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Abstract

State estimation plays an important role in power system monitoring and control, which
is in turn responsible for the stable, safe and efficient operation of the electricity supply
system. It was originally developed and used in transmission networks, but because of the
incorporation of renewable energy resources and the shift towards a smart, active network,
the implementation of state estimation for distribution networks becomes a more and more
pressing issue.

The realization of state estimation in distribution networks has its own unique challenges.
One of the main problems is the limited number of real time measurements, since few
measurements make the state estimation undependable and the system can even become
unobservable. An attempt to solve this problem of lacking real time measurements is the
employment of so-called pseudo measurements in order to ensure the observability of the
system and a dependable estimation. Naturally, the accuracy of these generated pseudo
measurements greatly affects the reliability of the state estimation.

Since the right modeling of pseudo measurements is a key ingredient for reliable state
estimation, in this work I investigated possible solutions in order to achieve an accurate
distribution system state estimation. For this purpose I utilized Artificial Neural Networks,
which have become a widely popular tool for solving complex problems and have already
found their applications in power systems as well. As a result, in this work I present an
ANN based pseudo measurement generating algorithm, which not only enables the usage
of state estimation in originally unobservable distribution networks, but also improves the
accuracy of the pseudo measurement enhanced distribution system state estimation.

Keywords: state estimation, distribution networks, artificial neural networks, pseudo mea-
surements



Absztrakt

Az allapotbecslés kulcsszerepet jatszik az energia menedzsment rendszerek miikédésében,
amelyek az dramellaté rendszer stabil, biztonsagos és hatékony miikodéséért feleldsek. Az
allapotbecslést eredetileg az atviteli halézatokban valé alkalmazashoz fejlesztették ki, de
a megujulé energiaforrasok egyre nagyobb térnyerése és az intelligens, aktiv halézat felé
torténé elmozdulas miatt az eloszto halézatokban val6 alkalmazasa egyre stirgetébbé valik.

Az allapotbecslés megvaldsitasanak az elosztd haldzatokban sajatos kihivasai vannak. Az
egyik f6 probléma a korlatozott szamu valds idejii mérési adat, amely a becslést nem
csak megbizhatatlannd teszi, de a rendszer maga akar megfigyelhetetlenné is valhat. A
valos idejli mérések hidanyanak problémajat jelenleg az tgynevezett pszeudo-mérésadatok
alkalmazasaval igyekszenek megoldani, a rendszer megfigyelhetOségének és megbizhatd
becslésének biztositasa érdekében. Természetesen a generalt pszeudo-mérésadatok pon-
tossdga nagyban befolyasolja az allapotbecslés pontossagat.

Mivel a pszeudo-mérésadatok helyes modellezése kulcsfontossagu Gsszetevé a megbizhatd
allapotbecsléshez, a munkdmban a pszeudo-mérésadatok modellezésének tokéletesitésén
dolgoztam, a minél pontosabb elosztérendszer-allapotbecslés elérése érdekében. Ennek a
célnak a megvaldsitasahoz mesterséges neuralis halézatokat alkalmaztam - amelyek széles
korben elterjedtté valtak kilonbozé komplex problémak megolddsaban, és az energia-
rendszerekben is megtalaltak mér alkalmazéasi lehetOségeiket. Munkdm eredményeként
egy ANN alapi pszeudo-mérésadat generald algoritmust mutatok be, amely nemcsak
lehetévé teszi az allapotbecslést olyan eloszté héalézatokban is, amelyek eredetileg meg-
figyelhetetlenek voltak, hanem javitja a pszeudo-mérésadatokkal gazdagitott elosztérend-
szer allapotbecslésének pontossagat is.

Kulcsszavak: allapotbecslés, eloszté haldézatok, mesterséges neuralis halézatok, pszeudo-
mérésadatok
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Chapter 1

Introduction

In our modern times, distribution systems play an increasingly important and active role
in the power system network operation. It is expected that this tendency will not only
continue, but it will also get stronger with the development of the smart grid. Some have
even gone as far to state that “the distribution system of the future is going to be as much
of a revolution to the electric energy industry as wireless telephony has been to consumer
communications” [1].

With all the challenges of the “future grid” and the increased integration of Distributed
Energy Resources (DERs), as well as the rise of electric vehicle charging and consumer
participation, system operators need to be aware of the distribution system’s exact state at
all times [2]. Hence it is no wonder that a distribution system state estimation based real-
time network model has become a crucial instrument in the control and protection of the
distribution network [3]. Since the operation and planning philosophy of the distribution
systems is different from transmission networks, the state estimation algorithms developed
for the transmission network need to be adjusted in order to be implemented in distribution
systems [3].

A significant problem in realizing the Distribution System State Estimation (DSSE) is
the lack of real-time measurements in the distribution network. Distribution networks
normally not only lack measurement redundancy, but when only using Supervisory Control
and Data Acquisition (SCADA) measurements, they are highly unobservable [3].

To overcome this problem, pseudo measurements can be generated and utilized for the
distribution system state estimation. A major benefit of using pseudo measurements in
DSSE is that they can significantly reduce expenses which would otherwise be necessary
in order to make a distribution system observable using only real measurements. Further-
more, in some cases additional problems can arise when some sensor locations prove to
be either unfeasible or too expensive [4] [5]. When generating pseudo measurements, it is
important to aim for good accuracy, since the better accuracy we can achieve for pseudo
measurements, the higher the quality of the performed state estimation and the received
output data will be [6].

In this work, I examine various pseudo measurement modelling approaches and introduce
an artificial neural network based pseudo measurement generating algorithm (PMG-ANN),
which I then compare to a reference model algorithm in a distribution system state es-
timation environment. As will be shown in detail later, my PMG-ANN algorithm made
the state estimation on an otherwise unobservable network possible and also achieved
significantly better accuracy results than the reference algorithm.



The continuation of this work is structured as follows: following the abstract and the intro-
duction presented in Chapter 1, the theoretical background is summarized in Chapter 2,
the practical background is discussed in Chapter 3, and the presentation of the results can
be found in Chapter 4. Finally, a summary of my work is presented in Chapter 5.

The theoretical background (Chapter 2) involves state estimation (Section 2.1) and distri-
bution system state estimation (Section 2.2), with special regard to pseudo measurement
modeling (Section 2.3). In Section 2.4, I also describe in detail the theoretical background
of the used Weighted Least Squares State Estimation method, and present a brief intro-
duction to Artificial Neural Networks in Section 2.5.

In Chapter 3, I introduce the popular python programming language based pandapower
package for power system modelling, analysis and optimization (Section 3.1), as well as
the open source SimBench database (Section 3.2) which was utilized in my work for the
modelling of networks.

Finally, Chapter 4 begins with the introduction of my pseudo measurement generating
algorithm in Section 4.1, and the presentation of the pseudo measurement enhanced DSSE
results can be viewed in Section 4.2.



Chapter 2

Theoretical Background

2.1 State Estimation

The power system can generally be divided into four subsystems: generation, transmis-
sion, sub-transmission and distribution system [7]. Transmission systems usually operate
at high voltage levels (among other to reduce copper losses) and consist of a large number
of substations which are connected by transmission lines, transformers and devices for
system control and protection. At the receiving end, the transmission systems are con-
nected to the distribution systems, which are typically operated at lower voltage levels and
usually have a radial configuration [7]. The power system can be classified according to
its operating conditions into so-called operating states, namely: normal, alert, restorative,
emergency, and in extremis states [8]. A graphic representation of the operating states
and the transitions between them can be seen in Figure 2.1. The goal of system operators
is to keep or bring back the power system in the normal operating state.

The operation and monitoring of power systems is done by (transmission and distribu-
tion) system operators, using the energy management system. Energy management is the
process which consists of monitoring, coordinating and controlling the generation, trans-
mission and distribution of electrical energy. The core of energy management is the energy
control center, which uses computer aided tools to monitor, control and optimize the gen-
eration, transmission and distribution of electrical energy [10]. In Figure 2.2, we can see
a diagram about the state estimation’s role in the modern energy management system.
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Figure 2.1: Power system operation states [9]
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Figure 2.2: Illustration of the state estimations role in the power
system management [11]

In order to be able to efficiently and precisely monitor and manage the power system,
system operators must receive accurate information about the system state. This infor-
mation about the operating conditions of the system can be determined — at any given
instant in time — if the static state of the system is known [7]. The network model and the
complex phasor voltages at every bus in the system fully specify the power system and
are hence referred to as the static state of the system [7].

An important part in providing this much needed state information is played by the state
estimation. The state estimator uses measurements (for instance from the SCADA system)
to calculate the system states and provide the necessary information to the supervisory
control system, which can then take the appropriate actions through for example the
switchgears (circuit breakers) [2]. Basically, the state estimator acts like a filter between
the raw measurements received from the data acquisition systems and all the applicatiosn
that require the most reliable system data [7]. The conventional state estimator is based
on the following four processes [2]:

1. Topology processor: Maintains a real-time database of the network model while
tracking the network topology.

2. Observability analysis: It needs to verify that the measurement set is sufficient for
carrying out the state estimation.

3. Bad-Data processing: It identifies gross errors in the measurements and also elimi-
nates the bad measurements.

4. State estimation: It uses the “cleaned” measurement set and calculates the system
state.



According to [2], state estimation schemes can be categorized into three types: Static
State Estimation (SSE), Forecasting-Aided State Estimation (FASE) and Multiarea State
Estimation (MASE).

The static state estimation is a group of computer programs which transform the received
data into a reliable estimate of the transmission network structure and state, while taking
into account the random metering-communication errors, uncertainties, bad data and
errors in the network structure [12]. Classically, in power system state estimation the
static approach (which uses a single set of measurements) based on the Weighted Least
Square (WLS) method is used [13] According to the definition in [14], the static state of
an electric power system is the vector of the voltage magnitudes and the angles at all
network busses, and the static state estimator is used to calculate the static state vector
of the power system.

Since the conventional static state estimation (SSE) relies only on a single set of measure-
ments, all taken at one moment in time, it does not take the evolution of the state (over
consecutive measurement instants) into account [2].

The process of estimating future values of a random process using the previously observed
or estimated values is called priori estimation, prediction and forecasting [15]. In power
systems, this ability can be incorporated with the help of the forecasting-aided state
estimation (FASE) [15]. The underlying goal of the FASE is to provide a recursive update
of the state estimation to be able to track the changes happening in the system [2].

The power grid is a very large network — this is why the computational complexity for
a centralized state estimation would pose immense difficulties [2]. The over the years
experienced large-scale incidents have also shown the need for a better real-time visibility
beyond the extent which is covered by the traditional state estimator of a single county
or company [16]. An alternative solution is presented by multiarea state estimation. In

this scenario, the large power system is divided into smaller areas, each providing a local
SE [2].

Multiarea state estimation decreases the amount of data that each state estimator must
process and with the distribution of knowledge, it enhances the system robustness. The
disadvantage of this method is the emerging additional communication overhead and the
problem of asynchronous measurements [2].



2.2 Distribution System State Estimation

System operators — in the early 1960s — attempted to calculate the voltages at few selected
busses using manually collected meter readings from geographically distributed transform-
ers. However, due to timing, model uncertainties and measurement errors, the AC power
flow equations were not solvable [17]. Shortly after (in the 1970s) the idea of applying
state estimation to electric power networks emerged. The initial utilization was in trans-
missions networks, based on real-time SCADA measurements for the determination of the
best estimate of all the generation, the loads, power flows and voltages at a particular
moment in time [18]. Starting as a mathematical curiosity, over the years state estimation
became the cornerstone of the modern power system control center [7].

Nowadays state estimation is mainly employed for transmission networks, but more and
more research is focused on the implementation of state estimation in distribution net-
works. Since the operation and planning philosophy of the distribution systems is different
from the transmission networks, the state estimation algorithms developed for transmission
networks need to be adjusted in order to be implemented in distribution systems [2] [3].
In Figure 2.3, we can see an illustration of a transmission and a distribution network,
together with the typical European voltages and loadings [19].
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There are many differences between transmission and distribution networks which lead to
the different requirements for state estimation, but probably the most eye catching one is
the difference in network size. In transmission networks, the typical network size can range
from a few hundred to a few thousand busses, while in distribution networks, the network
size usually reaches up to around a thousand electrical nodes [18]. Not surprisingly, the
topology of these two systems is quite different too. The topology of the transmission
network is generally meshed and must be analysed as a whole, whereas the distribution
networks can usually be separated for analysis into multiple islands and have a radial
or three-like topology as well as an unsymmetrical construction [18] [20]. Distribution
networks also have a larger resistance to reactance (R/X) ratio, and further complications
in distribution systems can be caused by the unbalanced loading [20]. But perhaps the
most troubling in terms of state estimation is the limited number of measurements in
distribution systems. While transmission networks usually have enough measurement data
so that the network is not only mathematically observable but there is also a redundancy,
distribution networks normally not only lack measurement redundancy, but when only
using SCADA measurements, they are also highly unobservable [3]. However, at the same
time we know that state estimation is a great tool for dealing with missing, distorted and
inconsistent data, so it may even be more of a necessity in distribution networks [20].

To overcome this problem, pseudo measurements can be generated and utilized for the
distribution system state estimation. The better the accuracy of pseudo measurements,
the higher the quality of the performed state estimation and the received output data
will be [6]. More information about pseudo measurement modelling will be presented in
Section 2.3.

Owing to the obvious differences between transmission and distribution networks, not all
the state estimation algorithms usually used in transmission networks can be implemented
for distribution systems. For example, the Weighted Least Absolute Value Estimator
(WLAV) cannot be applied to distribution systems [21]. After careful consideration, I
decided to use the Weighted Least Squares (WLS) estimation algorithm which is often
used in transmission system state estimation, but can also be applied to distribution
networks [21]. WLS are considered to be the most popular type of state estimators [3],
and there are various research attempts to reduce the computational requirement of this
method. The main focus of these attempts is the optimal choice of state variables, possible
simplifications in order to speed up the estimation process and techniques of incorporation
of heterogeneous measurements [3]. Weighted least square estimation is known to give a
good accuracy even if less accurate measurements are utilized [22]. In the study of [21], it
performed well in distribution systems as well.



2.3 Pseudo Measurement Modelling

Real-time voltage, current and power flow measurements can be acquired from the Dis-
tribution Automation (DA), the SCADA (Supervisory Control and Data Acquisition)
systems, the IEDs (Intelligent Electronic Devices) and the PMUs (Phasor Measurement
Units) [3]. Different measurement systems deliver data in different time intervals — for
example, SCADA data is usually available every few seconds, while customer smart me-
ters report data every fifteen minutes (or longer) [3]. The difference in time reference
between the used measurements leads to the so-called time skew problem. To synchronize
the various measurement types, a synchronization operator can be used [3].

Distribution systems have a significant lack of real-time measurements, which poses a seri-
ous obstacle for distribution system state estimation (DSSE) [3]. In distribution networks,
real-time measurements are usually only found at the main substation, while line and load
and even low voltage substations are not monitored [23]. As mentioned before, pseudo
measurement can be created and used for state estimation to avoid this problem [3]. It
is important to note that pseudo measurements are not only practical, but they are also
economically advantageous — thanks to the otherwise high cost of the implementation
and maintenance of modern measurement devices and their communication networks [4].
Exactly because DSSE needs so many added pseudo measurements, it is of utmost impor-
tance for them to be modelled correctly in order to represent the network’s condition as
realistically as possible [23].

One common category of pseudo measurement modelling methods is the statistical and
probabilistic model [24]. It is common to model pseudo measurements with normal dis-
tributions — mostly to estimate the probability density functions of consumer load profiles
— partly because of the compatibility with the weighted least squares (WLS) estimation
(however, there were attempts to model with log-normal distributions too) [23] [24]. An-
other popular modelling method is the Gaussian Mixture Model (GMM) [23]. With the
GMM, different types of load distributions can be represented as a convex combination of
several normal distributions with their respective means and variances [23].

Some of the classical pseudo measurement generating methods also include pseudo power
injection measurements at feeder busses defined as Gaussian distributions where the mean
is half of the transformer rating and pseudo power injection measurements, established
based on customer billing data and typical load profiles [3]. There are also attempts to
model pseudo measurements using more modern tools and methods, like the load profile
modelling using linear programming in [25] and testing of load allocation techniques on a
fuzzy state estimator in [26].

The idea of using artificial neural networks for the modelling of pseudo measurements
which can be applied to on-line estimations already appeared in 1996 in [5]. The idea to
use artificial neural networks for pseudo measurement modelling has since been further
explored from different angles. According to [24], machine learning based approaches for
distribution system load estimation are able to further improve the accuracy of pseudo-
measurements (compared to the statistical and probabilistic models) because they can
utilize the available real-time data samples.

In [4], we can read about the usage of artificial neural networks for pseudo measurement
modelling in low voltage distribution systems (here the GMM model is utilized with four
separate ANNs). A methodology for allocating consumers’ load profiles relying on proba-
bilistic neural networks, wavelet multiresolution analysis and a FCM clustering algorithm
can be found in [27]. For the reconstruction of missing SCADA measurements, offline



trained autoencoders — neural networks able to store knowledge about a system in a non-
linear manifold characterized by their weights — are used in [28]. In [29] a reduced model
for power system state estimation is introduced, which also makes use of artificial neural
networks and needs fewer measurement variables than conventional techniques. It addi-
tionally removes the need to carry out observability analysis on the system before running
the state estimator [29]. One of the most recent works is a game-theoretic data-driven ap-
proach using relevance vector machines for generating weighted pseudo measurements [24].
This method relies on the parallel training of multiple machine learning units and is robust
against bad data samples in the training set [24].

After exploring all these pseudo measurement modelling methods and approaches, we
can conclude that pseudo measurement modelling is an important topic which provides
an opportunity for many types of creative solutions and approaches. Similarly, one of
the beauties of artificial neural networks lies in the fact that there is not only one good
solution, but many possibilities and variations which can yield strong results. Still, the
topic of pseudo measurement modelling with ANNs has been significantly better explored
in transmission networks than in distribution networks, and for DSSE, there is still a lot of
room for the testing of different ANN implementations, with special regard to the tuning
of hyper parameters and the determination of the optimal ANN structure and output.

In my work, I created and tested a tuned multi-layer ANN based pseudo measurement
generating algorithm, which generates pseudo reactive power values for the distribution
system state estimation in unobservable networks, using time series data.



2.4 Weighted Least Squares State Estimation

As mentioned in Section 2.2, the Weighted Least Squares (WLS) estimation is a popular
estimation algorithm which has proven to be suitable for distribution system state esti-
mation [22]. That is why I decided to use a WLS state estimator for the testing of my
artificial neural network based pseudo measurement generator (PMG-ANN).

The measurements for state estimation are usually defined according to the equation

21 hi(zi, 22+, xp) el
29 ha(z1,22-+- 2 €2
Zm hm(l‘l, X« 7$n) €m

where z is the measurement vector, x is the system state vector, h;(x) is the nonlinear
function relating measurement 7 to the state vector z, and e is the vector of measurement
errors [7].

The weighted least squares method aims to minimize the error e by minimizing the cost
function described by equation 2.2, in which W is the weighting matrix (which is chosen
to be the inverse of the covariance matrix of the measurement error vector) [4].

J(@) = [z = ha)]" W[z — h(z)] (2.2)

For the minimization of the weighted difference between the calculated states and the
measurements’ values, the equation

m
Min J(x) = <Z[Zl — hi(2)] T W[z — hz(x)]> (2.3)
i=1
is used [4].
For the equations 2.2 and 2.3 it is defined that [4]:
e J(z) is the minimization function,
e x; is is the state variables vector,
e m is the number of measurements,
e z; is the measurement vector,
e h; is the system of nonlinear power flow equations and

o W is the weighting matrix.

The best estimation — of the network states — is acquired when the gradient of J(x)
becomes zero. It has to be noted that the system power equations h(x) must be solved
iteratively with the equation [4]

Az = (HIWH) 'HTW [z — h(z)]. (2.4)

In this case H is the Jacobian matrix of h(x), and the equation converges when all elements
of Az are close to zero between two iterations.
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2.5 Artificial Neural Networks: A Brief Introduction

Artificial Neural Networks (ANNs) are a subset of the artificial intelligence and machine
learning concept. Machine learning describes the process where machines execute complex
tasks (which would normally require human competence) without relying on constant
instructions — but instead leaning on models and systems [30]. Artificial neural networks
are complex problem solving systems inspired by the biological neural network. These
system have the capability to “learn” to perform tasks or solve complex problems following
a “learning process” [31].

In ANNSs, the neurons of biological neural networks are realized in the form of nodes,
and the connections between the inputs and outputs are weighted directed edges [31].
ANNSs imitate the biological neurons, in the way that they accept different signals from
the neighbouring neurons and process them. Then, depending on the outcome, they either
fire an output signal or not [32]. While learning, the edge weights and the firing thresholds
are changed in order to minimize the error between the output of the algorithm and the
correct output [33]. Basically, this means that neural networks learn by iterating over
given examples the way that we learn from our experiences [33]. In Figure 2.5, we can see
a comparison of biological neural networks and artificial neural networks.

The learning process in artificial neural networks is usually categorized into three groups:
supervised, unsupervised, and hybrid learning [31]. When we are talking about supervised
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Figure 2.4: Comparison of biological neural networks and artifi-
cial neural networks [34]

learning, it means that the algorithm is first “trained” on a set of inputs and outputs, what
makes it capable of predicting outputs based on inputs only [30]. Supervised learning
includes regression and classification type algorithms. While regression algorithms predict
a numerical value, classification algorithms predict labels [30]. Unsupervised learning relies
on recognizing patterns in data (without providing solutions to the algorithm), and the
hybrid category attempts to combine these two methods.

In Figure 2.4, we can see the three learning types of machine learning and their main
implementations. As shown in the figure, supervised learning can for example be used for
diagnostics, identity fraud detection and market forecasting, while unsupervised learning
can be used for big data visualisation, targeted marketing, robot navigation and real time
decision type problems [34].
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In my work, I used the principle of supervised learning to implement a regression algorithm,
what means that the ANN received the correct answers for each input pattern during
training and determined the weights so that the output (reactive power value in this case)
is as close as possible to the received correct answer [31]. The results of this learning
process were later tested on a testing set retained for this purpose.

Artificial neural networks have a very wide variety of applications and have many uses in
a lot of fields, including power systems too. They can be used for the tuning of controllers,
process identification, security assessment, load identification, load modelling, forecasting
and fault diagnosis [36] [37]. And even if a topic was already studied with ANNs, there
are still multiple other approaches and variations for solving the same problem because of
the wide possibilities that artificial neural networks present.
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Chapter 3

Practical Background

3.1 Pandapower: Power System Modelling and Analysis

Pandapower is a python based open source power system analysis tool which includes
power flow, optimal power flow, state estimation, topological graph searches, and short-
circuit calculations according to IEC 60909 [38]. Power systems in Europe are mostly
designed symmetrically, up until the end consumer connection point in the low voltage
level [38]. This is why pandapower was originally developed for the analysis of symmetrical
distribution systems, but it has been upgraded with models for transmission systems and
is now suited for the analysis of symmetrical distribution and transmission systems as
well [38]. For my work, the most important pandapower features were the pandapower
network model, the time series simulation module and the state estimation.

In pandapower, an element-based model (EBM) is used for the modelling of the electrical
grid. Each element (for example lines, transformers etc.) is defined by its characteristic
parameters and if it is connected to one or several busses [38]. Every element type is repre-
sented by a table that holds all parameters for a specific element and a result table which
contains the results of the different analysis methods for each element [38]. This tabular
data structure is based on the pandas library of python and is practical for expanding and
customizing the data [38]. In Figure 3.1 we can see a schematic overview of the network
representation in pandapower.

The pandapower time series module can simulate time based operations and is closely
linked to the pandapower control module. When the time series simulation is executed,
controllers are used to update the values of different elements for each time step [38]. In
Figure 3.2, we can see the working mechanism of pandapower’s time series loops, which is
implemented in the time series module.

With the pandapower state estimation module, we can estimate the electrical state of the
network even if we are dealing with inaccurate measurement data [38]. The used weighted
least squares optimization (WLS) algorithm minimizes the weighted squared differences
between measured values and the corresponding power flow equations [38].
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3.2 SimBench

SimBench is a thorough data set for low, medium, high and extra-high voltage levels, which
is intended to be used for testing, publishing and comparing methods and algorithms for
various use-cases, like for example grid planning, operation and simulation. It contains
grids which can be combined across multiple voltage levels, but it also provides time series
data for the time span of a year [40].

In SimBench load profiles are classified into categories according to their similarity to
standard load profiles. In order to be able to represent a wide range of users and generation
profiles, weather data and an agent-based simulation tool was used. The different one-year
profiles contain commercial and household consumers, as well as storage and production
units based on real measurements from Germany with a 15 minute resolution [41].

3.2.1 Implemented Networks

For my work I used a low voltage and a medium voltage grid from SimBench and the
corresponding time series. I collected some basic information about the grids in Table 3.1.

Basic Grid Information
Low Voltage Network Medium Voltage Net-
work
Urbanization character || rural rural
Rated voltage [kV] 0.4 20
No. supply points 13 92
Transformer types 1x160kVA 2x25MVA
Generation types PV Wind, PV, Biomass,
Hydro

Table 3.1: Basic information of the used networks
The low voltage (LV) network consists of the following elements:

e 15 busses,
e 13 loads,

e 4 static generators,

28 switches,
e 1 external grid element,
e 13 lines,

e 1 transformer.

In Figure 3.3, we can see the graphical representation of the utilized low voltage network,
plotted with the matplotlib and pandapower packages.

The medium voltage (MV) network consists of the following elements:

e 97 busses,
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Figure 3.3: The low voltage network

e 96 loads,

102 static generators,

e 204 switches,

e 1 external grid element,
e 99 lines,

¢ 2 transformers.

In Figure 3.4, we can see the graphical representation of the utilized medium voltage
network.

I chose the two networks in a way that ensures more diversity in order to be able to
give a better overview of the ANN pseudo measurement generator’s workings in different
environments. The two networks not only have different voltage levels, but the low voltage
network is also relatively simple while the medium voltage network has a significantly larger
number of elements.
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Figure 3.4: The medium voltage network
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Chapter 4

Results

4.1 The Pseudo Measurement Generating ANN Algorithm

In my work I implemented a pseudo measurement generating Artificial Neural Net-
work (PMG-ANN) algorithm which can be used for distribution system state estimations
(DSSE).

Since it is crucial for system management to know the actual state of the system, it is
necessary to implement state estimation in distribution systems [4]. However, the lack of
real time measurements poses a big problem for the distribution system state estimation
(in these networks there are only few measurement points compared to the number of
nodes). A meter placement method used in transmission networks can also not be di-
rectly implemented for low voltage distribution networks because of the different network
characteristics, what makes the problem even more complicated [4]. An improvement
could be brought with the increased installation of smart meters, but this requires high
investment costs, not just for the installation of the meters, but also for the upgrade of
the communication infrastructure. Also, not all of the in distribution networks already
available smart meters are equipped with communication ports, and hence they are not
able to send their measurements [4]. This is why artificially created pseudo measurement
could be not only a good practical, but also an economical solution for distribution system
state estimation. In my work I used time series data for this purpose, which I also tested
in a state estimation environment. I believe that artificial neural networks can find a good
use in distribution system state estimation, especially because of the variable nature of
the in distribution systems often used distributed energy resources.

4.1.1 The Data Set

With my algorithm, I generated reactive power measurements for all the busses in the
network using the load and the static generator power profiles which I obtained from the
SimBench time series database. The SimBench database includes various, real measure-
ment based, one-year-profiles with a 15 minute resolution, containing commercial con-
sumers, household consumers, storage, and production units mainly for medium voltage
(MV) and low voltage (LV) networks [41]. Using the time series profiles (for an illustration
see Figure 4.3) as a data source and the pandapower ConstControl, 1 calculated the bus
active and reactive powers as well as the voltage absolute values and voltage angles for
each time step. For the ANN training, I used SimBench time series profiles as inputs and
the bus reactive power values as outputs. The from SimBench obtained time series have
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35136 time steps, I used 7000 time steps for testing (approximately 20% of the data set)
and the rest for the training of the ANN. I also made sure to only use data from the test
set for the state estimation testing.
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Figure 4.1: Low voltage network
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Figure 4.2: Medium voltage network

Figure 4.3: Static generator and load active power profiles

4.1.2 The PMG-ANN Algorithm Core

For the ANN algorithm, I used a multi-layer perceptron regressor from sklearn, which
optimizes the squared-loss using a stochastic gradient descent based optimizer [42]. The
MLP (Multi-Layer Perceptron) is a supervised learning algorithm which learns a function
f(): Z™ — Y™ by training on a data set where m is the dimension of the input Z and n is
the dimension of the output Y [42]. In Figure 4.4, we can see the structure of a multi-layer
perceptron.

The MLPRegressor that 1 used implements a multi-layer perceptron which trains with
backpropagation and uses the squared error as its loss function [44]. An example for an
artificial neural network using backpropagation can be seen in Figure 4.5. Some of the
advantages of multi-layer perceptrons are that they can learn on non-linear models and
have a capability to learn models in real-time, but they require the tuning of a number of
hyper parameters, like for example the number of hidden neurons and hidden layers [42].
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a typical neuron model [45]

4.1.3 Scaling of the PMG-ANN Algorithm

While working on my algorithm, I found that scaling the data set brings significant im-
provements in the estimation. The StandardScaler from the scikit-learn preprocessing
package proved to be the most effective in my case (with the MinMazxScaler for example,
I could not achieve the same accuracy in results).

The StandardScaler standardizes the features by removing the mean and scaling to unit
variance. Note that centering and scaling happen independently on each feature which is
achieved by computing the relevant statistics on the samples in the training set. Mean
and standard deviation are stored and used on later data [46] [44].
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As an illustration, Figure 4.6 and Figure 4.7 contain the unscaled and scaled PMG-ANN
predictions for a random bus (in the figures bus 35 is presented) in the medium voltage
network.

It was interesting that in the medium voltage network the scaled PMG-ANN performed
overall better (in the state estimation and the prediction on most of the busses), but the
root mean square error on the testing data (the bus reactive power values prediction) was
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Figure 4.7: Scaled PMG-ANN prediction for bus 35
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higher than that of the unscaled version. However, in the low voltage network, the scaled
version performed better not just in the estimation, but also in the root mean square
error of the testing set. Upon further inspection, I discovered that in the medium voltage
network, the scaled PMG-ANN has a higher error on busses whose correct reactive power
value is zero, what resulted in the higher root mean square error but still a better state
estimation — thanks to the better accuracy on (most) of the other busses. A possible
future research goal could be to improve the accuracy of the PMG-ANN’s prediction for
the zero reactive power valued busses.

4.1.4 Setting of the Hyper Parameters for the PMG-ANN Algorithm

The MLPRegressor has many hyper parameters which can be customized in order to
achieve the best possible results with the algorithm [44].

One of the more important parameters is the activation function for the hidden layer. For
the MLPRegressor, we can choose from 4 types of activation functions: identity, logistic,
tanh and relu. For my problem of reactive power value prediction, the rectified linear unit
function which returns f(x) = max(0,z) has proven to be the best [44].

By setting the number of hidden layers and neurons in the algorithm, significant improve-
ments can be achieved, although there is usually a trade-off between the computational
speed and the accuracy of the result. I chose two hidden layers with 250 neurons each. In
my case, the increase of computational time was not significant, but further increments in
layer and neuron numbers yielded no notable improvements.

For my work I also changed some other parameters to force the algorithm to run longer,
e.g. the tolerance of the optimization and the maximal number of iterations. This led to
higher accuracy with a still feasible running time of the algorithm.
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4.2 Distribution System State Estimation Using Pseudo
Measurements

For the state estimation algorithm I used the weighted least squares (WLS) state esti-
mation realized in pandapower. As mentioned in Section 2.2 this is a state estimation
algorithm which has proven to be suitable for distribution system state estimation (more
details about the WLS method can be found in Section 2.4).

To simulate the real time measurements, I used the active power data with added standard
deviation for each bus and half of the bus voltage data (with added standard deviation)
calculated for each time step. With this amount of data the network is unobservable for the
state estimation, since the minimal number of the needed measurements is M = 2n—k,
where n is the number of busses and & is the number of defined slack busses [38] [47]. When
the created pseudo measurements (reactive power for busses) are added, the network
becomes observable and the state estimation can be run without further problems.

To be able to compare the pseudo measurement generating ANN (PMG-ANN) algorithm,
I created a reference algorithm (inspired by the algorithm in [4]). The implemented refer-
ence algorithm also creates reactive power measurement values, based on all available real
reactive power values created from the time series (whereas the PMG-ANN had no access
to the real values which are used in the examined state estimations and also had access
to only 80% of the time series database while training). For the reference pseudo mea-
surements, I drew random samples from a Gaussian (normal) distribution whose center
was set to be the mean value of the real bus reactive power data set and had a standard
deviation of 0.1.

4.2.1 Distribution System State State Estimation Evaluation

In Figure 4.8 and Figure 4.9, we can see a comparison of 20 separate distribution system
state estimations with the created PMG-ANN and the reference algorithm for the medium
and low voltage networks respectively. Note that all state estimations were performed on
the data set which was not used for the PMG-ANN training.

In both figures ( 4.8 and 4.9) the root mean square error of the bus voltage state estimation
is compared for several separate state estimations (the number of the here presented
estimations was chosen to be 20 for a better overview). The root mean square error (see
equation 4.1) is a verification measure which is defined as the square root of the mean
of the squared differences between the corresponding elements of the forecast (zy;) and
the observation (z,;) — in this case the difference between the distribution system state
estimation attained bus voltage data and the real bus voltage data [48].

N oL
RMSE:\/ Z“('Z}”\’[ 2oi)” (4.1)

We can observe not only that in most of the cases the PMG-ANN (black colored bars)
attains an estimation of higher overall accuracy, but also that the fluctuation of the es-
timation accuracy is significantly lower. This is a desirable trait, since we can estimate
in which range the error will be. The RMSE of the PMG-ANN varies between approx-
imately 0.0018 and 0.002, while the reference algorithm achieved values between 0.0011
and 0.00275 on the medium voltage network.
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Figure 4.8: Root mean square error for 20 state estimations on
the MV network

We can also observe that the PMG-ANN has noticeably better results in the low voltage
network. Its score varies between 0.0005 and 0.001 (while the reference algorithm’s error
rises as far as 0.014). This is most probably because of the difference in network size. Of
course, better results could be achieved for large and complex networks too, if there was
a larger training data set.

4.2.2 Result for All Busses Separately

After the analysis of the overall performance of the DSSE with the created pseudo mea-
surements, I examined how the state estimation performs on each bus. Since the system’s
static state can be fully described if we know the voltage phasors on all of the system’s
busses at a given point in time, I separately analyzed the bus voltage magnitudes and bus
voltage angles for all busses in the low and medium voltage networks [7].

4.2.2.1 Bus Voltage Magnitude Estimation

In Figure 4.12 and Figure 4.15, we can see the differences between the bus voltage magni-
tudes estimated with pseudo measurements and the real voltage magnitudes. In blue we
can see the differences achieved with the state estimation using the pseudo measurement
generating artificial neural network (PMG-ANN) and in red the result achieved by the
pseudo measurement generating reference algorithm.

In the medium voltage (MV) network, I observed that while the PMG-ANN algorithm
usually achieves a lower error for the bus voltage magnitude [p.u.] the “shape” of the
error curve is similar to the one achieved with the reference algorithm. Meaning that
while the magnitude of the error is variable, most of the busses have a similar type of
error (negative/positive) for both pseudo measurement generating algorithms. I concluded

24



Root Mean Square Error of the State Estimations

E PMG-ANMN SE rms
0.014 | mmm Referenche model SE rms

0012 4

0.010 4

0.008 1

0.006 4

Root mean square error

0.004 4

0.002

0.000 -
1 2 3 4 5 & 7 8 % 10 1 12 13 14 15 16 17 1§ 185 20

State estimations

Figure 4.9: Root mean square error for 20 state estimations on
the LV network

that this is connected to the measurement type, number and placement. In my work I
used a very low redundancy (very low number) of measurements to simulate the lack
of measurements in distribution systems. As stated in Section 4.2, T used half of the
bus voltage magnitude measurements in the DSSE, and these voltage measurements were
placed on the first 50% of busses. This can be very well observed in the Figure 4.12, since
the first half of the busses (except the slack bus 0) have a much lower error rate. This also
shows that with a higher measurement redundancy — more pseudo measurements — much
better results can be achieved in the future.

In the low voltage network (Figure 4.15), we can observe that the PMG-ANN yields a
much lower error rate. Since the diagrams 4.13 and 4.14 are scaled to the same values,
the error of the PMG-ANN estimator almost seems to be null (except for the slack bus)
and the fluctuation of the error is hard to discern. It is interesting that slack busses
have a significantly larger error for both network types and both pseudo measurement
generating algorithms. This is why in further research special attention should be given
to the generation of accurate pseudo measurements for the slack bus in order to improve
the accuracy of the overall state estimation.
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Figure 4.12: Bus voltage comparison in the MV network

4.2.2.2 Bus Voltage Angle Estimation

To compare the bus voltage angles [degrees], I ran a DSSE with the real measurements and
compared the bus voltage angle results with the pseudo measurement generating algorithm
estimated voltage angles.

In Figure 4.18, we can see the result for the medium voltage network. We can observe that
the PMG-ANN has a better accuracy than the reference algorithm and that all PMG-ANN
estimated and most of the reference algorithm estimated voltage angles have a negative
error, meaning that in most cases a lower angle was estimated compared to when real
measurements were used.

For the low voltage network 4.21, we can once again observe that the PMG-ANN estima-
tor’s errors are significantly smaller compared to the errors obtained with the reference
algorithm.
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Figure 4.15: Bus voltage comparison in the LV network

4.2.3 Conclusions

After the analysis of the results of the distribution system state estimations with the
artificial neural network based pseudo measurement generator and the reference model, it
can be said that the PMG-ANN has successfully made the distribution network observable
and achieved a high accuracy in the examined predictions. It outperformed the statistical
reference model and made the static state estimation more stable.

I also identified some points which could further improve the PMG-ANN based distri-
bution system state estimation in new works. One of these is the identification of key
measurement points and the implementation of additional ANN algorithms for key and
underperforming busses (slack bus, zero reactive power bus). Also, a larger training data
set could significantly contribute to the betterment of results on large distribution systems.

It is also important to note that in this report only an illustration (a small fraction) of the
performed DSSEs was presented, to support the description of the achieved results and
the conclusions presented in Section 4.2.
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Figure 4.18: Comparison of bus voltage estimation in the medium
voltage network
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Chapter 5

Summary

In my work I studied how state estimation can be realized for distribution systems with
the application of pseudo measurements. Because of the low number of real time measure-
ments in distribution networks, pseudo measurements must be used to make the network
observable and the state estimation feasible. Besides their necessity, accurate pseudo
measurements can also help improve the state estimation and offer economic benefits.

I applied Artificial Neural Networks to pseudo measurement modelling in distribution
networks, using the open source SimBench time series data and the python based power
system package pandapower. For the modelling of the bus reactive power measurements,
I implemented a tuned pseudo measurement generating artificial neural network (PMG-
ANN) algorithm. I tested my algorithm on a simple low voltage and a more complex
medium voltage network with a weighted least squares method based state estimation
algorithm and compared it to a statistical reference pseudo measurement modelling algo-
rithm.

The application of the PMG-ANN has demonstrated significant improvement to the ac-
curacy of the distribution system state estimation. During the analysis of the results,
some important observations could be made which can be used to further improve the
PMG-ANN algorithm. In my future work, I plan to focus on finding measurement types
and placements which have the most impact on the state estimation accuracy and focus
on creating and/or improving their PMG-ANN generated pseudo measurement accuracy
separately.
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