
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Verification of Engineering Models Using a
Modular Modeling Language with

Configurable Semantics

Scientific Students’ Association Report

Author:

Ármin Zavada

Advisor:

Bence Graics
dr. Vince Molnár

2023

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 MBSE Languages . 3

2.1.1 Systems Modeling Language v2 . 3

2.2 Model Checking . 5

2.3 Analysis Models . 6

2.3.1 Extended Symbolic Transition System (XSTS) 6

2.3.2 Theta Model Checking Framework 8

2.4 Gamma Statechart Composition Framework 8

2.4.1 Gamma Behavioral Languages . 8

2.4.2 Gamma Composition Semantics . 9

2.5 Related Work . 12

3 Overview 14
3.1 Gamma Model Transformation Workflow 14

3.2 Workflow with Semantifyr . 15

3.3 OXSTS Language Requirements . 16

4 Meta-programming for XSTS 17
4.1 Design Principles . 17

4.2 Language Overview . 18

4.3 Language Features . 18

4.3.1 Choice-else . 18

4.3.2 Target . 19

4.3.3 Transition Inlining . 20

4.3.4 Types . 21

4.3.5 Features and Composition . 21

4.3.6 Feature-typed Variable . 23

4.3.7 Static Recursion . 23

4.3.8 Composite Transition Inlining . 24

4.3.9 Polymorphism . 25

5 Semantifyr 27
5.1 Implementation Philosophy . 27

5.2 Transformation Phases . 28

5.2.1 Lexical & Syntactical Analysis . 28

5.2.2 Validation . 28

5.2.3 Semantical Analysis . 29

5.2.4 Optimization . 30

5.2.5 Code Generation . 30

6 Gamma Semantic Library 32
6.1 Semantic Library . 32

6.2 Example Model . 36

7 Evaluation 39
7.1 Conformance Tests . 39

7.2 Gamma Semantic Library - Case Study . 39

7.2.1 Crossroads System . 39

7.2.2 Gamma Model . 43

7.2.3 OXSTS Model . 43

7.2.4 Experimental Evaluation . 48

7.3 Conclusion . 50

8 Conclusion and Future Work 53

9 Acknowledgement 54

Bibliography 55

A OXSTS Models 58
A.1 Crossroads Model Implementation . 58

A.2 Crossroads Target Definitions . 66

Kivonat

A kritikus rendszerek, például vasúti infrastruktúra, autonóm járművek, repülőgépek vagy
atomerőművek hibás működése súlyos anyagi károkon felül akár emberéleteket is veszé-
lyeztethet; így ezen rendszerek tervezése során kiemelt fontosságú a biztonság garantálása.
A biztonság biztosítására léteznek a tervezés közben is alkalmazható különböző verifiká-
ciós és validációs (V&V) technikák, azonban, ahogy növekszik a rendszerek komplexitása,
úgy nehezedik az ellenőrzésük is. A mérnöki tervezői munka egyszerűsítése érdekében egy
elterjedt megközelítés a modellalapú rendszertervezés, amely módszertan a dokumentum-
centrikus megoldásokhoz képest központi elemmé teszi a mérnöki modellezési nyelveket.
Az ezek segítségével készített tervek verifikációja és implementációja megfelelő eszközök
segítségével gyorsítható és automatizálható.

Számos mérnöki modellezési nyelv érhető el (pl. UML, SysML v1 és v2, AADL), me-
lyek hasonló, de mégis eltérő megközelítéseket alkalmaznak. Az ellenőrzés és implementáció
szempontjából fontos különbségeket jelentenek a szemantikai variációk – a nyelvek hason-
ló szintaktikájú elemeihez gyakran kis mértékben eltérő végrehajtási szemantika társul.
Hasonlóan fontos, hogy gyakran ezek a nyelvek alulspecifikált végrehajtási szemantikával
rendelkeznek, melyet a rendszermérnökök és a vállalatok egyénileg (gyakran eltérően) ér-
telmeznek. Ezen különbségek megnehezítik a nyelvek egységes kezelését, ami jelentősen
lassítja a fejlett verifikációs eszközök ipari elterjedését. Ilyen verifikációs eszköz az egyete-
mi fejlesztésű Gamma Állapotgép Kompozíciós Keretrendszer is, amely számos modellt-
ranszformáció segítségével képes a különböző modellvariánsok és különböző alacsonyszintű
nyelvek közötti átmenetre. A keretrendszer bonyolultsága azonban a variánsok miatt egyre
jobban megnehezíti a bővíthetőségét és karbantarthatóságát.

Jelen dolgozat célja egy új, moduláris szemantikával rendelkező modellezési nyelv al-
kalmazásának vizsgálata, amely segítségével a Gamma keretrendszerben leprogramozott,
nehezen újrahasznosítható modell-transzformációk helyettesíthetők egy olyan rugalmas
modellezési nyelvvel, amely alkalmas a magasszintű nyelvek struktúrájának alacsony szin-
tű elemekkel történő modellezésére, beleértve a magasszintű elemek szemantikáját is. A
nyelv egyik fő erőssége, hogy a SysMLv2 nyelvhez hasonlóan egy alap elemkészletből kü-
lönféle kompozíciós technikákkal lehet összetett elemeket építeni, melyek szemantikáját
vissza lehet vezetni az alap elemkészlet szemantikájára, és az így kapott elemeket új-
rahasználható könyvtárakba lehet szervezni. A magasszintű nyelvek leképezése így már
nem modelltranszformációs, hanem modellezési feladattá válik, ahol a magasszintű nyelv
szemantikai varianciáit az újrahasználható könyvtárak modellelemeinek megfelelő megvá-
lasztásával pontosíthatjuk.

Az eredményekkel lehetővé válik 1) a különböző modellezési nyelvek lehetséges sze-
mantikáinak kipróbálása; 2) a különböző vállalatok saját konvencióinak figyelembevétele,
vagyis a leképezés testreszabhatósága; 3) a formális modell optimalizálása mérésekkel alá-
támasztva; illetve 4) új nyelvek egyszerű bevezetése a keretrendszerbe. A javasolt módszer
prototípus implementációját különböző esettanulmányokon keresztül vizsgálom, és hason-
lítom össze a Gammában jelenleg is elérhető funkciókkal.

i

Abstract

Failure of critical systems, such as train infrastructure, autonomous vehicles, airplanes, or
nuclear power plants can lead to severe economic damage or even loss of life; thus safety
is a key design priority. There are various validation and verification (V&V) techniques
that can be applied during systems design to ensure safety. However, as the complexity
of the systems increases, so does the difficulty of their verification. Model-based systems
engineering (MBSE) is a methodology aiming to reduce the complexity of engineering
work, which – contrary to the document-centric approach - places models and modeling
languages at the focal point of systems engineering. The verification and implementation
of systems designed in these languages can be accelerated and automated using the proper
tools.

Numerous engineering modeling languages exist (e.g. UML, SysML v1 and v2, AADL),
that use similar yet different approaches. Important differences for verification and im-
plementation are semantic variations - elements of languages with similar syntax often
have slightly different execution semantics. It is of equal importance that these languages
often have under-specified execution semantics, which are interpreted (often differently)
by individual system engineers and companies. Such differences make it harder to unify
the interpretation of modeling languages, thus significantly reducing the wide adoption of
advanced verification tools across the industry. One such verification tool is the university-
developed Gamma Statechart Composition Framework, which supports the transition from
model variants to analysis languages using several model transformations. However, the
increasing complexity of the framework considerably hinders its extendability and main-
tainability due to the number of variants by now.

This work aims to investigate the application of a new modeling language with modular
semantics to replace the hard-to-reuse model transformations programmed in the Gamma
framework with a flexible modeling language. The language is suitable for modeling the
structure of high-level languages with low-level elements, including the semantics of high-
level elements. One of the main strengths of the language is that – as in SysML v2 –
it is possible to construct complex elements from a basic set of elements using various
composition techniques. This allows users to map the semantics of these elements back to
the semantics of the basic element set and to organize the resulting elements into reusable
libraries. The mapping of high-level languages thus becomes a modeling task rather than
a model transformation task, where the semantic variances of the high-level language can
be refined by choosing the appropriate model elements from reusable libraries.

The results will allow 1) to compare and contrast the possible semantics of different mod-
eling languages; 2) to take into account the conventions of different companies, i.e., to
customize the mapping of models; 3) the optimization of the resulting formal model, sup-
ported by measurements; and 4) to easily introduce new languages into the framework. I
investigate the prototype implementation of the proposed language through different case
studies and compare it to the features currently available in the Gamma framework.

ii

Chapter 1

Introduction

The failure of critical systems, such as those in train infrastructure, autonomous vehicles,
airplanes, or nuclear power plants can result in severe economic damage or even loss of
life. Thus, ensuring safety is a key priority during systems design. Various validation and
verification (V&V) techniques are employed during systems design to guarantee safety.
However, as systems grow in complexity, verifying them becomes increasingly challeng-
ing [26].

To simplify the engineering design work, new approaches have been adopted to help de-
sign, verify, and implement complex systems. One such methodology is Model-Based
Systems Engineering [20] (MBSE), which prioritizes engineering modeling languages over
document-centric solutions. The verification and implementation of designs created in
such a manner can be accelerated and (at least partially) automated with the right tools,
e.g., model checking [5].

In MBSE, models serve as the primary artifacts of the development process [32]. These
models are expressed using various modeling languages, such as UML [14], SysML v1 [13]
and SysML v2 [30], AADL, each with its specific syntax and semantics. While these
languages share similar approaches, they often exhibit slight differences in execution se-
mantics. One such difference is semantic variation - elements of languages with similar
syntax often have slightly different execution semantics (e.g., top-down vs bottom-up re-
gion scheduling). Moreover, it is important to note that these languages frequently have
under-specified execution semantics, leading to varied interpretations by individual sys-
tems engineers and companies [9, 33].

The increasing complexity of systems, and the trend to develop complex systems of sys-
tems (SoS) [21] necessitates the integrated use of formal methods, such as automated
model checking. Systems engineers usually have no formal methods background [25], thus
such solutions must apply hidden formal methods, i.e., the end-to-end formal verification of
engineering models without user input. However, the aforementioned semantic differences
between languages make it difficult to unify the processing of modeling languages, sig-
nificantly reducing the wide adoption of advanced verification tools implementing hidden
formal methods across the industry.

One such verification tool is the university-developed Gamma Statechart Composition
Framework [27], which supports the mapping from composite statecharts to detailed anal-
ysis languages using several model transformations. Thus, the framework provides a bridge
between the engineering and analysis world and allows the automatic verification of en-
gineering models using various model checker tools. However, the increasing complexity
of the framework considerably hinders its extendability and maintainability due to the

1

number of supported execution semantics variants by now. It is difficult to customize the
built-in model transformations, and it is not always possible to map engineering languages
to an existing Gamma Language variant [19].

This work proposes to utilize meta-programming for formal languages, offering a straight-
forward method to define the execution semantics of engineering languages without the
complexity of intricate built-in model transformations. To achieve this, I enhance the
eXtended Symbolic Transition System [28] (XSTS), an analysis language already utilized
by Gamma as an output. By extending XSTS with meta-programming capabilities, in-
cluding types, inheritance, composition, transition inlining, and static recursion, engineers
gain the ability to model high-level components using fundamental elements and diverse
composition techniques.

Drawing inspiration from the Kernel Modeling Language [29] – the foundational language
underpinning SysML v2 – I introduce a new language called Objective XSTS (OXSTS) that
enables engineers to organize the modeled high-level components into reusable libraries,
transforming the mapping of engineering languages into a modeling task rather than a
model transformation process. This methodology allows engineers to refine the semantic
nuances of engineering languages by selecting the most appropriate model elements from
these reusable libraries.

Semantifyr is the new component providing the semantic mapping from OXSTS to XSTS,
integrating it into the already existing Gamma ecosystem. The integration of OXSTS and
Semantifyr into Gamma allows 1) the easy customization of language semantics; 2) the
optimization of the resulting formal model, supported by measurements; and 3) the ability
to introduce new languages into the framework with reduced effort.

My main contributions are the following.

• I define a new modular meta-programming language (OXSTS) extending XSTS, and
implement a prototype transformation component (Semantifyr) for it.

• I propose a new Gamma Model Transformation Workflow using Semantifyr.

• I conduct a preliminary evaluation of OXSTS and Semantifyr using an example
model.

• Finally, I draw my conclusions about the approach.

The rest of the work is structured as follows. Chapter 2 gives an overview of the theoretical
background needed to understand the main contributions. In Chapter 3, an overview is
given for the current and the proposed transformation workflow. Chapter 4 formulates
OXSTS. Next, in Chapter 5 the OXSTS to XSTS transformation is detailed. In Chapter 6
an initial Gamma Semantic Library is implemented, mapping the implicit model elements
in Gamma to OXSTS types. Next, Chapter 7 evaluates the Gamma semantic library
through a case study. Finally, Chapter 8 concludes the work and lists several direct next
steps.

2

Chapter 2

Background

This work builds upon the theories and results of several fields across computer science,
including systems engineering, modeling language semantics, formal modeling, and sym-
bolic transition systems. Given the broad spectrum of theoretical background, this chapter
introduces all the necessary preliminary knowledge this work uses as its foundation and
establishes the basis of the presented work.

The rest of the chapter is structured as follows. Section 2.1 overviews MBSE languages,
and introduces the SysML v2 and KerML languages. In Section 2.2, the theoretical back-
ground of model checking is presented. Section 2.3 introduces the XSTS language, a formal
analysis language that can be used during model checking. Next, Section 2.4 introduces
the Gamma Statechart Composition Framework, which enables the formal modeling and
verification of component-based reactive systems. Lastly, Section 2.5 showcases related
works in the literature.

2.1 MBSE Languages

In model-based systems engineering (MBSE), models are the primary artifacts of the
development process [32], which are expressed using various modeling languages, that
have a language structure (abstract syntax), well-formedness constraints, exact graphical
or lexical representation (concrete syntax) and an interpretation (semantics) of well-formed
models. To use such models for simulation, verification, or code generation, the preciseness
of the language is essential [4].

2.1.1 Systems Modeling Language v2

The Systems Modeling Language v2 (SysML v2) [30] is a general-purpose modeling lan-
guage for modeling systems that is intended to facilitate an MBSE approach during system
design. SysML v2 is the next generation of the widely adopted SysML [13] language, with
enhanced precision, expressiveness, interoperability, and consistency.

Unlike SysML – which builds upon the Unified Modeling Language (UML) [14] – SysML v2
builds upon the new Kernel Modeling Langauge (KerML) [29]. KerML is a foundational
modeling language for expressing various kinds of system models with consistent semantics.

Syntactically, KerML is divided into three layers, with each layer refining the previous
one.

3

Root
Syntax

Core
Syntax

Core
Semantics

semantic
specification

Kernel Modeling Language
(KerML)

Kernel
Syntax

Kernel Model
Library

metamodel

semantic library

Systems
Syntax

Systems and
Domain Model

Libraries

metamodel

semantic library

Systems Modeling Language
(SysML)

Figure 2.1: An illustration of the KerML and SysML language
structure.

1. The Root Layer specifies the most general syntactic contracts for structuring models.

2. The Core Layer includes the most general constructs that have semantics based on
classification.

3. The Kernel Layer provides commonly needed modeling capabilities, such as associ-
ations and behavior.

4. The Systems Layer provides high-level, systems modeling capabilities, building upon
the layers below.

“The Core Layer grounds KerML semantics by interpreting it using mathe-
matical logic. However, additional semantics are then specified through the
relationship of Kernel abstract syntax constructs to model elements in the
Kernel Semantic Library, which is written in KerML itself. Models expressed
in KerML thus essentially reuse elements of the Semantic Library to give them
semantics. The Semantic Library models give the basic conditions for the
conformance of modeled things to the model, which are then augmented in
the user model as appropriate. Having a consistent specification of semantics
helps people interpret models in the same way. In particular, because the
Semantic Library models are expressed in the same language as user models,
engineers, and tool builders can inspect the library models to formally under-
stand what real or virtual effects are being specified by their models for the
systems being modeled. More uniform model interpretation improves commu-
nication between everyone involved in modeling, including modelers and tool
builders.” [29]

4

Figure 2.1 shows the structure of the SysML v2 and KerML languages. Since SysML v2
uses KerML as its foundation language, all the SysML v2 semantics are defined using
SysML – and in turn in KerML – giving it a solid semantical foundation.

Drawing inspiration from this approach, my primary goal in this work is to introduce
a similar modeling language architecture to the Gamma framework, where OXSTS (see
Chapter 4) serves as the foundational language for the compact and configurable modeling
of high-level language semantics. This way, the language combines the intuitiveness of
SysML v2 with the formal semantics of XSTS (see Section 2.3.1)

2.2 Model Checking

Model checking is a formal verification technique used to assess the properties of systems.
In essence, it evaluates whether a given formal model M satisfies a specific requirement γ.
The terminology comes from formal logic, where a logical formula may have zero or more
models. These models define the interpretation of symbols within the formula and the
base set in a manner that renders it true. In the context of model checking, the question
is whether the formal model is indeed a model of the formal requirement M ̸|= γ [5]?
This question lies at the core of model checking, where rigorous analysis is conducted to
determine the compliance of the system to the prescribed specifications. Model checker
algorithms (see Figure 2.2), such as the ones used in UPPAAL1 [23] or Theta2 [34] can
answer this question. If M ̸|= γ, then the model checker outputs a counterexample that
witnesses the violation of γ by M . This counterexample is usually returned in the form
of an execution trace, allowing the engineers to understand the discrepancy with a step-
by-step guide.

Formal model
Formal

requirement

Model Checker

Proof
Counter
example

Figure 2.2: An illustration of model checking.

1https://uppaal.org/
2https://inf.mit.bme.hu/en/theta

5

2.3 Analysis Models

Model checker algorithms require formal analysis models. This section provides a brief
overview of the analysis language used in this work. Note that the literature is much
broader, and I direct the interested reader to [5, 31, 22, 17, 1, 3, 15, 18]

2.3.1 Extended Symbolic Transition System (XSTS)

Extended Symbolic Transition System (XSTS) [28] is an extension of Symbolic Transition
System [18] (STS), providing an easier-to-use language for the specification of engineering
models with formal semantics.

Definition 1 (Extended Symbolic Transition System). Formally, we define an
XSTS model as a 4-tuple XSTS = ⟨V, Tr, In,En⟩ where:

• V = {v1, v2, . . . , vn} is a set of variables with domains Dv1 , Dv2 , . . . , Dvn , e.g. integer,
bool (⊤ for true, ⊥ for false), or enum. An enum domain is just syntax sugar, a
set of literals with different values.

• A state of the system is s ∈ S ⊆ Dv1 ×Dv2 × · · · ×Dvn , which can be regarded as a
value assignment: s(v) ∈ Dv for every variable v ∈ V .

• Tr ⊆ S×S is the internal transition relation, describing the behaviour of the system
itself;

• In ⊆ S×S is the initial transition relation, describing the initialization of the system,
which is executed only once at the beginning of the execution;

• En ⊆ S × S is the environmental transition relation, describing the environment
which the system is interacting with;

• Both Tr, In, and En may be defined as a union of exclusive transitions that the
system can take. Abusing the notation, we will denote these transitions as t ∈ Tr
which means that t ⊆ S × S as a transition relation is a subset of Tr. �

A concrete state of the system is c ∈ C = Dv1 ×Dv2 ×· · ·×Dvn , which is a value assignment
c : v 7→ c(v) ∈ Dv for every variable v ∈ V . A concrete state c can also be described with
a logical formula φ = (v1 = c(v1) ∧ · · · ∧ vn = c(vn)) where var(φ) = V .

Each transition relation T ∈ {Tr, In,En} is a set of transitions t where a transition leads
the system from a state s to a successor states s′: T ⊆ {t = (s, s′) ∈ S × S}.

Every domain D has an initial value IV (D) ∈ D e.g., IV (bool) = ⊥, IV (integer) = 0.
Every variable v can have a custom initial value IV (v) ∈ Dv but it is not necessary,
because its domain Dv always has one. The initial state s0 is given as the initial value for
each variable v: s0(v) = IV (v) if IV (v) exists, otherwise s0(v) = IV (Dv). The execution
of the system starts with assigning the initial value s0(v) to every variable v ∈ V .

From the initial state s0, In is executed exactly once. Then, En and Tr are executed
in alternation. In state s, the execution of a transition relation T (being either of the
transition relations) means the execution of exactly one non-deterministically selected
t ∈ T transition. Transition t is enabled if t(s) ̸= ∅. If a transition is not enabled, it can
not be executed. If ∀t ∈ T : t(s) = ∅, transition relation T can not be executed in state
s. In addition to the non-deterministic selection, transitions may be non-deterministic

6

internally, therefore even in the case of a concrete state c, t(c) = {c′
1, . . . , c

′
k} yields a set

of successor concrete states. In other words, in the case of a general transition t = (s, s′),
there is no restriction on the relation between |s| and |s′|.

XSTS defines the following basic operations which lead the system from state s to successor
state s′:

• Assignments: An assignment of form v := φ with v ∈ V and φ as an expression of
the same type Dv means that φ is assigned to v in the successor state s′ and all other
variables keep their value. Formally, s′(v) = φ ∧ s′(v′) = s(v′) for every v′ ̸= v ∈ V ,
while |s′| = |s|

|s(v)| .

• Assumptions: An assumption of form [ψ] with ψ as a Boolean expression over the
variables (var(ψ) ⊆ V) checks condition ψ without modifying any variable and can
only be executed if ψ evaluates to true over the current state s, in which case the
successor state is s′ = s, and |s′| = |s| – otherwise the set of successor states is the
empty set ∅, and |s′| = 0.

• Havocs: A havoc of form havoc(v) with v ∈ V means a non-deterministic assignment
to variable v, i.e., after execution, the value of v can be anything from Dv and all
other variables keep their value. Formally, s′(v) = ⊤ ∧ s′(v′) = s(v′) for every
v′ ̸= v ∈ V . Therefore, c′

i will be |s′| = |Dv| ∗ |s|.

Composite operations contain other operations but their execution is still atomic. Practi-
cally, this means that the contained operations are defined over transient states and the
composite operation determines which one(s) will be the (stable) result of the composite
operation. XSTS defines the following composite operations:

• Sequences: A sequence of form op1, . . . , opn is composed of operations op1, . . . , opn

with opi ∈ Ops executed sequentially, each applied on every successor state of the
previous one (if any). The successor state after executing the sequence is the result
of the last operation. Each operation opi+1 = (si+1, s

′
i+1) = (s′

i, s
′
i+1) works on the

result of opi = (si, s
′
i), so s′

i = si+1. Thus, the transition of the sequence itself is
(s1, s

′
n) but it can be executed only if s′

i ̸= ∅ for every 1 ≤ i ≤ n, i.e. all assumptions
are satisfied.

• Choices: A choice of form op1 or . . . or opn means a non-deterministic choice between
operations (branches) op1, . . . , opn with opi ∈ Ops. This means that exactly one
executable branch opi will be executed. A branch opi = (si, s

′
i) can not be executed

if s′
i = ∅, i.e. an assumption does not hold in the branch. If there are both executable

and non-executable branches, an executable one must be executed. If all branches are
non-executable (s′

i = ∅ for every 1 ≤ i ≤ n), the choice itself is also non-executable,
so its successor state is ∅. Generally, the set of successor states is the union of the
results of any branch ∪n

i=0s
′
i.

• Conditionals: A conditional of form (ψ) ? opthen : opelse with ψ as a Boolean
expression over the variables (var(ψ) ⊆ V) checks condition ψ, and executes
opthen = (sthen, s

′
then) if ψ evaluated to true, otherwise opelse = (selse, s

′
else) (opelse

can be empty, i.e. a 0-long sequence, when selse = s′
else). The sccessor state of the

conditional (s, s′) is s′ = s′
then if ψ is true over the variable values of s, otherwise

s′ = s′
else.

7

Note that assumptions may cause any composite operation to yield an empty set as the
set of successor states. This allows us to use the choice operation as a guarded branching
operator, ruling out branches where an assumption fails by yielding an empty set as the
result of that branch.

2.3.2 Theta Model Checking Framework

Theta3 [34] is a generic, modular and configurable model checking framework developed
at the Fault Tolerant Systems Research Group of Budapest University of Technology and
Economics, aiming to support the design and evaluation of abstraction refinement-based
algorithms [16] for the reachability analysis of various formalisms. Theta is capable of
processing – among many others – XSTS models.

2.4 Gamma Statechart Composition Framework

The Gamma Statechart Composition Framework4 [27] is an integrated tool to support
the design, verification, and validation of, as well as code generation for component-based
reactive systems. The behavior of each atomic component is captured by a statechart while
assembling the system from components is driven by a composition language. Gamma
supports several composition semantics, allowing the user to model systems with various
(potentially mixed) execution and interaction semantics.

Gamma integrates with various model checker tools, including Theta, introduced in Sec-
tion 2.3.2.

2.4.1 Gamma Behavioral Languages

Expression
Language

Ac�on
Language

Ac�vity
Language

Statechart
Language

Figure 2.3: The language structure of the Gamma Framework.

Figure 2.3 displays the language structure of the behavioral Gamma languages.

To model various system behaviors, Gamma defines several formal languages, of which the
Gamma Expression Language (GEL) and Gamma Action Language (GAL) [35] serve as
the foundation. GEL and GAL together define variables, types, and expressions accessing
and combining them using arithmetical and logical expressions. GAL builds on these
constructs by providing simple atomic actions over variables in a reusable fashion.

A previous work [37] proposed the Gamma AcTivity Language (GATL) which is an ex-
tension of the Gamma Action Language, providing control- and data-flow semantics for
modeling concurrent systems. GATL provides simple and composite actions, fork-join and
decision-merge control nodes, and action pins for data flow modeling.

The most basic building blocks of Gamma components are atomic components, of which
Gamma currently supports statecharts with the Gamma Statechart Language (GSL) [11].

3https://inf.mit.bme.hu/en/theta
4https://inf.mit.bme.hu/en/gamma

8

https://inf.mit.bme.hu/en/theta
https://inf.mit.bme.hu/en/gamma

Statechart formal semantics provide simple and composite states, entry-exit and doActiv-
ity behaviors, orthogonal regions, and transitions with effects.

A previous work [33] further extended GATL with a new Activity Component, that can be
used just like the Statechart components, with the difference that they adhere to activity
semantics.

Listing 2.1 and Listing 2.2 present example statecharts. Both statecharts have two states:
Idle and Operational, and both statecharts’ execution starts in the Idle state. The Leader
has two ports, control and start. When the fire event comes in through the control port,
the Leader transitions to the Operational state and sends the start event through its start
port. The Leader statechart transitions back to Idle upon a stop event. The Worker
statechart transitions to Operational upon the start event.� �

1 statechart Leader [
2 port control : requires Control
3 port start : provides Start
4] {
5 region Main {
6 initial Entry
7 state Idle
8 state Operational
9 }

10
11 transition from Entry to Idle
12 transition from Idle to Operational
13 when control.fire /
14 raise start.start;
15 transition from Operational to Idle
16 when control.stop
17 }� �

Listing 2.1: The leader statechart.

� �
1 statechart Worker [
2 port start : requires Start
3] {
4 region Main {
5 initial Entry
6 state Idle
7 state Operational
8 }
9 transition from Entry to Idle

10 transition from Idle to Operational
11 when start.start
12 }� �

Listing 2.2: The worker statechart.

2.4.2 Gamma Composition Semantics

As shown in Figure 2.3, the Gamma Composition Language uses the Gamma Statechart
Language as its main behavioral language for defining atomic components. Indeed, atomic
component behavior can be modeled using statecharts or activities; however, Gamma
also provides a powerful composition language to combine different kinds of components
to model various interaction and execution semantics. This section provides a detailed
overview of the composition semantics based on [12].

Atomic Composite

Synchronous Statechart Synchronous composite component
Activity Component Cascade composite component

Asynchronous Asynchronous adapter Scheduled asynchronous composite component
Asynchronous composite component

Table 2.1: The various components Gamma supports, grouped in atomic-composite and
synchronous and asynchronous categories.

Components serve as types of component instances. They may be atomic or composite,
synchronous or asynchronous. A component can have zero or more ports, which serve as
the only point of interaction between components. This ensures that external dependencies
and interactions are explicitly modeled, leading to a fully encapsulated behavior. Table 2.1
summarizes the various components Gamma supports.

9

Atomic components can be considered black boxes, with

• a set of states with a well-defined initial state,

• a set of input and output events,

• a transition function that constructs the component’s new state and output events
from the current state and incoming events.

New kinds of atomic components introduced into the framework must follow these rules.

Component

Input1

Input2

Input3

Output1

Output2

Output3

Figure 2.4: Abstract diagram of atomic components.

Synchronous Components

The execution of synchronous components is scheduled by a scheduler, which invokes the
execution of the component using the cycle5 input. The execution of atomic components
follows a turn-based semantic, where a turn is called a cycle. In a cycle, the component
processes its incoming signals and produces output signals by its internal state. Output
signals are present for a single execution cycle only, meaning the signal disappears after
one cycle (in case it is not raised again in the next cycle). An illustration of an abstract
atomic component is shown in Figure 2.4, depicting a component with a set of input and
output signals.

Component

Input1

Input2

Input3

Component

Output1

Output2

Output3

Scheduler

Figure 2.5: Structure of a synchronous composite component.

Synchronous composite components are defined by their internal components and their
connections, i.e., channels and port bindings. Composite components may contain one
or more channels, which connect internal components. The composite component’s ports
may also be bound to an internal component’s port, exposing it to the environment.
The behavior of the component is defined by the scheduler, which executes the internal
components. This execution may be in sync (channels run after all components) or cascade
(specific channels run after the corresponding component) order. Figure 2.5 depicts a
generic composite component and its internal structure.

5Cycle is a special implicit input of all components.

10

Asynchronous Components

Asynchronous behavior is supported by injecting buffers between the components. In
Gamma, event queues can be used to achieve the delayed processing of incoming events
in a component. Event queues may contain multiple events and have priorities over each
other, affecting when a specific inner component is scheduled. To use atomic compo-
nents in asynchronous contexts, an asynchronous adapter must be used, which wraps the
component, making it compatible with asynchronous systems. Figure 2.6 depicts an asyn-
chronous adapter component with two separate event queues. Queue1-2 has a priority of
1, while Queue3 has a priority of 2 – thus events from Input1 and Input2 will be processed
before events from Input3.

Queue3
2

Input1

Input2

Input3

Output1

Output2

Output3

C
o
m
p
o
n
en
t

Queue1-2
1

Figure 2.6: Diagram of an asynchronous adapter component.

Asynchronous composite components compose other asynchronous components, connect-
ing them with channels – similarly to synchronous components. Figure 2.7 depicts an
asynchronous composite component with two internal components and queues. Asyn-
chronous components are inherently nondeterministic, meaning there is no guarantee on
the execution time and frequency of the components, only on the ordering between the
processing of the events – events in higher priority queues will be processed first, in the
order of their arrival.

Queue3
2

Input1

Input2

Input3

ComponentQueue1-2
1

Component

Output1

Output2

Output3

Figure 2.7: Structure of an asynchronous composite component.

Listing 2.3 composes the statecharts presented in Listing 2.1 and Listing 2.2. By connect-
ing the two statecharts with a channel, the two now communicate. Since the System is
a synchronous component, the two statecharts pass events to each other using the syn-
chronous composition semantics.

11

� �
1 sync System [
2 port control : requires Control
3] {
4 // Instantiating the leader and worker statecharts
5 component leader : Leader
6 component worker : Worker
7
8 // binding input port
9 bind control -> leader.control

10 // and connecting the leader to the worker
11 channel [leader.start] -o)- [worker.start]
12 }� �
Listing 2.3: Gamma system of the Leader and Worker statecharts presented in

Listing 2.1 and Listing 2.2.

2.5 Related Work

This section summarizes some of the related works in the literature.

Elekes et al. in [9] investigate the assessment of modeling language specifications in regards
to (i) whether they contain errors, contradictions, or ambiguities, (ii) how suitable they
are for assessing the correctness of related modeling tools, and (iii) how helpful they are
for professionals to understand the language. As a result, they have pinpointed several
significant errors in the PSSM Test Suite specification and test traces, resulting in unclear
semantics. This work showcases the imprecise execution semantics of high-level engineering
languages and the need for precise modeling languages.

Ma et al. in [25] (i) conduct an extensive literature review on existing domain-specific
modeling methods (DSMM) engineering approaches, (ii) provide a detailed description
of validation and verification for each phase of DSMM engineering, (iii) and a road-map
encompassing the desiderata for further advances in V&V in DSSM engineering. The
authors advocate for the use of formal methods in DSMM engineering, however, also
acknowledge that the field of formal methods is often not part of conceptual modeling
courses.

Cuccure et al. in [6] propose a template-based notation enabling semantic variation points
in modeling languages to be clearly and explicitly identified within the metamodel, using
template parameter definitions. Using their approach, semantic variation points can be
fixed by parameter binding at both model and metamodel levels.

In a previous work [37], I defined a new Gamma behavioral language extending the frame-
work with activity semantics. Using the Gamma Activity Language, a frequently used
modeling technique, called “doActivity” can be implemented and formally verified.

In a previous work [33], Péter Szkupien and I extended the Gamma Activity Language
with composition semantics, resulting in the Activity component extension. Activity com-
ponents can be connected to classic Gamma statecharts using the built-in port semantics.
Using this approach, activity components and statecharts can be composed using any
composition semantics supported by Gamma. We defined the precise execution semantics
of UML State Machines using the introduced new formalism.

Yannis Lilis and Anthony Savidis conducted an extensive survey of existing meta-
programming languages in [24]. The survey classified the meta-programming languages
into several categories, including the main metaprogramming model employed by the lan-
guage, their phase of evaluation, the location of the program’s source, and finally, the

12

relation between the meta-language and the object language. This paper served as the
main source of insights in the context of meta-programming during the design phase of
OXSTS.

Ebner et al. in [8] introduce a new meta-programming framework used by Lean [7], an
interactive theorem prover based on dependent type theory. They added the meta keyword
to the traditional logic language, using a similar approach as OXSTS does: with the use
of meta keywords, frequently used patterns can be simplified and reused.

13

Chapter 3

Overview

The motivation for this work arises from the challenges faced by existing verification tools,
particularly the Gamma Statechart Composition Framework. While Gamma provides a
bridge between engineering and analysis domains, enabling automatic verification of engi-
neering models, its complexity hampers extendability and maintainability. Customization
of built-in model transformations and mapping diverse engineering languages to existing
Gamma variants proves difficult. This chapter provides an overview of the current and
envisioned model transformation workflow.

The chapter is structured as follows. Section 3.1 provides an overview of the end-to-
end model transformation workflow, showcasing Gamma’s already existing features. Sec-
tion 3.2 introduces the details of the proposed new workflow. Finally, Section 3.3 defines
several requirements for the proposed OXSTS language.

3.1 Gamma Model Transformation Workflow

Gamma model

Gamma-XSTS Transforma�on

Test
Genera�on

High-level Languages Gamma Transforma�on

Formal
Verifica�on

Gamma Services

C test code

Java test code

SMV model

Promela model

UPPAAL TA

SysML model

SysML v2 model

Yakindu model

AADL model

Analysis Languages

XSTS model

Coverage criteria

Verifica�on
results

Analysis Model Genera�on

General-purpose XSTS model

Gamma Property model

Output

Tes�ng Code

Figure 3.1: The current end-to-end model transformation work-
flow of the Gamma framework.

14

Figure 3.1 shows the current Gamma model transformation workflow. Out of the box,
Gamma supports Yakindu and SysML v2, however, previous works have used Gamma
to verify SysML models as well [19]. 1 To process such languages, the models must be
transformed into valid Gamma models. 2 Afterwards, the Gamma models are trans-
formed into a general-purpose XSTS model. By specifying coverage criteria, users can
specify properties for the backend model checkers to verify. 3 The general-purpose XSTS
model is transformed into the various back-end analysis languages. At this point, the
model is optimized to the concrete verification properties. 4 Using these models, Gamma
can seamlessly utilize various model checkers, providing a fully hidden formal verifica-
tion experience for the users. The verification results are then mapped back into Gamma
representations. 5 The framework is also able to generate concrete test cases from the
verification results, which may be used as a conformance test suite for the final implemen-
tation of the system.

3.2 Workflow with Semantifyr

Test
Genera�on

High-level Languages Gamma Transforma�on

Formal
Verifica�on

Gamma Services

C test code

Java test code

SMV model

Promela model

UPPAAL TA

SysML model

SysML v2 model

Yakindu model

AADL model

Analysis Languages

XSTS model

Coverage criteria

Verifica�on
results

Analysis Model Genera�on

General-purpose XSTS model

Gamma Property model

Gamma model

OXSTS model
OXSTS Seman�c

Library
OXSTS Seman�c

Library
OXSTS Seman�c

Library

Seman�fyr

Output

Tes�ng CodeSeman�fyr Frontend

Figure 3.2: The proposed end-to-end model transformation work-
flow using the new Semantifyr component.

In the refined workflow depicted in Figure 3.2, the traditional Gamma-XSTS Transformer
component is replaced with the new Semantifyr. 1 Semantifyr operates with OXSTS
models as input, requiring the mapping of frontend languages to OXSTS. However, by
creating a dedicated Semantic Library for each language, the mapping simplifies into a
straightforward 1-to-1 transformation from the input language to OXSTS. The Semanti-
fyr Frontend is not yet implemented. The Frontend would be capable of the automatic
mapping of models specified in Gamma or other frontend languages to OXSTS. 2 Sub-
sequently, the OXSTS models are transformed into XSTS according to the specifications
of the referenced Semantic Libraries. This direct mapping to OXSTS eliminates the need
to map all language semantics to the languages of the Gamma framework. Instead, these
semantics can be precisely defined using a tailored Semantic Library, streamlining the
entire mapping process. Additionally, this approach facilitates the creation of semantic
variants without altering the fundamental transformation implementation.

15

3.3 OXSTS Language Requirements

The Objective XSTS language must adhere to some high-level requirements to ensure the
previously introduced workflow can be achieved. The requirements for OXSTS can be
outlined as follows.

1. Formal Semantics: OXSTS must have well-defined and formal semantics, ensuring
precise interpretation and execution of engineering models. This formal foundation
is crucial for accurate verification and validation processes.

2. Familiarity to Engineers: OXSTS must be designed with an intuitive syntax and
concepts familiar to systems engineers.

3. Modularity: OXSTS must be inherently modular, allowing engineers to reuse Se-
mantic Libraries across languages with small semantic variations.

4. Expressiveness: OXSTS must be expressive enough to capture the intricacies of
high-level engineering concepts. It should support a wide range of modeling con-
structs and composition techniques, enabling engineers to represent diverse system
behaviors accurately.

By meeting these requirements, OXSTS would provide engineers with a powerful and
user-friendly formal language, enhancing the efficiency and effectiveness of the formal
verification process for complex engineering systems, and ultimately bringing the power
of hidden formal methods closer to systems engineers.

16

Chapter 4

Meta-programming for XSTS

Objective XSTS is a new language implementing several meta-programming features
known across the industry, built on top of the XSTS formal analysis language. This
chapter provides a walkthrough of the design, textual representation, and features of the
language.

The chapter is structured as follows. Section 4.1 introduces the principles guiding the
design of the language. In Section 4.2, an overview is presented of the language. Finally,
Section 4.3 gives a guided tour of the language features.

4.1 Design Principles

During language design, the main focus was to satisfy the requirements specified in Sec-
tion 3.3, to provide a powerful and user-friendly formal language. The following list
discusses how specific requirements are satisfied with the language.

1. Formal Semantics: One of the foundational principles driving the design of OXSTS
is the assurance of formal semantics. Recognizing the critical importance of formal
verification in engineering processes, OXSTS is built upon the solid formal semantics
of XSTS. Thus, OXSTS inherits the formal semantics of the XSTS language.

2. Familiarity to Engineers: By incorporating already familiar constructs such as
types, inheritance, and composition, the language is tailored to be easily understand-
able and usable for systems engineers and verification tool engineers alike. Another
approach would have been to use KerML or SysML v2 as the foundational language,
thus providing familiarity to KerML users. However, it was ultimately decided
against. Since KerML does not yet have formal execution semantics, it would have
been difficult to integrate with XSTS. Ultimately, KerML served as inspiration dur-
ing the design of the language, various constructs have been incorporated to make
OXSTS simple to integrate into KerML in the future.

3. Modularity: OXSTS emphasizes modularity as a key design principle. The lan-
guage supports modularity through features like composition and transition inlin-
ing, allowing engineers to break down complex systems into manageable and reusable
components. With inheritance, engineers can extend already existing semantics with
new variants, just by “overriding” specific transition definitions in sub-types.

17

4. Expressiveness: OXSTS inherits the expressiveness of XSTS, and extends it with
familiar and simple-to-use features. Since Gamma already uses XSTS as analysis
language, any Gamma model can be defined in XSTS, and thus in OXSTS as well.

Extension of XSTS deliberately simplifies existing modeling patterns using simple-to-use
language features, while keeping the well-defined execution semantics of XSTS. The long-
term aim is to integrate OXSTS with KerML, however, that is beyond the scope of this
work.

4.2 Language Overview

The motivation behind OXSTS arises from the need for a modeling language that seam-
lessly combines the robustness of concrete XSTS constructs with the flexibility of compile-
time features. This combination allows verification tool engineers the simple customization
of already existing language semantics, and the addition of new languages to their tools.
OXSTS addresses this need by offering a structured approach to semantical modeling,
allowing for the replication of common patterns and the creation of adaptable models.
By incorporating compile-time constructs like types, inheritance, and transition inlining,
OXSTS ensures that models are not only expressive and compact but also easily customiz-
able.

OXSTS is designed with two fundamental aspects. The first aspect delves into the realm
of concrete XSTS constructs, encompassing variables, transitions, and enums. These el-
ements form the backbone of the language, providing the essential building blocks for
modeling intricate systems.

The second aspect of OXSTS focuses on compile-time constructs, introducing concepts
such as types, transition inlining, features, inheritance, and feature-typed variables. These
meta-programming constructs serve a dual purpose. They enhance the clarity and struc-
ture of the semantic model and also offer powerful simplification techniques. Additionally,
these constructs create extension points, enabling the semantic model to be easily cus-
tomizable and extensible.

4.3 Language Features

OXSTS has many language features. This section provides a detailed walkthrough of the
meta-programming constructs OXSTS brings to the world of XSTS, such as transition
inlining, types, features and composition, static recursion, and polymorphism.

4.3.1 Choice-else

In XSTS, choices represent non-deterministic behavior, in which exactly one branch is
chosen for execution. If none of the branches may be executed (failing assumptions, see
Section 2.3.1), then the whole choice operation fails to execute, which prohibits the whole
operation structure from executing. For this reason, choices often have a “default” branch,
whose assumptions only evaluate to true iff all others evaluate to false. In OXSTS, choices
are extended with else branches. This serves as an easy-to-use syntax sugar and is mapped
to the classic form. Listing 4.3.1 depicts an example of the classic and new choice-else
syntax.

18

� �
1 choice {
2 assume (x != 10)
3 // ...
4 } or {
5 assume (y == 20)
6 // ...
7 } or {
8 // ...
9 } or {

10 assume (!((x != 10) || (y == 20) || ...))
11 // Some operation
12 }� �

� �
1 choice {
2 assume (x != 10)
3 // ...
4 } or {
5 assume (y == 20)
6 // ...
7 } or {
8 // ...
9 } else {

10 // Some operation
11 }� �

Listing 4.3.1: Choice-else using classic XSTS (left) and the new else syntax (right).

4.3.2 Target

The entry points of OXSTS models are Target definitions. Target definitions define
the “universe” of the model, grounding the model to a specific configuration. A Target
is equivalent to an XSTS model, containing variables, transitions and properties.1 An
OXSTS model may contain multiple target definitions, in which case they represent dif-
ferent configurations of the model.

Listing 4.3.2 depicts a simple Target (left) and its corresponding XSTS model. Note that,
contrary to XSTS, OXSTS does not define env transitions. This might seem to reduce its
expressiveness, however, it does not: by placing all environmental transitions to the front
of the internal transition, the same behavior is captured without the need for additional
complexity.

� �
1 enum TimeUnit { // enumeration definition
2 Seconds, Minutes, Hours
3 }
4 target Mission {
5 var unit : TimeUnit // variables
6 var x : Integer := 1 // initial value
7 var isZero : Boolean := false
8 init { // init transition
9 unit := TimeUnit::Seconds

10 }
11 tran { // main transition
12 unit := TimeUnit::Minutes
13 havoc (x)
14 isZero := x = 0
15 }
16 prop { // model invariant
17 isZero = false
18 }
19 }� �

� �
1 type TimeUnit : {
2 Seconds, Minutes, Hours
3 }
4 // variables get a prefix for

differentiation
5 var __Mission__unit : TimeUnit;
6 var __Mission__x : integer = 1
7 var __Mission__isZero : boolean = false
8 init {
9 __Mission__unit := Seconds;

10 }
11 trans {
12 __Mission__unit := Minutes;
13 havoc __Mission__x;
14 __Mission__isZero := __Mission__x == 0
15 }
16 // env transition is always empty
17 env {}
18 prop {
19 ((__Mission__isZero) == false)
20 }� �

Listing 4.3.2: Basic Target definition on the left, with its equivalent XSTS representation
on the right, transformed by Semantifyr.

1Properties specify invariants for XSTS models, used as reachability properties by Theta.

19

4.3.3 Transition Inlining

Transition inlining is a meta-programming feature of OXSTS. XSTS models often contain
the same lines of operations over and over again. With inlining, they can be extracted
into reusable forms. Transitions may have parameters, which can be bound at the inline
site by specifying them between the parentheses.

The semantics of inlining can be regarded as refactoring steps applied again and again
over the model. Listing 4.3.3 shows an example of transition inlining and its corresponding
refactored form.� �

1 target Mission {
2 var x : Integer := 1
3 var isZero : Boolean := false
4 tran setIsZero() {
5 isZero := x = 0
6 }
7 init {
8 x := 2
9 inline setIsZero()

10 }
11 tran {
12 havoc (x)
13 inline setIsZero()
14 }
15 prop {
16 isZero = false
17 }
18 }� �

� �
1 target Mission {
2 var x : Integer := 1
3 var isZero : Boolean := false
4 init {
5 x := 2
6 // inlined transition
7 isZero := x = 0
8 }
9 tran {

10 havoc (x)
11 // inlined transition
12 isZero := x = 0
13 }
14 prop {
15 isZero = false
16 }
17 }� �

Listing 4.3.3: A basic Target definition with transition inlining (left) and its correspond-
ing refactored version (right).

The language also supports conditional inlining with inline if operations. If the specified
compile-time evaluable expression evaluates to true the body is inlined, otherwise the else
is (or nothing, if there is no else). Listing 4.3.4 depicts a simple example of a conditional
inlining. Note, that with more advanced features (see Section 4.3.7) the condition can be
non-constant as well.� �

1 // constant specification
2 const DO_SUBTRACTION: Boolean := true
3 target Mission {
4 var x : Integer := 1
5 tran {
6 inline if (DO_SUBTRACTION) {
7 x := x - 1
8 } else {
9 x := x + 1

10 }
11 }
12 }� �

� �
1 target Mission {
2 var x : Integer := 1
3 tran {
4 x := x - 1
5 }
6 }� �

Listing 4.3.4: A simple inline-if with a compile-time evaluable (in this case constant)
expression.

20

4.3.4 Types

In case the same variables and transitions must be repeated, Types can be used to reduce
code duplication. Types can be instantiated, which means their variables and transitions
can be accessed from the instantiation site. Listing 4.3.5 shows a simple instantiated Type
and its corresponding refactored version.� �

1 type Container {
2 var x : Integer
3 var isZero : Boolean
4 init { // init transition
5 x := 2
6 isZero := x = 0
7 }
8 tran { // main transition
9 havoc (x)

10 isZero := x = 0
11 }
12 }
13 target Mission {
14 // instantiating type Container
15 instance containerA : Container
16 instance containerB : Container
17 init {
18 // init transition reference
19 inline containerA.init()
20 inline containerB.init()
21 }
22 tran {
23 // main transition reference
24 inline containerA.main()
25 inline containerB.main()
26 }
27 prop {
28 containerA.isZero = false &&
29 containerB.isZero = false
30 }
31 }� �

� �
1 target Mission {
2 // variables transformed from the instance
3 var containerA__x : Integer
4 var containerA__isZero : Boolean
5
6 var containerB__x : Integer
7 var containerB__isZero : Boolean
8
9 init {

10 // inlined init transitions
11 containerA__x := 2
12 containerA__isZero := containerA__x = 0
13 containerB__x := 2
14 containerB__isZero := containerB__x = 0
15 }
16
17 tran {
18 // inlined main transitions
19 havoc (containerA__x)
20 containerA__isZero := containerA__x = 0
21 havoc (containerB__x)
22 containerB__isZero := containerB__x = 0
23 }
24
25 prop {
26 containerA__isZero = false &&
27 containerB__isZero = false
28 }
29 }� �

Listing 4.3.5: Simple Type instantiation in a Target definition (left) and its refactored
version (right).

4.3.5 Features and Composition

To facilitate various composition techniques, types may have several kinds of relations.
Features specify composition relations between instances. References are special fea-
tures without composition. Instance relations are Features that must contain exactly
one instance, and thus are used to force the creation of concrete instances. Features specify
the types that they relate to, and may also have multiplicities, specifying the cardinality
of their instances. The following multiplicities are supported.

• Optional [0..1]

• One [1..1]

• Some [0..*]

A classic composition technique [30] is to specify subsetting relations between features.
If Feature A is subsetted by Feature B, then any instance contained (or referenced) in
Feature B is also included in Feature A. Subsetting is marked with the :> symbol.

21

� �
1 type Region {
2 // composition relation "States"
3 feature states : State[0..*]
4 // entryStates are also states
5 feature entryState :> states : State[1..1]
6 }
7 type State {
8 // reference to parent region
9 reference parentRegion : Region[1..1]

10 // all states have "parentRegions"
11 // but not all have "parentStates"
12 reference parentState : State[0..1]
13 // states may have a composite region
14 feature region : Region[0..*]
15 }
16 target Mission {
17 instance MainRegion : Region {
18 // "AState" instance subsets "MainRegion.entryState"
19 instance MainEntry :> entryState : State {
20 // "MainEntry"’s "parentRegion" is "MainRegion"
21 reference parentRegion <- MainRegion
22 }
23 // "AState" instance subsets "MainRegion.states"
24 instance AState :> states : State {
25 reference parentRegion <- MainRegion
26 }
27 instance BState :> states : State {
28 reference parentRegion <- MainRegion
29 // "BRegion" instance subsets "BState.region"
30 instance BRegion :> region : Region {
31 instance CState :> states : State {
32 reference parentRegion <- BRegion
33 reference parentState <- BState
34 }
35 }
36 }
37 }
38 }� �
Listing 4.1: The Mission target instantiates a Region with various inner states and

additional inner regions.

Main
Region

AState

Main
Entry

BState

sta
te
s

states

states

entryState

pa
re
nt
Re
gio
n

parentRegion

parentRegion

BRegionCState

states

parentRegion

parent
State

re
gi
on

Figure 4.1: Illustration of the concrete instances and their rela-
tions in the target definition presented in Listing 4.1.

22

Listing 4.1 depicts a simple Region-State composition hierarchy. Regions contain States
with a “states” feature. Regions also have a special “entryState” relation that subsets
the “states” relation. States reference their parents using a “parentRegion” relation and a
“parentState” relation. While all states must have a parent region, not all have a parent
state, since in this model the containment hierarchy starts with regions. In this example,
states may also contain several regions. The Mission target contains the instantiations
themselves, refining the model with instance relationships subsetting the specific relations
defined above. Figure 4.1 illustrates the concrete instances this model defines. Dashed
lines depict references, and solid lines depict containment features. Note, that there are
two relations between MainRegion and MainEntry, since entryState subsets the states
feature.

4.3.6 Feature-typed Variable

It is common in existing systems to create enumerations for instances to keep track of
them during execution. For example, the Region specified in Listing 4.1 has at most
one active inner state at a time (zero, or one). Feature Typed variables are a syntax
sugar achieving exactly this. Feature typings can be refactored into simple enumeration
definitions containing a literal for each concrete instance the model defines. Listing 4.3.6
depicts an example of a feature-typed variable. By extending the previous example with
a new activeState variable typed by the feature states with optional multiplicity, we can
track a single state (or Nothing, if no states are active). Note, that two enumerations are
created for the two concrete instances of the Region type.

� �
1 type Region {
2 ...
3 feature states : State[0..*]
4 var activeState : states[0..1]
5 }
6 target Mission {
7 instance MainRegion : Region {
8 instance AState :> states :

State
9 instance BState :> states :

State {
10 instance BRegion :> region :

Region {
11 instance CState :>

states : State
12 }
13 }
14 }
15 }� �

� �
1 // enum from MainRegion.states
2 enum MainRegion_states_type {
3 MainRegion_AState,
4 MainRegion_BState,
5 _Nothing
6 }
7 // enum from MainRegion.BState.Bregion.states
8 enum MainRegion_BState_BRegion_states_type {
9 MainRegion_BState_BRegion_CState,

10 _Nothing
11 }� �

Listing 4.3.6: An example of feature typed variable (left) activeState, and its corre-
sponding actual enumeration definitions (right).

4.3.7 Static Recursion

In real-world models, recursion is frequently used, e.g., to model the state activation/de-
activation of composite states. Unfortunately, XSTS does not support runtime recursion
yet. However, using the already presented language features of OXSTS, one can achieve
static recursion. Static recursion means that the recursion is implemented using repeated

23

conditional inlinings with specific parameter bindings. In contrast to dynamic recursion,
which would call the transitions at runtime, static recursions are unfolded at compile-time.

� �
1 type State {
2 tran enter(commonRegion: Region) {
3 // if parentRegion != commonRegion specified
4 inline if (parentRegion != commonRegion) {
5 // enter the state above
6 inline parentState.enter(commonRegion)
7 }
8 // set the activeState variable to "Self"
9 parentRegion.activeState := Self

10 }
11 tran exit(commonRegion: Region) {
12 // set the activeState variable to "Nothing"
13 parentRegion.activeState := Nothing
14 // if parentRegion != commonRegion specified
15 inline if (parentRegion != commonRegion) {
16 // exit the state above
17 inline parentState.exit(commonRegion)
18 }
19 }
20 }
21 target Mission {
22 tran {
23 inline MainRegion.AState.enter(MainRegion)
24 inline MainRegion.AState.exit(MainRegion)
25 inline MainRegion.BState.BRegion.CState.enter(MainRegion)
26 }
27 }� �

Listing 4.2: Excerpt of the OXSTS model with static recursion.

Listing 4.2 depicts an example of static recursion, implementing the composite enter-
ing/exiting of states. Before a state can be entered, all its parent states must be entered
to preserve the state activation order. Thus, the enter transition contains an inline if
operation initiating a static recursion, until the commonRegion is reached. Exit transition
works likewise, only with the order flipped around: inner states must be exited before
outer states. Listing 4.3 depicts the inlined version of the target’s main transition.

� �
1 target Mission {
2 tran {
3 // inline of MainRegion.AState.enter(MainRegion)
4 MainRegion.activeState := MainRegion_AState;
5
6 // inline of MainRegion.AState.exit(MainRegion)
7 MainRegion.activeState := _Nothing;
8
9 // inline of MainRegion.BState.BRegion.CState.enter(MainRegion)

10 MainRegion.activeState := MainRegion_BState; // first the outer state,
11 // then the inner state is entered
12 MainRegion.BState.BRegion.activeState := MainRegion_BState_BRegion_CState;
13 }
14 }� �
Listing 4.3: The inlined version of the static recursion example defined in Listing 4.2.

4.3.8 Composite Transition Inlining

To inline a specific transition of all instances contained in a feature, one may use composite
transition inlining. Doing so is equivalent to inlining each instance’s transition one by one

24

in the order they are specified, except it is done automatically: there is no need to change
it if a new instance is created, allowing extensions to already defined types. Composite
inline operations are refactored by placing inline transition operations in the specified
composite: choice in the case of inline choice and sequence in the case of inline seq. Note,
that currently, it is impossible to use parameters with composite inlining.

Listing 4.4 introduces a new Transition type inlining the state deactivation/activation
transitions of its from and to states. Statechart contains several transitions, which are all
inlined in its main transition using an inline choice operation. Listing 4.5 contains the
choice with the inline operations added.

� �
1 type Transition {
2 tran execute {
3 inline from.exit(commonRegion)
4 inline to.enter(commonRegion)
5 }
6 }
7 type Statechart {
8 feature region : Region[1..1]
9 feature transitions : Transition[0..*]

10 tran {
11 inline choice transitions -> execute else {
12 // none of the transitions can be executed
13 }
14 }
15 }
16 target Mission {
17 instance sc : Statechart {
18 instance t1 : transitions : Transition {
19 ...
20 }
21 instance t2 : transitions : Transition ...
22 instance t3 : transitions : Transition ...
23 instance mainRegion :> region : Region ..
24 }
25 tran {
26 inline sc.main()
27 }
28 }� �
Listing 4.4: An example of composite inlining, using the composite inline choice

operation.

4.3.9 Polymorphism

The word polymorphism is derived from Greek and means "having multiple forms". In
OXSTS, inherited transitions may be overridden – similarly to other object-oriented pro-
gramming languages. The base transition must have the virtual modifier in the base type,
and the override modifier in the subtype. Overridden transitions can be overridden any
amount of times, and always the last overriding transition is selected for inlining. List-
ing 4.6 depicts a model in which various the AssumeFalseAction and AssumeTrueAction
types inherit from the BaseAction type, and override its main transition.

25

� �
1 type Region ...
2 type State ...
3 type Transition ...
4 target Mission {
5 instance sc : Statechart {
6 instance t1 : transitions : Transition {
7 ...
8 }
9 instance t2 : transitions : Transition ...

10 instance t3 : transitions : Transition ...
11 instance mainRegion :> region : Region ...
12 }
13
14 tran {
15 choice {
16 inline sc.t1.main()
17 } or {
18 inline sc.t2.main()
19 } or {
20 inline sc.t3.main()
21 } else {
22 // none of the transitions can be executed
23 }
24 }
25 }� �

Listing 4.5: The inlined version of the target definition specified in Listing 4.4.

� �
1 type BaseAction {
2 virtual tran { }
3 }
4 type AssumeFalseAction : BaseAction {
5 override tran {
6 assume (false)
7 }
8 }
9 type AssumeTrueAction : BaseAction {

10 override tran {
11 assume (true)
12 }
13 }� �

Listing 4.6: Basic transition overriding example.

26

Chapter 5

Semantifyr

The new Gamma→XSTS transformation workflow’s (see Chapter 3) main component is
Semantifyr. Semantifyr implements the OXSTS language support, and the automated
mapping of OXSTS models into XSTS.

This chapter summarizes the implementation details of the Semantifyr component and
the OXSTS language. The chapter is structured as follows. Section 5.1 presents the
implementation philosophy of the component. The concrete transformation phases are
detailed in Section 5.2.

5.1 Implementation Philosophy

In the past decades, Eclipse1 and its plug-in ecosystem were the go-to choice for imple-
menting similar tools. However, the industry landscape has shifted, and now there is a
growing trend towards adopting new Integrated Development Environments (IDEs), such
as VS Code2 or Theia3.

To adapt to this change, our focus was on enhancing Semantifyr’s versatility across dif-
ferent IDEs, and thus, preventing vendor lock-in. Semantifyr was implemented from the
ground up, with as minimal dependencies as possible to ensure it does not inherit the
lock-in Eclipse plugins usually have.

The resulting code-base is designed to be built using the Gradle4 build system, offering
automation and efficiency. Semantifyr is implemented in Kotlin, a modern JVM-based
language known for its modern features and great interoperability with other JVM-based
languages, such as Java.

The XSTS artifacts that Semantifyr produces can be used in algorithms already existing
in Gamma, allowing the reuse of its advanced features, such as model slicing, test-, and
code generation.

1https://eclipseide.org/
2https://code.visualstudio.com/
3https://theia-ide.org/
4https://gradle.org/

27

https://eclipseide.org/
https://code.visualstudio.com/
https://theia-ide.org/
https://gradle.org/

5.2 Transformation Phases

Traditionally, computer program compilers exhibit five phases: lexical analysis, syntactical
analysis, semantic analysis, optimization, and code generation [36]. This is no different
with Semantifyr. Figure 5.1 depicts the phases of the OXSTS → XSTS transformation
pipeline.

Code Genera�onOp�miza�on
Lexical & Syntax

Analysis
Valida�on

Seman�cal
Analysis

Figure 5.1: The main transformation phases in Semantifyr.

5.2.1 Lexical & Syntactical Analysis

The first step during transformation is to turn the textual input into processable models.
During lexical analysis, the letters are turned into tokens, which are in turn transformed
into an Abstract Syntax Tree (AST). During syntactical analysis, the AST is turned into
the domain model, by connecting the cross-references across the tree.

Eclipse Modeling Framework Eclipse EMF5 is a modeling framework and code gen-
eration toolkit for building tools and other applications based on a structured data model.
Given a model specification in XMI format, EMF provides tools and runtime support to
generate a set of Java classes representing the model. Additionally, it generates adapter
classes that facilitate the simple editing and processing of EMF models. Importantly,
EMF provides the foundation for interoperability with other EMF-based tools. The do-
main model of Semantifyr is specified using EMF, which enables the integration of other
EMF-based tools.

Xtext Eclipse Xtext6 is a framework for developing programming languages and domain-
specific languages. It covers all aspects of a complete language infrastructure, from parsers,
over linkers, to compilers. Xtext provides the means to create Eclipse-first IDEs, or
general-purpose IDEs using the language server protocol (LSP). In the context of Seman-
tifyr, an Xtext grammar is utilized to specify OXSTS. Additionally, Semantifyr uses the
general-purpose LSP IDE generated by Xtext, and thus can be integrated into modern
IDEs, such as VS Code and Theia.

The lexical and syntactical analysis is done by the Xtext framework.

5.2.2 Validation

The next step in the transformation is to validate the domain model. Syntactically correct
models may not always adhere to the necessary semantical constraints. To ensure only
semantically legal models are transformed, and to provide the users with valuable insights
about incorrect models, various validation rules have been implemented.

Validation rules serve as essential checks, identifying erroneous patterns within the model.
Although these patterns might be syntactically correct, they violate specific semantical

5https://projects.eclipse.org/projects/modeling.emf.emf
6https://projects.eclipse.org/projects/modeling.tmf.xtext

28

https://projects.eclipse.org/projects/modeling.emf.emf
https://projects.eclipse.org/projects/modeling.tmf.xtext

rules. For instance, issues such as subsetting a feature with an incompatible type, non-
conformity to the multiplicity constraints of features, or assigning an integer value to a
boolean variable can be detected using these rules.

Semantifyr currently implements the following simple validation rules:

• A feature’s type must be compatible (equal to or inheriting from) with its subsetted
feature’s type.

• Feature multiplicity must be respected when defining instances in the model.

• Only virtual transitions may be overridden.

These validation rules are implemented using Xtext’s integrated validation service and
thus are provided through the general-purpose IDE.

5.2.3 Semantical Analysis

The semantical analysis phase processes the syntactically and semantically legal model,
transforming all meta-programming constructs into plain XSTS constructs.

Semantical analysis is done in three steps, as depicted in Figure 5.2.

Instan�a�on
Variable

Transforma�on
Transi�on

Inlining

Seman�cal Analysis

Figure 5.2: The main steps in the Semantical Analysis phase.

Instantiation First, the specific Target definition is selected, and instantiated. In-
stantiation means the collection of all instance features and the construction of concrete
instances for each instance feature, as well as the instantiation of variables defined in its
type. When there are no more instances to be instantiated, the reference bindings are
resolved by traversing the graph. At the end of this process, a root instance is returned,
which represents the Target definition itself. At this point, all features, references, and
variables are known for each concrete instance, thus the model is considered unfolded.

Variable Transformation Feature-typed variables must be transformed into simple
variables with enumeration definitions. After the instantiation process, every concrete
instance is visited, and its feature-typed variables are transformed. Since all features and
references are known at this point, the enumeration literals can be simply constructed by
the associated concrete instances.

Transition Inlining Finally, the transitions must be inlined. At this point, the Target
definition either contains only XSTS operations, in which case the transformation is fin-
ished, or contains inline operations as well. In the latter case, the inline operations are
inlined into the target definition, which may result in additional inline operations – e.g.,

29

in the case of inline-choice, which results in a choice with inner inline operations. This
process is repeated until there are no more inline transitions, at which point the semantical
analysis is complete.

5.2.4 Optimization

After semantical analysis, the target definition only contains pure XSTS constructs. How-
ever, it may contain redundant elements – choices with a single branch, sequences inside
sequences, etc. The optimization phase simplifies the model, by removing redundant.

The following simplifications are implemented currently:

• Expression simplification: the transformed models usually contain expressions
with redundant elements, such as or with a false literal as one operand. Such
expressions are simplified, by replacing the expression with the other operand.

• Redundant choice-else removal: the else branch on choices only affects the model
semantics when there are branches that may not be able to be executed. Opera-
tions that can always be executed are called always executable. Always executable
operations include assignments, havocs, and composite operations containing always
executable operations, and choices with else branches. If all branches of a choice
are always executable, then the else is redundant. This simplification is done in a
bottom-up manner, meaning the innermost choices are optimized first.

• Sequence/choice operation simplification: composite operations – such as se-
quences and choices (without else branches) – with a single inner operation can be
safely replaced with the inner operation itself.

• Empty operation simplification: sequences, choices (without else branches), if
operations without any inner operations can be safely removed.

• True assumption removal: true assumptions do not affect the model, and thus
can be safely removed.

• Empty operation removal: empty operations do not affect the model, and thus
can be safely removed. The only exception is when they are directly inside an else
branch, in which case it can not be removed.

Note, that only removals are done during optimizations. Equivalent model rewrites into
other forms are currently not supported, since they differ from case to case which equivalent
model representation performs better during model checking.

Gamma also supports extensive model reduction and model slicing techniques for XSTS,
which are done later in the Gamma-XSTS transformation workflow, on the output model
of Semantifyr. The optimizations in Semantifyr were designed to focus on OXSTS-related
constructs primarily.

5.2.5 Code Generation

In the code generation phase, the now simplified XSTS model is serialized into its textual
representation. If needed, the code generator component can output XSTS with choice-else
branches rewritten into simple branches.

30

Choice-else rewrite An equivalent form of the else branch is one, that is only allowed
to be executed, iff all other branches may not. To model this, specific assumptions must be
placed in the branch that only evaluates to true iff all other branches cannot be executed.

This operation must also be done bottom-up, since in composite choices, the inner choice’s
assumptions determine the outer choice’s assumptions. The assumption of an operation
is defined as follows.

• Assumption of an assumption operation is the assumption itself.

• Assumption of a havoc operation is assume (true).

• Assumption of an assignment operation is assume (true).

• Assumption of as sequence operation is the conjugation of its inner operations’ as-
sumptions.

• Assumption of a choice operation is the disjunction of its inner operations’ assump-
tions.

Note that we do not need to define the assumption of choice-elses, since the algorithm
works bottom-up, all internal choice-elses are rewritten at this point.

During the rewrite, the negated version of the choice assumption is added to the beginning
of its else branch, which assumption only evaluates to true iff all branches evaluate to false
– since it was constructed that way. Finally, the else branch is added to the choice as a
normal branch.

Note that this procedure is only possible if the assumptions do not reference variables that
are set by other operations in the same branch, since that would need to be replicated in
the new branch as well. Otherwise, the choice-else operations cannot be rewritten in such
models.

31

Chapter 6

Gamma Semantic Library

To support the semantics of existing Gamma models specified with statecharts and com-
position (see Section 2.4) with the workflow proposed in Chapter 3, the Gamma semantics
must be modeled in OXSTS. Implementing the Gamma semantic library entails the repli-
cation of the implicit model elements used in Gamma, such as regions, states, channels,
and components. Using this library, the Gamma-OXSTS mapping becomes as simple as
mapping all the model elements to their counterparts in the semantic library.

This chapter presents the Gamma semantic library in Section 6.1, and showcases its usage
through an example model in Section 6.2.

6.1 Semantic Library

The most basic type is the Event type. Events are represented with a single boolean flag,
as shown in Listing 6.1. The Event type exposes various transitions for easy manipulation,
e.g., the isSet transition with the isActive assumption.� �

1 type Event {
2 var isActive: Boolean := false
3 tran set {
4 isActive := true
5 }
6 tran reset {
7 isActive := false
8 }
9 havoc {

10 havoc (isActive)
11 }
12 tran isSet {
13 assume (isActive)
14 }
15 }� �
Listing 6.1: The Event type in the

Gamma Semantic Library.

� �
1 type Timeout {
2 var deltaTime : Integer := -1
3 tran {
4 if (deltaTime >= 0) {
5 deltaTime := deltaTime - 1
6 }
7 }
8 tran isUp {
9 assume (deltaTime = 0)

10 }
11 }� �
Listing 6.2: The Timeout type in the

Gamma Semantic Library.

Timeouts (modeled in Listing 6.2) are modeled using an integer variable that is counting
down to −1. To prime the timeout, one has to set the deltaTime variable to any value.
The main transition decreases the variable by one until it reaches −1. The timeout is
considered up when the timer variable equals zero. Note that modeling it this way ensures
the timeout only fires once, exactly at 0.

32

Events and Timeouts are primarily used by Triggers. Triggers (see Listing 6.3), such
as EventTriggers and TimeoutTriggers, refer to events and timeouts respectively. Their
isTriggered transition can be used as guards, only allowing execution when the event or
transition the trigger references has occurred or is up.� �

1 type Trigger {
2 virtual tran isTriggered { }
3 }
4 type EventTrigger : Trigger {
5 reference event : Event[1..1]
6 override tran isTriggered {
7 inline event.isSet()
8 }
9 }

10 type TimeoutTrigger : Trigger {
11 reference timeout : Timeout[1..1]
12 override tran isTriggered {
13 inline timeout.isUp()
14 }
15 }� �
Listing 6.3: The Trigger type in the

Gamma Semantic Library.

� �
1 type Action {
2 virtual tran { }
3 }
4 type RaiseEventAction : Action {
5 reference event : Event[1..1]
6 override tran {
7 inline event.set()
8 }
9 }

10 type SetTimeoutAction : Action {
11 reference timeout : Timeout[1..1]
12 }� �
Listing 6.4: The Action type in the

Gamma Semantic Library.

For the manipulation of events and timeouts during the execution of the model, Actions
may be used. Listing 6.4 defines the Action type and its sub-types: RaiseEventAction and
SetTimeoutAction. Note, that at the time of writing, it is impossible to forward values
or variable references to instances, thus separate SetTimeoutAction refinement types are
needed for various values.

Components represent the central elements of the composition language in Gamma (see
Listing 6.5). CompositeComponents may contain other components and channels. Chan-
nels are modeled as a simple event forwarding type, proxying the inputEvent to the out-
putEvent. Synchronous components are modeled by the SyncComponent type. Sync-
Components are initialized by sequentially initializing inner components, and their main
transition executes the inner transitions one by one, and then runs each of the channels.
This semantic is the same as defined in Section 2.4.

Statecharts are special Components. Defined in Listing 6.6, Statecharts contain events,
timeouts, and regions. Events are grouped in two categories, inputEvents and out-
putEvents. The statechart component first resets all its outputEvents, to clear them before
execution. Next, all region transitions are fired. Since at this point the inputEvents have
been used, they can be cleared. Finally, the timeouts are executed, meaning their delta-
Time variables are decreased.

33

� �
1 type Component {
2 virtual init { }
3 virtual tran { }
4 }
5 type Channel {
6 reference inputEvent : Event[1..1]
7 reference outputEvent : Event[1..1]
8 tran {
9 if (inputEvent.isActive) {

10 inline outputEvent.set()
11 }
12 }
13 }
14 type CompositeComponent : Component {
15 feature components : Component[0..*]
16 feature channels : Channel[0..*]
17 }
18 type SyncComponent : CompositeComponent {
19 override init {
20 inline seq components -> init
21 }
22 override tran {
23 inline seq components -> main
24 inline seq channels -> main
25 }
26 }� �
Listing 6.5: The Component type

hierarchy in the Gamma
Semantic Library.

� �
1 type Statechart : Component {
2 feature events : Event[0..*]
3 feature inputEvents :> events : Event

[0..*]
4 feature outputEvents :> events : Event

[0..*]
5 feature timeouts : Timeout[0..*]
6 feature regions : Region[0..*]
7 override init {
8 inline seq regions ->

activateRecursive
9 }

10 override tran {
11 inline seq outputEvents -> reset
12 inline choice regions ->
13 fireTransitions else { }
14 inline seq inputEvents -> reset
15 inline seq timeouts -> main
16 }
17 }� �
Listing 6.6: The Statechart type in the

Gamma Semantic Library.

Next, the Region type is defined in Listing 6.7. Regions contain states, entry- and simple
transitions. Regions also have a feature-typed variable, activeState, typed by the states
feature. Using feature typing, all Regions automatically have an enumeration variable
specifying their active state (or Nothing, when deactivated).

Note the workaround at fireTransitionsInner. At this point, the language does not allow
the fine-grained control required for the exact modeling of general Gamma Regions. For
this reason, a workaround transition was needed, that uses an inline choice without an
else branch. This is important since the else branch means the transitions do not need to
be executed every time, which is not in accordance with the Gamma statechart semantics.

States implement most of the state-transition behavior of Gamma statecharts. As shown
in Listing 6.8, the State type references the parent region and the parent state. States also
may contain several regions and entry-exit actions. Exiting and entering are implemented
using static recursion. First, the exit actions are executed, and then the containing region’s
activeState variable is set to Nothing. Afterwards, the static recursion is initiated with
an inline if, checking whether the containing region is the commonRegion specified. The
Common region is the lowest region that is a parent to both the source and the target of
the transition. The deactivateRecursive transition is called when an upper state is left,
since in such cases the lower states must be exited as well.

34

� �
1 type Region {
2 feature states : State[0..*]
3 feature abstractTransitions : AbstractTransition[0..*]
4 feature transitions :> abstractTransitions : Transition[0..*]
5 feature entryTransitions :> abstractTransitions : EntryTransition[0..*]
6 var activeState : states[0..1] := Nothing
7 tran activateRecursive {
8 inline seq entryTransitions -> main
9 }

10 tran deactivateRecursive {
11 inline seq states -> deactivateRecursive
12 }
13 tran fireTransitions {
14 inline choice transitions -> main else {
15 inline choice states -> fireTransitions
16 }
17 }
18 tran fireTransitionsInner { // workaround
19 inline choice transitions -> main
20 }
21 }� �

Listing 6.7: The Region type in the Gamma Semantic Library.

� �
1 type State {
2 reference parent : Region[1..1]
3 reference parentState : State[0..1]
4 feature regions : Region[0..*]
5 feature entryActions : Action[0..*]
6 feature exitActions : Action[0..*]
7 tran isActive {
8 assume (parent.activeState = Self)
9 }

10 tran deactivateRecursive {
11 inline seq regions -> deactivateRecursive
12 if (parent.activeState = Self) {
13 parent.activeState := Nothing
14 inline seq exitActions -> main
15 }
16 }
17 tran exitRecursive(commonRegion : Region) {
18 inline seq exitActions -> main
19 parent.activeState := Nothing
20 inline if (commonRegion != parent) {
21 inline parentState.exitRecursive(commonRegion)
22 }
23 }
24 tran exit(commonRegion : Region) {
25 inline exitRecursive(commonRegion)
26 inline seq regions -> deactivateRecursive
27 }
28 tran enterRecursive(commonRegion : Region) {
29 inline if (commonRegion != parent) {
30 inline parentState.enterRecursive(commonRegion)
31 }
32 parent.activeState := Self
33 inline seq entryActions -> main
34 }
35 tran enter(commonRegion : Region) {
36 inline enterRecursive(commonRegion)
37 inline seq regions -> activateRecursive
38 }
39 tran fireTransitions {
40 inline seq regions -> fireTransitionsInner
41 }
42 }� �

Listing 6.8: The State type in the Gamma Semantic Library.

35

� �
1 type AbstractTransition {
2 reference commonRegion : Region[1..1]
3 reference to : State[1..1]
4 virtual tran { }
5 }
6 type EntryTransition : AbstractTransition {
7 override tran {
8 inline to.enter(commonRegion)
9 }

10 }� �
Listing 6.9: Abstract

and entry transitions in the
Gamma Semantic Library.

� �
1 type Transition : AbstractTransition {
2 reference from : State[1..1]
3 feature trigger : Trigger[1..1]
4 feature actions : Action[0..*]
5 tran {
6 inline trigger.isTriggered()
7 inline from.isActive()
8 inline from.exit(commonRegion)
9 inline seq actions -> main

10 inline to.enter(commonRegion)
11 }
12 }� �
Listing 6.10: The Transition type in the

Gamma Semantic Library.

Transitions, as defined in Listing 6.9 refine the AbstractTransition type. The EntryTran-
sition is a special transition that does not have a source state.

Finally, the Transition type is defined in Listing 6.10. Transitions contain a single trigger
and several associated actions. Transitions check that their trigger has been triggered,
and their source state is active. If the checks succeed, the source state is exited, and the
target state is entered. The actions are executed in between to keep conformance with the
Gamma semantics.

6.2 Example Model

Constructing a statechart with Gamma semantics in OXSTS is done by refining the Stat-
echart and Component types, and instantiating them in a custom Target definition.

This example models the synchronous composite system defined in Listing 2.3 using the
Gamma Semantic Library.

Listing 6.11 depicts the OXSTS version of the Leader statechart defined in Listing 2.1. The
fire, stop, and start events are modeled separately and are placed in the inputEvents and
outputEvents features depending upon their direction. The regions and states are modeled
using Type instantiations subsetting the relevant features. Note, that the Gamma semantic
library does not define an entry state, so the entry transitions only specify a to state.

Similarly to the Leader, Listing 6.13 depicts the OXSTS version of the Worker statechart
defined in Listing 2.2.

Listing 6.12 models the composition of the two statecharts, by refining the SyncComponent
type.

Finally, Listing 6.14 defines the verification environment of the System component. First,
the instantiated system is initialized. The main transition simulates the environment
by inlining the havoc operation of the two input ports of the Leader statechart. Af-
terwards, the System is executed. The Mission’s invariant property specifies that the
Worker.Operational state is never active. The Theta model checker (see Section 2.3.2)
can read to XSTS version of this model, and either prove the invariant is always true or
show a counter-example in the form of an execution trace. In this sense, checking whether
a given state is reachable can be checked by stating the state is never active.

36

� �
1 type LeaderStatechart : Statechart {
2 instance fireEvent :> inputEvents : Event
3 instance stopEvent :> inputEvents : Event
4 instance startEvent :> outputEvents : Event
5 instance Main :> regions : Region {
6 instance et1 :> entryTransitions : EntryTransition {
7 reference commonRegion <- Main
8 reference to <- Idle
9 }

10 instance Idle :> states : State {
11 reference parent <- Main
12 }
13 instance idleToOperational :> transitions : Transition {
14 reference commonRegion <- Main
15 reference from <- Idle
16 reference to <- Operational
17 instance t1Trigger :> trigger : EventTrigger {
18 reference event <- fireEvent
19 }
20 instance t1Action :> actions : RaiseEventAction {
21 reference event <- startEvent
22 }
23 }
24 instance operationalToIdle :> transitions : Transition {
25 reference commonRegion <- Main
26 reference from <- Operational
27 reference to <- Idle
28 instance t2Trigger :> trigger : EventTrigger {
29 reference event <- stopEvent
30 }
31 }
32 instance Operational :> states : State {
33 reference parent <- Main
34 }
35 }
36 }� �

Listing 6.11: The OXSTS version of the Leader statechart defined in Listing 2.1.

� �
1 type System : SyncComponent {
2 instance leader :> components : LeaderStatechart
3 instance worker :> components : WorkerStatechart
4 instance startChannel :> channels : Channel {
5 reference inputEvent <- leader.startEvent
6 reference outputEvent <- worker.startEvent
7 }
8 }� �
Listing 6.12: The OXSTS version of the synchronous System defined in Listing 2.3.

37

� �
1 type WorkerStatechart : Statechart {
2 instance startEvent :> inputEvents : Event
3 instance Main :> regions : Region {
4 instance et :> entryTransitions : EntryTransition {
5 reference commonRegion <- Main
6 reference to <- Idle
7 }
8 instance Idle :> states : State {
9 reference parent <- Main

10 }
11 instance idleToOperational :> transitions : Transition {
12 reference commonRegion <- Main
13 reference from <- Idle
14 reference to <- Operational
15 instance t1Trigger :> trigger : EventTrigger {
16 reference event <- startEvent
17 }
18 }
19 instance Operational :> states : State {
20 reference parent <- Main
21 }
22 }
23 }� �

Listing 6.13: The OXSTS version of the Worker statechart defined in Listing 2.2.

� �
1 target Mission {
2 instance system : System
3 init {
4 inline system.init()
5 }
6 tran {
7 // simulating the environment
8 havoc (system.leader.fireEvent.isActive)
9 havoc (system.leader.stopEvent.isActive)

10 // executing the system
11 inline system.main()
12 }
13 prop {
14 // invariant, stating worker.operational is never active
15 system.worker.Main.activeState !=
16 system.worker.Main.Operational
17 }
18 }� �
Listing 6.14: The target definition specifying the mission environment of Listing 6.12.

38

Chapter 7

Evaluation

Since Semantifyr and OXSTS are intended to be used in the critical systems domain, the
evaluation of the approach and implementation on example models is a must.

The chapter is structured as follows. In Section 7.1, an automatic conformance test suite
is defined, checking the correct implementation of Semantifyr. Section 7.2 introduces the
Crossroads System, and evaluates the OXSTS language experimentally. Lastly, Section 7.3
summarizes the evaluation results.

7.1 Conformance Tests

To validate the implementation, I constructed an automated conformance test suite. The
primary goal of the test suite is to provide a complete coverage of all OXSTS meta con-
structs. By specifying input and expected OXSTS-XSTS pairs, Semantifyr’s conformance
to the OXSTS specification can be validated. The test suite (Table 7.1) lists 44 hand-
crafted models categorized by the language feature they test. Each test is a standalone
model focusing on a specific OXSTS feature.

All implemented conformance tests successfully validated the functionality of the Seman-
tifyr transformation component. These tests not only confirmed Semantifyr’s correct op-
eration but also helped during development, automatically indicating broken features.

7.2 Gamma Semantic Library - Case Study

To validate the OXSTS language and the Gamma semantic library, a case study is per-
formed on the Gamma semantic library. The Crossroads [10] example model is used as an
example from the Gamma GitHub repository.

7.2.1 Crossroads System

The Crossroads system (see Figure 7.1) models an imagined vehicle crossroad traffic light
system. The crossroad is made up of two pairs of traffic lights, each controlled by a central
Controller component. Each traffic light uses the standard 3-phase light system looping
through the Red → Green → Yellow → Red sequence. Additionally, there is an interrupted
mode that may be triggered by the police. When interrupted, the lights are blinking in
Yellow: Blank → Yellow → Blank.

39

Category Name

Feature Feature Subseting
Reference Subseting

Feature Typing

Multiple Variables
Multiple Variables - Different Feature
Single Variable
Variable with Nothing
Variable with Nothing expression

Inheritance

Base Type Feature
Child Type Feature
Multiple Overrides
Multiple Types
Non-virtual transformation is not overridden
Virtual transformation is overridden

Inline Transition

Inline call of multiple transitions
Inline call with no instance
Inline call with parameters
Inline choice with no instances
Inline composite choice
Inline composite sequence
Inline functor
Inline if false
Inline if true
Inline seq with no instances
Inline static recursion
Mulitple inline calls
Single inline call

Instance

Flat target with multiple instantiations
Flat target with single instantiation
Many layer composite instantiation
Many layer composite reference binding
Mulitple instances in one reference
Reference binding
Reference binding to upper
Two-layer composite instantiation
Two-layer composite reference binding

Target
Boolean Variable
Enum Variable
Integer Variable

Transition

Assignment
Choice
Choice else
Havoc
If
sequence

Table 7.1: Automated conformance tests categorized by the tested language feature.

40

Figure 7.1: The behavior of the Crossroads System from the
Gamma Tutorial model [10].

The system is controlled by a central Crossroads Controller component, as depicted in Fig-
ure 7.2. The Crossroads Controller component is made up of a Controller component and
two TrafficLightController components. During normal operation, the Controller compo-
nent sends toggle events to the TrafficLightController components through the Control
ports. Upon each toggle, the TrafficLights switch to the next light in the sequence, by
sending a specific value through the Lights port. The Controller component forwards all
incoming Police events to each TrafficLightController and stops sending toggle events until
the next police event.

controller: Controller

trafficLightA:
TrafficLightCtrl

trafficLightB:
TrafficLightCtrl

Lights

Police

Police Police
Lights

Control Control

Figure 7.2: The Crossroads Controller component.

The SysML representation of the TrafficLigthCtrl component is shown in Figure 7.3. There
are two main states: Normal and Interrupted. The operation starts in state Normal, and
switches to Interrupted upon a Police event. The Normal state is composite, meaning it
has inner states. The inner states model the cycle of the lights: Red, then Green, then
Yellow, then start again. The interrupted state contains two inner states: Blank and
BlinkingYellow. The state machine switches between these two states every second. Note,
that the transitions between Interrupted and Normal have a higher priority than inner
transitions.

The SysML model of the Controller component is shown in Figure 7.4. There are two
main states: Operating and Interrupted. The operation starts in state Operating, and
switches to Interrupted upon a Police event. In the Operating state, the first state is Init.
After one second, the component switches to TrafficOnA state and sends a toggle event to
TrafficLightA (switching it to Yellow). Next, after two seconds, the component switches
to the StoppingA state and sends yet another toggle event to TrafficLightA (switching it
to Green). This cycle continues through TrafficOnB and StoppingB and finally returns to
TrafficOnA. Upon a Police event, the execution switches to the Interrupted state, which

41

[State Machine] TrafficLightCtrlTrafficLightCtrlstm][

Normal

send Yellowentry /

Yellow

send Greenentry /

Green

send Redentry /

Red

Normal

send Yellowentry /

BlinkingYellow

send Blankentry /

Black

toggle

toggle

toggle after (1s) after (1s)

police

police

Figure 7.3: The TrafficLightCtrl State Machine model.

[State Machine] ControllerControllerstm][

Operating

StoppingA

TrafficOnA StoppingB

TrafficOnB

Init
send police to TrafficLightA;
send police to TrafficLightB

exit /

send police to TrafficLightA;
send police to TrafficLightB

entry /

Interrupted

after (1) / send toggle to TrafficLightA
send toggle to TrafficLightB

after (1s) / send toggle to TrafficLightA
send toggle to TrafficLightB

after (2s) / send toggle to TrafficLightB
after (2s) / send toggle to TrafficLightA

after (1s) / send toggle to TrafficLightA Police

Police

Figure 7.4: The Controller State Machine model.

42

forwards the police event to the two TrafficLight components. Note that the transition
between Operating and Interrupted has a higher priority than internal ones.

7.2.2 Gamma Model

� �
1 interface LightCommands {
2 out event displayRed
3 out event displayYellow
4 out event displayGreen
5 out event displayNone
6 }
7 interface Control {
8 out event toggle
9 }

10 interface PoliceInterrupt {
11 out event police
12 }� �

Listing 7.1: The interface definitions of the Crossroads system [27].

To evaluate the OXSTS model, a reference model is needed in Gamma representation.
The Gamma models were taken from the Gamma GitHub repository [10] and were used
with slight modifications. for more information on Gamma, see Section 2.4. First, the
interfaces are defined in Listing 7.1. Gamma groups events together in reusable interfaces,
which are later used to define ports of components.

Listing 7.2 shows the Gamma model of the Controller component. Note the TrafficTime-
out, which is used to model the elapsed time semantics of the original model.

Similarly to the previous, Listing 7.3 shows the Gamma model of the TrafficLightCtrl
component.

The final Crossroad Controller component is defined in Listing 7.4. Note the use of
synchronous composition semantics in this model, which is not an exact replication of
the original behavior. Previous work defined the exact execution semantics of SysML
state machines by modeling it in Gamma [33]. However, this will be sufficient for this
work as an initial evaluation of the semantic library.

7.2.3 OXSTS Model

Using the Gamma semantic library modeled in Section 6.1, the Crossroad model can be
replicated in OXSTS.

An excerpt of the Controller component model is shown in Listing 7.5. The various events
are instantiated directly in the type, and placed into the input-output events feature,
depending upon their direction.

The Operating state is continued in Listing 7.6. Note, that the triggers and the actions
are all modeled by instantiating them inside the states and transitions.

The traffic light controller is modeled similarly. An excerpt of the model is shown in
Listing 7.7.

The complete source of the models can be viewed in Section A.1, however, the presented
excerpts are sufficient for understanding the rest of the work.

43

� �
1 statechart Controller [
2 port Police : requires PoliceInterrupt
3 port ControlA : provides Control
4 port PoliceA : provides PoliceInterrupt
5 port ControlB : provides Control
6 port PoliceB : provides PoliceInterrupt
7] {
8 timeout TrafficTimeout // timeout specification
9 region Main {

10 initial Entry0
11 state Operating {
12 region operating {
13 initial Entry1
14 state Init {
15 // entry action of Init state
16 entry / set TrafficTimeout := 1 s;
17 }
18 state TrafficOnA {
19 entry / set TrafficTimeout := 2 s;
20 }
21 state StoppingA {
22 entry / set TrafficTimeout := 1 s;
23 }
24 state TrafficOnB {
25 entry / set TrafficTimeout := 2 s;
26 }
27 state StoppingB {
28 entry / set TrafficTimeout := 1 s;
29 }
30 }
31 }
32 state Interrupted {
33 entry / raise PoliceA.police; raise PoliceB.police;
34 exit / raise PoliceA.police; raise PoliceB.police;
35 }
36 }
37
38 transition from Entry0 to Operating
39 // ...
40 transition from StoppingB to TrafficOnA when timeout TrafficTimeout
41 / raise ControlA.toggle; raise ControlB.toggle;
42 }� �
Listing 7.2: The Controller component behavior modeled in the Gamma language [27].

44

� �
1 statechart TrafficLightCtrl [
2 port Control : requires Control
3 port Police : requires PoliceInterrupt
4 port Light : provides LightCommands
5] {
6 timeout BlinkingTimeout
7 region Main {
8 initial Entry0
9 state Normal {

10 region normal {
11 initial Entry1
12 state Red {
13 entry / raise Light.displayRed;
14 }
15 state Green {
16 entry / raise Light.displayGreen;
17 }
18 state Yellow {
19 entry / raise Light.displayYellow;
20 }
21 }
22 }
23 state Interrupted {
24 region interrupted {
25 initial Entry2
26 state Black {
27 entry / set BlinkingTimeout := 1 s;
28 raise Light.displayNone;
29 }
30 state BlinkingYellow {
31 entry / set BlinkingTimeout := 1 s;
32 raise Light.displayYellow;
33 }
34 }
35 }
36 }
37 transition from Entry0 to Normal
38 transition from Normal to Interrupted when PoliceInterrupt.police
39 // ...
40 transition from Black to BlinkingYellow when timeout BlinkingTimeout
41 }� �

Listing 7.3: The TrafficLightCtrl component behavior modeled in Gamma [27].

� �
1 sync CrossroadController [
2 port police : requires PoliceInterrupt,
3 port lightA : provides LightCommands,
4 port lightB : provides LightCommands
5] {
6 // declaring internal components
7 component controller : Controller
8 component trafficLightA : TrafficLightCtrl
9 component trafficLightB : TrafficLightCtrl

10 // binding input and output ports to internal components
11 bind police -> controller.Police
12 bind lightA -> trafficLightA.Light
13 bind lightB -> trafficLightB.Light
14 // Connecting ports of components using channels
15 channel [controller.ControllA] -o)- [trafficLightA.Control]
16 channel [controller.ControllB] -o)- [trafficLightB.Control]
17 channel [controller.ControllA] -o)- [trafficLightB.PoliceInterrupt]
18 channel [controller.ControllB] -o)- [trafficLightB.PoliceInterrupt]
19 }� �

Listing 7.4: The Crossroad Controller component modeled in Gamma [27].

45

� �
1 type Controller : Statechart {
2 instance policeEvent :> inputEvents : Event
3 instance policeEventA :> outputEvents : Event
4 instance toggleEventA :> outputEvents : Event
5 instance policeEventB :> outputEvents : Event
6 instance toggleEventB :> outputEvents : Event
7 instance trafficTimeout :> timeouts : Timeout
8 instance Main :> regions : Region {
9 instance et1 :> entryTransitions : EntryTransition {

10 reference commonRegion <- Main
11 reference to <- Operating
12 }
13 instance Operating :> states : State {
14 reference parent <- Main
15 // ...
16 }
17 instance operatingToInterrupted :> transitions : Transition {
18 reference commonRegion <- Main
19 reference from <- Operating
20 reference to <- Interrupted
21 instance t :> trigger : EventTrigger {
22 reference event <- policeEvent
23 }
24 }
25 instance interruptedToOperating :> transitions : Transition // ...
26 instance Interrupted :> states : State {
27 reference parent <- Main
28 instance ea1 :> entryActions : RaiseEventAction {
29 reference event <- policeEventA
30 }
31 instance ea2 :> entryActions : RaiseEventAction {
32 reference event <- policeEventB
33 }
34 instance ea3 :> exitActions : RaiseEventAction {
35 reference event <- policeEventA
36 }
37 instance ea4 :> exitActions : RaiseEventAction {
38 reference event <- policeEventB
39 }
40 }
41 }
42 }� �
Listing 7.5: Excerpt of the Controller behaviour modeled in OXSTS using the Gamma

Semantic library.

46

� �
1 instance Operating :> states : State {
2 reference parent <- Main
3 instance OperatingRegion :> regions : Region {
4 instance et2 :> entryTransitions : EntryTransition {
5 reference commonRegion <- OperatingRegion
6 reference to <- Init
7 }
8 instance Init :> states : State {
9 reference parent <- OperatingRegion

10 reference parentState <- Operating
11 instance ea1 :> entryActions : SetTimeoutActionOneS {
12 reference timeout <- trafficTimeout
13 }
14 }
15 instance initToTrafficOnA :> transitions : Transition {
16 reference commonRegion <- Main
17 reference from <- Init
18 reference to <- TrafficOnA
19 instance t :> trigger : TimeoutTrigger {
20 reference timeout <- trafficTimeout
21 }
22 instance a :> actions : RaiseEventAction {
23 reference event <- toggleEventA // switch A to Green
24 }
25 }
26 instance TrafficOnA :> states : State // ...
27 instance trafficOnAToStoppingA :> transitions : Transition // ...
28 instance StoppingA :> states : State // ...
29 instance stoppingAToTrafficOnB :> transitions : Transition // ...
30 instance TrafficOnB :> states : State // ...
31 instance trafficOnBToStoppingB :> transitions : Transition // ...
32 instance StoppingB :> states : State // ...
33 instance stoppingBToTrafficOnA :> transitions : Transition // ...
34 }
35 }� �
Listing 7.6: Excerpt of the Operating state of the Controller statechart modeled in

OXSTS.

� �
1 type TrafficLightCtrl : Statechart {
2 instance policeEvent :> inputEvents : Event
3 instance toggleEvent :> inputEvents : Event
4 instance displayRedEvent :> outputEvents : Event
5 instance displayYellowEvent :> outputEvents : Event
6 instance displayGreenEvent :> outputEvents : Event
7 instance displayNoneEvent :> outputEvents : Event
8 instance blinkingTimeout :> timeouts : Timeout
9 instance Main :> regions : Region {

10 instance et :> entryTransitions : EntryTransition {
11 reference commonRegion <- Main
12 reference to <- Normal
13 }
14 instance Normal :> states : State {
15 reference parent <- Main
16 // ...
17 }
18 instance normalToInterrupt :> transitions : Transition // ...
19 instance interruptToNormal :> transitions : Transition // ...
20 instance Interrupted :> states : State {
21 reference parent <- Main
22 }
23 }
24 }� �
Listing 7.7: Excerpt of the TrafficLightCtrl behaviour modeled in OXSTS using the

Gamma Semantic library.

47

7.2.4 Experimental Evaluation

To validate the conformance of the OXSTS model behavior to the Gamma behavior, I
specified several formal requirements. Assuming both models are black boxes, if the user
can not differentiate between them by their behavior, then the models can be considered
conforming. The behavior is tested by defining several formal requirements, and testing
them using the Theta model checker (see Section 2.3.2).

Semantic Conformance

The most substantial part of the semantic library is the state-transition part, which defines
how states, regions, and transitions behave. To validate this part of the semantic library,
I defined formal properties asserting that the semantic library respects the semantics of
composite states.

• If a composite state is active, all composite states and their internal states must be
inactive.

• If a composite state is active, one, and only one internal state must be active.

The following requirements are formalized for the Crossroad System.

• If Controller.Interrupted is active, then the OperatingRegion must not have any
active states;

• If Controller.Operating is active, then exactly one of Init, TrafficOnA, StoppingA,
TrafficOnB, or StoppingB must be active;

• If TrafficLightCtrl.Normal is active, then Interrupted.InterruptedRegion must not
have any active states;

• If TrafficLightCtrl.Interrupted is active, then Normal.NormalRegion must not have
any active states;

• If TrafficLightCtrl.Normal is active, then exactly one of Red, Green, or Yellow must
be active;

• If TrafficLightCtrl.Interrupted is active, then exactly one of Black or BlinkingYellow
must be active;

The TrafficLightCtrl requirements must be duplicated for the two instances: TrafficLightA
and TrafficLightB. The Target definitions can be found at Section A.2.

Behavioral Conformance

The behavioral conformance of the models can be validated with requirements based on
the expected behavior of the system. The following requirements are formalized from the
description of the Crossroads System.

• All states must be reachable;

• Both TrafficLightCtrls must be Interrupted at the same time;

48

• Only allowed pairs of lights must be active, see Table 7.2.

Table 7.2 lists all state-configurations the two TrafficLightCtrl components may be in
during Normal operation, annotated with whether it is allowed or not. Since the two
lights follow a strict sequence of states, some state configurations are impossible in a
faithful representation.

TrafficLightA TrafficLightB Is Allowed
Red Red ✓

Red Green ✓

Red Yellow ✓

Green Red ✓

Green Green ✗

Green Yellow ✗

Yellow Red ✓

Yellow Green ✗

Yellow Yellow ✗

Table 7.2: All state-configurations the two TrafficLightCtrl components may be in (dur-
ing Normal operation) annotated with if allowed.

The Target definitions with the behavioral conformance properties can be found at Sec-
tion A.2.

Conformance Results

After modeling the semantic and behavioral conformance requirements, a total of 40 formal
properties are constructed. I executed the Theta model checker on all properties, using
the Gamma model as a baseline. The constructed target definitions can be viewed in
Section A.2, postfixed with either safe or unsafe, depending on the expected result. From
the 40 requirements, all 40 produced the expected results, both for the Gamma model and
the OXSTS model.

Error Detection

Using the above-defined conformance results, we can detect errors in the model. To test
the detection capabilities, a variant of the Controller component was made. Listing 7.8
presents the changes in the model. By removing some RaiseEventActions, the police event
is no longer forwarded to the TrafficLightB component, thus the two Trafficlights can get
out of sync with each other.

After re-running the model checker, the following errors can be found.

• TrafficLightB.Interrupted is not reachable;

• TrafficLightB.Interrupted.Black is not reachable;

• TrafficLightB.Interrupted.Yellow is not reachable;

• Both TrafficLightCtrls cannot be interrupted at the same time;

• TrafficLightA is Green and TrafficLightB is Green at the same time;

49

� �
1 instance Interrupted :> states : State {
2 reference parent <- Main
3 instance ea1 :> entryActions : RaiseEventAction {
4 reference event <- policeEventA
5 }
6 // Removed lines:
7 // instance ea2 :> entryActions : RaiseEventAction {
8 // reference event <- policeEventB
9 // }

10 instance ea3 :> exitActions : RaiseEventAction {
11 reference event <- policeEventA
12 }
13 // Removed lines:
14 // instance ea4 :> exitActions : RaiseEventAction {
15 // reference event <- policeEventB
16 // }
17 }� �

Listing 7.8: Removed lines in the Interrupted state of the Controller component.

• TrafficLightA is Green and TrafficLightB is Yellow at the same time;

• TrafficLightA is Yellow and TrafficLightB is Green at the same time;

• TrafficLightA is Yellow and TrafficLightB is Yellow at the same time;

7.3 Conclusion

This section encapsulates the evaluation of OXSTS through the Gamma semantic library
case study presented in Section 7.2, highlighting critical aspects and addressing areas of
improvement.

Crossroads System evaluation The successful modeling of the moderately complex
Crossroads System example model marks a significant milestone. The Crossroads System
contains various difficult-to-model features, such as composite states, timeouts, various
entry-exit and transition actions, composition, and channel semantics. The comprehensive
evaluation campaign validated the Gamma semantic library. Although more work and
more complex examples are needed, this example provides assurance, that the proposed
approach has viability in the real world.

OXSTS vs Gamma languages With experience gained from previous works develop-
ing new languages for the Gamma framework, and the modeling of the Gamma semantic
library in OXSTS, I can compare the two.

With Gamma, one has to understand the plugin and code architecture to pinpoint the
exact location where the code must be extended/changed. Of course, this is the same with
OXSTS, since a theoretical Semantic Library would need to be extended with additional
types and refinements to introduce new languages. However, with OXSTS, the engineer
can mentally stay in the same domain: transition systems.

Along this note, Gamma has various implicit semantic types, such as Components and
Actions, whose behavior is difficult to understand at first glance. This is the great benefit
of using OXSTS: however complicated the language semantics are, everything is defined
explicitly in the same language, and can be viewed directly.

50

On the other side, however, Gamma is capable of representing fairly complex behavior,
like asynchronous composition, and phase-statecharts, which will be difficult to replicate
in OXSTS.

Note that by using Semantifyr, the complexity of Gamma is traded for complexity in
Semantifyr. Further research is needed to assess the exact complexity required in the
OXSTS language to replicate all of the Gamma semantics.

Missing language features Due to Semantifyr being in the prototype phase, several
features essential for comprehensive modeling are absent in the current version of OXSTS.
Notable among these is the lack of integration with query languages, forcing the user to
manually set various references, that otherwise could be calculated automatically. Exam-
ples could include the parent and parentState references in the example model, which
could be set using simple model queries, using Viatra [2] for example.

Additionally, OXSTS does not fully support the utilization of values and variables within
meta-features, hindering the language’s flexibility. E.g., the SetTimeoutAction cannot be
used as is, it must be refined using subtypes. Using Lambda types could ease the modeling
efforts since many of the used custom Action types only define a single transition.

Furthermore, advanced constructs, such as inline-for or inline-while loops, which are essen-
tial for custom transition structures, are also missing. Another interesting feature could
be feature-typed variable invoking. Since feature-typed variables represent concrete in-
stances in the OXSTS model, one could be able to use it to refer to the concrete instance,
e.g., inline one of its transitions. Doing so would result in a choice operation checking
which concrete instance is referred, to choose the correct transition based on the concrete
instance’s type. This feature would allow more dynamic behavior support.

KerML and SysML v2 support feature overrides, which allows for more intricate modeling
of complex systems. Using feature overrides, one could define types, in which it is not yet
defined whether a feature is a composition or a reference. The feature then could be later
refined in subtypes.

Finally, due to the prototype nature of Semantifyr, several advanced XSTS constructs are
missing from OXSTS, e.g., records, for and while loops (not inline), and local variables.
To support the full set of the Gamma functionalities, these advanced constructs must be
implemented in OXSTS as well.

Requirement satisfaction The following list evaluates the satisfaction of the require-
ments specified in Section 3.3.

1. Formal Semantics: the formal semantics of XSTS were successfully kept, and
Theta was able to process it successfully.

2. Familiarity to Engineers: by using well-known language features, such as types,
inheritance, transition overriding, and features, the language is simple to understand.
However, since the language semantics are still based upon XSTS, the learning curve
is steep in the beginning. Also, the language is very verbose, thus models can be
very long. More user research is needed to evaluate this point.

3. Modularity: The language is without a doubt highly modular. Using inheritance,
composition, and transition overriding, the example model successfully demonstrated
the language’s modularity.

51

4. Expressiveness: As mentioned previously, the language lacks several language fea-
tures to be generally useable. However, the language seems to be expressive enough
to model moderately complex example models.

In summary, OXSTS and Semantifyr show potential at realizing the proposed transfor-
mation workflow in Chapter 3. However, further refinement and development are needed,
including the incorporation of essential features and further example models, to realize its
full capability as a robust meta-programming language with configurable semantics.

52

Chapter 8

Conclusion and Future Work

The precise execution semantics of modeling languages are essential in the world of MBSE.
For hidden formal methods to gain widespread use, advanced, and configurable formal
verification tools are needed. This work addresses the challenges faced by the Gamma
Statechart Composition Framework, a verification tool designed for engineering models.
To simplify the framework’s complexity, a new language called Objective XSTS (OXSTS)
is introduced, integrating meta-programming techniques. OXSTS extends the eXtended
Symbolic Transition System (XSTS) language used in Gamma with features such as types,
inheritance, composition, and transition inlining. Using OXSTS, engineers can organize
components into reusable libraries, streamlining the mapping of engineering languages into
a simple one-to-one mapping. The use of such reusable semantic libraries allows the easy
customization and extension of language semantics, optimization of formal models, and
simple introduction of new languages into the Gamma framework.

The results of the work are the following. Using the new Semantifyr component, the model
transformation workflow of Gamma can be extended to use OXSTS, and corresponding
semantical libraries to verify high-level languages. As an evaluation, the Crossroads ex-
ample system has been modeled in the OXSTS formalism. The semantic and behavioral
conformance of the OXSTS model has been validated using several formal requirements.
This evaluation demonstrated the applicability and the value of the approach. Using Se-
mantifyr, 1) the customization of language semantics can be achieved by modifying the
underlying semantical library; 2) the formal model can be experimentally optimized since
the user has direct access to the semantic library; and 3) new language support can be
achieved by the implementation of a new semantic library and a mapper component.

Future work The use of Semantifyr and OXSTS seems to be a promising way to miti-
gate the complexity of the Gamma framework. As a direct next step, I intend to implement
additional features into the language. Integration with query languages, such as the Viatra
Query Language would automate the setting of various references. Support for values and
variables in meta-features would enable additional flexibility in handling dynamic data
assignments. Additionally, more advanced programming constructs are needed, such as
inline-for and inline-while loops for custom inline structures, lambda types for reducing
the boiler-plate code, feature-typed variable invoking, allowing enhanced dynamic behav-
ior support, and finally, feature overrides, the later refinement of features. The language
is also missing several advanced XSTS constructs, such as records, for and while loops,
and local variables. Finally, real-world industrial example models are crucial for a com-
prehensive evaluation.

53

Chapter 9

Acknowledgement

I would like to express my acknowledgment to my advisors, Vince Molnár and Bence
Graics, who have continuously provided me with guidance, valuable ideas, and feedback
during this work. Their help is invaluable and much appreciated!

Supported by the ÚNKP-23-2-III-BME-47 New National Excellence Program of the
Ministry for Culture and Innovation from the source of the National Research, Develop-
ment and Innovation Fund.

54

Bibliography

[1] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages 305–
343. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-
8. DOI: 10.1007/978-3-319-10575-8_11. URL https://doi.org/10.1007/
978-3-319-10575-8_11.

[2] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán
Ujhelyi, and Dániel Varró. Viatra 3: A reactive model transformation platform. In
Dimitris Kolovos and Manuel Wimmer, editors, Theory and Practice of Model Trans-
formations, pages 101–110, Cham, 2015. Springer International Publishing. ISBN
978-3-319-21155-8.

[3] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program analysis.
In Computer Aided Verification, pages 504–518, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg. ISBN 978-3-540-73368-3.

[4] Manfred Broy and María Victoria Cengarle. UML formal semantics: lessons
learned. Software & Systems Modeling, 10(4):441–446, Oct 2011. ISSN 1619-
1374. DOI: 10.1007/s10270-011-0207-y. URL https://doi.org/10.1007/
s10270-011-0207-y.

[5] Edmund M Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, London, Cambridge, 1999. ISBN 0-262-03270-8.

[6] Arnaud Cuccuru, Chokri Mraidha, François Terrier, and Sébastien Gérard. Templat-
able metamodels for semantic variation points. In David H. Akehurst, Régis Vogel,
and Richard F. Paige, editors, Model Driven Architecture- Foundations and Appli-
cations, pages 68–82, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-72901-3.

[7] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart
Middeldorp, editors, Automated Deduction - CADE-25, pages 378–388, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-21401-6.

[8] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo
de Moura. A Metaprogramming Framework for Formal Verification. Proc. ACM
Program. Lang., 1(ICFP), aug 2017. DOI: 10.1145/3110278. URL https://doi.
org/10.1145/3110278.

[9] Márton Elekes, Vince Molnár, and Zoltán Micskei. Assessing the specification of
modelling language semantics: a study on UML PSSM. Software Quality Journal, 31
(2):575–617, Jun 2023. ISSN 1573-1367. DOI: 10.1007/s11219-023-09617-5. URL
https://doi.org/10.1007/s11219-023-09617-5.

55

http://dx.doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1007/s10270-011-0207-y
http://dx.doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
http://dx.doi.org/10.1007/s11219-023-09617-5
https://doi.org/10.1007/s11219-023-09617-5

[10] Gamma. Crossroads model. https://github.com/ftsrg/gamma/tree/master/
tutorial, 2019. Accessed: 2023-11-02.

[11] Bence Graics. Mixed-Semantics Composition of Statecharts for the Model-Driven
Design of Reactive Systems. Master’s thesis, BME, 2018.

[12] Bence Graics, Vince Molnár, András Vörös, István Majzik, and Dániel Varró.
Mixed-semantics composition of statecharts for the component-based design of re-
active systems. Software and Systems Modeling, 19(6):1483–1517, Nov 2020. ISSN
1619-1374. DOI: 10.1007/s10270-020-00806-5. URL https://doi.org/10.1007/
s10270-020-00806-5.

[13] Object Management Group. Systems Modeling Language (SysML), 2012. URL
https://www.omg.org/spec/SysML/1.6/About-SysML.

[14] Object Management Group. Unified Modeling Language (UML-v2.5.1), 2017. URL
https://www.omg.org/spec/UML/2.5.1/About-UML.

[15] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable ce-
gar framework with interpolation-based refinements. In Formal Techniques for Dis-
tributed Objects, Components, and Systems, pages 158–174, Cham, 2016. Springer
International Publishing. ISBN 978-3-319-39570-8.

[16] Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based model
checking. Journal of Automated Reasoning, pages 1051–1091, Aug 2020.
DOI: 10.1007/s10817-019-09535-x. URL https://doi.org/10.1007/
s10817-019-09535-x.

[17] David Harel. Statecharts: a visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231–274, 1987. ISSN 0167-6423.
DOI: https://doi.org/10.1016/0167-6423(87)90035-9. URL https://www.
sciencedirect.com/science/article/pii/0167642387900359.

[18] Thomas A. Henzinger and Rupak Majumdar. A classification of symbolic transition
systems. In Horst Reichel and Sophie Tison, editors, STACS 2000, pages 13–34,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-46541-6.

[19] Benedek Horváth, Vince Molnár, Bence Graics, Ákos Hajdu, István Ráth, Ákos
Horváth, Robert Karban, Gelys Trancho, and Zoltán Micskei. Pragmatic verifi-
cation and validation of industrial executable SysML models. Systems Engineer-
ing, n/a(n/a), 2023. DOI: https://doi.org/10.1002/sys.21679. URL https:
//incose.onlinelibrary.wiley.com/doi/abs/10.1002/sys.21679.

[20] INCOSE. INCOSE Systems Engineering. https://www.incose.org/
systems-engineering, 2023. Accessed: 2023-11-02.

[21] INCOSE. INCOSE Systems Engineering Vision 2035.
https://www.incose.org/docs/default-source/se-vision/
incose-se-vision-2035-executive-summary.pdf, 2023. Accessed: 2023-11-
02.

[22] Saul A. Kripke. Semantical Analysis of Modal Logic I Normal Modal Propo-
sitional Calculi. Mathematical Logic Quarterly, 9(5-6):67–96, 1963. DOI:
https://doi.org/10.1002/malq.19630090502. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/malq.19630090502.

56

https://github.com/ftsrg/gamma/tree/master/tutorial
https://github.com/ftsrg/gamma/tree/master/tutorial
http://dx.doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://www.omg.org/spec/SysML/1.6/About-SysML
https://www.omg.org/spec/UML/2.5.1/About-UML
http://dx.doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.sciencedirect.com/science/article/pii/0167642387900359
http://dx.doi.org/https://doi.org/10.1002/sys.21679
https://incose.onlinelibrary.wiley.com/doi/abs/10.1002/sys.21679
https://incose.onlinelibrary.wiley.com/doi/abs/10.1002/sys.21679
https://www.incose.org/systems-engineering
https://www.incose.org/systems-engineering
https://www.incose.org/docs/default-source/se-vision/incose-se-vision-2035-executive-summary.pdf
https://www.incose.org/docs/default-source/se-vision/incose-se-vision-2035-executive-summary.pdf
http://dx.doi.org/https://doi.org/10.1002/malq.19630090502
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19630090502
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19630090502

[23] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International
journal on software tools for technology transfer, 1:134–152, 1997.

[24] Yannis Lilis and Anthony Savidis. A Survey of Metaprogramming Languages. ACM
Comput. Surv., 52(6), oct 2019. ISSN 0360-0300. DOI: 10.1145/3354584. URL
https://doi.org/10.1145/3354584.

[25] Qin Ma, Monika Kaczmarek-Heß, and Sybren de Kinderen. Validation and
verification in domain-specific modeling method engineering: an integrated
life-cycle view. Software and Systems Modeling, Oct 2022. ISSN 1619-
1374. DOI: 10.1007/s10270-022-01056-3. URL https://doi.org/10.1007/
s10270-022-01056-3.

[26] Markus Maurer. Automotive Systems Engineering: A Personal Perspective, pages
17–35. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-
36455-6. DOI: 10.1007/978-3-642-36455-6_2. URL https://doi.org/10.1007/
978-3-642-36455-6_2.

[27] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: Design, verification and code generation
for component-based reactive systems. In Proceedings of ICSE’18: Companion Pro-
ceeedings, pages 113–116. ACM, 2018. DOI: 10.1145/3183440.3183489.

[28] Milán Mondok. Formal verification of engineering models via extended symbolic
transition systems. Bachelor’s thesis, BME, 2020.

[29] OMG. Kernel Modeling Language (KerML), 2023. ptc/23-06-01.

[30] OMG. OMG System Modeling Language (SysML v2), 2023. ptc/23-06-02.

[31] James L. Peterson. Petri Nets. ACM Comput. Surv., 9(3):223–252, sep 1977.
ISSN 0360-0300. DOI: 10.1145/356698.356702. URL https://doi.org/10.1145/
356698.356702.

[32] Ed Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003. DOI:
10.1109/MS.2003.1231147.

[33] Péter Szkupien and Ármin Zavada. Formal Methods for Better Standards: Validat-
ing the UML PSSM Standard about State Machine Semantics. Thesis for students’
scientific conference, BME, 2022.

[34] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
A Framework for Abstraction Refinement-Based Model Checking. In Proceedings of
FMCAD’17, page 176–179, Vienna, Austria, 2017. ISBN 978-0-9835678-7-5.

[35] Balázs Várady. Designing a Formally Verifiable Action Language for the Modeling of
Reactive Embedded Systems. Bachelor’s thesis, BME, 2019.

[36] Reinhard Wilhelm, Dieter Maurer, et al. Compiler design. Springer, 1995.

[37] Ármin Zavada. Formal Modeling and Verification of Process Models in Component-
based Reactive Systems. Bachelor’s thesis, BME, 2021.

57

http://dx.doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
http://dx.doi.org/10.1007/s10270-022-01056-3
https://doi.org/10.1007/s10270-022-01056-3
https://doi.org/10.1007/s10270-022-01056-3
http://dx.doi.org/10.1007/978-3-642-36455-6_2
https://doi.org/10.1007/978-3-642-36455-6_2
https://doi.org/10.1007/978-3-642-36455-6_2
http://dx.doi.org/10.1145/3183440.3183489
http://dx.doi.org/10.1145/356698.356702
https://doi.org/10.1145/356698.356702
https://doi.org/10.1145/356698.356702
http://dx.doi.org/10.1109/MS.2003.1231147

Appendix A

OXSTS Models

In this chapter, a comprehensive collection of OXSTS artifacts developed during this work
is presented. While not essential for understanding the core concepts of the work, delving
into these artifacts can provide additional insights into the OXSTS language.

The chapter is structured as follows. In Section A.1, the OXSTS representation of the full
Crossroads model is presented, introduced in Section 7.2, while Section A.2 presents the
target definitions used during the evaluation of the language (see Section 7.2.4).

A.1 Crossroads Model Implementation

� �
1 type SetTimeoutActionOneS : SetTimeoutAction {
2 override tran {
3 timeout.deltaTime := 1
4 }
5 }
6 type SetTimeoutActionTwoS : SetTimeoutAction {
7 override tran {
8 timeout.deltaTime := 2
9 }

10 }� �
Listing A.1: Custom timeout actions used in the model.

58

� �
1 type Controller : Statechart {
2 instance policeEvent :> inputEvents : Event
3
4 instance policeEventA :> outputEvents : Event
5 instance toggleEventA :> outputEvents : Event
6
7 instance policeEventB :> outputEvents : Event
8 instance toggleEventB :> outputEvents : Event
9

10 instance trafficTimeout :> timeouts : Timeout
11
12 instance Main :> regions : Region {
13 instance et1 :> entryTransitions : EntryTransition {
14 reference commonRegion <- Main
15 reference to <- Operating
16 }
17
18 instance Operating :> states : State {
19 reference parent <- Main
20
21 // ...
22 }
23
24 instance operatingToInterrupted :> transitions : Transition {
25 reference commonRegion <- Main
26 reference from <- Operating
27 reference to <- Interrupted
28
29 instance t :> trigger : EventTrigger {
30 reference event <- policeEvent
31 }
32 }
33
34 instance interruptedToOperating :> transitions : Transition {
35 reference commonRegion <- Main
36 reference from <- Interrupted
37 reference to <- Operating
38
39 instance t :> trigger : EventTrigger {
40 reference event <- policeEvent
41 }
42 }
43
44 instance Interrupted :> states : State {
45 reference parent <- Main
46
47 instance ea1 :> entryActions : RaiseEventAction {
48 reference event <- policeEventA
49 }
50 instance ea2 :> entryActions : RaiseEventAction {
51 reference event <- policeEventB
52 }
53 instance ea3 :> exitActions : RaiseEventAction {
54 reference event <- policeEventA
55 }
56 instance ea4 :> exitActions : RaiseEventAction {
57 reference event <- policeEventB
58 }
59 }
60 }
61 }� �

Listing A.2: The Controller model implementation.

59

� �
1 instance Operating :> states : State {
2 reference parent <- Main
3
4 instance OperatingRegion :> regions : Region {
5 instance et2 :> entryTransitions : EntryTransition {
6 reference commonRegion <- OperatingRegion
7 reference to <- Init
8 }
9

10 instance Init :> states : State {
11 reference parent <- OperatingRegion
12 reference parentState <- Operating
13
14 instance ea1 :> entryActions : SetTimeoutActionOneS {
15 reference timeout <- trafficTimeout
16 }
17 }
18
19 instance initToTrafficOnA :> transitions : Transition {
20 reference commonRegion <- Main
21 reference from <- Init
22 reference to <- TrafficOnA
23
24 instance t :> trigger : TimeoutTrigger {
25 reference timeout <- trafficTimeout
26 }
27 instance a :> actions : RaiseEventAction {
28 reference event <- toggleEventA // switch A to Green
29 }
30 }
31
32 instance TrafficOnA :> states : State {
33 reference parent <- OperatingRegion
34 reference parentState <- Operating
35
36 instance a :> entryActions : SetTimeoutActionTwoS {
37 reference timeout <- trafficTimeout
38 }
39 }
40
41 instance trafficOnAToStoppingA :> transitions : Transition {
42 reference commonRegion <- Main
43 reference from <- TrafficOnA
44 reference to <- StoppingA
45
46 instance t :> trigger : TimeoutTrigger {
47 reference timeout <- trafficTimeout
48 }
49 instance a :> actions : RaiseEventAction {
50 reference event <- toggleEventA // switch A to Yellow
51 }
52 }
53
54 instance StoppingA :> states : State {
55 reference parent <- OperatingRegion
56 reference parentState <- Operating
57
58 instance a :> entryActions : SetTimeoutActionOneS {
59 reference timeout <- trafficTimeout
60 }
61 }
62 }
63 }� �
Listing A.3: The first part of the Operating state definition in the Contoller component.

60

� �
1 instance Operating :> states : State {
2 reference parent <- Main
3
4 instance OperatingRegion :> regions : Region {
5 instance stoppingAToTrafficOnB :> transitions : Transition {
6 reference commonRegion <- Main
7 reference from <- StoppingA
8 reference to <- TrafficOnB
9

10 instance t :> trigger : TimeoutTrigger {
11 reference timeout <- trafficTimeout
12 }
13 instance a1 :> actions : RaiseEventAction {
14 reference event <- toggleEventA // switch A to Red
15 }
16 instance a2 :> actions : RaiseEventAction {
17 reference event <- toggleEventB // switch B to Green
18 }
19 }
20 instance TrafficOnB :> states : State {
21 reference parent <- OperatingRegion
22 reference parentState <- Operating
23
24 instance a :> entryActions : SetTimeoutActionTwoS {
25 reference timeout <- trafficTimeout
26 }
27 }
28 instance trafficOnBToStoppingB :> transitions : Transition {
29 reference commonRegion <- Main
30 reference from <- TrafficOnB
31 reference to <- StoppingB
32
33 instance t :> trigger : TimeoutTrigger {
34 reference timeout <- trafficTimeout
35 }
36 instance a :> actions : RaiseEventAction {
37 reference event <- toggleEventB // switch B to Yellow
38 }
39 }
40 instance StoppingB :> states : State {
41 reference parent <- OperatingRegion
42 reference parentState <- Operating
43
44 instance a :> entryActions : SetTimeoutActionOneS {
45 reference timeout <- trafficTimeout
46 }
47 }
48 instance stoppingBToTrafficOnA :> transitions : Transition {
49 reference commonRegion <- Main
50 reference from <- StoppingB
51 reference to <- TrafficOnA
52
53 instance t :> trigger : TimeoutTrigger {
54 reference timeout <- trafficTimeout
55 }
56 instance a1 :> actions : RaiseEventAction {
57 reference event <- toggleEventB // switch B to Red
58 }
59 instance a2 :> actions : RaiseEventAction {
60 reference event <- toggleEventA // switch A to Green
61 }
62 }
63 }
64 }� �
Listing A.4: The second part of the Operating state definition in the Contoller

component.

61

� �
1 type TrafficLightCtrl : Statechart {
2 instance policeEvent :> inputEvents : Event
3 instance toggleEvent :> inputEvents : Event
4
5 instance displayRedEvent :> outputEvents : Event
6 instance displayYellowEvent :> outputEvents : Event
7 instance displayGreenEvent :> outputEvents : Event
8 instance displayNoneEvent :> outputEvents : Event
9

10 instance blinkingTimeout :> timeouts : Timeout
11
12 instance Main :> regions : Region {
13 instance et :> entryTransitions : EntryTransition {
14 reference commonRegion <- Main
15 reference to <- Normal
16 }
17
18 instance Normal :> states : State {
19 reference parent <- Main
20
21 // ...
22 }
23
24 instance normalToInterrupt :> transitions : Transition {
25 reference commonRegion <- Main
26 reference from <- Normal
27 reference to <- Interrupted
28
29 instance t :> trigger : EventTrigger {
30 reference event <- policeEvent
31 }
32 }
33
34 instance interruptToNormal :> transitions : Transition {
35 reference commonRegion <- Main
36 reference from <- Interrupted
37 reference to <- Normal
38
39 instance t :> trigger : EventTrigger {
40 reference event <- policeEvent
41 }
42 }
43
44 instance Interrupted :> states : State {
45 reference parent <- Main
46
47 // ...
48 }
49 }
50 }� �

Listing A.5: The TrafficLightCtrl model implementation.

62

� �
1 instance Normal :> states : State {
2 reference parent <- Main
3
4 instance NormalRegion :> regions : Region {
5 instance et2 :> entryTransitions : EntryTransition {
6 reference commonRegion <- NormalRegion
7 reference to <- Red
8 }
9

10 instance Red :> states : State {
11 reference parent <- NormalRegion
12 reference parentState <- Normal
13
14 instance e :> entryActions : RaiseEventAction {
15 reference event <- displayRedEvent
16 }
17 }
18
19 instance redToGreen :> transitions : Transition {
20 reference commonRegion <- NormalRegion
21 reference from <- Red
22 reference to <- Green
23
24 instance t :> trigger : EventTrigger {
25 reference event <- toggleEvent
26 }
27 }
28
29 instance Green :> states : State {
30 reference parent <- NormalRegion
31 reference parentState <- Normal
32
33 instance e :> entryActions : RaiseEventAction {
34 reference event <- displayGreenEvent
35 }
36 }
37
38 instance greenToYellow :> transitions : Transition {
39 reference commonRegion <- NormalRegion
40 reference from <- Green
41 reference to <- Yellow
42
43 instance t :> trigger : EventTrigger {
44 reference event <- toggleEvent
45 }
46 }
47
48 instance Yellow :> states : State {
49 reference parent <- NormalRegion
50 reference parentState <- Normal
51
52 instance e :> entryActions : RaiseEventAction {
53 reference event <- displayYellowEvent
54 }
55 }
56
57 instance yellowToRed :> transitions : Transition {
58 reference commonRegion <- NormalRegion
59 reference from <- Yellow
60 reference to <- Red
61
62 instance t :> trigger : EventTrigger {
63 reference event <- toggleEvent
64 }
65 }
66 }
67 }� �

Listing A.6: The Normal state definition in the TrafficLightCtrl component.

63

� �
1 instance Interrupted :> states : State {
2 reference parent <- Main
3
4 instance InterruptedRegion :> regions : Region {
5 instance et :> entryTransitions : EntryTransition {
6 reference commonRegion <- InterruptedRegion
7 reference to <- Black
8 }
9

10 instance Black :> states : State {
11 reference parent <- InterruptedRegion
12 reference parentState <- Interrupted
13
14 instance ea1 :> entryActions : SetTimeoutActionOneS {
15 reference timeout <- blinkingTimeout
16 }
17 instance ea2 :> entryActions : RaiseEventAction {
18 reference event <- displayNoneEvent
19 }
20 }
21
22 instance blackToYellow :> transitions : Transition {
23 reference commonRegion <- InterruptedRegion
24 reference from <- Black
25 reference to <- Yellow
26
27 instance t :> trigger : TimeoutTrigger {
28 reference timeout <- blinkingTimeout
29 }
30 }
31
32 instance yellowToBlack :> transitions : Transition {
33 reference commonRegion <- InterruptedRegion
34 reference from <- Yellow
35 reference to <- Black
36
37 instance t :> trigger : TimeoutTrigger {
38 reference timeout <- blinkingTimeout
39 }
40 }
41
42 instance Yellow :> states : State {
43 reference parent <- InterruptedRegion
44 reference parentState <- Interrupted
45
46 instance ea1 :> entryActions : SetTimeoutActionOneS {
47 reference timeout <- blinkingTimeout
48 }
49 instance ea2 :> entryActions : RaiseEventAction {
50 reference event <- displayYellowEvent
51 }
52 }
53
54 }
55 }� �

Listing A.7: The Interrupted state definition in the TrafficLightCtrl component.

64

� �
1 type CrossroadController : SyncComponent {
2 instance controller :> components : Controller
3 instance trafficLightA :> components : TrafficLightCtrl
4 instance trafficLightB :> components : TrafficLightCtrl
5
6 instance policeAChannel :> channels : Channel {
7 reference inputEvent <- controller.policeEventA
8 reference outputEvent <- trafficLightA.policeEvent
9 }

10 instance toggleAChannel :> channels : Channel {
11 reference inputEvent <- controller.toggleEventA
12 reference outputEvent <- trafficLightA.toggleEvent
13 }
14
15 instance policeBChannel :> channels : Channel {
16 reference inputEvent <- controller.policeEventB
17 reference outputEvent <- trafficLightB.policeEvent
18 }
19 instance toggleBChannel :> channels : Channel {
20 reference inputEvent <- controller.toggleEventB
21 reference outputEvent <- trafficLightB.toggleEvent
22 }
23 }� �

Listing A.8: The implementation of the CrossroadController component

65

A.2 Crossroads Target Definitions

� �
1 abstract target CrossroadsMission {
2 instance crossroad : CrossroadController
3
4 init {
5 inline crossroad.init()
6 }
7
8 tran {
9 inline crossroad.controller.policeEvent.havoc

10 inline crossroad.main()
11 }
12 }� �

Listing A.9: The base target definition for the Crossroad system.

� �
1 target ControllerOperatingInterruptedExclusive_Safe : CrossroadsMission {
2 prop {
3 ! (
4 crossroad.controller.Main.activeState =
5 crossroad.controller.Main.Interrupted &&
6 crossroad.controller.Main.Operating.OperatingRegion.activeState !=
7 Nothing
8)
9 }

10 }
11 target ControllerOperatingIncorrectStateHierarchy_Safe : CrossroadsMission {
12 prop {
13 ! (
14 crossroad.controller.Main.activeState = crossroad.controller.Main.Operating &&
15 crossroad.controller.Main.Operating.OperatingRegion.activeState !=
16 crossroad.controller.Main.Operating.OperatingRegion.Init &&
17 crossroad.controller.Main.Operating.OperatingRegion.activeState !=
18 crossroad.controller.Main.Operating.OperatingRegion.TrafficOnA &&
19 crossroad.controller.Main.Operating.OperatingRegion.activeState !=
20 crossroad.controller.Main.Operating.OperatingRegion.StoppingA &&
21 crossroad.controller.Main.Operating.OperatingRegion.activeState !=
22 crossroad.controller.Main.Operating.OperatingRegion.TrafficOnB &&
23 crossroad.controller.Main.Operating.OperatingRegion.activeState !=
24 crossroad.controller.Main.Operating.OperatingRegion.StoppingB
25)
26 }
27 }� �

Listing A.10: The semantic requirements of the Crossroads component.

66

� �
1 target TrafficLightANormalInterruptedExclusive_Safe : CrossroadsMission {
2 prop {
3 ! (
4 (
5 crossroad.trafficLightA.Main.activeState =
6 crossroad.trafficLightA.Main.Normal &&
7 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.activeState !=
8 Nothing
9) || (

10 crossroad.trafficLightA.Main.activeState =
11 crossroad.trafficLightA.Main.Interrupted &&
12 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState !=
13 Nothing
14)
15)
16 }
17 }
18 target TrafficLightANormalIncorrectStateHierarchy_Safe : CrossroadsMission {
19 prop {
20 ! (
21 crossroad.trafficLightA.Main.activeState =
22 crossroad.trafficLightA.Main.Normal &&
23 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState !=
24 crossroad.trafficLightA.Main.Normal.NormalRegion.Red &&
25 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState !=
26 crossroad.trafficLightA.Main.Normal.NormalRegion.Green &&
27 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState !=
28 crossroad.trafficLightA.Main.Normal.NormalRegion.Yellow
29)
30 }
31 }
32 target TrafficLightAInterruptedIncorrectStateHierarchy_Safe : CrossroadsMission {
33 prop {
34 ! (
35 crossroad.trafficLightA.Main.activeState =
36 crossroad.trafficLightA.Main.Interrupted &&
37 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.activeState !=
38 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.Black &&
39 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.activeState !=
40 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.Yellow
41)
42 }
43 }� �

Listing A.11: The semantic requirements of the TrafficLightA component.

67

� �
1 target TrafficLightBNormalInterruptedExclusive_Safe : CrossroadsMission {
2 prop {
3 ! (
4 (
5 crossroad.trafficLightB.Main.activeState =
6 crossroad.trafficLightB.Main.Normal &&
7 crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.activeState !=
8 Nothing
9) || (

10 crossroad.trafficLightB.Main.activeState =
11 crossroad.trafficLightB.Main.Interrupted &&
12 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState !=
13 Nothing
14)
15)
16 }
17 }
18 target TrafficLightBNormalIncorrectStateHierarchy_Safe : CrossroadsMission {
19 prop {
20 ! (
21 crossroad.trafficLightB.Main.activeState =
22 crossroad.trafficLightB.Main.Normal &&
23 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState !=
24 crossroad.trafficLightB.Main.Normal.NormalRegion.Red &&
25 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState !=
26 crossroad.trafficLightB.Main.Normal.NormalRegion.Green &&
27 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState !=
28 crossroad.trafficLightB.Main.Normal.NormalRegion.Yellow
29)
30 }
31 }
32 target TrafficLightBInterruptedIncorrectStateHierarchy_Safe : CrossroadsMission {
33 prop {
34 ! (
35 crossroad.trafficLightB.Main.activeState =
36 crossroad.trafficLightB.Main.Interrupted &&
37 crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.activeState !=
38 crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.Black &&
39 crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.activeState !=
40 crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.Yellow
41)
42 }
43 }� �

Listing A.12: The semantic requirements of the TrafficLightB component.

68

� �
1 target ControllerOperating_Unsafe : CrossroadsMission {
2 prop {
3 ! (crossroad.controller.Main.activeState =
4 crossroad.controller.Main.Operating)
5 }
6 }
7 target ControllerOperatingInit_Unsafe : CrossroadsMission {
8 prop {
9 ! (crossroad.controller.Main.Operating.OperatingRegion.activeState =

10 crossroad.controller.Main.Operating.OperatingRegion.Init)
11 }
12 }
13 target ControllerOperatingTrafficOnA_Unsafe : CrossroadsMission {
14 prop {
15 ! (crossroad.controller.Main.Operating.OperatingRegion.activeState =
16 crossroad.controller.Main.Operating.OperatingRegion.TrafficOnA)
17 }
18 }
19 target ControllerOperatingStoppingA_Unsafe : CrossroadsMission {
20 prop {
21 ! (crossroad.controller.Main.Operating.OperatingRegion.activeState =
22 crossroad.controller.Main.Operating.OperatingRegion.StoppingA)
23 }
24 }
25 target ControllerOperatingTrafficOnB_Unsafe : CrossroadsMission {
26 prop {
27 ! (crossroad.controller.Main.Operating.OperatingRegion.activeState =
28 crossroad.controller.Main.Operating.OperatingRegion.TrafficOnB)
29 }
30 }
31 target ControllerOperatingStoppingB_Unsafe : CrossroadsMission {
32 prop {
33 ! (crossroad.controller.Main.Operating.OperatingRegion.activeState =
34 crossroad.controller.Main.Operating.OperatingRegion.StoppingB)
35 }
36 }
37 target ControllerInterrupted_Unsafe : CrossroadsMission {
38 prop {
39 ! (crossroad.controller.Main.activeState =
40 crossroad.controller.Main.Interrupted)
41 }
42 }� �

Listing A.13: Target definitions checking that each state of Controller is reachable.

69

� �
1 target TrafficLightANormal_Unsafe : CrossroadsMission {
2 prop {
3 ! (crossroad.trafficLightA.Main.activeState =
4 crossroad.trafficLightA.Main.Normal)
5 }
6 }
7 target TrafficLightANormalRed_Unsafe : CrossroadsMission {
8 prop {
9 ! (crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =

10 crossroad.trafficLightA.Main.Normal.NormalRegion.Red)
11 }
12 }
13 target TrafficLightANormalGreen_Unsafe : CrossroadsMission {
14 prop {
15 ! (crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
16 crossroad.trafficLightA.Main.Normal.NormalRegion.Green)
17 }
18 }
19 target TrafficLightANormalYellow_Unsafe : CrossroadsMission {
20 prop {
21 ! (crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
22 crossroad.trafficLightA.Main.Normal.NormalRegion.Yellow)
23 }
24 }
25 target TrafficLightAInterrupted_Unsafe : CrossroadsMission {
26 prop {
27 ! (crossroad.trafficLightA.Main.activeState =
28 crossroad.trafficLightA.Main.Interrupted)
29 }
30 }
31 target TrafficLightAInterruptedBlack_Unsafe : CrossroadsMission {
32 prop {
33 ! (crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.activeState =
34 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.Black)
35 }
36 }
37 target TrafficLightAInterruptedYellow_Unsafe : CrossroadsMission {
38 prop {
39 ! (
40 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.activeState =
41 crossroad.trafficLightA.Main.Interrupted.InterruptedRegion.Yellow
42)
43 }
44 }� �
Listing A.14: Target definitions checking that each state of TrafficLightA is reachable.

70

� �
1 target TrafficLightBNormal_Unsafe : CrossroadsMission {
2 prop {
3 ! (crossroad.trafficLightB.Main.activeState =
4 crossroad.trafficLightB.Main.Normal)
5 }
6 }
7 target TrafficLightBNormalRed_Unsafe : CrossroadsMission {
8 prop {
9 ! (crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =

10 crossroad.trafficLightB.Main.Normal.NormalRegion.Red)
11 }
12 }
13 target TrafficLightBNormalGreen_Unsafe : CrossroadsMission {
14 prop {
15 ! (crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
16 crossroad.trafficLightB.Main.Normal.NormalRegion.Green)
17 }
18 }
19 target TrafficLightBNormalYellow_Unsafe : CrossroadsMission {
20 prop {
21 ! (crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
22 crossroad.trafficLightB.Main.Normal.NormalRegion.Yellow)
23 }
24 }
25 target TrafficLightBInterrupted_Unsafe : CrossroadsMission {
26 prop {
27 ! (crossroad.trafficLightB.Main.activeState =
28 crossroad.trafficLightB.Main.Interrupted)
29 }
30 }
31 target TrafficLightBInterruptedBlack_Unsafe : CrossroadsMission {
32 prop {
33 ! (crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.activeState =
34 crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.Black)
35 }
36 }
37 target TrafficLightBInterruptedYellow_Unsafe : CrossroadsMission {
38 prop {
39 ! (crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.activeState =
40 crossroad.trafficLightB.Main.Interrupted.InterruptedRegion.Yellow)
41 }
42 }� �
Listing A.15: Target definitions checking that each state of TrafficLightB is reachable.

71

� �
1 target ARedBRed_Unsafe : CrossroadsMission {
2 prop {
3 ! (
4 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
5 crossroad.trafficLightA.Main.Normal.NormalRegion.Red &&
6 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
7 crossroad.trafficLightB.Main.Normal.NormalRegion.Red
8)
9 }

10 }
11 target ARedBGreen_Unsafe : CrossroadsMission {
12 prop {
13 ! (
14 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
15 crossroad.trafficLightA.Main.Normal.NormalRegion.Red &&
16 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
17 crossroad.trafficLightB.Main.Normal.NormalRegion.Green
18)
19 }
20 }
21 target ARedBYellow_Unsafe : CrossroadsMission {
22 prop {
23 ! (
24 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
25 crossroad.trafficLightA.Main.Normal.NormalRegion.Red &&
26 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
27 crossroad.trafficLightB.Main.Normal.NormalRegion.Yellow
28)
29 }
30 }� �

Listing A.16: The requirements specified in Table 7.2. Part 1.

� �
1 target AGreenBRed_Unsafe : CrossroadsMission {
2 prop {
3 ! (
4 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
5 crossroad.trafficLightA.Main.Normal.NormalRegion.Green &&
6 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
7 crossroad.trafficLightB.Main.Normal.NormalRegion.Red
8)
9 }

10 }
11 target AGreenBGreen_Safe : CrossroadsMission {
12 prop {
13 ! (
14 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
15 crossroad.trafficLightA.Main.Normal.NormalRegion.Green &&
16 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
17 crossroad.trafficLightB.Main.Normal.NormalRegion.Green
18)
19 }
20 }
21 target AGreenBYellow_Safe : CrossroadsMission {
22 prop {
23 ! (
24 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
25 crossroad.trafficLightA.Main.Normal.NormalRegion.Green &&
26 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
27 crossroad.trafficLightB.Main.Normal.NormalRegion.Yellow
28)
29 }
30 }� �

Listing A.17: The requirements specified in Table 7.2. Part 2.

72

� �
1 target AYellowBRed_Unsafe : CrossroadsMission {
2 prop {
3 ! (
4 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
5 crossroad.trafficLightA.Main.Normal.NormalRegion.Yellow &&
6 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
7 crossroad.trafficLightB.Main.Normal.NormalRegion.Red
8)
9 }

10 }
11 target AYellowBGreen_Safe : CrossroadsMission {
12 prop {
13 ! (
14 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
15 crossroad.trafficLightA.Main.Normal.NormalRegion.Yellow &&
16 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
17 crossroad.trafficLightB.Main.Normal.NormalRegion.Green
18)
19 }
20 }
21 target AYellowBYellow_Safe : CrossroadsMission {
22 prop {
23 ! (
24 crossroad.trafficLightA.Main.Normal.NormalRegion.activeState =
25 crossroad.trafficLightA.Main.Normal.NormalRegion.Yellow &&
26 crossroad.trafficLightB.Main.Normal.NormalRegion.activeState =
27 crossroad.trafficLightB.Main.Normal.NormalRegion.Yellow
28)
29 }
30 }� �

Listing A.18: The requirements specified in Table 7.2. Part 3.

� �
1 target BothMustBeInterruptedAtTheSameTime_Unsafe : CrossroadsMission {
2 prop {
3 ! (
4 (
5 crossroad.trafficLightA.Main.activeState =
6 crossroad.trafficLightA.Main.Interrupted &&
7 crossroad.trafficLightB.Main.activeState =
8 crossroad.trafficLightB.Main.Interrupted
9)

10)
11 }
12 }
13 target BothMustBeInterruptedAtTheSameTime_Safe : CrossroadsMission {
14 prop {
15 ! (
16 (
17 crossroad.trafficLightA.Main.activeState =
18 crossroad.trafficLightA.Main.Interrupted &&
19 crossroad.trafficLightB.Main.activeState !=
20 crossroad.trafficLightB.Main.Interrupted
21) || (
22 crossroad.trafficLightA.Main.activeState !=
23 crossroad.trafficLightA.Main.Interrupted &&
24 crossroad.trafficLightB.Main.activeState =
25 crossroad.trafficLightB.Main.Interrupted
26)
27)
28 }
29 }� �

Listing A.19: The behavioral requirements of the Crossroad System.

73

	Kivonat
	Abstract
	Introduction
	Background
	MBSE Languages
	Systems Modeling Language v2

	Model Checking
	Analysis Models
	Extended Symbolic Transition System (XSTS)
	Theta Model Checking Framework

	Gamma Statechart Composition Framework
	Gamma Behavioral Languages
	Gamma Composition Semantics

	Related Work

	Overview
	Gamma Model Transformation Workflow
	Workflow with Semantifyr
	OXSTS Language Requirements

	Meta-programming for XSTS
	Design Principles
	Language Overview
	Language Features
	Choice-else
	Target
	Transition Inlining
	Types
	Features and Composition
	Feature-typed Variable
	Static Recursion
	Composite Transition Inlining
	Polymorphism

	Semantifyr
	Implementation Philosophy
	Transformation Phases
	Lexical & Syntactical Analysis
	Validation
	Semantical Analysis
	Optimization
	Code Generation

	Gamma Semantic Library
	Semantic Library
	Example Model

	Evaluation
	Conformance Tests
	Gamma Semantic Library - Case Study
	Crossroads System
	Gamma Model
	OXSTS Model
	Experimental Evaluation

	Conclusion

	Conclusion and Future Work
	Acknowledgement
	Bibliography
	OXSTS Models
	Crossroads Model Implementation
	Crossroads Target Definitions

