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Kivonat

A mikrokifejezések olyan arckifejezések, melyek jellemzője, hogy univerzálisak, azaz min-
den embernél ugyanazt jelentik, másrészt tipikusan csak egy pillanatig jelennek meg. A
felismerésükhöz jelenleg szakértői tudásra van szükség. E feladat automatizálása lehetősé-
get teremtene a mikrokifejezések széleskörű felhasználására.

Az emberek arckifejezéseit megfigyelve meghatározhatjuk a pillanatnyi érzéseiket, a
reakciójukat egy őket ért hatásra, mint például egy reklámanyagra, vagy felhasználhatjuk
bizonyos mentális betegségek detektálására, például depresszió vagy PTSD esetén.

A mikrokifejezések automatizált detektálásának két fő iránya a gépi tanulás és a
szakértői képfeldolgozás alapú megközelítés.

A gépi tanulás során annotált minták segítségével a kialakított modellünk képes meg-
tanulni a minták közös tulajdonságait. Ennek a megközelítésnek nagy előnye, hogy egy
robosztus eljárást kapunk. Hátránya, hogy ez a robosztusság addig jellemző, amíg a felis-
merendő kép ugyanabból a háttéreloszlásból kerül ki, mint a tanítóminták. Ha a model-
lünket egy új környezetben vagy más célra kell felhasználnunk, a modellt újra kell tanítani
feltéve, hogy rendelkezésünkre állnak más tanítóminták. Ezen megközelítésnek további
hátrányai, hogy a tanításhoz sok minta kell, valamint a modellünk fekete dobozként mű-
ködik, megértése és testreszabhatósága erősen korlátozott.

A szakértői rendszer több, gyakran egyedileg kialakított képfeldolgozó algoritmust
használ. A megközelítés előnye, hogy kevés minta esetén is használható, valamint a rend-
szer teljesen átlátható, átalakítható, hiszen ismerjük és akár külön-külön módosíthatjuk
is a komponenseit. Hátránya, hogy nagy robosztusság eléréséhez több komponensre van
szükség, ami növeli a rendszer komplexitását, valamint a priori tudást is fel kell használni
a komponensek építésekor. Az alacsonyabb robosztusság ellenére a rendszer további elő-
nye, hogy testreszabhatósága miatt könnyen átalakítható különböző kontextusokhoz (pl.
fényviszonyok, kép felbontása).

Ebben a dolgozatban egy hibrid megoldást mutatunk be, melynek alapját egy gépi
tanulás alapú referenciapont-felismerő adja. A referenciapontok segítségével, szakértői kép-
feldolgozó és egyéb jelfeldolgozó algoritmusokat felhasználva képesek vagyunk különböző
jellemzőket meghatározni. Az egyes részfeladatokra a szakirodalomban publikált megkö-
zelítések alapján javaslunk megoldásokat. A különböző algoritmusokat valós esetekben -
videókon és képeken - alkalmazzuk és kiértékeljük az eredményeket. Továbbá a dolgozat-
ban ismertetjük a gyakorlati alkalmazás során felmerült problémákat és tapasztalatokat
is. Célunk, hogy a detektált jellemzők segítségével összetett arckifejezéseket, érzelmeket
tudjunk meghatározni.
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Abstract

Microexpressions are facial expressions that appear only for a moment. Their most im-
portant feature is that they are universal, that is they have mean the same mining to all
people. In many scenarios, their recognition currently requires expert knowledge. Au-
tomating this task would provide an opportunity for its widespread use.

By observing people’s facial expressions, we can determine their momentary feelings, their
reaction to an effect, e.g. an advertisement, we can detect certain mental illnesses such as
depression or PTSD.

The two main approaches for automated detection of microexpressions are machine learn-
ing and expert image processing.

Following the machine learning approach, we use annotated samples to enable our model
to learn the common features of the samples implicitly. An advantage of this approach
is that it results in a robust solution. On the other hand, this robustness is present as
long as the input image is in the same manifold as the training samples. If we need to use
our model in a new environment or for different purpose, the model needs to be retrained
provided that appropriate training samples are available. Another disadvantage of this
approach is that training requires a lot of samples, and our model behaves like a black
box, so its explainability and customizability is severely limited.

An expert system uses several custom-designed image and signal processing algorithms.
The advantage of this approach is that it can be used even with a small number of sam-
ples, and the system is completely transparent and adaptable, because we know and can
modify its components individually. The disadvantage is that in order to achieve high
robustness, several components are required, which increases the complexity of the sys-
tem, and a priori knowledge must also be used when building these components. Despite
the lower robustness, an additional advantage of this approach is that it can be directly
adapted to different contexts (e.g. lighting conditions, image resolution) due to its easy
customizability.

In this report, we propose a hybrid solution, utilizing a machine-learning-based landmark
point recognizer. With the help of landmark points, we are able to determine different
properties using expert image processing and signal processing algorithms. We use these
algorithms in real cases - videos and pictures. In this thesis we analyze related tasks,
overview corresponding methods of relevant publications, based on which we propose
solutions to these tasks and examine their behaviour in practical applications. Our goal is
to detect complex facial expressions and emotions with the help of the detected gestures.
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Chapter 1

Introduction

Microexpressions are the reflection of emotions on the face for a very short time. Au-
tomating the detection of facial expressions would allow a wide range of uses, e.g. to study
reactions for an advertisement or to help the diagnosis of mental illnesses. Experts usually
distinguish 7 different basic emotions: anger, disgust, fear, happiness, sadness, surprise
and contempt. Our final goal is to detect them. To do this, there are two main approaches:
machine learning and expert image processing based systems. The machine learning based
solution has two main requirements: an appropriate architecture and a lot of data. There
are several machine learning based solutions with high accuracy on a given dataset, how-
ever their generalization capabilities are often limited, i.e. when a system trained on a
particular dataset (e.g. studio quality images with adequate lighting) is used in another
environment (e.g. low resolution images produced by phones), it will likely underperform.
Furthermore, deep neural network based methods - which are typically used in this con-
text - work as black boxes, i.e. they lack explainability making it hard to prove their
proper operation. Additionally, they are usually not robust to small visual perturbations
(e.g. abrasions on skin), which may cause the lack of the detection of microexpressions.
Another problem can be the availability of samples for purposes other than research. In
many cases, datasets and learned models may not be used for commercial applications.

In an expert system several image processing algorithms are utilized to make a prediction
from an image or video. The abilities of the algorithms are known and can be fine-tuned
for a given situation e.g. lighting conditions, shutter speed, angle. In our solution we
would like to detect emotions in two main stages. The first step is to detect the motion
of the muscles, the so-called action units on the face. Based on the moved action units
the emotions can be determined. The first step utilizes a landmark detection algorithm to
locate the key areas on the face. Using image processing and time series analysis the state
and state change of the defined areas can be detected. Based on literature research we
started to investigate and implement algorithms focusing on these particular areas of the
face. The eye plays an important role in non-verbal communication, thus the gaze of the
eye is examined. This includes locating the pupil and detecting blinks. The mouth, more
precisely its properties carry also key information. Its shape, curvature, thickness, pose and
the change of these greatly influence the predicted emotion. Furthermore, the movement
of the eyebrows is also relevant in facial expressions, as it can used to discriminate between
fear, anger and surprise.

Detecting elemental emotions in this way allows compound emotions to be detected as
they often consist of a sequence or combination of elemental emotions. In addition, the
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detection of microexpressions may also help to interpret the intentions of a communicating
partner, and to detect non-verbal communication features.

A considerable advantage of the expert system based approach compared to the machine
learning approach is that the result, e.g. the detection of complex features, such as a com-
pound emotion, can be explained. In other words, a compound emotion can be traced
back to its components, which may allow the fine tuning of the detection, i.e. the adapta-
tion of such methods for various different scenarios. Another reason to use expert systems
or hybrid systems that have an expert knowledge based component is, that appropriate
datasets annotated with compound emotions are not publicly available yet.

In this thesis we propose a hybrid method to detect microexpressions based on videos and
images. In the second chapter the theoretical background of detecting microexpressions
is described, which is followed by previous solutions for this problem. In this section we
introduce facial landmarks which form the basis of our solution. In the third chapter
the investigated and implemented algorithms are explained. Besides the key elements of
the algorithms, we demonstrate the practical aspects of these methods especially their
applicability in certain scenarios. In the last chapter we test our methods on a selected
set of images and discuss possibilities for further improvement.

2



Chapter 2

Background

2.1 Microexpressions

To recognize different microexpressions, the joint movement of different facial muscles is
observed. This is dealt with by the discipline of psychology. In our work we began to deal
with the recognition of the 6 + 1 basic facial expressions: happiness, surprise, sadness,
anger, fear, disgust and contempt. Contempt has been accepted by many emotion experts
to be a universal emotion. These emotions are described as discrete, meaning that they
are distinguishable based on a person’s facial expression. Another interesting property of
these expressions is that they are universal, i.e. they have the same emotion behind them
for all people.

So that we know what movements need to be examined on the face, we have investigated
the literature on this topic. Our two main sources were the work of Du and Martinez [8] and
a comprehensive book on facial expressions edited by Paul Ekman and Erika Rosenberg-
Band [10]. Although the paper of Du and Martinez addresses compound facial expressions,
the basic expressions are also described in it. Articles on this topic, as well as these two
papers, use the FACS system to describe each expression. The Facial Action Coding Sys-
tem [9] is a system, first described by Carl-Herman Hjortsjö, and later further developed
by Paul Ekman and Wallace V. Friesen. In this latter work facial movements are taxon-
omized based on their appearance on the face. Movements on the face are grouped and
named. An identifier is also assigned to each of them for easier reference. This identifier
is called AU (action unit). The system also contains a scoring procedure to differentiate
the strength of the movement of an action unit. This is marked from A (mild strength =
"traced") to E (strong = "maximum"). An example is AU 4E. AU 4 is called the "Brow
Lowerer", and E means "maximum". The description of AU 4E is: "Brow pulling together
or lowering is maximum" (from [9]). Description of the joint movement of AUs can also
be found in the book.

Action units and their descriptions were collected for each expression one-by-one based
on [9]. We tried to focus on AUs that are probably recognizable by an algorithm based
on a picture or video. Table 2.1 summarizes the AUs corresponding to the investigated
emotions followed by the detailed description of each AU.
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expression AUs
happiness 6; 12; 25
surprise 1, 2; 5; 25; 26
sadness 1, 4; 6; 11; 15; 17
anger 4; 7; 11; 27
fear 1, 2; 5; 20; 25
disgust 9; 10; 24
contempt R12;R14

Table 2.1: Action units related to the 6+1 basic emotions

AU 6 The muscles around the eye constrict and the cheek is lifted upwards. The move-
ment may cause crow’s feet lines (wrinkles next to the outer edge of the eyes).

AU 12 The corners of the lips are pulled back and upward.
AU 25 The lips part, the teeth may be exposed.
AU 1,2 Inner (AU 1) and outer (AU 2) corners of the eyebrows are raised, thus the entire

eyebrow is pulled upwards. Horizontal wrinkles may appear on the forehead.
AU 5 Upper eyelid is raised, eye aperture widens.
AU 26 Jaw drops by relaxation, teeth separate.
AU 1,4 Inner corners of the eyebrows are pulled slightly closer causing slight vertical

wrinkle between the eyebrows or on the forehead.
AU 11 Upper lip is pulled upward and laterally, thus the the upper middle portion of

the nasolabial furrow deepens.
AU 15 The corner of the lips is pulled down. Can cause the stretching of the lower lip

and wrinkles below it.
AU 17 Chin boss is pulled upward and the lower lip is pulled upward. This causes the

shape of the mouth to appear ∩ or increase this shape if present in neutral.
AU 4 Eyebrows are lowered and pulled closer together. Vertical wrinkles are produced

between the eyebrows.
AU 7 Eyelids are tightened, eye aperture is narrowed. Lower eyelid is raised covering

more of the eye than usually.
AU 27 The mandible is pulled down, cheeks flatten and stretch. The mouth may shape

a vertical oval form.
AU 20 Lips are pulled back laterally, become flat and stretched. This can cause wrinkles

at the lip corners. The nostril’s opening is elongated.
AU 9 The skin along the sides of the nose is pulled upwards causing wrinkles along the

sides and across the root of the nose. Eye aperture is narrowed. Center of the upper
lip is pulled upwards.

AU 10 Upper lip is raised. The nasolabial furrow is deepened. Nostril wings are widened.
AU 24 Lips are pressed together without pushing up the chin boss.
AU R12 Lip corner is raised a trace on the right side (could also be L12).
AU R14 Right lip corner is tightened with slight lateral movement. May cause wrinkling

around the lip corner.
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2.2 Machine learning based algorithms

2.2.1 Landmark detection

Landmark detection is a fundamental building block of many applications such as face
recognition, pose recognition, emotion recognition and many more in augmented reality. In
image localization tasks we use machine learning algorithms to detect objects by predicting
coordinates of the object’s bounding box. In case when a finer prediction is required,
determining the direction of gaze or key points along the mouth is necessary, so that the
shape of the mouth can be extracted and determined whether the person is smiling or
frowning. Additionally, predicting points that help defining the edge of the face can be
useful.

In many computer vision applications, algorithms need to recognize these essential points
of interest rather than just bounding boxes on the input image. We refer to these points
as landmark points. In our work we used Dlib toolkit [16] to detect essential landmark
points. The detection consists of the following steps: (1) detection of the bounding box
of the face, and (2) identifying landmark points on faces.

2.2.2 Detecting bounding boxes

Frontal face detector is a tool for detecting the positions of faces in an image. It is based
on a histogram of oriented gradients (HOG) [6, 20] and linear SVM [2]. Dlib also provides
a CNN based object detector, but it is computationally intensive and it is not suitable for
real-time videos.

2.2.3 Detecting landmark points

Shape predictor is a tool that takes in an image region containing an object and outputs
a set of point locations that define the pose of the object. The predictor uses the state-
of-the-art method from Kazemi and Sullivan based on an ensemble of regression trees
[15]. This method is using a training set of labeled facial landmarks on an image (see
Figure 2.1). These images are manually labeled, specifying specific (x, y)-coordinates of
regions surrounding each facial structure.

For facial landmark detection we use Dlib’s [16] 68-face-landmark shape predictor that was
trained on the iBUG 300-W face landmark dataset [26]. The method is using a cascade
of regression trees, training them via gradient boosting with a squared error loss function.
It also introduces a prior probability on the distance between pairs of input pixels which
allows the boosting algorithm to efficiently explore a large number of relevant features.

2.2.4 Other machine learning-based solutions

There are many other solutions based on machine learning. They are mostly end-to-end
approaches.

CNN A very common approach is to use end-to-end Convolutional Neural Networks for
the classification of emotions or using CNN as a feature extractor and an another
method for classification. Ouellet [22] used a 7-layer CNN trained on ImageNet [7]
for feature extraction. An SVM (support-vector machine) is then trained to classify
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Figure 2.1: Layout of landmark points

the emotion based on the output of the CNN, which is generated using the Extended
Cohn-Kanade (CK+) Dataset [19] which consists of 700 sequences from footages of
210 actors labeled with the 7 basic emotions. This system reached 94.4% accuracy.
One CNN-based study is worth highlighting: in their work [3], Breuer and Kim-
mel investigated the connection between the features learned by the layers of the
neural networks and the action units of FACS [9]. They trained a simple CNN on
the CK+[19], the FER2013 [4] and the NovaEmotions [30] dataset. The FER2013
dataset is created using the Google image search API. It contains nearly 36000 im-
ages divided into 8 classes (7 emotions class + 1 neutral class). The NovaEmotions
dataset contains over 42000 images taken of 40 people during gaming. Their CNN
consists of 3 blocks each containing a filter map layer with activation and a max-
pooling layer. The blocks are followed by a fully connected layer containing 512
neurons and the output layer for the classes. They reached an accuracy of 98.62%
on the CK+, 72.1% on the FER2013 and 81.3% on the NovaEmotions dataset. The
interesting part is that they employed Zeiler et al. [38] and Springenberg’s [29] meth-
ods to visualize the filters responsible for a given emotion classification task. They
showed that there is a significant correlation between the learned features and action
units of the FACS.

AE Autoencoders are able to learn the efficient encoding and decoding of high-
dimensional data by dimensionality reduction. The solution of Zeng et al. [39] uses
a deep sparse autoencoder as the last step of the classification process. First, fa-
cial landmarks are located using the active appearance model [5]. Then HOG [6]
(histogram of oriented gradients), LPB [28] (local binary patterns) and gray value
descriptors from patches around 51 chosen landmark points are applied. These fea-
tures are then compressed using the PCA (principal component analysis) method.
The output of the PCA is then fed into the AE. The CK+[19] is used for training
the system which reached an accuracy of 95.79% on the 7 and 89.84% on the 8 class
classification.
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RNN Recurrent neural networks are able to capture temporal information thus are con-
sidered more suitable for videos. Yan et al. built an emotion recognition system [37]
that fuses the information extracted from the audio and the video frames. A CNN
based RNN is a part of this system. The input images are fed into a VGG-Face [24]
feature extractor network. The features extracted are then utilized as input for a
BRNN [27] (bidirectional RNN) to model the changes of the face. Their system was
trained on AFEW 6.0 [1] and CHEAVD [17] databases. AFEW 6.0 (Acted Facial
Expressions In The Wild) consists of 773 training, 383 validation and 593 testing
video samples selected from hollywood movies and TV reality shows. CHEAVD
(Chinese Natural Emotional Audio Visual Database) contains 1981 training and 243
validation video clips selected from Chinese movies and TV programs labeled with
8 emotion classes. The accuracy of the CNN-BRNN is 44.46% on the AFEW 6.0
(validation set result) and 51.03% on the CHEAVD dataset.

2.3 Expert system based solutions

Among previous solutions, there are some expert systems for detecting facial expressions.
Pantic and Rothkrantz created a hybrid system called ISFER [23] (Integrated System for
Facial Expression Recognition). It utilizes several algorithms to detect the movement of
action units[9] using a still dual facial view (front and side views) image as input. Based
on the detected movement of the AUs the expression is determined. The algorithms used
in the system are diverse, and the features are tracked redundantly. Algorithms include a
neural network to find features of the eyes, ACM snake to track the eye, fuzzy classifier [35]
to classify mouth expressions and chain codes [34] to localize the eyebrow contour. The
average classification accuracy of 6+1 expressions (surprise, fear, disgust, anger, happy,
sad + blended notional expression) is 90.57%. The drawback of this approach is that the
method is not openly available, and the data set upon which the method was fine tuned
is overly specific, i.e. it is inappropriate for general video based detection.

Another expert system [12] is developed by Ghimire et al.. Using the Dlib [16] toolkit
facial landmark points are extracted from the picture. The face is then divided into 29
regions, some of which are previously selected to extract geometric features from using
LPB [28] (local binary pattern) and NCM [14] (normalized central moments) descriptors.
These features are then fed into an SVM to classify the expression. This solution reached
an accuracy of 97.25% on the CK+ [19] database.
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Chapter 3

Methods for detecting
microexpressions

3.1 Gaze detection

In this section several algorithms related to gaze detection are described. Gaze detection
includes the detection of the eye and the iris. Blink detection is also part of this task
which can be an essential feature when the aim is to identify surprise, disgust or fear.

3.1.1 Basic method

The first, naive solution was to use a simple landmark-based algorithm. The input image
is converted into grayscale and fed into the landmark detector (see subsection 2.2.3. Using
the eye landmark points (as shown in Figure 3.1), an eye-mask is created and the eye is
cut out from the image. This eye-image is divided into left and right parts. The gaze is
determined by comparing the number of bright pixels between the two sides. The main
problem with this algorithm is that it only works under laboratory conditions. In case
of inadequate lighting, for example in non-homogeneous lighting conditions, the image of
the camera is not suitable for the "pixel counting". Another problem is when the person
in front of the camera is not looking directly into the camera. In this case, the upper or
lower eyelid may cover too much of the eyeball. Also, landmark detection is less accurate,
thus parts outside the eyes may also be included in the mask.

3.1.2 EyeTab-based method

The main solution for the gaze detection task is a more complex algorithm based on an
open source gaze estimator called EyeTab [36]. Although it contains many device and
environment specific constants and algorithms, it provided a good basis. In the following
the whole algorithm is described.

3.1.2.1 Eye localization

In the first step eye ROIs (region of interest) are determined. Originally, OpenCV Haar-like
feature based cascade classifiers [33] were used to detect eyepairs. However, by investi-
gating the results, we found, that the estimation of the eyes’ ROI is more accurate if it is
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Figure 3.1: Landmarks on the eye.

defined by the landmark points than by the cascade classifiers. Thus we defined the ROIs
by expanding the rectangles created by the eye landmark points. Since the edges of the
eyes are recognized accurately by the landmark detector based on the investigation of the
results, the ROI rectangles defined by the landmark points have only been expanded in
the vertical direction by a factor of 2.

3.1.2.2 Removing specular reflection of light

The next step is the removal of glare caused by different light sources. The algorithm
starts with converting the eye image to grayscale, then Gauss low-pass filtering is applied
on it. Using morphological closing1 the eyelashes are suppressed. The detection of glare
is performed by thresholding the image using the 50th percentile. This method selects
bright areas in the image, from which the small areas are then selected (areas that are not
greater than the half of the width of the eye). These small reflection area proposals are
then inpainted with a method described by Alexandru Telea [31]. Figure 3.2a shows an
example for the result of this algorithm.

Applying this method resulted in varied results. It rarely suppresses the real flares, but
only bright areas out of the eye region are inpainted (as shown in Figure 3.2b) or the
picture is left unchanged. The following pupil center detector proved to be robust enough
to return good results in these cases, too, which makes the necessity of the specular
reflection removal step questionable.

3.1.2.3 Pupil detection

The pupil is detected by combining two algorithms: one is gradient based and the other
is isophote based.

In the original implementation [36] the red channel of the RGB image (see Figure 3.3a)
was used as input, however based on our experiments, applying homomorphic filtering on
the full image and cutting the eye-ROIs (see Figure 3.3b) results in slightly more stable
pupil estimations. Homomorphic filtering can be used to correct results of inadequate
lighting, for example a shady eye socket. Only low frequency components are filtered out,
therefore edges are preserved.

1Morphological closing on an image is defined as a dilation followed by an erosion. [25]
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(a) Specular reflection is correctly removed. (b) Bright area in the top right corner is im-
painted.

Figure 3.2: Two examples of the specular reflection removal algorithm.

The homomorphic filtering first maps the (min-max) normalized grayscale image to log-
arithmic scale. Then, on this image a high-pass filter is applied by subtracting its Gauss
filtered version from it. Finally, it is mapped back to the original scale and cut under 0
and over 1. The algorithm can be formally written as follows:

Ihomomorphic = T (exp(log(I)− log(I) ∗Gσ))
T (x) = min (x, 1)

Here, Gσ denotes the convolution kernel of the Gauss blurring and ∗ means convolution.
T cuts the values under 0 and over 1.

First, the gradient based pupil map is created. Directional gradients (see Fig-
ure 3.3c and 3.3d) and gradient magnitudes (see Figure 3.3g) are computed on the eye
image and are thresholded (see Figure 3.3e and 3.3f). The next step exploits the fact that
the vector from the pupil center pointing to the edge of the iris and the gradient vector
in that point are parallel or meet at an acute angle. Every point in the image is taken as
a center candidate and the squared dot products are accumulated for every other point.
Thus the gradient map can be calculated as:

Rgrad(x, y) =
∑
x′,y′

{〈
[x′ y′]− [x y]
‖[x′ y′]− [x y]‖2

,
∇I(x′, y′)
‖I(x′, y′)‖2

〉
·

· (255− I(x′, y′)) · Ind
{
‖∇I(x′, y′)‖2 > 0

}}

Here, Ind denotes the indicator function. I is the homomorphic luminance compensated
input image and ∇ indicates the operator of the gradient. ‖ · ‖2 and 〈·, ·〉 denote the
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operators of the L2 norm and the scalar product, respectively. Since we want to combine
the two methods the resulting accumulated values are stored as a feature map as shown
in Figure 3.3h.

(a) RGB image of
the eye.

(b) Homomorphic
filtered image.

(c) Gradients
along the x
axis.

(d) Gradients
along the y
axis.

(e) Thresholded
gradients along
the x axis.

(f) Thresholded
gradients along
the y axis.

(g) Gradient mag-
nitudes.

(h) The computed
pupil feature
map.

Figure 3.3: Steps of pupil detection using the gradient based method

In the next step the isophote-based pupil map is created. This method was described by
Valenti et al. [32]. An isophote (see Figure 3.4b) is a curve connecting points with the
same intensity in the image. The isophotes are independent of rotation and linear lighting
changes, i.e., brightness and contrast, which makes the method more robust. Based on
their curvature, their center can be calculated, thus we obtain another center map as
shown in Figure 3.4c.

(a) Homomorphic filtered
image.

(b) Curvature of the
isophotes.

(c) Resulting feature map.

Figure 3.4: Steps of pupil detection using the isophote based method

A combined feature map is formed by weighting the center maps returned by the two
methods. The point with the highest value in the map is chosen as the center of the pupil.
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3.1.2.4 Eyelid detection

The next step is to locate the upper and lower eyelids of the eye. Here, the red channel
of the eye image serves as the input. First, the points of the upper eyelid are determined,
so the ROI image is cut in half. The eyelashes are suppressed by applying morphological
closing [25]. Horizontal texture is then extracted using a derivative of Gaussian filter,
formally described as:

I′y = ∇y

((
(I⊕Mk)	Mk

)
∗Gσ

)

where ⊕ and 	 denote the operation of morphological dilation and erosion, respectively.
Mk is the 5× 5 disk-shape structuring element of the morphological operation. Gσ is the
2 dimensional, isotropic Gaussian function with σ parameter and ∗ denotes convolution.
∇y is the gradient along the y axis. The suspected position of the iris is masked out and
in each column of the image the pixels with the highest intensity are selected:

MT (x) = arg max
y′

{I′y(x, y′)}

If there is another pixel with similarly high intensity in the column between the highest-
intensity point and the bottom, then it replaces the highest-intensity point:

MT ′(x) = arg max
y′∈[MT (x)+5,...,MT (x)+100]

{I′y(x, y′)}

LID(x) =
{
MT ′(x), if I′y(x,MT ′(x)) > I′y(x,MT (x))−∆
MT (x), if I′y(x,MT ′(x)) ≤ I′y(x,MT (x))−∆

Here, ∆ denotes the intensity difference, which is set to 50 (the intensities of the image
are scaled into the range [0,255]). The idea behind this maximum-search is, that due to
the inaccuracy of the eye-detection the top of the eye-socket can be visible in the ROI
image which is also a horizontal line next to the upper eyelid. This way the points of the
limbus are determined. Using the RANSAC2 method a parabola is fitted to the points.

The lower eyelid is determined using almost the same algorithm. The difference is that
the image is also split into right and left side on which diagonal derivative of Gaussian
filter with opposite direction is applied to extract the texture of the lower eyelids. In the
last step only the maximum search is performed since there is no other expected line. The
resulting points are filtered by intensity.

3.1.2.5 Limbus detection

The next task is to determine the points of the limbus. Based on the investigations, in this
step the homomorphic filtered image is used as input as shown in Figure 3.5a. Median

2RANSAC [11] (Random sample consensus) is an iterative algorithm for fitting a model on a set of
observed data.
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filter is applied on this image to reduce the noise in the iris while keeping its contours
clear (see Figure 3.5b). A polar coordinated representation of the image is then created
(see Figure 3.5c). This can be formulated as:

Ipol(x0,y0)(ρ, θ) = Median {Hom{I},Box5,5 }(x0 + ρ · cos θ, y0 + ρ · sin θ)

Here, (x0.y0) denotes the center of the image in cartesian coordinates. Hom and Median
denote the homomorphic and median filtering, respectively, and Box5,5 is the 5× 5 kernel
window of the median filter. This image is blurred using a low-pass filter and the contour
search space is reduced by cutting the top and bottom of the image. The horizontal lines
are extracted using a derivative of Gaussian filter along the rows as shown in Figure 3.5d.
This is computed by:

Ipol(x0,y0)
′ = Ipol(x0,y0)(ρ, θ) ∗ ∇ρGσ,

where Gσ is the isotropic Gaussian function with σ parameter, ∇ρ is the operator of the
gradient along the ρ axis and ∗ denotes the operation of convolution. The angles belonging
to the top and bottom of the limbus are masked out (as shown in Figure 3.5e) since they
are usually covered by the eyelid. On each column maximum search is performed to
determine the border between the iris and the sclera (the white of the eye), formally:

Limb(θ) =

not defined, if θ /∈ Θ
arg max

ρ
{Ipol(x0,y0)

′(ρ, θ)}, if θ ∈ Θ

Here, θ denotes the set of angles retained. These points are then transformed back into
the cartesian representation.

3.1.2.6 Blink detection

The pupil detection algorithm proposes a region of interest also in frames, when the eyes of
the examined person is closed or is blinking. Since blinking is also a facial microexpression,
detecting these frames is also an important task. In order to do that, local Hessian based
image analysis is applied to distinguish true and false region of interests proposed by the
pupil detection method.

A typical pupil in a grayscale intensity image (also after utilizing homomorphic luminance
compensation method) is a round region, which is darker compared to its neighboring
pixels. These regions can be highlighted by local Hessian based filtering method, which is
defined by:

Hσ = α(σ) · ∇2(I ∗Gσ)

where ∇ is the gradient operator, Gσ is the 2 dimensional, isotropic Gaussian function
with σ parameter and ∗ denotes the operator of the convolution. α(σ) is a normalization
scalar which compensates for the multiplicative dependency of the norm of the matrix on
the σ parameter. Based on the scale space theory [18] α(σ) = σ2. The value of σ depends
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(a) Homomorphic
filtered image.

(b) Median filtered
input.

(c) Polar transformed image.

(d) Polar image filtered with derivative of Gaus-
sian.

(e) Angles belonging to top and bottom masked
out.

(f) Resulting limbus points in polar coordinates.

(g) Resulting lim-
bus points in
cartesian coor-
dinates.

Figure 3.5: Steps of limbus detection

14



on the size of the blob which is proposed as a pupil candidate, which is determined by the
solution of the optimization problem:

σ(r) = arg max
σ

{
(Dr ∗ α(σ) ·Gσ)(0, 0)

}
= r/

√
2

where Dr denotes the binary image of the (0, 0) centered homogeneous sphere with r
radius:

Dr(x, y) =

1, if
∥∥∥[x y]

∥∥∥2
6 r

0, if
∥∥∥[x y]

∥∥∥2
> r

Please note that the local Hessian operator assigns a 2 × 2 matrix to each pixel of the
examined image. Since the shape of the visible pupil highly depends on the direction of
the gaze and the distance between the lower and the upper eyelids, its radius can not
be precisely proposed by the pupil proposal algorithm, therefore a set R of possible r-s
is defined. An ellipse is fitted to the limbus points using the RANSAC [11] method, the
axes of which are used as radius proposals. Furthermore we found, that the eye landmark
points are stable in the two corners of the eye. Based on this fixed ratios (1

2 ,
5
12 ,

1
3) of the

half distance between the corners of the eye are added to the proposals.

The best fitting r ∈ R is defined by its corresponding scale, in which the largest amplitude
curvature of the intensity image is the minimal (which corresponds to our observation,
that the pupil can be approximated by a dark blob):

r∗ = arg max
r

{
λmax{Hσ(r)}

}
where λmax denotes the maximal amplitude eigenvalue of the Hessian matrix, and (x0, y0)
denotes the proposed center of the pupil. Eigenvalues of the Hessian are calculated by:

λ1{H} = trace{H}+
√

trace{H}2 − 4 det{H}
2

λ2{H} = trace{H} − λ1{H}

The first equality can be derived based on the following observations:

trace{H} = trace{QTΛQ} = trace{ΛQQT } = trace{Λ} = λ1 + λ2

det{H} = det{QTΛQ} = det{QT } · det{Λ} · det{Q} = det{Λ} = λ1 · λ2

where H = QTΛQ is the eigenvalue–eigenvector decomposition of the Hessian matrix,
which always exists, because H is symmetric. Please note that Q is an orthonormal
matrix, therefore QTQ = I.
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We chose this way of calculation instead of the most commonly utilized power iteration [21],
because this is faster in practice and similarly robust.

After we get the scale, the only task is to examine the circularity of the examined blob,
which can be measured by:

C(r)(x0, y0) = λmax
{
Hσ(r)(x0, y0)

}
· λmin

{
Hσ(r)(x0, y0)

}
Since the Hessian matrix is symmetric, it can be diagonalized by an orthonormal matrix,
which inducts that the product of the eigenvalues is equal to the determinant of the
Hessian, which can be computed faster than the value of the lower amplitude eigenvalue,
therefore computed by:

C(r)(x0, y0) = det
{
Hσ(r)(x0, y0)

}
From there, the openness of the examined eye is calculated by:

Ind
(
C(r)(x0, y0) > c

)
· Ind

(
λmax

{
Hσ(r)(x0, y0)

}
> 0

)
Here, c is the "roundness/non-prolongation" set to 0.3. The first term is true if the portion
of the eigenvalues is not too high, therefore the proposed pupil region is circular, while
the second term is true, if the region is darker than its neighboring pixels.

3.1.3 Hough transform based method

In addition to the EyeTab-based method, we also examined Hough transformation based
pupil detection. In this section, we describe the basics of this method.

3.1.3.1 Pupil detection

The method is using two main algorithms: edge detection and Hough transform based
circle detection.

The first step is to find the bounding boxes for both eyes based on landmark points
provided by Dlib. Inside the bounding box of an eye we need to find the edges of the
pupil.

Edge detection The motivation behind the idea is that there is a high intensity change
at the boundary line between the iris and the sclera, which appears in the form of a high-
amplitude gradient on the monochromatic image. By highlighting regions where there is
a high intensity change, we are more likely to find the edge of the pupil.

In order to produce the edge image we run the following steps on the input image:

• Conversion to grayscale image

• Convolution with gaussian kernel with kernel size of 5× 5 and σ = 2.
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• Convolution with vertical and horizontal Sobel kernels.

• Computation of
√
v2 + h2 for each pixel, where v and h are the values of the pixels in

the same position on the result image of the vertical and horizontal Sobel convolution.

• Thresholding gradients to keep only pixels above the 90th percentile.

• Application of morphological erosion.

These steps can be formalized in the following way:

Gr(I, σ) = Ind
(
‖ ∇(I ∗Gσ)‖2> T90 (‖ ∇(I ∗Gσ)‖2)

)
where Gσ is the 2D Gaussian kernel, ∇ is the gradient operator, which is implemented by
Sobel filters, T90 (X) is the 90th percentile of the intensities of X, Ind ( · ) is the indicator
operator. The operators are computed element-wise.

Edges(I, σ) = Gr(I, σ)−Gr(I, σ)	Box3,3

where 	 is the morphological erosion, while Box3,3 is the 3× 3 sized box kernel.

The result of the algorithm are shown on Figure 3.6 and Figure 3.7. As it can be seen,
the algorithm detects borders of the edges. This can be beneficial if the visible shape of
the iris is elliptical.

Hough circle Hough transform [13] is an algorithm, that can find objects on images,
that do not have a continuously tractable border, but the shape of the object can be
defined by closed function of small number of parameters.

In a two-dimensional space, a circle can be described by:

(x− a)2 + (y − b)2 = r2,

where (a, b) is the center of the circle, and r is the radius. A given (x, y) point votes
for all (a, b, r) values that satisfy the equation above, so our Hough space will be three-
dimensional. The method is based on the fact that for each point (x, y) of the original
circle, whose center is at (a, b), the distance from (a, b) is r.

In practice, the circles can be detected by finding local maxima in the Hough space rep-
resentation (Acc[a, b, r]). Initially, every element in the Acc tensor is zero. For a specific
radius r we iterate through each edge point (x, y) in the original space, formulate a circle
that is centered at (x, y) with radius r and for every point (x′, y′) of its contour increase the
value of the accumulator grid cell Acc[x′, y′, r]. The elements in the accumulator matrix
can be interpreted as the number of object pixels in the input space that are located at r
distance from (a, b).

So that

Acc(a, b, r) =
∑
(x,y)

I(x, y) · Ind
(√

(x− a)2 + (y − b)2 = r
)
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where I is the input image and (x, y) are edges of the input image.

After this, we can find local maxima in the accumulator matrix that are corresponding
to the circle centers in the original space. Demonstration of the Hough circle detection is
shown on Figure 3.8.

The result of running the circle detection algorithm on Figure 3.6 is shown on Figure 3.9.

Selection of the optimal proposal In some cases the edge detector can result in an
edge map such that the maximum value of the circle detector accumulator corresponds to
a false result.

To solve this problem we evaluate three ROIs with the highest accumulator values. An
(x0, y0, r) can be a proposed circle (ROI) in the Hough domain, if it is a local maximum.
For a given proposal, the evaluation steps are the following:

• Create a mask so that all pixels inside the contour of the circle are zeros and all
other pixels are ones.

• Invert the mask and the monochromatic image of eye.

• Multiply the mask and the monochromatic image pixel-wise then sum up the values.

• Divide the result by the r2 where r is the radius of the circle.

The method claims that we should select the circle with the highest circle value which is
equal to the dark pixels per circle area. So that

Cp(x0, y0, r) =
trace

(
(255 · 1− Ieye)T · (1−Maskx0,y0,r)

)
r2

where Ieye is the patch of the monochromatic eye image, located in the position defined
by the (x0, y0, r) proposal, Maskx0,y0,r is the binary mask of the circle, with center in
(x0, y0) and r radius and 1 is a matrix of ones.

As you can see on Figure 3.10 regardless of whether the red circle has the highest value
in the circle detector accumulator, the green circle has the highest circle value so it is a
better result.
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(a) Original image (b) Monochromatic image

(c) Gaussian blurred image (d) Result of vertical convolution

(e) Result of horizontal convolution (f) Amplitude of gradients

(g) Result of thresholding (h) Edges of the eye

Figure 3.6: Find edges on eye images.

19



Figure 3.7: Edge detection on eye.

(a) Original image. a =
50, b = 50, r = 30

(b) Hough space for r =
10. Maximum value is
0.15625.

(c) Hough space for r = 30.
Maximum value is 0.5.

(d) Hough space for r =
40. Maximum value is
0.11207.

(e) Restored image. Select-
ing the maximum value
from accumulator with
a = 50, b = 50, r = 30.

Figure 3.8: Hough transformation of a circle.
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(a) Edge map (b) Hough space of r=28

(c) Found circle with parameters of a =
61, b = 33, r = 21. (d) Found circle is fully covering the pupil.

Figure 3.9: Finding circle of pupil.
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(a) Original image and the
three ROI circles, ranked
by the accumulator ma-
trix in descending order:
red, green, blue.

.

(b) Mask with parameters of
60, 43, 10.

(c) Mask with parameters of
54, 34, 21.

(d) Mask with parameters of
56, 33, 23.

(e) Cp = 133951.5 (f) Cp = 147585.4 (g) Cp = 143990.6

Figure 3.10: Evaluation of circles.
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3.2 Eyebrow-raising and contraction detection

In this section our algorithms for detecting eyebrow-raising and contracting are described.
Videos are required as input for these methods as a change in eyebrow position is detected.
In our work, these algorithms were applied on 30 fps videos. During investigating the
accuracy of the landmark points on videos, and distances between several landmark points,
we found, that the landmark points of the eye are accurate enough to calculate distance
from. Thus first, the video is processed frame-by-frame to extract landmark points. This
is the most time-consuming part of the task because from here only the time series of the
position of the landmark points is processed. The next step is to extract the distances of
particular points.

Most of the parameters described below are set empirically, some of them may need to be
readjusted when using a different frame rate.

3.2.1 Median filter-based solution

This method was the first approach that we investigated. The algorithm uses the eyebrow-
eye distances (xα) as its input, more precisely the distance between the center point of
the eyebrow (based on indices 20 and 25 in Figure 2.1) and the mean of the eye landmark
points (based on indices of 37-40 and 43-36 for the left and the right eye respectively)
as shown in Figure 3.11a. The idea is very simple: median filtering is applied using two
kernels of different size. One is narrow (box11) and the other one is wide (box61) (see
results in Figures 3.11b and 3.11c). The narrow kernel is used to smooth the noise. The
wide kernel is used to smooth the eyebrow raising, and thus form a baseline to compare to.
The difference of the two time series (created with the two kernels) is taken as Figure 3.11d
shows. Overall it can be calculated as follows:

dxα = med{xα, box11} −med{xα, box61},

where (boxn) is the n width box kernel, xα is the input time series, and med{·, ·} is the
median filtering. The state of the eyebrow of one eye (see Figure 3.11e) is considered
raised at a given timestamp if the difference in that timestamp is greater than an ε and
the ratio of the difference time series (dxα) to the difference time series for the other eye
(dxβ) is greater than 1

2 . (
dxα > ε

)
∧
(
dxα
dxβ

>
1
2

)
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(a) Eyebrow-eye distance.

(b) Median filtering applied to the time series using the narrow kernel.

(c) Median filtering applied to the time series using the wide kernel.

(d) Difference of the two median filtered time series.

(e) State of the eyebrows (raised - 1, unraised - 0).

Figure 3.11: Steps of eyebrow raising detection with the median filter-based approach
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3.2.2 Probability density-based solution

3.2.2.1 Eyebrow raising

For this method eyebrow-nose bottom and eyebrow-eye distances are investigated. Another
input for this method is the output of the blink detection. In a basic scenario the distance
between the mean of the eye landmark points (with indices of 37-40 and 43-36 in Figure 2.1)
and the center point of the eyebrow (20 and 25) is calculated. However, we found that
during a blink, all of the eye landmark points move a little bit, causing a jump in the
distance. Several solutions have been investigated for this phenomenon. For example
the coordinates were interpolated during a blink. However, raising eyebrows is often
accompanied by blinking, and in this case that moment would be missed. Our final
solution is that during a blink the distance between the tip of the nose (34) and the center
point of the eyebrow (20 and 25) is taken into account.

First, the eyebrow-eye distance is processed (see Figure 3.12a). Using a 20 wide sliding
window mean and variance is calculated for each of the 20 consecutive records. In the next
step the relative likelihood is calculated for the next 3 points one by one using the proba-
bility density function of the normal distribution defined by the observed distances in the
window. By multiplying the 3 points joint probability is calculated. Our null hypothesis
was that if the records come from the same distribution, then they are independent given
the window; formally:

p(xwin+3, xwin+2, xwin+1 | xwin) =
3∏
i=1

p(xwin+i | xwin)

The joint probability in our case can be computed as:

3∏
i=1

p(dwin+i | win) =
3∏
i=1

1
σwin
√

2π
· e
− (dwin+i−µwin)2

2σ2
win ,

where dwin+i denotes the distance after the window with i frames; σwin and µwin denote
the standard deviation and the mean of the window respectively. The joint probability is
calculated after each window in the time series. For ease of use, we work with the loga-
rithm of the values (see Figure 3.12b. In the next step eyebrow movements are detected.
First, a binary threshold is applied. In our case values under -15 are the candidates.
Using a maximum filter with a width of 5, movements close to each other are merged
into one "sequence". In these sequences, local minimum search is performed to find the
timestamp belonging to the most salient movement. These are points, which belong with
low probability to the distribution defined by the window, thus are outliers. These points
are filtered further to eliminate points belonging to the lowering and contracting of the
eye. This is performed by comparing the window mean and distance value belonging to
that timestamp. Until this point, time series belonging to each eye are treated separately.
However, while investigating the landmark points on videos, we found, that moving the
eyebrow on only one side (e.g. left) affects the landmark points on the other side (i.e.
right), thus "generating movement". This movement is much smaller on the unraised side
(i.e. right). Thus pairing the movements of the two sides is necessary. Detections on the
two sides with a distance in time less than 0.1 s are considered the same movement. If the
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distance on one side belonging to such a movement is less than half than the other side,
then it is a "generated movement", else it is a bilateral eyebrow-raising.

The majority of this process is also performed on the eyebrow-nose tip distance (see
Figure 3.12d) time series. Joint probabilities are computed and are filtered using a harder
threshold (-20). Filtering for only raising movement is also applied, Figure 3.14b shows
the resulting detections.

Blink timestamps resulting from the gaze detection part are used to mark possibly fake
detections in a window (with a width of 0.43 s) as Figure 3.12c shows. If such a movement
can also be found in the eyebrow-nose tip distance time series (with a maximal difference
in time of 0.17 s), then it is considered as a real movement, else as a fake movement (see
Figure 3.12f). Examples are shown in Figure 3.13.

(a) Eyebrow-eye distance.

(b) Log of joint probabilities calculated based on the eyebrow-eye distance.

(c) Filtered detections calculated based on the eyebrow-eye distance. Orange zones denote the
blinking timestamps with a window around them. Red x’s mark the detections falling in the
zone of blinking and green diamonds denote the rest of the detections.

3.2.2.2 Eyebrow contraction

A similar method is used to detect eyebrow contraction. The input for this method is the
rate of two distances as shown in Figure 3.14a. The first distance is between the inner
edges of the eyebrows (with indices of 22 and 23 in Figure 2.1). The second distance is
between the inner corner of the eyes (with indices of 40 and 43). We found, that these
points are stably recognized by the landmark detector. The idea behind the rate is that
during the contraction the two eyebrows approach each other. Joint probabilities are
calculated the same way as described previously (see Figure 3.14b). As the next step, the

26



(d) Eyebrow-nose distance.

(e) Filtered detections calculated based on the eyebrow-nose distance.

(f) Final filtered detections calculated based on the eyebrow-eye distance. Orange zones denote
the blinking timestamps with a window around them. Green diamonds mark the detections
out of the blink-windows. Magenta diamonds are the detections that fall into the orange zone
but can be detected based on the eye-nose distance, thus are retained. Red triangles denote
the detections that fall into the orange zone and can not be detected based on the eye-nose
distance thus are permanently removed.

Figure 3.12: Steps of eyebrow raising detection with the probability density-based ap-
proach

local minimas are detected and filtered using a threshold (-8). The resulting detections are
further filtered to belong only to contractions. This is achieved by comparing the distance
rate at that timestamp to the mean of the window before it. If its value is smaller than
the mean, then it is considered as a contraction else as a raising (see Figure 3.14c).
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(a) Example belonging to the first green diamond (at around 38) in
Figure 3.12f. There is no blink during the eyebrow-raising.

(b) Example belonging to the first purple diamond (at around 124)
in Figure 3.12f. There is a blink during the eyebrow-raising, but
it is also detected based on the eyebrow-nose distance.

(c) Example belonging to the first red triangle (at around 199) in
Figure 3.12f. There is a blink during the eyebrow-raising, but it
is not detected based on the eyebrow-nose distance thus removed
from the detections.

Figure 3.13: Examples belonging to the detections shown in Figure 3.12f.
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(a) Rate of distances between the inner edges of the eyebrows and the inner corners of the eyes.

(b) Log of joint probabilities calculated based on the distance rate.

(c) Final filtered detections calculated based on the distance rate.

Figure 3.14: Steps of eyebrow contraction detection with the probability density-based
approach

Figure 3.15: Example belonging to the first green di-
amond (at around 88) in Figure 3.14c.
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3.3 Mouth detection

Examination of the eyes and their surroundings alone does not provide sufficient informa-
tion about the mood of the subject, therefore we examined the lips and their surroundings.

In this section, we introduce procedures in order to extract information about the position
and size of the mouth.

3.3.1 Openness detection

One of the basic parameters we determined was whether the subject’s mouth was open.
Detecting mouth openness is crucial because opened mouth can mean surprise, fear etc.
Dlib provides several landmark points around the mouth, based on which we can determine
this parameter.

(a) Closed mouth. (b) Opened mouth.

Figure 3.16: Determining mouth openness.

First, we calculate the average height of the upper and lower lips. It is the mean of the
length of the blue and the green lines showed on Figure 3.16. Then we compare the
minimum of these two values with the average distance between lips that is the mean of
the length of the red lines. Mouth is open if

‖ ~r1‖+‖ ~r2‖+‖ ~r3‖
3 > min

(
‖ ~b1‖+‖ ~b2‖+‖ ~b3‖

3 ,
‖ ~g1‖+‖ ~g2‖+‖ ~g3‖

3

)
∗ 0.7.

where ~ri vectors are marked by the red, ~gi by the green, ~bi by the blue lines on Figure
3.16.

3.3.2 Visible lip size

The next parameter we examined is the visible size of lips. For this, we fit one polygon
to the upper and another one to the lower lip points defined by Dlib, and calculate their
area.

Visible lip size can be used to determine whether the subject was biting his or her lower
lip, or the degree of rotation along an axis perpendicular to the sagittal plane. As it can
be seen in Figure 3.18 biting the lower lip decreased its visible size.
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Figure 3.17: Region of upper and lower lips.

(a) LSlow = 3416
(b) LSlow = 2431

(c) LSlow = 5132

Figure 3.18: Analyzing lower lip size (LSlow) on different mouth states. ((a) Neutral,
(b) Biting lip, (c) Heavy smiling).

3.3.3 Detecting gap between lips

One of the biggest challenges in the analysis of the mouth was to determine the shape and
the curvature of the gap. We can extract a lot of information from these parameters of a
closed mouth, such as whether the person is smiling.

3.3.3.1 Fitting line

As a first approach, we fitted a line to the mouth. Here, we had to decide two important
things: the image preprocessing steps and the fitting algorithm. For preprocessing, two
methods were investigated: edge detection and blob detection.

Edge detection, although worked in the case of the eyes, was unfortunately not effective
in the case of mouth. Based on our observations, the mouth gap can be represented by
a thick, dark, horizontal line even when it is fully closed, so the edge detection algorithm
resulted in two, well-separable edges and a lot of false edges.

Figure 3.19: Edge detection on mouth.

The other approach is blob detection. We assume, that dark, linear blobs can approximate
the gap between the lips. Because of the non-ideality of light conditions, parts of the lips
are usually in shadow, while in other scenarios, it can reflect the backlight. Therefore,
the gap cannot be detected continuously in most of the times, however parts of the gap
can be detected as separate dark blobs. Because blobs are usually detected based on the
curvature of the local intensities in image processing tasks, therefore we can utilize local
Hessian based filtering (described in subsection 3.1.2.6) for this purpose too.
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Figure 3.20: Blob detection on mouth.

By thinning the dark region found by the algorithm, we can determine the center of the
cavity. We have to fit a line to this, for which we have chosen Hough transformation that
was applied to the eyes as well.

Hough line The basic procedure was extended with several constraints. One of these
is the angle of the line and X axis. Those lines were kept where this angle was in the
[−π

8 ,+
π
8 ] interval. The other constraint is the distance of the middle of the line from the

vertical center of the mouth bounding box. If the equation of the line is y = m · x + b
then the middle of it is the value of m · xhalf + b where xhalf is the half of the width of
the mouth bounding box. Lines were kept if this distance was no more than 10% of the
height of the bounding box.

(a) On a neutral mouth the algorithm can find the main line of the mouth.

(b) Mouth with heavy curvature cannot be modelled with a straight line.

Figure 3.21: Fitting line on mouth gap.

As it can be seen in Figure 3.21 the method can determine the position of the gap on
simple images, but it is not sufficient to follow its curvature.

3.3.3.2 Fitting parabola

Previous results indicated that we need a more accurate modeling of the mouth gap than a
straight line. After several experiments, a quadratic curve proved to be the most efficient,
ensuring the most accurate fit at a given computational cost.

The advantage of a parabola over a straight line is that it can model not only the angle
with the X-axis, but also the curvature of the mouth gap. Parabolic alignment was also
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performed with the aforementioned Hough-transformation, and for preprocessing we also
used blob detection.

Hough parabola In two-dimensional space parabolas can be described by:

y = c · (x− a)2 + b.

For a given (x, y) point we look for all (a, b, c) values that satisfy the equation above.
The basic idea of the method is that for every (x′, y′) point that lies on a parabola whose
equation is y = c · (x − a)2 + b we can define another parabola whose equation is y =
−c · (x− x′)2 + y′ so that (a, b) will lie on it.

Our three-dimensional accumulator can be computed in the following way:

Acc(a, b, c) =
∑
(x,y)

I(x, y) · Ind
(
y − c · (x− a)2 = b

)

where I is the input image and (x, y) are edges of the input image.

After the original implementation, we faced three main problems by applying the method
on the binarized blob image:

• The algorithm could not handle small curvature changes near zero curvature, i.e.
neutral mouth expression.

• The output of blob detection is not always robust, so in a video recording, the fitted
parabola made large jumps between consecutive frames.

• The algorithm can only handle those cases where the directrix is parallel to the
X-axis.

Handling small curvature changes. During the parabola search, several curvature
values must be examined. Initially, a uniform scale was used in the interval (-0.04,0.04)
with a step size of 0.004. By setting the step size, we face a trade-off between computation
cost and the accuracy of fitting.

After several studies, we observed that fine step size was only required in the near-neutral
mouth state, but not in edge cases such as heavy smiling.

As a solution, we started using a logarithmic scale, which significantly improved the ac-
curacy of the parabolic fit.
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(a) Fitting parabola with linear scale. α =
0.

(b) Fitting parabola with logarithmic scale
α = 001587.

Figure 3.22: With logarithmic scale we can distinguish small curvature changes.

Handling noise. Due to the ever-changing head position and light conditions in the
example video, the blob detection output had to be preprocessed for a more accurate
parabolic fit. The following steps were performed.

• Thresholding: The values of the blob detection output above the 85th percentile
according to the output values are preserved. Based on this criteria we can create a
binary mask.

• Filtering mask region: The size of the mask is narrowed to the middle area of the
mouth, discarding false values at the edge of the image (e.g., pixels of mustache).

• Finding dominant components: In each column of the mask, we find the dominant
component. Dominant components are the longest related values of 1 in a given
column.

• Finding middlepoints: In the next step, the middlepoint is determined for each
column, which is the weighted average of the coordinates of the pixels of the dominant
component according to the intensities of the original image.

• Filtering middlepoints: There are cases where some outliers appear in the resulting
output. These are eliminated using a median filter.

• Drawing polygon: We closed the curve of the middlepoints by piecewise linear inter-
polation, on which we can run our parabolic fitting algorithm.

These steps can be formalized in the following way:

BE = Ind
(
Eblob > T85(Eblob) ·Maskcorners

)

DC(x) = [a, b]⇔

⇔
(
∀d ∈ [a, b] : BE(x, d) = 1

)
∧

∧ ¬∃(a′, b′) :
((

(b′ − a′) > (b− a)
)
∧
(
∀d ∈ [a′, b′] : BE(x, d) = 1

))

where ∀ is the universal, ∃ is the existential quantifier, ¬ is the operator of logical negation,
while ∧ is the logical and.
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mp(x) = median
{∑

y∈DC(x) y ·BE(x, y) ·Eblob(x, y)∑
y∈DC(x) BE(x, y) ·Eblob(x, y) ,boxn

}

where median(·) is the median filtering and boxn is the n width box kernel.

The result of these steps are shown on Figure 3.23

Handling not horizontal directrix. As we described before, we chose a simpler algo-
rithm to find parabolas in order to reduce computational cost. We only look for parabolas
whose directrixes are parallel with X-axis (see Figure 3.24).

To solve this problem we apply a line fitting algorithm to find the main line of the mouth.
We apply the line fitting algorithm after the preprocessing steps mentioned in the previous
point. After we found the main line, we rotated the image until the line became parallel
with X-axis. We used zero padding and zero order (nearest neighbour) interpolation for
the rotation. To this rotated image we applied our parabola fitting algorithm then we
rotated back the image (see Figure 3.25).
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(a) Original image (b) Output of blob detection

(c) Thresholding (d) Filtering mask region

(e) Finding dominant components (f) Finding middlepoints

(g) Filtering middlepoints (h) Finding parabola

(i) Result with preprocessing (j) Result without preprocessing

Figure 3.23: Preprocessing steps on mouth images.
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(a) Original image (b) Preprocessed image

(c) Fitted parabola (d) Result image

Figure 3.24: Fitting parabola without rotation.

(a) Original image (b) Preprocessed image

(c) Main line of preprocessed image (d) Rotated preprocessed image

(e) Fitted parabola (with 0 curvature (f) Result image

Figure 3.25: Fitting parabola with rotation.
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3.3.4 Mouth angle

Half-sided mouth is a typical sign of contempt, the detection of which can be useful.

Unfortunately, we cannot compare the angle of the mouth with theX-axis because different
head positions may exist in a video. It should be examined relative to the face, so we
decided to compare it with the central line of the nose, because their relative positions
are rotation invariant. To find the main line of the mouth we reused the line described
in the Handling not horizontal directrix paragraph. The nose line is defined by linear
interpolation of the landmarks of the nose then applying a line fitting algorithm on it.

After these steps we simply compare the angle between the mouth and the nose and if
that angle is less than 80 degree we report a half-sided mouth parameter, see Figure 3.26.

(a) Neutral face α = 87.8◦ (b) Half-sided mouth α = 76.5◦

Figure 3.26: Determining angle between nose and mouth line.
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Chapter 4

Results and discussion

In this report we examined several different algorithms that allowed to extract information
about facial expressions from images. The algorithms were analyzed in the following test
images and compared with neural network-based solutions.

Figure Eyes Eyebrows Mouth Mouth Mouth Facs Facs
openness curve line degree Aus result

a) Open Not raised Closed 0.0037 (Heavy downward) 80.189 15 sadness
b) Open Not raised Closed -0.0007 (Slightly upward) 87.606 - neutral
c) Open Left raised Closed 0 (Not curved) 76.497(*) R14 contempt
d) Open Not raised Closed -0.0031 (Heavy upward) 86.629 12 happiness
e) Open Not raised Open -0.0021 (Heavy upward) 82.052 12,25 happiness
f) Open Raised Open 0 (Not curved) 89.153 1,2;26 surprise

Table 4.1: Evaluation of different kind of faces shown on Figure 4.1. (*) denotes a half-
sided mouth

As Figure 4.1 shows, algorithms are able to detect basic features on the sample images.
The parabola fitted to the mouth shows that the detection of curvature and angle of the
mouth are quite accurate. Also, the boundary of the iris is predicted to its real position
in most of the cases. Based on the predictions, the action units can be detected thus the
microexpressions can be determined as Figure 4.1 shows.

We also examined the test images with a popular, publicly available neural network-based
solution1. The results are shown in Figure 4.2. According to the documentation, the neural
network was trained to distinguish angry, disgusted, fearful, happy, neutral, sad, surprised
classes. As can be seen, this neural network is capable of capturing some expressions from
the images. However, due to the inaccuracy of the landmark detector, key features on the
face are sometimes missed, e.g. the shape of the mouth is not accurate in Figure 4.2a and
the curvature of the eyebrow in Figure 4.2c.

Figures 4.1a and 4.2a display a "sad" expression characterized by a closed mouth with
a heavy downward curve. The expert system based approach correctly identified the
downward curve and the closed mouth. The neural network based method classified this
image mainly as a "neutral" expression with a moderately high probability of 0.75, and as
a "sad" expression with a lower probability of 0.23. This is possibly due to the fact that
the landmark points of the mouth, particularly the edges, were not properly aligned.

Figures 4.1b and 4.2b display a "neutral" expression with no particular features. Both
methods identified this expression correctly.

1https://github.com/justadudewhohacks/face-api.js/
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In Figures 4.1c and 4.2c a "contempt" expression can be seen. The characteristic feature
of this expression is asymmetry, which is manifested in a closed, half-side upward elevated
mouth line and the eyebrows raised on one side. The raised eyebrow (on the left side)
is detected by the expert system, besides the half-side elevated mouth line indicated by
a decreased mouth angle (74.497◦) compared to the ideal 90◦ ) between the mouth line
and the nose line. The neural network based solution classified this expression as "happy",
which is acceptable as "contempt" expression was not among the trained classes.

Figures 4.1d and 4.2d show a smiling face, open eyes and unraised eyebrows. The upward
curve of the mouth is followed accurately by the fitted parabola. The "happy" emotion is
correctly predicted by both approaches.

Figures 4.1e and 4.2e show an expression with slightly open, upward-curving mouth and
unraised eyebrows. This means "happiness" based on the action units. These features
were found by our expert system. Also it was predicted correctly by the neural network.

On Figure 4.1f an emotion with open mouth and raised eyebrows is visible. This can
be interpreted as "surprise", which follows from the features detected by our methods.
However, the prediction 4.2f of the neural network based solution is "neutral" with a
probability of 0.98. Based on the demos shown on the page of the API, this may be the
result of the training on images showing exaggerated emotions.

The results show, that classic image processing algorithms and expert systems can compete
with neural network-based solutions, because they can achieve high accuracy without the
requirement of large training dataset. Furthermore, their output can be explained, because
they do not behave as a black box model. Please also note, that there are many tunable
parameters in a neural network based solution (e.g. the architecture of the network, the
training dataset, the utilized augmentation and regularization methods, etc.), therefore,
there may exist a more accurate neural network based solution for this task, but the lack
of interpretation still degrades the usability.

4.1 Future work

As can be seen from the investigated methods described in this paper, the examination
of the action units is not yet exhaustive. There are even more key features on the face
worth detecting since they can carry important information about the emotions of a person
thus making the prediction more accurate. Based on the action units related to the basic
emotions, wrinkles play an important role: crow’s feet lines next to the eye, horizontal and
vertical wrinkles on the forehead, the nasolabial furrow, wrinkles between the eyebrows,
at the root of the nose and next to the mouth are key indicators of particular emotions.
A further development aspect could be the redundant detection of some motions, e.g. the
motion of eyebrows, facial muscles near the mouth, etc. This would allow a more robust
detection. Currently, only the contraction and raising of the eyebrow are detected using
multiple frames. However, this could be used for several other features, e.g. by tracking the
changes of features across multiple frames. In such a case when these methods would be
used for the detection of microexpressions based on recordings, made by a non-stationary
device, e.g. a handheld phone, further steps are necessary to allow adequate detection,
such as image stabilization. Furthermore, other machine learning based algorithms could
be integrated. The landmark detector played a fundamental role in our solution, as it
provided relevant reference points to build upon. If this method would be enhanced with
additional features or other similar methods would be developed, their integration would
be a viable choice.
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(a) Mouth curving downward. (b) Neutral face.

(c) Half-sided mouth. (d) Smiling.

(e) Smile with open mouth. (f) Open mouth with the eye-
brows raised.

Figure 4.1: Results on different kind of faces using our solution.
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(a) neutral(0.75), sad(0.23)
(b) neutral(0.96)

(c) happy(0.99) (d) happy(1)

(e) happy(1) (f) neutral(0.98)

Figure 4.2: Results on different kind of faces using the neural network based solution.
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