar performance.

I hope that the proposed technique makes a small step on the long way towards the goal
of applying deep learning and reinforcement learning models in the real world effectively
and safely.

Acknowledgement

The research presented in this work has been supported by Continental Automotive Hun-
gary Ltd.

42

Bibliography

[1] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,
vol. 61, pp. 85–117, 2015.

[2] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[3] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position,” Biological cybernetics,
vol. 36, no. 4, pp. 193–202, 1980.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
pp. 1097–1105, 2012.

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language
model,” Journal of machine learning research, vol. 3, pp. 1137–1155, 2003.

[6] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in 2013 IEEE international conference on acoustics, speech and
signal processing, pp. 6645–6649, IEEE, 2013.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, pp. 2672–2680, 2014.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recur-
rent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[10] S. Linnainmaa, “Taylor expansion of the accumulated rounding error,” BIT Numerical
Mathematics, vol. 16, no. 2, pp. 146–160, 1976.

[11] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in System
modeling and optimization, pp. 762–770, Springer, 1982.

43

[12] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations simul-
tanées,” Comptes rendus de l’Académie des Sciences, vol. 25, no. 1847, pp. 536–538,
1847.

[13] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, pp. 400–407, 1951.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”
in European conference on computer vision, pp. 630–645, Springer, 2016.

[16] M. Telgarsky, “Benefits of depth in neural networks,” arXiv preprint
arXiv:1602.04485, 2016.

[17] K. Hornik, M. Stinchcombe, H. White, et al., “Multilayer feedforward networks are
universal approximators.,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[18] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT
press Cambridge, 2016.

[19] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear re-
gions of deep neural networks,” in Advances in neural information processing systems,
pp. 2924–2932, 2014.

[20] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Master’s thesis,
Technische Universität München, 1991.

[21] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in European conference on computer vision, pp. 818–833, Springer, 2014.

[22] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for con-
trastive learning of visual representations,” arXiv preprint arXiv:2002.05709, 2020.

[23] P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning
from examples without local minima,” Neural networks, vol. 2, no. 1, pp. 53–58, 1989.

[24] M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun, “Efficient learning of sparse
representations with an energy-based model,” in Advances in neural information pro-
cessing systems, pp. 1137–1144, 2007.

[25] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders:
Explicit invariance during feature extraction,” in Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, 2011.

[26] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

44

[27] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” arXiv preprint arXiv:1401.4082,
2014.

[28] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th International
Conference on Machine Learning, pp. 1096–1103, 2008.

[29] G. Alain and Y. Bengio, “What regularized auto-encoders learn from the data-
generating distribution,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 3563–3593, 2014.

[30] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou,
“Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion.,” Journal of machine learning research, vol. 11, no. 12,
2010.

[31] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context en-
coders: Feature learning by inpainting,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2536–2544, 2016.

[32] A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation learning,” in
Advances in Neural Information Processing Systems, pp. 6306–6315, 2017.

[33] A. Vahdat and J. Kautz, “Nvae: A deep hierarchical variational autoencoder,” arXiv
preprint arXiv:2007.03898, 2020.

[34] Anonymous, “Very deep {vae}s generalize autoregressive models and can outperform
them on images,” in Submitted to International Conference on Learning Representa-
tions, 2021. under review.

[35] S. Gur, S. Benaim, and L. Wolf, “Hierarchical patch vae-gan: Generating diverse
videos from a single sample,” 2020.

[36] C. Li, X. Gao, Y. Li, X. Li, B. Peng, Y. Zhang, and J. Gao, “Optimus: Organizing sen-
tences via pre-trained modeling of a latent space,” arXiv preprint arXiv:2004.04092,
2020.

[37] S. Zhao, J. Song, and S. Ermon, “Towards deeper understanding of variational au-
toencoding models,” arXiv preprint arXiv:1702.08658, 2017.

[38] O. Rybkin, K. Daniilidis, and S. Levine, “Simple and effective vae training with
calibrated decoders,” arXiv preprint arXiv:2006.13202, 2020.

[39] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational
framework,” International Conference on Learning Representations, 2017.

45

[40] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,
2016.

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[42] D. Silver, “Ucl course on reinforcement learning.” https://www.davidsilver.uk/

teaching/. Access date: 2020.10.28.

[43] R. Bellman, “A markovian decision process,” Journal of mathematics and mechanics,
pp. 679–684, 1957.

[44] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in par-
tially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1-2, pp. 99–
134, 1998.

[45] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,
p. 484, 2016.

[46] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play with
a general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[48] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforcement
learning,” arXiv preprint arXiv:1912.06680, 2019.

[49] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster level in starcraft
ii using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354,
2019.

[50] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous in-hand ma-
nipulation,” The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20,
2020.

[51] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped robots,” arXiv
preprint arXiv:1804.10332, 2018.

46

https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

[52] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and A. Kendall, “Learn-
ing to drive from simulation without real world labels,” in 2019 International Con-
ference on Robotics and Automation (ICRA), pp. 4818–4824, IEEE, 2019.

[53] S. James and E. Johns, “3d simulation for robot arm control with deep q-learning,”
arXiv preprint arXiv:1609.03759, 2016.

[54] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing,
pp. 135–153, 2018.

[55] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real
image,” arXiv preprint arXiv:1611.04201, 2016.

[56] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain ran-
domization for transferring deep neural networks from simulation to the real world,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 23–30, IEEE, 2017.

[57] Z. Liu, X. Li, B. Kang, and T. Darrell, “Regularization matters in policy optimiza-
tion,” arXiv preprint arXiv:1910.09191, 2019.

[58] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational invariance,” in
Proceedings of the 21st International Conference on Machine Learning, p. 78, 2004.

[59] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal of
machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[60] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of
robotic control with dynamics randomization,” in 2018 IEEE international conference
on robotics and automation (ICRA), pp. 1–8, IEEE, 2018.

[61] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time
series,” The handbook of brain theory and neural networks, 1995.

[62] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image computing
and computer-assisted intervention, pp. 234–241, Springer, 2015.

[63] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,”
in Advances in neural information processing systems, pp. 2553–2561, 2013.

[64] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cam-
eracci, S. Boochoon, and S. Birchfield, “Training deep networks with synthetic data:
Bridging the reality gap by domain randomization,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, pp. 969–977, 2018.

47

[65] M. Aractingi, C. Dance, J. Perez, and T. Silander, “Improving the generalization of
visual navigation policies using invariance regularization,” 36th International Confer-
ence on Machine Learning, Workshop RL4RealLife, 2019.

[66] R. B. Slaoui, W. R. Clements, J. N. Foerster, and S. Toth, “Robust domain random-
ization for reinforcement learning,” arXiv preprint arXiv:1910.10537, 2019.

[67] K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A simple technique
for generalization in deep reinforcement learning,” in 8th International Conference on
Learning Representations, 2020.

[68] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,
S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-to-sim: Data-efficient
robotic grasping via randomized-to-canonical adaptation networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[69] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels,” arXiv preprint arXiv:2004.13649,
2020.

[70] M. Chevalier-Boisvert, F. Golemo, Y. Cao, B. Mehta, and L. Paull, “Duckietown
environments for openai gym.” https://github.com/duckietown/gym-duckietown,
2018. Access date: 2020.10.28.

[71] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann, “Stable
baselines3.” https://github.com/DLR-RM/stable-baselines3, 2019. Access date:
2020.10.28.

[72] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neu-
ral Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates,
Inc., 2019.

[73] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[74] D. Foundation, “About the duckietown platform.” https://www.duckietown.org/

about/platform. Access date: 2020.10.28.

[75] A. Kalapos, “Applying transfer learning to autonomous driving task,” Master’s thesis,
Budapest University of Technology and Economics, 2020.

48

https://github.com/duckietown/gym-duckietown
https://github.com/DLR-RM/stable-baselines3
https://www.duckietown.org/about/platform
https://www.duckietown.org/about/platform

	Kivonat
	Abstract
	Introduction
	Theoretical Background
	Deep Learning
	Autoencoders
	Overview
	Denoising Autoencoders
	Variational Autoencoders
	Deep Learning View
	Variational View
	Information-Theoretic View

	Reinforcement Learning
	Overview
	Sim-to-Real Gap
	Visual Domain Randomization
	Direct methods
	Indirect methods

	Proposed Method
	Baseline
	Drawbacks of the baseline
	The Method
	Motivations of Design Choices

	Applications
	Visualization of the Latent Space
	Evaluation of Sim-to-Real Transfer Capability
	Quantitative
	Visual

	Regularization with Latent Augmentation

	Extensions
	Segmented Image as Canonical Observation
	Augmented Image as Randomized Observation

	Implementation
	Reinforcement Learning Task
	The Duckietown platform
	Observation space
	Action space
	Reward function
	Evaluation metrics

	Dataset
	Variational Autoencoder
	Hyperparameters, architecture

	Results
	Analysis of the Autoencoders
	Evaluation
	Visualization of the Latent Space
	Sim-to-Real Transfer Capability
	Quantitative
	Visual

	Comparisons with other Methods
	Domain Randomization Methods
	Sample-Efficient Methods
	Extensions
	Latent Augmentation

	Discussion

	Conclusion
	Bibliography

