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Kivonat

A mesterséges intelligencia fejlődésének köszönhetően egyre több fejlett vezetéstámogató
funkció érhető el a gépjárművekben. A sávtartó rendszerek különösen sokat segítenek a
biztonságos vezetésben, hiszen segítik a jármű sávon tartását és figyelmeztetik a vezetőt,
amennyiben veszélyes sávelhagyási esemény történik. Jól látható, hogy ezen rendszerek
akár kritikus beavatkozást is végezhetnek, továbbá ahogy a vezetők egyre jobban megbíz-
nak bennük, egyre kritikusabb a helyes működésük, hiszen az esetleges hibáik balesetekhez
vezethetnek.

A sávtartó funkciók a mesterséges intelligencián belül a mélytanulás (deep learning)
megoldásaira épülnek, azaz a tanításukhoz nagy mennyiségű adatra van szükség, amely
alapján a neurális háló megtanulja a fontos információkat és utána képes lesz működés
közben a vizuális információ feldolgozására. Egy ilyen megoldásban azonban több helyen
is hiba kerülhet a működésbe. A tanító adathalmaz és a tanulás során is előfordulhatnak
problémák, például, ha nem elég diverz a tanító halmaz vagy ha a neurális háló rosszul
általánosít. Emellett, mivel emberek írják ezeket a programokat is, magukban a neurális
háló szoftverekben is lehetnek hibák. Ezeket a hibákat fontos lenne lehetőleg már a ter-
vezési/fejlesztési időben megtalálni.

Munkánk során egy olyan megoldást fejlesztettünk, amely képes a neurális háló alapú
sávtartó rendszerek hibáit és gyengeségeit szisztematikusan felderíteni. Módszerünk
több különböző technikát kombinál: OpenDrive formátumú teszteket generálunk, amiket
Blender segítségével feldolgozunk, és háromdimenziós modelleket hozunk létre. Ezeket
utána különböző szimulátorokban, mint például a Carla, fel tudjuk használni, és akár
bonyolultabb közúti szituációkat is tudunk vele modellezni. A szimulátorokkal realisztikus,
és diverz tesztképeket tudunk előállítani. Ezeknek a képeknek a feldolgozása után, a
sávkövető rendszer kimenetét felhasználva genetikus algoritmusok segítségével javítjuk a
bemenő paramétereit a tesztgenerálási folyamatnak. A teszteredmények visszacsatolásával
segítjük a kereső algoritmusokat, hogy minél nehezebb teszteseteket állítsanak elő, amiknél
a sávkövető rendszer nem teljesít megfelelően.

A fejlesztés során igyekeztünk az iparban is használt nyílt forráskódú technológiákat fel-
használni, továbbá a megközelítésünket egy, a közúton is használt sávtartó automatika
vizsgálatára is felhasználtuk, amely segítségével kiértékeltük a megközelítésünk alka-
lmazhatóságát.
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Abstract

Thanks to the development of artificial intelligence, more and more advanced driver assis-
tance functions are available in vehicles. In particular, lanekeeping systems can help safe
driving by helping the vehicle to keep in lane and warning the driver if a dangerous lane
departure event occurs. It is clear that these systems could perform critical interventions
and, as drivers become more confident in them, their correct operation becomes more
critical, as any failure can lead to accidents.

Lane-keeping functions are based on artificial intelligence solution, called deep learning,
i.e. they require large amounts of data to be taught, which the neural network uses to
learn the relevant information and then becomes able to process the visual information
during operation. However, such a solution can fail in several areas. Problems can occur
in the learning data set and in the learning process, for example if the learning set is not
diverse enough or if the neural network generalises incorrectly. In addition, since humans
write these programs, there can be errors in the neural network software itself. It would
be important to find these errors preferably at design/development time.

In our work, we have developed a solution that can systematically detect the faults and
weaknesses of neural network-based lanekeeping systems. Our method combines several
different techniques: We generate tests in OpenDrive format, process them using Blender,
and create three-dimensional models that can then be used in various simulators such
as Carla, and with them model complex driving scenarios. With the simulators, we can
generate realistic and diverse test images, which, after processing, we can use the output
of a lanekeeping system to improve the input parameters of the test generation process
using genetic algorithms. By providing feedback on the test results, we help the search
algorithms to generate test cases that are difficult, i.e. where the tracking system does
not perform well.

We used open source technologies used in the industry and have also used our approach
to test a lane-keeping system used on public roads to evaluate the applicability of our
approach.
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Chapter 1

Introduction

Advanced deep neural network (DNN) based applications have become a part of our lives
in recent times. They can be found everywhere, from entertainment to critical systems, like
advanced driver assistant systems (ADAS) or medical applications. Similarly to traditional
software, DNNs can also have bugs and behave unexpectedly, and such failures can lead
to critical errors. DNNs do not contain the working logic explicitly, making it hard to
interpret the model. To ensure the correct behavior and gain people’s trust, thorough
testing is required.

For lane-keeping assist systems (LKASs), it’s essential to evaluate their performance across
many roads with different curvatures, in different visibility conditions, and different traffic
situations. Conducting such tests in the real world is often problematic: it is less scalable
and more expensive than doing it in a synthetic simulated environment. Constructing a
synthetic environment offers huge freedom. Testers and automatized test-case exploration
methods can generate roads with arbitrary curvature, weather conditions, traffic scenarios,
and more. This flexibility is valuable when we want to find the possible vulnerabilities
of an ADAS in a broad input space. This could help to ensure that many different road
layouts or traffic scenarios are covered. In order to achieve diverse test data, we need some
guarantees.

Providing code coverage-like metrics is not possible for DNNs. Although domain experts
could give some test cases, for such systems, this is not a sustainable solution; they are
immensely complex. If the whole behavior could be formally described by domain experts,
there would be no need for the system under test, as it could be replaced by the test oracle.

Intuitively, using some coverage criteria could measure the diversity of the test data from
a certain aspect, making the test result more trustworthy, but defining coverage for DNN
testing is not straightforward. Numerous coverage criteria are defined: neuron coverage
[21, 30], which turned out to be not a good metric, as [11] showed because neuron coverage
can be easily manipulated, and it does not necessarily indicate a well-tested model. There
are other coverage techniques that try to describe the diversity of the input test set using
abstract representations of the input space. Using logical scenarios [19] for traffic situa-
tions (instead of concrete, fully specified scenarios) has the promise [18] to give coverage
guarantees for the working logic of the system.

The suggested methods can work for describing test traffic scenarios for an ADAS in
general, but lane detection primarily relies on the shape of the road. To achieve a diverse
test set, we can use various distance and diversity metrics for road geometries, like Jaccard
similarity index [10], Iterative Levenshtein distance [23], and various other road features
(e.g., curvature, complexity, and direction coverage)[24].
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Testing vision-based systems and providing graphical input for them requires a lot of com-
putational resources. Search-based test input exploration approaches have been utilized
in the past [16, 17] to efficiently discover the broad input space while finding diverse and
challenging inputs significantly faster than random sampling or other methods. Some of
the approaches even have built-in distance mechanisms (e.g., NSGA-II [6] with crowding
distance). Such algorithms keep the other generated test inputs in their working memory,
and if they find multiple potential new test inputs with similar performance, according to
a pre-defined metric, the algorithm will choose to keep the new input that deviates the
most from the existing test cases, providing diverse test set by its nature.

The goal of our Scientific Students’ Association Report is to systematically test the lane
detection system of a widely used production ADAS with a genetic algorithm. In order to
achieve this

• we created a framework where LKASs and their components can be tested on a
generated road. This framework is modular, and with slight modification, it can be
applied to test many different LKAS or lane detection models.

• We can describe the roads and lanes parametrically and retrieve standard road de-
scription files, 3D objects, and images. These formats can be used to ingest the
generated road into a simulator or just to retrieve images of the road.

• We run genetic algorithms to find the weaknesses of a lane detection system.

2



Chapter 2

Background

2.1 DNN-based Lane Detection Approaches

DNN-based lane detection methods can be classified [25] into four main approaches. Some
approaches are considered more accurate, while others are more lightweight. Lane detec-
tion is usually part of a bigger functionality, like lane-keeping, but standalone computer
vision models also exist that can identify lane lines, among other objects. Lane detec-
tion models all have visual inputs, but many lane detection components integrated into
ADAS consume multiple frames: images from different angles or a sequence of images.
Depending on the task, performance, or accuracy requirements and of course the expected
input of the other components in the ADAS, lane detection can be realized with various
approaches.

2.1.1 Segmentation Approach

The segmentation approach treats lane detection as a pixel-wise classification task, deter-
mining whether each pixel belongs to a lane line or not. This approach has been widely
used in recent lane detection methods and has been adopted by industry players, such as
Tesla [14]. Despite its high accuracy, the segmentation approach suffers from increased
computational and memory costs and requires a postprocessing step to extract lane line
curves from the pixel-wise classification results.

2.1.2 Row-wise Classification Approach

Row-wise classification marks exactly one (or zero) pixel as a lane line in each row of the
image. This approach, introduced in [22], leverages domain-specific knowledge, assuming
that lane lines follow the longitudinal direction of driving vehicles and not be so curved
to have more than two intersections in a row of the input image. By formulating the
lane detection task as multiple row-wise classification tasks, this approach can reduce the
model size and computational requirements while maintaining high accuracy. Initially,
such methodologies required a post-processing step to extract lane lines, similar to the
segmentation approach, but recently, more end-to-end solutions [33] have come out.
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2.1.3 Curve-fitting Approach

The curve-fitting approach fits lane lines into parametric curves, such as polynomials
or splines. The curve-fitting approach tends to have lower accuracy compared to other
methods [25], and it may be biased towards straight lines [29] due to the dominance
of straight lane lines in training data. However, it is essential to note that lower lane
detection accuracy does not necessarily imply worse lane keeping or impaired driving
assistant performance. This approach is used in OpenPilot [5], the open-source production
driver assistance system, and is known for its lightweight computation, allowing it to run
on smartphone-like devices.

2.1.4 Anchor-based Approach

The anchor-based approach represents each lane line as a straight proposal line (anchor)
and lateral offsets from the proposal line. By exploiting domain-specific knowledge that
lane lines are generally straight, this method can achieve high performance and low latency.

2.2 Testing vision-based systems

Program testing can be used to show the presence of bugs, but never to show their absence!1

This is no different in the case of vision-based machine learning or artificial intelligence
(ML\AI) models. There are many different vision-based systems; based on the system’s
goal, we can talk about image classification, object detection, semantic or instance seg-
mentation, or more. These systems often perform critical tasks, e.g., determining if a mole
is malignant or detecting lanes or pedestrians for an ADAS.

Testing vision-based systems is fundamentally the same as testing traditional software
components: providing inputs for the system and evaluating its result with the help of a
test oracle. However, complex and large neural networks or other image-processing models
came with special challenges:

Robustness A common property of a DNN-based system is the lack of robustness,
meaning that small changes in the input can drastically change the model’s prediction.
As [28] showed, input-output mappings for deep neural networks are fairly discontinuous.
There are many other testing approaches and adversarial attacks that can reveal such
weaknesses in the system. In [28], they added an adversarial filter. For the human eye,
the picture remained essentially the same, but the model failed to predict the object in
the altered picture. Another famous example is the one-pixel attack[27]; here, changing a
single pixel or a smaller area in the input image made the model fail.

In our former scientific students’ association report [8], we addressed this robustness on
a higher, semantic level in the autonomous driving domain: we generated test traffic
scenarios in a simulator and spawned different roadside objects. We found that introducing
such objects in the images can distract the object detection model: generally, the accuracy
of the model was lower on the images with the extra roadside objects compared to the
baseline without them. To sum it up, there are plenty of examples of the fragility of
DNN models: from adding seemingly irrelevant noise to mutating high-level features (e.g.,
object replacement), breaking the model’s prediction is possible.

1Dijkstra, E. W. (1970). Notes on structured programming
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Feature space Vision-based systems have large feature space since images are repre-
sented as an array of pixels, covering all possible combinations of the input is neither
possible nor meaningful. Rather than attempting to test every pixel combination, some
approaches recommend domain-specific abstractions. For instance, in the domain of au-
tonomous driving, rather than focusing on every pixel in a traffic scenario, one might
abstract the scene into cars and pedestrians and their abstract relations. This abstraction
could be used to generate diverse test cases and can offer[18] some coverage guarantee in
the level of the abstraction.

Lack of interpretability Vision-based models, due to their complexity and depth,
can be notoriously hard to interpret. They consist of many layers, each with potentially
millions of parameters, essentially making it a black box to humans. White box testing
is barely possible, although internal neurons can be observed, and metrics like neuron
coverage [21] can be used, these are not helping to describe the working mechanism of the
model. There are models that have some mechanism that can be used for explanation, for
instance, autoencoders [15], where a narrow layer in the middle of the model represents
features in the image.

Scalability and efficiency Handling DNNs is resource-intensive. While training these
models can be time-consuming, testing and evaluation come with their own sets of chal-
lenges. This is especially true when evaluating the model’s performance across diverse
scenarios. Running each test case can require significant computational resources, but the
real barrier is running so many tests that could potentially cover the input space exten-
sively. To utilize the finite resources effectively, diverse test data is needed, but as shown
in the previous paragraphs, this is also a great challenge.

Data challenges Generally, testing in the development phase often serves the purpose
of detecting failures and immaturities of the system under test. The detected failures
should be fixed, which in the case of DNN-s means retraining, applying some pre- or
postprocessing step, or just changing the architecture of the model. Many studies [28, 3]
showed that different architecture models tend to fail in a similar manner when trained
with the same dataset. This shared pattern of failure suggests that the root of the problem
may not necessarily lie in the architecture itself but rather in the training data. This would
also suggest that adding more data to the training set, similar to the failed tests, could
fix the retrained models’ performance.
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2.3 Genetic algorithms

Genetic algorithms (GAs) are useful tools for finding near-optimal solutions for multiple
tasks with decent performance compared to naive or brute-force methods. These evo-
lutionary algorithms were inspired by the process of natural selection and genetics: the
process starts with the creation of an initial population for the potential solutions, then
comes the iterated steps of mutation, selection, and crossover to generate solutions to op-
timization and search problems, once the solution set is good enough according to a fitness
function or a termination condition is met, the algorithm stops. These are applicable to
a wide range of problems. The concept of GAs is often introduced as a great and fast
shortcut for the backpack problem (more formally known as the ”Knapsack problem”),
but beyond this, it has been successfully applied in various other ML tasks.

For lane detection tests, it can be used to generate the shape and curvature of the road
on which the ADAS will be evaluated. Parameters for parametric cubic curves, or Bézier
curves, can serve as parameters to optimize for the algorithm. GAs may not always provide
the global optimum solution but rather a good enough or near-optimal solution that is
adequate for many purposes, including ours, and can handle even larger feature spaces.
There are many different algorithms for different purposes. In our research, we used a
generic and widespread genetic algorithm: Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [6] and its python implementation, pymoo[4]

Figure 2.1: Genetic algorithm workflow

Initialization Initially, the algorithm starts with a set of (usually) random solutions
called an initial population. It is a set of potential solutions to the problem, each encoded
as a chromosome or individual. The random generation of this set should consider the
domain-specific knowledge, which usually means that the parameters should be in a range
that can be considered normal. This will result in a faster divergence and also more
accurate output.

Fitness function The fitness function (or objective function) is what the genetic algo-
rithm optimizes for. In the context of optimization problems, they are either minimization
or maximization. The fitness function evaluates each individual in the population. It as-
signs a fitness score based on how well the solution addresses the problem at hand. The
exact composition of the fitness function often varies, reflecting the specificities of the
domain and the problem. For example, the Knapsack problem’s fitness function is the
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total value of the items in the backpack: this has to be maximized. For lane parame-
ter generation, the fitness function can measure the average deviation of the prediction
from the ground truth lane, weighted with distance-based decay: this is basically an error
function. Certain algorithms aim to find optimal minimum values. In such scenarios, the
formulation of the problem may need to be adjusted: if the error function is bounded, one
approach is to subtract the original error function from this limit, effectively converting
the problem into a minimization one. Alternatively, by multiplying the error function
by -1, the problem can be just turned upside down if the algorithm can handle negative
fitness values.

Population size The population size is critical for the GA’s effectiveness. A small
population may converge quickly but risks settling for a local optimum. Conversely, a
larger population offers a broader search but demands more computational resources.
Balancing this trade-off is crucial.

Problem representation: parameter count & type For a given problem, the input
is the representation of potential solutions, called genotype or chromosome representation.
The representation and handling of parameters may vary based on the nature of the
problem’s solution space. Parameters of a possible solution can be a binary array: for
the backpack problem, assigning to each item if it is present (1) or not (0). Problems
sometimes need more complex inputs, like finding control points for a curve can involve
continuous values (floats) or integers: they all can be represented as bitstrings. Most of
the time, this is what happens under the hood, but GA libraries offer high-level interfaces
that can handle floats for better usability. It is also possible to combine both discrete and
continuous value representations within a single problem definition.

Number of generations The number of generations determines the depth of the search.
Too few might lead to a suboptimal solution, while too many might be computationally
expensive without much improvement. To avoid the latter, early stopping or termination
mechanisms are often employed.

Selection Selection acts as a survival mechanism, where individuals with better fitness
scores have a higher chance of being chosen for the next generation. Techniques like simply
choosing the best-performing individuals, roulette wheel selection, tournament selection,
and rank-based selection can be employed. The chosen method can impact the diversity
and quality of the selected individuals. An advanced technique that aims to maintain
diversity among selected individuals is the crowding distance, introduced in NSGA-II. The
crowding distance computes the distance between individuals in the objective space, and
individuals with larger crowding distances are given preference since they are less crowded
by their neighbors. This encourages the selection of solutions that are both high-quality
and diverse.

Crossover Crossover, also known as recombination, is a method to combine the genetic
information of two parents to produce one or more offspring for the next generation. In
genetic algorithms, there are various ways to mix the information of two parents to make
a new child. The easiest way is the single-point crossover: a crossover point is chosen in
the parent data. It is like cutting two strings of the same size at a particular spot and
then swapping the ends of these strings to make two new ones. Another similar method is
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multi-point crossover; with this method, multiple cuts and swaps are performed. The most
nature-like approach is uniform crossover. Instead of cuts, parent data is mixed based on
a set pattern or ratio to gather the next offspring(s).

Mutation Mutation introduces random changes to an individual’s traits, ensuring di-
versity and preventing premature convergence. The mutation rate, or the frequency at
which mutation occurs, is a critical parameter that needs careful tuning. For binary array
input, it can be simply flipping a random bit(s) with a certain probability. This analogy
can be applied to numeric inputs [13]: a floating point number can be represented as a
binary string (an array of bits), and doing the same, random bit flipping mutation on the
floating point represented number will result in a good mutation: this has the possibility
to change the value of a number significantly, meanwhile e.g. adding or removing number
in an ϵ range is not able to change the magnitude of the number.

Termination Once mutation is complete, a new population is formed, which will un-
dergo the same cycle of fitness evaluation, selection, crossover, and mutation. This itera-
tive process is carried out until a termination condition is met, which could be reaching
a maximum number of generations, achieving a satisfactory fitness level, or if there is no
significant improvement in fitness.

For most of the problems, mature Python libraries provide good general steps: there
is no need to implement mutation, crossover, or selection manually. The vital parts to
define for a problem are the fitness function, the number of population, and the number
of generations. The fitness function can consider many domain-specific information, and
in our case, this also includes running the system under test with the generated input
and then evaluating its prediction, but it could even include running simulation snippets
if we would optimize for some dynamic property. For other parameters, there are rules of
thumb for the optimal number of population and generation, but this can be influenced
by the concrete problem. Hence, this should also be evaluated by running the algorithm
with different configurations to find the most adequate parameters for a specific problem.

2.4 Description of roads and curves

Our research is based on the generation of appropriate tests. The tests should be easily and
highly customizable in order to test the system under investigation with as many potential
inputs as possible. The generated tests are in OpenDrive 1.6 format, which is a common
format in the industry for describing different road networks. OpenDrive provides the
possibility to create roads, intersections, and traffic rules so that complex traffic situations
can be defined. At the moment, we only use the features needed to define a simple two-
lane road, but in the future, this can be extended to include, for example, intersections.
The geometries that can be used to define a path are as follows:

• Line

• Arc

• Cubic curve

• Parametric cubic curve

8



For roads, the geometry is interpreted in the plane (x-y), and the position (height) in the
z direction is given by a slope profile, whose formula is:

elev(ds) = a + b ∗ ds + c ∗ (ds)2 + d ∗ (ds)3 (2.1)

In addition, the format also allows you to set the superelevation of the road, but this
feature has not yet been used by us. The tests are generated by a Python script where
the user can specify the desired geometry of the path.

The parametrization of the roads was done using two different curve types. For the
generation itself, we used parametric cubic curves, but for the parametrization, we decided
to use Bézier curves. The former was used because it is supported by the OpenDrive
format, and the latter was used because it made the parametrization easier.

The parametric cubic curve that is used during generation can be described as follows:

u(p) = aU + bU ∗ p + cU ∗ p2 + dU ∗ p3 (2.2)

v(p) = aV + bV ∗ p + cV ∗ p2 + dV ∗ p3 (2.3)

As it can be seen in Figure 2.2, the two equations give us the u-v (x-y) coordinates
separately. In order to make the curve’s starting direction parallel to previous sections or

Figure 2.2: Parametric cubic curve

the camera, we had to determine the direction of the parametric curve. It can be achieved
by examining the derivatives. The derivative of a cubic polynomial at a given point is the
quotient of the derivatives of its component polynomials at the same point.

Figure 2.3: Derivative of the cubic curve[20]

Because from the parametric cubic curve’s parametrization, it is harder to determine the
shape of the curve before actually visualizing the geometry, we decided to use a cubic Bézier
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curve instead. We chose this because both can be written down with a cubic polynomial
equation, which means that they can be converted into each other using simple equations.
The equation of the third-degree Bézier curve:

B(p) = (1 − p)3 ∗ P0 + 3 ∗ (1 − p)2p ∗ P1 + 3 ∗ (1 − p)p2 ∗ P2 + p3 ∗ P3 (2.4)

In order to use this new parametrization, we had to convert the Bézier parameters to
parametric cubic polynomial parameters. To do this, the Bézier curve needed to be de-
composed and sorted. It meant that Equation 2.4 had to be split into x-y(u-v) coordinates
and then sorted so that the parameters of Equation 2.2 and Equation 2.3 can be deter-
mined. With this, we achieved that the curves were parametrized with Bézier control
points but then generated with parametric cubic polynomial parameters.
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Chapter 3

Related work

This chapter presents methodologies that either evaluate lane-keeping or ADAS com-
ponents similarly to our approach or employ similar techniques, such as search-based
methods, to generate valuable test cases or to find adversarial examples.

3.1 Identifying the hazard boundary of ML systems

A crucial aspect of testing deep neural networks (DNNs) is to identify the hazard bound-
ary [26], the boundary in the input space beyond which the network’s outputs become
unreliable or incorrect. There are several approaches to this problem, including sampling-
and search-based methods. DNNs describe incredibly complex mathematical functions,
that can be fairly discontinuous [28], meaning that slight changes can drastically affect
the model’s prediction. This property of DNNs enables flexibility, but this could also result
in failures or flaws in the prediction, for example discovering isolated counterexamples [27]
or fault clusters [3], similar inputs, for which the failure of the model is significantly more
than for other inputs. Even for well-trained, and thoroughly tested models. Images are
complex inputs, and altering them pixel-wise is possible, but not always the most effective
method. Plenty of approaches [30, 32, 9] utilize domain-specific, abstract descriptions of
the input. Abstraction can be used for both the search-based and the sampling-based
methods and has the promise, that the described data points are meaningful, and from
the aspect of the test oracle. Determining the ground truth is much easier with such data,
sometimes the abstract representation can even directly contain the ground truth itself.

3.1.1 Sampling-based Methods

Sampling-based methods aim to systematically sample the input space of a DNNs to un-
derstand its behavior and identify regions where the network’s output becomes unreliable.
The primary goal of these techniques is to cover as much of the network’s input space
as possible with a limited number of samples. Many different strategies exist to ensure
diverse and representative sampling.

Random sampling The most straightforward technique is to randomly sample input
data from the given input space. Though simple, it may not be effective in exploring rare
or adversarial scenarios.
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Adaptive Sampling Adaptive sampling techniques refine the sampling process based
on previous outputs. If a region of the input space is identified as problematic, more
samples are taken from that region.

3.1.2 Search-based Methods

Search-based methods seek to find the hazard boundary more guided, by iteratively ex-
ploring the input space and evaluating the network’s performance. Techniques such as
gradient descent or genetic algorithms are commonly used to search. This approach can
be computationally intensive but is often effective at finding regions of the input space
that lead to incorrect behavior.

3.2 Testing lane-keeping assist systems

Testing lane-keeping assist systems and their components with simulated or synthetic
environments has gained significance in recent times. Recent studies [16, 2, 17] presented
many different search-based testing approaches. In the study [16], researchers suggested
GA-driven construction for roads, to test an automated lane-keeping system, similar to
our work. Their road creation technique consists of generating seven control points for
a Bézier curve, from which a road is subsequently synthesized, and finally running the
system under test, in a simulator. Their method uses more control points, than ours (4),
but their generating process can produce invalid combinations, like roads that intersect
with themselves, or roads with too sharp curves. They have to verify and remove the
malformed instances later. In opposition, our approach always generates valid roads,
because of the pre-defined parameter constraints.

In [17] researchers compared a GA-driven test case exploration with random sampling.
They tested ADAS in simulation, and they optimized to explore scenarios, with multiple
actors, where the time to collision (TTC) was below a minimal threshold. In their study,
the GA-based approach outperformed others, by producing critical scenarios with fewer
test executions than both random testing and simulated annealing.

Another study [2] generated test cases, by combining GA with classification. They showed
that an evolutionary search algorithm combined with decision tree classification creates
more distinct (diversity) and critical test scenarios for vision-based control systems, com-
pared to a baseline sampling, or a standalone genetic algorithm approach, without the
classification step. First, classification models guide the search-based generation of tests
faster toward critical test scenarios. Second, search algorithms refine classification models
so that the models can accurately characterize critical regions, eventually discovering fault
clusters in the input space.
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Chapter 4

Overview of the approach

We created a modular, search-based testing workflow that can be used to evaluate lane
detection systems, or by introducing an extra simulation step, even lane-keeping systems
or other ADAS’s dynamic behavior.

Figure 4.1: Workflow overview

The workflow is genetic algorithm (GA) based, describing the problem with parameters is
a must so that we can generate roads to test the system with.

The visualization step is also crucial for vision-based systems. The input image is synthetic
but should be close to real-world appearance. The challenges here were generating a 3D
model of the road with correct curvature and texture. We also added basic surroundings,
e.g., curbs, grass texture, and sky. For the extendibility and the simulation opportunity
in the future, we were working with standard road description format and triangle mesh
format, this way, importing the generated environment is possible into simulators like
CARLA[7].

We created the whole workflow in order to test AI-based ADAS or their components. We
chose to test openpilot’s lane detection module, as testing a production ADAS deployed
in thousands of cars seemed an interesting challenge.

The subsequent evaluation step uses the parameters as ground truth and compares the
prediction of the AI-based ADAS to evaluate how accurate its detection was. Here, we
defined the error metric based on suggestions from the literature [31, 25] in order to
fit the lane detection result, but this could also be modified when we test a new type of
ADAS. Based on the result of the evaluation step, the algorithm generates new parameters,
optimizing to find challenging but diverse inputs for the system under test.
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Finally, we analyzed the results for the outputs to understand what are the weaknesses of
such systems. We analyzed the concrete parameters of the road, curvatures, the model’s
error, and the relationship between these values.

4.1 Parameter generation

Roads — and objects that are easily describable with a (set of) geometric objects in general
— can be described with a few parameters: parametric cubic polynomials, Bézier curves,
and other geometries, and their combinations can describe the shape of the central line
of a road. Computer games, simulation software, or maps in general use such methods to
describe complex shaped roads in a compact way. A simple road can have other parame-
ters, like the number of lanes, but they could possibly represent other visual or semantic
properties of the road as well.

This parametrization is a powerful tool, altering a few parameters can introduce a wide
variety of different roads. For optimization problems, handling fewer parameters is an
advantage, algorithms have to discover a smaller feature space.

For genetic algorithms or other search-based methods, developers must give the feature
space beforehand. The number of parameters to explore, their type, and possible values
should be specified.

On the other hand, complex polynomials, like parametric cubic curves, have a drawback:
slightly changing a parameter can have an enormous effect on the actual shape of the road,
as they are not necessarily independent of other parameters. Bounding the possible values
of these parameters does not help in many cases: they can depend on each other, and
determining if they create a meaningful parameter set can only be determined at runtime,
with enormous computational overhead.

4.2 Visualization

Figure 4.2: The process of visualization

In order to analyze the roads that we generated, we need a visualized version of them.
To achieve this, we need to generate three-dimensional models of the roads and then
take pictures of them. For this we used Blender because it is open source, has Python
support, and is highly customizable. In Blender, we wrote a script that first processes the
input files, which are basically road descriptions. After this, the script generates the road
curves. With these curves and a road profile, Blender can use a sweep-like operation that
will create the 3D shape of the roads. Next, the script applies textures to the different
parts of the road to make it more realistic. The script also creates an environment which
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also helps us achieve more realistic pictures in the end. The environment consists of a
skybox and a ground so far, but in the future, we plan on extending it with different
obstacles or even weather conditions.

4.3 Running AI-Based ADAS

Various driver assistance systems exist, with different features and use cases. Some of
them make driving comfortable (e.g., adaptive cruise control), and some of them protect
the user and other traffic participants (e.g., precrash systems). There are ADAS with or
without actuators: emergency brakes can physically intervene when danger is detected,
but alert systems only help with the driver’s decision-making, but generally, they run a
sense-decide-act loop:

Figure 4.3: Functional overview of a generic ADAS

Advanced driver assistance systems today are up to Level 2 on the scale of driving automa-
tion levels[1], meaning that they partially automate the driving. The Level 1 assistance
systems can control the vehicle either laterally or longitudinally, Level 2 assistance sys-
tems can do both: accelerate, brake, and steer at specific scenarios, but the driver must
supervise the system at all times.

In our work, we primarily focused on the lane detection capabilities of decision-making
modules, hence, we ran the decision-making module in a standalone way, without the rest
of the feedback loop. To do this, we provided the sensory inputs and goals, like images
and other model-specific required inputs. After the execution, we capture the signals of
the decision-making module, and then we evaluate them, without actually executing the
signals given by the ADAS.

15



4.3.1 Openpilot

Openpilot1 is an advanced open-source driver assistance system developed by comma.ai.
The system is designed to perform various driver assistance functions such as adaptive
cruise control (ACC), automated lane centering (ALC), forward collision warning (FCW),
and lane departure warning (LDW). To run openpilot, the developer company offers a
dedicated hardware, which can be connected to most modern cars. This device has a
touch screen, where the driver can see the detected lanes and lead car overlayed on the
real-time camera footage. Besides this, they can also interact with openpilot: engage
or disengage functions, see maps, and more. The hardware is equipped with two front
cameras, and a camera for driver monitoring.

As openpilot is public, everyone can access its inner end-to-end pre-trained model, which
provides ADAS functionalities. We tested the lane-detection capabilities of this model.

4.4 Evaluation of lane detection results

As written in Section 2.1, multiple lane detection methods exist, with different performance
and accuracy. To evaluate such models, we need the ground truth and the predicted
values. We also have to define an error metric or loss function that can evaluate how well
the model’s prediction aligns with the actual data.

The most straightforward error metric for each lane detection method is what they were
trained with, although during the training, the objective function usually includes regu-
larization and other components besides the cumulative loss function:

• For the semantic segmentation approach it can be cumulative pixel-wise losses [12].

• For row-wise classification, any loss function for classification can be used, e.g. cross-
entropy or KL-divergence [33].

• Error metric for curve-fitting and anchor-based methods can be similar, for instance,
geometric loss functions as mean squared error [31] for discrete (sum) or continuous
(integral calculation) cases. Figure 4.4 makes it easier to understand the notion of
geometric loss.

It is worth mentioning that all methods describe lane- and roadlines, hence they can be
transformed into each other’s representation, making it possible to evaluate them using
other methods. Also, the lane detector models are usually not standalone, but integrated
into an ADAS and are used in a dynamic environment. In this case, the nearer parts of
the lanes are more important, this should be weighted in some way. With methods like
mean squared error, a distance-based decay is easy and convenient to implement, we chose
a similar approach.

In general, any ADAS (just like Openpilot) operates by continuously running a sense-
decide-act loop (Figure 4.3), which iterates multiple times per second to adapt to the
changing environment and new goals. For the dynamic use case, measuring the compo-
nent’s overall performance during each iteration and observing contingent inaccuracies and
their effect on the ADAS’s behavior is also important [25], but measuring, and evaluating
dynamic behavior goes beyond the scope of our work.

1https://github.com/commaai/openpilot
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Figure 4.4: The geometric loss: the (squared) area between the predicted curve and
ground truth curve up to a certain distance

4.5 Statistical analysis

The purpose of statistical analysis is to find out important details about the system’s
performance and the testing process during and after running the genetic algorithm. By
comparing what the system predicts, what the actual correct answers are (ground truth),
and what are the errors for the corresponding test cases, we can systematically identify
the lane detection model’s weaknesses, and we can try to find correlations between a more
abstract representation of parameters (e.g., the curvature of the road) and error.

Moreover, we can also explore how the genetic algorithm works for test case optimization
so that we can fine-tune the iteration or population count and other parameters. Observing
the GA’s performance could also reveal that the problem formulation was not optimal.
Many factors can influence the results, but the representation of the problem (in our case,
the road parametrization) and the error function are the most important. Choosing bad
geometry of the wrong range for parameters could result in invalid roads, for instance,
with too much curvature. The wrong error function could make the algorithm optimize
for irrelevant aspects, for example, a lane-detection component of a lane-keeping system
should be more accurate for closer points, however, semantic segmentation’s error metric
does not necessarily encompass this property by default.
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Chapter 5

Case study

In this chapter, we will detail our work and results, with the technologies, challenges, and
solutions for them. The brief overview of the genetic algorithm (GA) based workflow is
visible in Figure 5.1. The workflow is modular, and we used widely used standard data
formats (e.g., OpenDrive for maps, FBX for 3D objects) and sometimes custom ones, like
the results of Supercombo (Section 5.3). Using loosely coupled modules and standard
data formats gave us great flexibility. In the future, we can easily extend it with an extra
simulation execution step, or we could similarly evaluate other lane-detection models.

Figure 5.1: The workflow in detail

5.1 Parametrized road generation

5.1.1 Input parameters

We wanted to start the research with roads that are made of a single geometry. With
this, we can achieve simple tests, and if we find critical road geometries, this way would
mean that the system under test has fundamental weaknesses. To do this, the most
parameterizable path geometry provided by the OpenDrive format should be used, which
is the parametric cubic curve.

Using Equation 2.2 and Equation 2.3 meant that such a path could be described by 8
parameters. However, constraints could be introduced for some of the parameters at the
beginning. The parameters aU and aV are equal to 0, as these parameters only affect
the shift of the curve, which will not change the shape of the curve itself. In addition, it
was also necessary that the curve and the y-axis were parallel at the origin so that the
camera representing the car would be facing the correct direction on the road. Of course,
the camera could be rotated according to the parameters, but this would lead to extra
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calculations that would slow down the test generation, and more parameters would have
to be taken into account, of which it was advisable to introduce as few as possible.

Using the Figure 2.2 in our case to determine the correct direction meant the following:

u′(p) = bU + cU ∗ p + dU ∗ p2 (5.1)

v′(p) = bV + cV ∗ p + dV ∗ p2 (5.2)

(u′(p))
(v′(p)) = (bU + cU ∗ p + dU ∗ p2)

(bV + cV ∗ p + dV ∗ p2 (5.3)

(u′(0))
(v′(0)) = bU

bV
:= inf (5.4)

This is possible if bV = 0 and bU ̸= 0, because if both parameters were 0, there would be
a vertex of the curve at that point.

Figure 5.2: Derivative of the cubic curve

Ultimately, only five parameters of the cubic parametric curve are the ones that actually
had to be taken into account.

5.1.2 Bézier curve as input

The problem with the previously described solution was that a small change in parameters
could result in a large change in the appearance of the curve, so the parameters of the
parametric curve were not optimal for use in the genetic algorithm. To overcome this
problem, we decided to replace the parameterization of the parametric curve with the
parameters of a third-degree Bézier curve.

19



The equation of the third-degree Bézier curve:

B(p) = (1 − p)3 ∗ P0 + 3 ∗ (1 − p)2p ∗ P1 + 3 ∗ (1 − p)p2 ∗ P2 + p3 ∗ P3 (5.5)

Here, the points of the Bézier curve were constrained in order for the curve to be defined
in the correct heading. The first point must be at the origin, and the second point must
be on the y-axis. These constraints were given for the same reasons that we were able to
fix the parameters of the parametric curve. The Bézier curve thus has four points:

• P0=(0,0)

• P1=(0,y1)

• P2=(x2,y2)

• P3=(x3,y3)

Since the OpenDrive format does not support path definition with Bézier curves, the
Bézier curve parameters must be converted to cubic parametric polynomial parameters
before creating the test files. This can be done after the equation of the curve has been
decomposed and sorted. After these are done, the parametric curve is described:

u(p) = y0 + 3(y1 − y0)p + 3(y0 − 2 ∗ y1 + y2)p2 + (y3 − y0 + 3(y1 − y2))p3 (5.6)

v(p) = x0 + 3(x1 − x0)p + 3(x0 − 2 ∗ x1 + x2)p2 + (x3 − x0 + 3(x1 − x2))p3 (5.7)

Using the parameter constraints:

u(p) = 3(y1)p + 3(−2 ∗ y1 + y2)p2 + (y3 + 3(y1 − y2))p3 (5.8)

v(p) = 3(x2)p2 + (x3 + 3(−x2))p3 (5.9)

As an example, consider the Bézier curve with the following points:

• P0=(0,0)

• P1=(0,1)

• P2=(1,2)

• P3=(2,2)

Calculating the parametric curve from this:

u(p) = 3 ∗ p + (−1) ∗ p3 (5.10)

v(p) = 3 ∗ p2 + (−1) ∗ p3 (5.11)

By plotting the two curves, it can be seen on Figure 5.3 that they correspond to each other,
but it is important to note that in general, the Bézier curve is only valid for 0 ≤ p ≤ 1, so
for the parametric curve, it must be compared to this subcurve.

20



(a) Parametric curve (b) Bézier curve

Figure 5.3: The connection between the two curves

In addition to what has been described so far, the function that generates the curve must
have one more parameter, which determines the range that p runs on. In addition, the
functions for generating the straight line and the arc have been implemented, but since
all the necessary information can be determined by simple calculations, this will not be
discussed in this paper. Initially, only paths consisting of a parametric curve were tested,
but the generator is also capable of generating complex curves since any number of the
three different curve types can be successively connected in any order.

5.2 Visualization

5.2.1 Processing the testfiles

After generating the OpenDrive format tests, the next step is to process them to generate
the three-dimensional models. For this and the generation of the models themselves, we
used Blender, as it is an open-source modeling software with Python scripting support.
Before processing, it was necessary to define the structure of the input files that the script
could process. Here, to match the generation, we specified that the OpenDrive file should
be a single two-lane road consisting of straight lines, arcs, and/or parametric cubic curves.
In addition, the file may also contain a slope profile to simulate the topography. The
Blender script runs through the geometry nodes in the OpenDrive XML file after the file
has been read. In each case, it checks to see what kind of geometry it describes and
then extracts the appropriate parameters from the node based on the geometry. After
each geometry, a plotting function is called, which plots a curve on the x-y plane using
the geometry parameters. Since the format also has a heading parameter, which gives
the starting direction of the curve segment, this can be read out, and successive curve
segments can be rotated accordingly.

The input file is now processed, and Blender no longer needs it to create the three-
dimensional models. In addition to the road curve, in the future, the number of lanes
that the road consists of or whether there is a pavement on the side of the road could be
used from the input files. These will help to generate even more varied cases. Currently,
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(a) Quality = 5 (b) Quality = 10 (c) Quality = 50

Figure 5.4: Different quality setting

a two-lane road with a pavement is the only one that can be generated. For this, the
Blender script creates a road profile consisting of the following:

• Road

• Gutter

• Pavement

• Sidewalk

This is necessary because in Blender, models are created using a ”sweep” operation, and for
this, you need the profile in addition to the path curve. In the script, it is also possible to
set a ”quality” parameter, which specifies how many points each geometry should consist
of when generating the curve. The quality of the models will depend on this parameter
as well. As this parameter affects the computation cycles required for generation, it can
be used to speed up/slow down the generation somewhat, allowing the user to tailor it to
their own system resources.

It can be seen on Figure 5.4b that if the resolution is set to 10, a very realistic path can
be achieved. In addition, it is useful to add a small straight section to the path at both
the beginning and the end of the path to facilitate proper orientation at the endpoints of
the path.

5.2.2 3D model generation

In Blender, the ”sweep” operation used to create path models can only be defined for a
specific curve and a specific profile. In this case, these two curves will be mapped to each
other, which means that the elements that build up the road have to be swept separately.
Also, it is important to note that this curve will determine the height at which the sweep
operation will create the model. Therefore, for example, the curve used to generate the
sidewalk should be shifted by a small value in the z-direction. To make this easy to
implement, the functions that generate the geometry can be given a z offset.
The profile that will be swept by the program consists of the elements mentioned above
and looks like on Figure 5.5.

The different colors in the picture represent the different building blocks:
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Figure 5.5: Profile of the road

(a) The generated road without textures (b) The road with textures applied

Figure 5.6: The generated road

• Road - Red

• Gutter - Green

• Curb - Orange

• Sidewalk - Yellow

Once both the profile and the curves have been created, the sweep can be made. The
model created by this operation does not have any textures yet, and the lane marking has
not yet been created. The generated model can be seen on Figure 5.6a.

We can create the lane marking using the modifiers available in Blender, which are auto-
matic operations that affect an object’s geometry in a non-destructive way. To do this, we
first need to create a cuboid that will represent a single strip of the painting. Then, two
modifiers must be assigned to the cuboid. The Array modifier creates an array of copies
of the base object, with each copy being offset from the previous one in any of a number
of possible ways. This will implement the cloning of a model according to some pattern.
The other modifier is the curve, which will define the curve along which the cloning will
take place. In addition, the array modifier needs to be configured to specify how far apart
the copies should be and how many copies should be made in order to display them cor-
rectly. By varying the distance between them, you can even achieve a continuous line.
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(a) Lanemarking (b) Continuous line

Figure 5.7: Different lanemarkings

The number of strips can be set by assigning a curve so that it can change dynamically
depending on the length of the path. Figure 5.7

After the model itself has been created, the textures can be assigned to the different parts
of the model. A total of three simple monochrome textures were used for the road:

• Dark gray - Road

• Light gray - Gutter, Pavement, Sidewalk

• White - Lanemarking

Of course, these textures can be easily changed within the script, so you can easily cus-
tomize the look of your roads. For now, the textures can be set with RGB values inside the
script, but in the future, it is planned to extend the script so that more complex textures
can be used in the generation. The road with textures applied can be seen on Figure 5.6b.

5.2.3 Creation of environment

So far, we have a three-dimensional road model, but it does not yet include any en-
vironment that could affect the output of the tracking algorithm. First, we created a
customizable skybox and set a sun direction, after which the model and its environment
can be seen on Figure 5.8a.

Then, all that remains is to create the ground. Here, we have proposed three different
land generation scenarios, of which two have been implemented.

1. Lane/Curve following (implemented, see on Figure 5.8b): Here, the ground is pre-
pared by sweeping, just like the road itself. This achieves the most realistic ground,
but here, the sweeping causes the model’s point mesh to overlap, which can cause
visual distortions.
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2. Vertical (implemented, see on Figure 5.8c): In this case, the earth is defined as a
distant wall. This is not a problem when using a simple texture, but with more
complex textures, this 90-degree rotation may cause problems.

3. Horizontal (not implemented): The counterpart of the vertical solution. Here, a
simple plane will be the ground. The problem with this solution is that the height of
the road would have to be taken into account during generation, and the size of the
plane would have to be increased/decreased based on this. This would mean extra
computations, which we wanted to avoid in order to speed up the genetic algorithm.

After this, a green texture was added to the ground in order to achieve a grass-like look.
Figure 5.8 shows the generated road with the environment.

(a) A road with a skybox (b) The lane following method (c) The vertical method

Figure 5.8: Different environment additions

With these, the road and its surroundings are created. In addition, to take the pictures,
a camera had to be added in the Blender script in the right position and with the right
settings.

5.3 Running the lane detection component: Supercombo

Supercombo serves as the core of the openpilot (see Section 4.3.1) ADAS. It is a pre-trained
end-to-end neural network responsible for making the decisions for the driver assistance
tasks. While the model is open-source, the training data and the training process are not
available to the public. The study by [5] explores the possibilities of using, retraining, and
evaluating the model on public benchmarks, providing valuable insights and extensions to
the limited official documentation.

5.3.1 Inputs

Openpilot preprocesses the input data from the recorded image stream and user com-
mands, known as desires. This data is then used to run the Supercombo model in a
loop.

• Input images: Two consecutive images (256 * 512 * 3 in RGB) recorded at 20 Hz.
Field of view (fov): 40°

• Wide input images: Two consecutive images with the same resolution, but they
have a wider field of view (120°).

• Desire: A one-hot encoded vector to command the model to execute certain actions.
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• Traffic convention: A single bit indicates left- or right-handed traffic.

• Initial state: The recurrent state vector that is fed back into the Supercombo model
for temporal context.

5.3.2 Outputs

Openpilot processes the Supercombo model’s outputs to perform the desired tasks. Ad-
ditionally, Supercombo generates outputs for visualization purposes, which can be con-
sidered as the ”knowledge” upon which the model makes decisions. This visualization
capability is particularly important for making an end-to-end black box model slightly
more interpretable.

• Lane Lines: The model generates information about the detected lane lines, allow-
ing it to maintain the vehicle’s position within the lane. It identifies 32 points for
both the left and right lanes at fixed distances.

• Road Edge: Supercombo identifies the edges of the road to provide a better un-
derstanding of the driving environment. Similarly to lane lines, it also contains 2x32
points at the same distances.

• Lead Car: The model detects the presence and location of a lead car in front of the
host vehicle, enabling the system to maintain a safe following distance when using
adaptive cruise control (ACC) or lane keeping.

• Meta data: A recurrent state vector is output and fed back into the GRU for
maintaining temporal context.

• Pose: The model outputs the vehicle’s pose, which includes information about its
position, orientation, and velocity.

• Plan: Based on the input data and its internal knowledge, the model generates a
plan for executing the desired actions, such as adjusting speed, steering, or warning
the driver of potential hazards.

5.3.3 Running supercombo

The model is available in the official repository1 of openpilot, in Open Neural Network
Exchange (ONNX) format. The Open Neural Network Exchange is an open-source stan-
dard for machine learning models, it enables interoperability between different AI tools
by defining a common set of operators and a common file format. ONNX models can be
created and utilized across various supported frameworks, like PyTorch, TensorFlow, or
Keras. This makes the model portable and easy to run in different environments. We used
onnxruntime python package to run the model.

To run Supercombo in a standalone way, we developed a wrapper for inputs and outputs,
providing a user-friendly interface for interaction. The input wrapper receives two con-
secutive images for both fields of view (narrow: 40°, wide: 120°). The resolution is not
important in this step, as the wrapper handles the proper scaling. Optionally, you can
provide the remaining input parameters: the traffic convention (right-handed by default),

1https://github.com/commaai/openpilot/blob/master/selfdrive/modeld/models/supercombo.onnx
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initial (recurrent) state (array of zeros by default), and desire (also array of zeros by de-
fault). After observing the Supercombo’s architecture2, it is visible that the latter three
inputs will not affect the outcome of the lane or road detection.

Figure 5.9: Input image and Supercombo’s prediction: Yellow: lane-lines, Red: road-
lines, Green: average of the yellow lines

5.4 Evaluating supercombo result

Evaluating the result of the Supercombo is not straightforward, as it has diverse output:
lane and road lines, lead car, actuator signal, and also a recurrent state vector, but for-
tunately, the different types can be separated easily from each other. We focused only on
the lane detection part of the mode, which used the curve-fitting approach (Section 2.1.3).
Also, we can extract the ground truth with several different methods. The first idea was
to use a semantic segmentation camera and see whether the identified lane points were on
the correct color. Achieving the comparison required an overlay method, which can ac-
curately map the Supercombo’s output on the semantic segmentation image while taking
into account the camera parameters, like position, field-of-view, and distortion. In some
cases, testers may only have semantic segmentation images as ground truth. However,
this solution is not adequate in all cases because lane markings can be not only continuous
but also dashed lines. A detected lane point could fall between the two dashes, but this
approach would naively consider it a misclassified lane line point. Fortunately, we have
the road geometry as ground truth in a standardized format so that we can apply more
adequate approaches.

The evaluation of the model’s output in our work is based on the OpenDrive map descriptor
file. To compare the actual map with the result, we can accurately extract the geometries
and calculate the distances between the output lane line points and the exact locations.

Error metric In our approach, we evaluate the estimation accuracy of OpenPilot’s
SuperCombo model by comparing the individual lanes with the ground truth from the
OpenDrive map. We define a geometric error metric, the normalized difference between

2Even the simplified version of the model would be too complex to include here, but onnx models can
be visualized online, for example with netron app.
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the estimated lane positions (x̄) and the true lane positions (x). Specifically, the error
(err) is calculated as follows:

err =
32∑

n=1

|xn − x̄n|
192(n/32)2 (5.12)

Supercombo applies a curve-fitting lane detection approach(Section 2.1.3), it is trained to
predict the lateral distance from the center for certain distances. The concrete distances
are defined in their repository by this index_function, for given index idx. Supercombo
uses the default values for maximum value max_val and maximum index max_idx, too.
The model predicts 32 lane line points, in closer areas, the sampling is more dense. The
detection distances are present in Figure 5.10 as horizontal lines. The function is defined
as:
def index_function(idx, max_val=192, max_idx=32):

return (max_val) * ((idx/max_idx)**2)

This function provides the normalization factor in the error metric, offering the distance-
based importance weights.
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Figure 5.10: Ground truth and detected lane points

To apply the error metric to the minimizing genetic algorithm, we reformulated the error:

errForNSGA = MaxErr − err (5.13)

where, MaxErr has the value of 32 · tan(60◦) ≈ 55, 42. With this error, anything above 35
is fine for the ADAS functionality, and anything below 30 is critical. The MaxErr value
came from the field of view of openpilot’s wide camera. We considered the maximal error
when it identifies a straight lane as if it were on the edge of the visible area. Technically,
this could be even higher when the detected (or the actual) road is outside the visible
area. This means that errForNSGA could theoretically have a negative value, but our
measurements showed that this does not happen when the road is in the visible area. Also,
NSGA-II can handle negative values, however, this is not true for all GAs.
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5.5 Statistical analysis of the results

When analysing the output of the system, it is clearly visible that the error decreased over
time to around 20 generations. After this, the error value stabilized, which meant that
the algorithm found a minimal value where the lane detection works the least effectively.

Figure 5.11: Error value from the genetic algorithm over time
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Figure 5.12: Occurance of parameter values for the first 20 generations

As we can see on Figure 5.12, there is an early convergence. The results are interesting
but slightly expected. The algorithm finds the boundary values early.

We decided that to represent a certain Bézier curve, we would use the maximum absolute
curvature of that curve. Compared to the multiple parameter representation, this is easier
to represent and can give more adequate results. To find the curvature of a curve at a
certain point, we used the following equation, where u(p) and v(p) are the curve’s x and
y coordinates over p parameter:

kappa = (u′(p)v′′(p) − v′(p)u′′(p))/(v′(p)2 + u′(p)2)3/2 (5.14)

TESTRUN 1-3 are three examples of the evaluation of the results. On all of the
TESTRUNs the first coordinate of the Bézier curve was set at (0,0) in order to make
the curve start from the origin. For TESTRUN 1 the remaining points and parameters
were set the following way:

• P1 - (p1,10)

• P2 - (p2,50)
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• P3 - (p3,200)

It meant that we have set y coordinates, and only the x coordinates can change with a
certain limit on the range of values, so the road stays on the screen.

For TESTRUN 2 and 3, the points and parameters:

• P1 - (0,10)

• P2 - (p2,p1)

• P3 - (p3,200)

Here, the points make the starting direction of the road to be parallel to the y-axis. But
P2 can be moved on the y-axis as well as on the x-axis. The differences between the two
runs are the starting parameters and the number of generations.

The way the points can be set can be seen on Figure 5.13, the points can be shifted in the
direction of the green lines.

(a) Points of TESTRUN 1 (b) Points of TESTRUN 2-3

Figure 5.13: Points of the TESTRUNs

The derivatives for the Bézier curve with our fixed parameters for TESTRUN 1:

u′(p) = 30 + 600p + 240p2 (5.15)

u′′(p) = 600 + 480p (5.16)
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v′(p) = 3(x1) + 6(−2 ∗ x1 + x2)p + 3(x3 + 3(x1 − x2))p2 (5.17)

v′′(p) = 6(−2 ∗ x1 + x2) + 6(x3 + 3(x1 − x2))p (5.18)

From these, we were able to calculate the curvatures for each parameter set. For the other
TESTRUNs, the calculations were similar to TESTRUN 1, just using different parameters.

(a) Curvature compared to error (b) Curvature over time

Figure 5.14: TESTRUN 1

(a) Curvature compared to error (b) Curvature over time

Figure 5.15: TESTRUN 2

(a) Curvature compared to error (b) Curvature over time

Figure 5.16: TESTRUN 3

Figure 5.14a, Figure 5.15a, and Figure 5.16a show the maximum absolute curvature of
a parameter set compared to the error value of the genetic algorithm. As is visible on
the graphs, higher maximum absolute curvature values of the curve meant lower error

31



values. This might be the case because, so far, our test roads are quite simple, and they
only consist of a simple geometry. From the curvature-error comparison, we can deduce
that the error value of the algorithm and the curvature of the road have a connection. It
can also be said that the system under test performed weaker on roads that have higher
maximum curvature.

Figure 5.14b, Figure 5.15b and Figure 5.16b show the maximum absolute curvature of a
parameter set over time. Each generation of the genetic algorithm consists of 10 entities,
so for 100 generations, we had 1000, for 20 generations, we had 200 entities. It is visible
that over time, the curvature stabilized, which means that the algorithm was successful in
finding less recognizable roads. Examining the signed curvature values, we noticed that
they are negative values. In terms of road geometry, it meant that left turns were harder
to be recognized by the system.

For TESTRUN 1, the correlation between the error and the signed curvature is around
0,8. For TESTRUN 2, around 0,9, and for TESTRUN 3, around 0,62. From these, we can
deduce that by allowing the y coordinates of the points to be changed, we can achieve a
higher correlation. In addition, if we run the algorithm for a longer time (more generation),
the correlation increases as well.

The most challenging road shape for the Supercombo can be found after 10-20 generations
with a population size of 10 in each generation. Running the algorithm is time-consuming,
the aforementioned 10 generation takes 7-8 minutes3, but running 100 generations took
around 1 hour and 15 minutes.

After the conclusion that Supercombo’s lane detection is the weakest, when it tries to eval-
uate the most left-leaning lanes, we tried to evaluate this asymmetry by visualizing lanes
using a reduced parametrization. The newly generated road geometries had the Bézier-
type parametrization, with the control points (0,0), (0,10), (x3, 60), (x4, 192), where x3
ranges from -30 to 30, and x4 ranges from -60 to 60. The most extreme lane-line geome-
tries are presented in Figure 5.17a. This measurement was just an explanatory analysis of
the asymmetry, but as visible in Figure 5.17b and Figure 5.17c, from different sides, the
error values based on these parameters are continuous (with this rate of sampling). The
origin of the x and y pane should mark the central point of symmetry, but as visible from
the plot, the accuracy is far from symmetric. Interestingly, around x3 = 10, the model had
decreased accuracy, but the corner cases finally overtook. For this measurement, we only
used two parameters for visualization purposes, but the genetic algorithm runs explored
a broader input space, with denser sampling around the weaker spots.

60 40 20 0 20 40 60

0

25

50

75

100

125

150

175

200

[-30, 60]
[30, 60]
[-30, -60]
[30, -60]

(a) Cornercase road geometries

X value for 3rd control point

30 20 10 0 10 20 30

X 
va

lue
 fo

r 4
th

 co
nt

ro
l p

oin
t

60
40

20
0
20
40
60

Ac
cu

ra
cy

35.0
37.5
40.0
42.5
45.0
47.5

(b) Accuracy 2 variables
X va

lue for
 3rd co

ntro
l poin

t30
20

10
0

10
20

30

X value for 4th control point

60
40

20
0

20
40

60

Accuracy

35.0
37.5
40.0
42.5
45.0
47.5

(c) Accuracy 2 variables, other
side

Figure 5.17: Asymmetry evaluation

3On a regular PC, specs: GPU: Nvidia 1660 super, CPU: AMD Ryzen 5 3600x, RAM: 32 GB
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Chapter 6

Discussion

After running the genetic algorithm to explore roads with challenging curves for the Su-
percombo (Section 5.3), we gathered interesting information, about the system under test,
and about our framework, too.

First, the early version of our testing workflow relied on raw parametric cubic curves. We
limited the possible values of the parameters, but the algorithm quickly found the invalid
parameters for the road-line geometry, which were self-intersecting or not visible from the
camera’s perspective with openpilot’s field of view. These resulted in huge errors, and
showed, that the algorithm can clearly optimize towards huge errors. To generate better
test cases, we switched to the Bézier curve-based road geometry description. With this
approach, we were able to provide proper upper and lower bounds to each parameter.
With every combination of the potential parameter values, the synthesized road is visible
and does not have too sharp curves or self-intersections.

6.1 Conclusion

Running Supercombo on the proper, visible roads had pretty good accuracy, the accuracy
did not go below the critical level (Equation 5.13), and we could not identify any adversarial
examples within the pre-specified input space.

Based on the statistical analysis, it can be said, that there is a connection between the
error value of the algorithm and the curvature of the road, more curvature resulted in
weaker (but still not critical) accuracy. The direction of the road curve also affects the
results of the algorithm. We also discovered that on roads with a leftward skew, lane
detection consistently shows reduced accuracy compared to the mirrored lanes.

20 generations were usually enough, for the genetic algorithm, to find the corner cases,
the roads with the most curvature. After this was found, the diversity of the inputs
significantly fell, because the crowding distance mechanism only works, when the inputs’
are performance-wise similar, but here, the corner cases have notably worse performance,
than the others, so the algorithm will not choose the very different, but easier road as test
input. This means, that there are more samples taken from the critical areas.

• The genetic algorithm found challenging but not critical inputs for the system within
the range of the input space.

• Interesting finding: Supercombo’s lane detection is asymmetric; it performs worse
on left-leaning lanes.
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• After the genetic algorithm explores the worst-performing input boundary, the diver-
sity of the newly generated inputs significantly falls, in return the model’s accuracy
is much weaker on these inputs, and the critical input boundaries will be tested more
thoroughly.

6.2 Future work

The synthetic environment is simple, there are no roadside objects or other vehicles, also
the weather conditions and the visibility are all the same during each generated road. This
ensures that the search-based approach only takes the road curvature into consideration,
but openpilot has to deal with more complex environments in the real world.

Our current work only focused on testing supercombo’s lane detection capabilities, how-
ever, we could use our testing workflow, to evaluate dynamic behavior, by running open-
pilot or other ADAS in a simulator. In order to achieve this, we need to adapt our current
execution and evaluation steps to deal with the simulation and handle dynamic, driving-
oriented error metrics, such as time-to-collision, end-to-end lateral deviation metric[25] or
others.

We only tried to use a genetic algorithm in order to achieve a challenging and diverse test
set. The literature showed that search-based approaches performed better than random
sampling, but we have not compared our approach with other methods yet. In the future,
we want to compare the test set generated by our GA-based approach with others.

In terms of future work, the following areas can be further investigated:

• Adding diverse environmental elements, such as vehicles, pedestrians, trees, traffic
signs, and other objects could enhance realism.

• Dynamic behavior evaluation of lane-keeping systems in a simulator, with search-
based approach.

• Comparing the test cases generated with our method against the result of other
approaches.

6.3 Threats to validity

Our experiments showed valuable insights into the openpilot’s lane-detection component.
However, our experiments were executed on a synthetic map, with only a very basic
surrounding, without traffic signs, trees, other roadside objects, or dynamic actors such
as vehicles or pedestrians. The visibility, like weather conditions or sun lighting, was
also unmodified during the test-case generation. For strictly seeing the effect of the road
geometry, the lack of variation is fine, but this is not what the system sees in the real
world, and maybe in another environmental condition, the system behaves differently.
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