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Kivonat

A többmagos hardveren futó többszálú programok formális verifikációja sokáig a terület
legnagyobb kihívásai közé tartozott. A probléma nehézségét elsősorban a szálak végrehaj-
tásainak tetszőleges átfedése jelenti. Ennek ellenére a többmagos beágyazott processzorok
iránti igény egyre hangsúlyosabban megjelenik biztonságkritikus környezetben is, elkerül-
hetetlenné téve, hogy a problémakörrel foglalkozzunk. A többszálú programok nemdeter-
minisztikus viselkedése ugyanis nagyban megnehezíti a tesztelésüket, így még fontosabbá
válik a formális módszerek használata.

Ezen felül a többmagos processzorok a teljesítmény növelése érdekében sok optimalizá-
ciós technikát tartalmaznak – egy ilyen módszer a memóriakezelő utasítások átrendezésé-
nek lehetővé tétele. Ennek motivációja az, hogy a processzor az általánosan sokkal lassabb
memóriautasítások befejezésére való várakozás közben is hasznos munkát végezhessen. Az
átrendezés azonban bizonyos esetekben váratlan viselkedésekhez vezethet a tisztán szek-
venciális futáshoz képest. Kevés ellenőrzési módszert adaptáltak ezen viselkedés kezelésére,
és ezek többsége is előre meghatározott memóriamodelleket feltételez, melyek testreszabá-
sa nem lehetséges. Ez csökkenti a módszerek alkalmazhatóságát, mivel a legtöbb hardver
nem teljesen feleltethető meg egy-egy elméleti modellnek (akár szándékosan, akár tervezési
hibák miatt).

Ezen dolgozatban egy olyan algoritmust mutatok be, ami bemenetként egy futás-
idejű hibadetektálásokkal (assert) annotált programot és egy memóriamodellt fogad, ki-
menetként pedig megadja, hogy az adott memóriamodellt betartó processzoron futtatva
elérhető-e hibaállapot a programon belül. Az algoritmus az állapotmentes modellellenőr-
zés megközelítésére épít, és okos állapottér-bejárási stratégiájával lényegesen kisebb me-
móriahasználatot eredményezhet, mint a hagyományos modellellenőrző algoritmusok. A
dolgozatban belátom, hogy – bizonyos feltételeknek megfelelő programok esetén – az algo-
ritmus helyes, és optimális a megvizsgált lefutások tekintetében. Ezen felül néhány ismert
architektúrára és programra alkalmazva a teljesítményét is kiértékelem, korszerű szoftver-
modellellenőrző eszközökkel összehasonlításban. Munkám eredménye várhatóan hozzájárul
majd a többmagos architektúrákon futó többszálú szoftverek kritikus beágyazott rendsze-
rekben való elterjedéséhez, ezzel végső soron jobb teljesítményt és alacsonyabb költségeket
hozva az érintett iparágakban.

A dolgozatban ismertetett eredmények a Budapesti Műszaki és Gazdaságtudományi Egyetem Villa-
mosmérnöki és Informatikai Kar Balatonfüredi Hallgatói Kutatócsoport szakmai közössége keretében jöttek
létre a régió gazdasági fejlődésének elősegítése érdekében. Az eredmények létrehozása során figyelembe vet-
tük a balatonfüredi központú Rendszertudományi Innovációs Klaszter által megfogalmazott célkitűzéseket,
valamint a párhuzamosan megvalósuló EFOP 4.2.1-16-2017-00021 pályázat támogatásával elnyert „BME
Balatonfüredi Tudáscentrum” térségfejlesztési terveit.

Az Innovációs és Technológiai Minisztérium ÚNKP-20-1 kódszámú Új Nemzeti Kiválóság Programjá-
nak a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatásával készült.

i



Abstract

Formal verification of multithreaded software running on multi-core hardware has for long
been challenging for anything other than the simplest of programs. The complexity of
dealing with the arbitrary interleavings of such a program makes it one of the hardest
problems of software verification. However, the industry trend of introducing embedded
multi-core processors into the world of safety critical systems makes it unavoidable having
to deal with this problem, because formal methods are even more important for concurrent
programs due to their inherent nondeterminism, which makes testing unreliable.
Furthermore, multi-core processors offer many types of optimizations to decrease execu-
tion time – one such technique is to allow the reordering of memory accesses whenever
possible, to avoid having to wait for the typically much slower memory instructions to fin-
ish. This may introduce unexpected behavior compared to a purely sequential execution.
Few analyses have been adapted to deal with such behavior, and most of them follow pre-
defined memory models hard-coded into their algorithms without providing any facilities
to customize it. This hurts the applicability of such techniques, as most types of hardware
do not fully conform to theoretical models (either by design, or due to design flaws).
In this work I propose an algorithm that accepts a concurrent program including assertions
and a memory model as inputs, and reports whether the program can reach an erroneous
state when run on a processor that abides by the given memory model. This algorithm
builds on the stateless model checking approach, which yields a significantly lower memory
usage than other techniques by using a smart exploration strategy to manage the large
state space. I show that the algorithm is optimal in terms of explored executions and
sound when the program meets certain criteria. Furthermore, I apply the algorithm to
several well-known architectures and programs, and evaluate its performance compared
to state-of-the-art software model checking tools. The expected impact of this work is to
facilitate the correct implementation of concurrent software on multi-core architectures,
ultimately leading to better performance and lower costs in embedded systems.

The results presented in this work were established in the framework of the professional community of
Balatonfüred Student Research Group of BME-VIK to promote the economic development of the region.
During the development of the achievements, we took into consideration the goals set by the Balatonfüred
System Science Innovation Cluster and the plans of the ”BME Balatonfüred Knowledge Center”, supported
by EFOP 4.2.1-16-2017-00021.

Supported by the ÚNKP-20-1 New National Excellence Program of the Ministry for Innovation and
Technology from the Source of the National Research, Development and Innovation Fund.
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Chapter 1

Introduction

Safety critical embedded systems surround us in most aspects of our lives. The software
in cars, elevators, airplanes and power plants are expected to virtually never1 fail – a
metric not easily achievable through conventional testing methods. Thus, a more rigorous
approach is necessary for reasoning about the correctness of software systems: formal
software verification.
Formal verification aims to prove correctness (e.g. all safety requirements are respected)
in a mathematically precise way [18]. This process is generally very resource intensive,
and therefore only the most critical components have been traditionally verified using this
approach. However, even such components have been getting more and more complex,
necessitating the rapid development of verification techniques.
One phenomenon behind this trend of increasing complexity is the use of multi-core pro-
cessors in embedded systems to run concurrent programs, which is partly caused by the
industry approaching the upper limits of single-core performance yet needing more [30],
and partly due to cost saving measures – in modern processor manufacturing processes, a
lower clocked but multi-core CPU is often cheaper than a single-core but more powerful
one.
However, concurrent semantics allow arbitrary interleaving among the threads of a pro-
gram, often making its state space of possible behaviors undepictably large. This repre-
sents a barrier for verification tools that employ any kind of state enumeration technique,
and therefore new methodologies are required to deal with this problem.
To combat the obstacle of state enumeration, several specialized approaches have been
developed that aim to decrease the number of executions to be explored – one of the
first such algorithms for concurrent programs is Partial Order Reduction (POR) [33],
which determines whether some executions are equivalent on some abstraction level in
their outcomes, and then explores only a representative trace. However, this method
also records all explored executions (to determine whether a new candidate execution is
equivalent to an already handled one), meaning the memory usage tends to scale poorly.
In conventional software verification, to avoid having to keep a record of each state (and
therefore to decrease the memory usage), one might use a stateless model checking al-
gorithm. This family of algorithms explore all reachable states of the program without
recording them. However, special techniques must be employed to distinguish the reach-

1For example, a SIL 4-classified component is expected not to fail until more than 10 000 years of
continuous use
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able states based on their equivalence – this has led to algorithms such as Dynamic Partial
Order Reduction (DPOR) [19].
Furthermore, even if an algorithm can handle concurrent program semantics, there are
many aspects to dealing with multi-core processors and real concurrency, as opposed to
single-cores and apparent concurrency (parallelism). One of these aspects is the weakened
memory model of such CPUs, which allows the reordering of memory accesses whenever
possible, in order to avoid having to wait for the typically much slower memory instruc-
tions to finish [20]. However, this introduces unexpected behavior when only sequential
semantics is taken into account, either by a programmer developing software for multi-core
hardware, or by verification tools themselves.
However, even if a specific algorithm can handle the weak semantics of a given hardware-
software co-verification problem, it might still occur that an assumption of the tool does
not hold. One such example is the verification of flawed memory architectures, where the
design does not follow a predefined template for weak memory – such as the ARM Cortex
A9 processor that includes a fault where same-variable reads can be reordered, which goes
against the specifications of the ISA [1]. In this case, any tool using standard memory
models might fail to report safety violations, thus a parameterizable solution is necessary,
which can handle any memory model.
At the time of submitting this work, no real solution exists to this problem. I presented
this problem in my earlier TDK2 submission in 2018 [9], where I provided a hardware-
centric approach as the solution, which used litmus tests as test cases and conventional
model checking algorithms as a reasoning tool, which was however limited by the utilized
tools’ capabilities. In the paper presented at the EMSOFT19 conference [10], we have de-
fined the scope of the problem and formalized the problem statement, as well as provided
a theoretical solution to the problem. In this work, I propose a stateless model checking
algorithm parameterized with memory consistency models, which satisfies the criteria im-
posed by the problem statement. Furthermore, I implement the novel algorithm in the
Theta verification framework [31] to show its applicability and scalability compared to
similar, but not entirely adaptable model checking tools.
This work is structured as follows: After presenting the theoretical background of the ideas
behind the solution (Chapter 2), I introduce the model checking algorithms and tools that
are closest in the targeted use-case of the problem above (Chapter 3). Afterwards, I
present the proposed algorithm through examples and formal specification (Chapter 4),
as well as elaborate on its implementation aspects (Chapter 5). Finally, I evaluate the
functional, usability and performance properties of the created tool (Chapter 6).

2Students’ Scientific Conference/Tudományos Diákköri Konferencia (hu)
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Chapter 2

Background

In this chapter I introduce the core concepts of the concurrent software model checking
field. Firstly, I establish the basis of the concurrent software paradigm I aim to analyze,
after which I show the properties of the multi-core hardware they can be run on. Fi-
nally, I present the foundations of software verification, the approach to reason about the
correctness of a software product.

2.1 Concurrent Software

At the beginning of the history of digital computing – due to the single processing units
of the era’s CPUs – software was running sequentially, executing the instructions in the
order it was specified in its source. The current state of the program could be given with
the current stack s and the valuation of the variables in the global memory v. When the
first multitasking operating systems appeared, these programs moved into processes and
threads1 (see Definition 2.1.1), but were still only executing on a single processing unit and
therefore were still sequential, even though multiple processes could overlap during their
execution, providing a false sense of parallelity. This apparent concurrency paired with
sequentially ordered processes and threads had been the programmer’s view for quite a
few decades before the first devices capable of real concurrency [13] arrived to the general
consumer. Up until then, actual parallelity was mostly a niche subject of distributed
systems [14], and had not reached the mainstream software developer’s world – and even
if it did, the sequentiality property was never violated.

Definition 2.1.1: Concurrent programs

A concurrent program is a program containing more than one thread executing in
parallel. In this work, it is assumed that a concurrent program p(T,Q) is charac-
terized with the following properties:

1. T : The set of threads in p

2. Q: The globally accessible variables of p

Note that a program has a predetermined amount of threads.

1For the sake of simplicity, I use the terms process and thread interchangeably
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However, even in the case of apparent concurrency, the number of ways a program with
more than a single thread can be executed explodes compared to the only possible execu-
tion of a single-threaded program. This is due to the arbitrary interleaving of threads in a
system – there are no built-in guarantees concerning the order of execution among them.
This also means that the state vector of the program grows, as it is no longer enough to
specify the (s, v) tuple – that is valid only for a given thread. The global state can be
described with the state vector shown in Definition 2.1.2.

Definition 2.1.2: State vector of a concurrent program

The current execution state of a concurrent program p(T,Q) can be described with
the following tuple: (S, V,E), where

1. S ∈ (s, v)|T |: Stacks and valuations of local variables of the individual threads
in T

2. V : Valuation of global variables Q

3. E: Enabled threads in T (i.e. not blocked)

A stack entry contains the following types of information:

• The current location of the execution in the program (like the Program
Counter in the hardware)

• The locations to jump back to when a function finishes execution

With the introduction of multi-core processors, the performance limit of a single thread
could be overcome by utilizing more processing units. The same multitasking operating
systems could be used as before, but with an actual performance benefit to using more
threads. However, this also introduced unexpected behavior to programs accessing globally
shared memory due to the more advanced memory models of such hardware – the reason
for this elevated complexity is explained in detail in Section 4.1.5.

2.2 Multi-Core Hardware

As we are approaching the theoretical limits of the maximum frequency in the current
technology’s processors [30], it has become evident that we need to concentrate on aspects
of the microprocessors other than its single-core performance – such as the number of
cores it contains, and their effective cooperation. Theoretically, we can almost double the
available performance if we double the number of cores, as they can all work in parallel.
The term multi-core can mean that a processor either

• has more cores of the same kind (homogenous multi-processing), or

• has more cores of different kinds (heterogeneous multi-processing) [23].

Furthermore, multi-cores might differ in terms of access to caches and main memory, how
they are interconnected and what isolation is in place among them, if any. A common
property of such systems is that they are on a single chip, i.e. the cores reside on the same
silicon wafer. Furthermore, legal restrictions have been placed to ensure that the consumer
understands the use of the term multi-core: the processor manufacturer company AMD

4
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Figure 2.1: Multi-core architecture structure

had erroneously called one of its products an 8-core multicore, when in fact it only had 4
fully-fledged cores, the other 4 being only integer execution cores2.
To summarize, the term multi-core processor can be used in a lot of ways. In the scope
of this work, it is assumed to conform to Definition 2.2.1 and a visualization can be seen
in Figure 2.1. However, adhering to its criteria is not easily achievable – for example, the
cores cannot communicate among each other, but there still needs to be a total ordering
of the memory instructions, as only a single core can assume access to the memory at any
time. This arbitration is the task of the memory model [20].

Definition 2.2.1: Multi-Core Processor

In a multi-core processor

1. there is a single integrated circuit containing more than one homogenous and
equally capable execution core,

2. each core has access to its own cache hierarchy and local buffers,

3. each core has direct access to the main memory of the system,

4. the cores can only synchronize with each other through the main memory,

5. only one core can assume access to the main memory at a given time.

2.2.1 Memory Model

To solve the problem of allowing only a single core to access the memory at a time, most
architectures use a separate memory controller that governs access to the main memory.
However, it is far from trivial how a total ordering of memory accesses should be produced
– it is the task of the memory consistency model (MCM) to establish these rules [20].
Consider the program containing two threads in Figure 2.2, where each writes to a sep-
arate global variable3 and then prints the other’s variable. If we try to sequence these
instructions assuming sequential consistency (SC, see Definition 2.2.2), we get the 6 pos-
sible total orders in Figure 2.4. Note that in no case can both read instructions execute
before any of the write instructions finished – therefore, the outcome a = 0 ∧ b = 0 is not
allowed [20].

2https://www.anandtech.com/show/14804/amd-settlement
3In all examples the variables a, b, c,… are local and x, y, z,… are global
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x := 0, y := 0

x := 1 y := 1

a := y b := x

Figure 2.2: Two threads performing a
global write and read access

x := 0

x := 1

a := x

rf

Figure 2.3: a reads 0 instead of 1

x := 1 y := 1

a := y b := x

(a) a = 1 ∧ b = 1

x := 1 y := 1

a := y b := x

(b) a = 0 ∧ b = 1

x := 1 y := 1

a := y b := x

(c) a = 1 ∧ b = 1

x := 1 y := 1

a := y b := x

(d) a = 1 ∧ b = 1

x := 1 y := 1

a := y b := x

(e) a = 1 ∧ b = 0

x := 1 y := 1

a := y b := x

(f) a = 1 ∧ b = 1

Figure 2.4: Executions of the program in Figure 2.2 assuming SC

During the execution of the program there are four memory accesses: two writes and two
reads. These are very expensive in terms of execution time, because generally the main
memory is much slower than the processor that accesses it. To lessen the impact of this
phenomenon, most modern multi-core architectures employ a weakened memory model,
meaning that memory instructions do not need to finish4 before execution can resume [20].

Definition 2.2.2: Sequential Consistency (SC)

A sequentially consistent memory model ensures the preservation of all happens-
before relations in the program order, i.e. the sequence of instructions in the source.
All threads observe the memory in the same way during execution [20].

However, the performance benefit of this weakened memory model does not come without
a price – it introduces behavior not expected when assuming sequential consistency. If we
allow any reordering of instructions, the program in Figure 2.2 can have 24 executions
in total (any permutation of the four instructions). This could also mean that if a single
thread wrote a variable and then read it back, it could be the old value (before the write),
as seen in Figure 2.3. The responsibility of any MCM is to constrain the reordering of
instructions, to find a balance between performance and unexpected behavior.
An example of a widely used memory model is the total store ordering (TSO, see Def-
inition 2.2.3). This is used (among others) in the x86 and x86_64 architectures, and
introduces only a few types of unexpected executions – for example, in the case of the
example in Figure 2.2, the previously forbidden outcome a = 0 ∧ b = 0 is observable,
as it is possible that neither of the write operations actually finished before both of the

4In this context, to finish means that the written value has propagated to the global memory and visible
by all threads, and a read value is fixed in its target local variable [20]
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read accesses returned their values – on any of the threads, they were accessing different
variables in memory, and therefore could be reordered.

Definition 2.2.3: Total store ordering (TSO)

The total store ordering memory model provides the following guarantees:

1. All accesses to the same memory location are totally ordered

2. All write events are totally ordered.

This means that read instructions can be reordered with other read or write in-
structions, as long they are accessing different parts of the memory [20].

What most architectures aim to achieve is coherence [20]. Coherence means that if there
is a certain order to write events appearing in memory, then all observing threads will see
these changes in the same order. Furthermore, it is desired to only allow causal write-
to-read events, as reading from a future write is certainly not the intended outcome a
programmer could want. With these constraints, the most permissive memory model is
called the weak memory model (see Definition 2.2.4). This is most famously used in ARM
and RISC-V chips.

Definition 2.2.4: Weak memory

A weak memory model only provides the following guarantees:

1. All accesses to the same memory location are totally ordered

2. All reading threads observe the memory changes at the same time

This means that any two memory instructions accessing different parts of the mem-
ory can be reordered on a given thread, but their result will be observable by other
threads in a single total order [20].

To demonstrate the capabilities of this weakest memory model, take the program in Fig-
ure 2.5. There are two threads, one performing two write operations to two distinct
memory locations, and the other reads them back in a reverse order. Through intuition
(which represents the SC-centric programmer’s view), the outcome a = 1 ∧ b = 0 should
be forbidden, because that would mean that by the time the first read returns, the second
write has already been finished, but after that the first write still has not appeared in
memory. However, in the case of weak memory, this is allowed in the execution seen in
Figure 2.6 – on any of the two threads, the memory operations were accessing different
memory locations and therefore could be reordered.
Note, that in the scope of this work, we are talking about the memory models of hardware.
Concurrent languages such as C/C++ and Java also have memory models, but they serve
more as an upper bound on supported relaxation rather than an actually enforceable
ruleset. They aim to ensure that one can reason about the possible behavior of portable
code as well, where the target platform (and therefore its memory model) is not fixed.
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x := 0, y := 0

x := 1 a := y

y := 1 b := x

Figure 2.5: Two threads performing two
write and two read operations

x := 0, y := 0

x := 1 a := y

y := 1 b := x

Figure 2.6: One execution yielding
a = 1 ∧ b = 0

2.2.1.1 Memory Model Specifications

The formal specification of a memory consistency model describes the actual guarantees a
specific architecture provides to the programs running on it. The above mentioned mem-
ory models (SC, TSO, weak) are families of memory models, and their broadly specified
guarantees have to be concretized. In this section, I introduce three ways to provide this
specification.

Litmus tests Litmus tests are an example-based way of providing the specification of the
memory model. Litmus tests are small, concurrent programs containing memory accesses
and classify outcomes as forbidden and allowed [20]. This is an informal specification,
because the set of provided litmus tests can be both incomplete and self-contradicting.
However, they provide an easy-to-understand way of communicating the platform specific
behaviors to the programmers, and therefore are widely used – Intel for example only
provides this specification to its memory model [12].

Microarchitectural specification The microarchitectural specification describes the
exact way a processor solves the memory ordering problem – and therefore it can be
classified as the imperative specification of a memory model [32]. It contains the pipeline
stages of the microprocessor, and the way instructions are treated in each of them. This
is harder to grasp for a programmer due to the complexity of the specification, but it is a
formal specification, and tools can use this to provide insight into the predictable behavior
of a program – however, mostly only by simulating it, as reasoning about anything bigger
than a few lines of code is infeasible through this approach. What it can be used for,
however, is to provide a second view into the memory model – for example, verifying if
the specified litmus tests of the ISA are honored by the designed architecture.

Declarative specification A declarative specification provides certain forbidden pat-
terns over candidate executions [6]. The natural language specification of the memory
models above (SC, TSO, weak) are closest to this approach, but the specification is a
formal rephrasing of the mentioned rulesets. It can be used to validate if a candidate
execution is allowed by the architecture, and this approach (in comparison to the microar-
chitectural specification) is scalable: these patterns are validated on execution graphs,
rather than after every instruction. In this work, I am using declarative specifications to
verify certain properties of concurrent programs.
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2.2.1.2 Memory Model Faults

Memory consistency models are complex parts of the architecture, requiring both the-
oretical planning and corresponding hardware design. This makes it unsurprising that
sometimes there are discrepancies between the specification and the actually observable
behaviors due to design flaws in the architecture. One such example is the read-read hazard
found in the ARM Cortex A9 microprocessor [1], which makes it possible that two read
instructions accessing the same variable on the same thread are reordered, and therefore
observe values in a different sequence than the globally coherent order. Such faults lead
to a unique memory model, where not even the most basic assumptions hold [32] – and
therefore programs running on them require special procedures to verify their correctness.

2.3 Software Verification

Software verification aims to prove that a software product satisfies its requirements [18].
This is done either by testing these properties through running the program on the target
platform (called dynamic verification), or by analyzing the program with a purpose-built
verification tool without having to run it (called static verification). The former is useful
for catching bugs in the application, but in most cases cannot provide a proof of correctness
– there will always be a corner case the testing workflow leaves out. Meanwhile, static
verification techniques can perform the following checks (among others) on a software
product:

1. Anti-pattern detection

2. Code conventions verification

3. Software metrics calculation

4. Formal verification

The first three options are built into most development environments to some extent,
and developers use it extensively to receive feedback on the quality of the code before
ever running it. The fourth option is more complicated: it aims to verify that formally
specified criteria are never violated by a program. This is slowly making its way into the
above mentioned IDEs as well, and there are tools that use formal verification techniques
to prove common requirements for a broad selection of programs (e.g. all programs written
in one programming language)5, but the ultimate goal of formal verification is to check
project-specific criteria, specified in a formal language. This way, it can be used to possibly
provide a proof of correctness or a violation witness that formally proves or disproves a
specified criterion.

2.3.1 Model Checking

Model checking is an area of formal verification, which uses a finite-state model of a system
(in the case of software verification, a program) for checking whether it meets a given set
of criteria, to provide feedback on the product’s correctness [17]. It can be used to verify
both liveness (e.g. the lack of a livelock in the system) and safety requirements.

5For example, clang-tidy: https://clang.llvm.org/extra/clang-tidy/
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An easy-to-implement approach of model checking is the generation of the state space
through enumeration. The state space is the set of all possible states in the model – for
example, in the case of a concurrent program, a single state can be described with the
state vector in Definition 2.1.2, so the entire state space is the universe over this vector. If
we can enumerate all possible states, and can filter out those that are actually reachable,
checking the criteria is a simple matter of iterating over this set and proving or disproving
the requirements one-by-one. However, it is easy to see that this approach is not feasible
for anything other than the simplest of models: if we include a single 32-bit integer in our
program, the states required to differentiate its value are 232. Even if a single state can
be stored as simply the value of this integer (so in 4 bytes), the state space would take up
more than 17 GB of data. If we included a second integer of the same size, this storage
requirement would jump to 147 EB, or 1.47 ∗ 1020 bytes, not to mention the time required
to iterate over all of these states.
When dealing with concurrent behavior, this already fast growing state space further
explodes due to the arbitrary interleavings of the different threads. This leads to the need
for a smarter approach for dealing with these kinds of problems. Some of these techniques
are introduced in Chapter 3.
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Chapter 3

Related Work

To date, a number of approaches have been developed for dealing with the problem of
concurrent software model checking. These techniques are mostly inadequate for verifying
criteria on concurrent software models where the system employs a unique memory model.
However, these provide the basis for the proposed algorithm for dealing with this problem
and thus their introduction is necessary to fully understand the presented approach.
In this chapter I elaborate on some of these techniques, contrasting their targeted use-cases
with that of this work.

3.1 Assuming Sequential Consistency

When the modeled system provides a sequentially consistent execution environment, the
problem simplifies greatly: on any of its threads, the instructions are guaranteed to be
executing in the order specified in the source, and their effects are visible to all observing
threads at the same time. This means, that the only problem to be tackled is the one
introduced in Section 4.1.5 – the large number of the possible states. The standard method
of dealing with this problem is to employ a bounded model checking algorithm [15, 16]
which tries to enumerate all violating states withing a given bound of the starting state.
To avoid visiting the same state multiple times, this method keeps track of all the states
and compares any newly visited state with the elements of this set. This is impractical
due to the large memory footprint of this approach, and has lead to another technique
called stateless model checking [21]. The main premise of this method is that it does not
store the set of visited states, but rather uses smart state space exploration techniques to
avoid redundant exploration therein.
However, even this smarter technique, when employed naively, is impractical due to the
large number of interleavings a program might have among its threads. The original
solution to this problem is the partial order reduction (POR) algorithm [33], which uses

a := 1 b := 2

c := a d := b

Figure 3.1: All total orders yield c = 1∧d = 2 because a, b, c, d are thread-local variables,
so differentiating among the states is unnecessary
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x := 0, y := 0, u := 0, w := 0

x := 1 a := y

y := 1 b := x

u := 1

w := 1

c := w

d := u

assert(¬d ∧ c)

…

[¬b ∧ a] [else]

Figure 3.2: The assertion is only reachable when instructions are reordered, and is only
violated if other instructions are also reordered

static analyses to discover thread-local variables and uses that information to produce
a smaller state space, because when a thread only works with local variables, it does
not matter whether execution overlaps with another thread doing the same (as seen in
Figure 3.1). This approach radically reduced the number of “interesting” states, but was
not suitable for large-scale verification due to its reliance on static analyses [19]. To combat
this, POR was combined with the idea of stateless model checking, resulting in the dynamic
partial order reduction (DPOR) algorithm [19]. This generated the “interesting” states
greedily, when it was time to dissolve a nondeterministic part of the program.
These approaches all assume that the modelled system employs a sequentially consistent
memory model, i.e. instructions are never observable out-of-order. As discussed in Sec-
tion 4.1.5, this is rarely the case due to the aggressive optimization on the processor’s part.
This means, that while providing stable basis for the following algorithms, they themselves
are incapable of handling the proposed problem involving weakly ordered memory.
It is important to mention that by itself, this not only means that the SC-assumption is
disadvantageous when verifying the requirements, but rather the whole approach is flawed.
Take the program in Figure 3.2 as an example: the problem is not only that the body
of the assertion never evaluates to false over SC (w =⇒ u due to program order, and
therefore ¬d ∧ c is always true), but also that the location containing the assertion is not
even reachable with that assumption. This means that even if we replaced the checks
with smarter ones that could report such violations, the violating state would never be
generated by the underlying algorithm, thus a simple adaptation of these algorithms to
weak memory is not enough, new approaches are necessary.

3.2 Getting Weaker

When talking about weak memory, it is important to distinguish between memory models
of languages and processors. While there has been substantial work on the modelling
of weak memory in processors, most tools that can handle weak memory do so on the
abstraction level of the programming language and therefore can assume a rather fixed
memory model.

12



3.2.1 Weakly Ordered Languages

Some algorithms handling weakly ordered languages extend SC algorithms to include
previously hidden behaviors in the reachable state space, and some use novel approaches
to solve the problem of almost arbitrary reorderings.
An example of the latter is the CDSChecker tool [28], which aims to use “several novel
techniques for modeling the relaxed behaviors allowed by the memory model and for min-
imizing the number of execution behaviors” to verify concurrent programs using C/C++
atomics. Even though at the time it performed quite well, compared to other tools of the
field, it has since been surpassed in both performance and features by other tools.
An algorithm which extends an SC algorithm to correctly and performantly handle weak
memory has only recently been published [24]. This approach (implemented in the tool
RCMC) uses a stateless model checking approach, but extends the rules of dissolving
nondeterministic read- and write events to correctly handle the weak memory model of
the C/C++ language – or rather, the one created by Lahav et al. [26] called RC11, which
is the fixed version of the official C11 memory model (in the sense that it is prefix-closed).
This algorithm has been the basis for the approach I propose in Chapter 4, but in itself it is
not suitable for the verification of systems employing any memory consistency model other
than that of RC11 – this means that while a C program might be correct, even taking the
weakness of the language into account, the executing hardware might still introduce bugs
or constrain the set of observable behaviors yielding false positive and negative proofs.

3.2.2 Weakly Ordered Hardware

There had been substantial work in formalizing memory consistency models before [5, 8],
but the cat language [7] in the tool herd [6] revolutionized their specification. Instead of
the interleaving semantics, it uses a declarative approach to describe forbidden patterns in
the candidate executions of programs and thus constraining the set of executions to that
of observable executions.
The main idea behind this declarative approach is to keep track of specific relations in the
candidate executions, such as:

• po: Relation between immediate successors in the program code

• ppo: Subset of po edges that are respected by the architecture

• rf : Read-From relation between a Write and a Read that gets its value from the
Write

• fr: From-Read relation between a Read and a Write that gives its value to the Read

Take the program in Figure 3.2 for example. When annotated with some of these labels
(rf , po) in Figure 3.3, the nondeterminism disappears and yet the necessary interleavings
are never explored, which means that this method discovers equivalence classes among ex-
ecutions without having to generate their elements – this is the advantage of the declarative
approach.
As an example for the checks performed by this method, let us see the program in Figure 2.5
again. If we annotate it with the labels {po, rf , ppo} according to weak consistency, we
get Figure 3.4 – the ppo relationship only appears between accesses to the same locations1.

1In the case of TSO, ppo := po \ W ∗ Rdiff \ R ∗ Rdiff and in the case of weak memory, ppo :=
po \W ∗Wdiff \W ∗Rdiff \R ∗Rdiff , where A ∗Bdiff means A and B access different variables
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x := 0, y := 0, u := 0, w := 0

x := 1 a := y

y := 1 b := x

u := 1

w := 1

c := w

d := u

assert(¬d ∧ c)

…

po po

po po

po

po po

po

[¬b ∧ a]
po

[else]
po

rf

rf

rf

rf

Figure 3.3: With this annotation, it is evident that the assertion is violated.

x := 0, y := 0

x := 1 a := y

y := 1 b := x

po po

po po

ppo ppo

rf

rf

Figure 3.4: Figure 2.5, annotated over a
weak memory model

x := 0, y := 0

x := 1 a := y

y := 1 b := x

po po

po po

ppo ppo

ppo

rf

rf

Figure 3.5: Figure 2.5, annotated over a
TSO memory model

Take coherence as an example, which in this context can be defined the following way: if a
thread has read from another thread’s write event, it cannot later read from a ppo-previous
write event. Because the y := 1 node is not preceded by any other write events in ppo,
the execution is legal – but if we annotate it as if it was over TSO, we get Figure 3.5,
where this property is violated and thus we need to discard this execution due to violating
coherency.
The main problem with this approach implemented in herd is that it still does not scale
well – tests on the scalability of tools handling weak memory done by Kokologiannakis et
al. [24] indicate that among the other algorithms, herd performs the worst because it aims
to generate all candidate execution graphs and only filters this set to get the legal set of
executions thereafter.
A promising implementation of a stateless model checking algorithm can be seen in the
tool Nidhugg [2] – it includes purpose-built algorithms for several well-known architectures
(SC, PSO, TSO, POWER), based on a DPOR algorithm for the former three [4], and a
combined operational and declarative methodology for POWER [3]. However, as shown
by Kokologiannakis et al. [24], Nidhugg performs significantly worse than the presented
RCMC tool and it cannot handle unique memory models either.

3.3 Handling Faults

A novel idea in the field of concurrent model checking is the consideration of using faulty
hardware and still being able to verify whether safety criteria are violated when running
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a program on top of it [10]. This can be useful in a number of ways: for example, having
integrated a large amount of microprocessors into a line of products only to later realize
that a newly found fault breaks the memory ordering assumptions, it would require a
recall without the option to see if a simple software update could solve the issue. This
saves not only costs, but the reputation of the company as well, because recalls generally
hurt the image of the manufacturer.
To date, there has not been published any solution to this problem other than the the-
oretical algorithm in the paper I authored [10]. However, there has been work on the
prevention side of the hardware-software co-verification workflow: the Check family of
tools [27, 32] aim to ensure that the ISA specification corresponds to the architectural
implementation by verifying whether litmus tests with forbidden or allowed outcomes are
indeed observable on the architecture – and based on the result, the implementation can
be classified as too strict, too weak or correct. When ran against the RISC-V specification,
more than a hundred violations were uncovered that aided the correction of the architec-
ture [32]. However, the utilized approach is not scalable, as these tools use an architectural
specification based on the behavior of the hardware to check the programs against – this
means that after each instruction, the entire pipeline of the processor has to be simulated.
Furthermore, the relations are defined between the different pipeline stages rather than
the instructions. This makes it unsuitable for anything other than the small litmus tests
they aim to verify.
To summarize the introduced approaches, I placed the tools and algorithms claiming to
handle concurrent programs on the Venn-diagram in Figure 3.6. Note, that there are no
contenders that provide all three aspects: handling weak memory and unique memory
models, while staying scalable. The proposed algorithm of this work aims to fill this
gap and bring concurrent software verification closer to being applicable to any execution
environment.

Can handle 
weak memory

Unique MCMs

Scalable

RCMC

Nidhugg

herd *Check

DPOR

CDSChecker

?

Figure 3.6: Venn-diagram of the related tools and techniques
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Chapter 4

Algorithm

In this chapter I describe the stateless model checking algorithm that can be parame-
terized with memory consistency models to provide a tool for verifying weakly ordered
architectures. I base the method on the algorithm implemented in RCMC [24], but mod-
ify it in its roots to be capable of handling the customizable memory models. For the
memory models, I use a declarative specification based on a simplified version of the cat
language [7]. This chapter is structured as follows: in Section 4.1, I show how the algo-
rithm manipulates execution graphs (introduced in Section 3.2.2) to generate all possible
execution graphs through informal descriptions and examples. After that, I formalize the
algorithm for generating these execution graphs in Section 4.2. Next, I elaborate on the
filtration possibilities to get the legal executions in Section 4.3 and finally I provide a proof
of soundness and optimality in Section 4.4.
The implementation specific parts of this algorithm can be found in Chapter 5.

4.1 Execution Graphs

Execution graphs are directed, edge- and vertex-labelled graphs. The vertices’ labels
contain information on the type of memory instruction they represent:

• W(g, v): Write to g with literal value v.

• R(g): Read from g

• F: fence

The edges are labelled with relations akin to the ones defined in Section 3.2.2. Namely:

• po: Relation between immediate successors in the program code

• rf : Read-From relation between a Write and a Read that gets its value from the
Write

• mo: Modification order (total order of Write events to a specific location)

Any other relation (such as ppo) can easily be constructed during filtration, as seen in
Section 4.3.
Furthermore, we maintain a set of read nodes called Revisitables (R), the importance of
which will be explained in further sections.
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x := 0

x := 1 a := x

Figure 4.1: Two threads performing a
write and a read operation

W(x, 0)

Figure 4.2: Execution graph containing
the initial write

W(x, 0)

W(x, 1)

(a) New write after initial

W(x, 0)

W(x, 1)

(b) New write before initial

Figure 4.3: Execution graphs after insert-
ing the first write

It is important to note that an execution graph only contains nodes related to globally ac-
cessible variables. Local and thread-local variables are not handled through this algorithm,
as they generally behave predictably and deterministically.
Through the following sections, I show how the execution graphs are generated from the
simple program in Figure 4.1.

4.1.1 Initial Values

At first, the algorithm starts off with an empty execution graph. As most programming
languages (such as C/C++) demand an initial value for all global (or rather, static)
variables, every such variable will have a corresponding Write node. These are not yet
connected to any other vertex, and represent the root(s) of the directed graph later on.
In the example, there is one global variable: x. After creating the corresponding node,
the execution graph can be seen in Figure 4.2.

4.1.2 Handling a Write

Let us take the Write instruction (W (x, 1)) and see how we need to maintain the three
types of relations on the graph. The instruction is sequenced after the initial write, so
there must be a po edge between them. Furthermore, all possible mo sequences have to
be explored, so we duplicate the graph and on one we insert the new write after the initial
write to x, and on the other we insert it before that. It seems obvious that only of these
executions is sensible – but without knowing the memory model, we have to throw away
all presumptions about it, such as that same-address stores are totally ordered in po.
At this time there were no Read nodes to accept the written value, so no rf edges were
added. The resulting execution graphs can be seen in Figure 4.3.

4.1.3 Handling a Read

If we take the read instruction now, there are two possible sources it could read from – the
initial write W (x, 0), or the other write W (x, 1). We have to explore all possibilities, so
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W(x, 0)

W(x, 1) R(x)

(a) a = 0

W(x, 0)

W(x, 1) R(x)

(b) a = 1

W(x, 0)

W(x, 1) R(x)

(c) a = 0

W(x, 0)

W(x, 1) R(x)

(d) a = 1

Figure 4.4: Execution graphs after insert-
ing the read

x := 0

x := 1 a := x

x := 2 b := x

Figure 4.5: Two threads performing two
write and two read operations

W(x, 0)

W(x, 1) R(x)

R(x)

(a) a = 0 ∧ b = 0

W(x, 0)

W(x, 1) R(x)

R(x)

(b) a = 0 ∧ b = 1

W(x, 0)

W(x, 1) R(x)

R(x)

(c) a = 1 ∧ b = 0

W(x, 0)

W(x, 1) R(x)

R(x)

(d) a = 1 ∧ b = 1

W(x, 0)

W(x, 1) R(x)

R(x)

(e) a = 0 ∧ b = 0

W(x, 0)

W(x, 1) R(x)

R(x)

(f) a = 0 ∧ b = 1

W(x, 0)

W(x, 1) R(x)

R(x)

(g) a = 1 ∧ b = 0

W(x, 0)

W(x, 1) R(x)

R(x)

(h) a = 1 ∧ b = 1

Figure 4.6: Execution graphs after inserting the read

yet again we duplicate the graphs and draw the corresponding rf edges and the po rela-
tions between the nodes, in all execution graphs. Furthermore, we append the new Read
instruction to the set of revisitable reads R in every pre-existing execution graph (so in 2
of the resulting 4). The result is visible in Figure 4.4.
With this addition, the generation of the execution graphs has finished and yielded 4
execution graphs. Now let us extends this example with a new read and new write node,
as seen in Figure 4.5!
If we start with the new Read instruction, the process is very similar to the last read –
we need to duplicate all existing execution graphs, and in half of them the new read will
get its value from the initial value while the other times it reads from W (x, 1). In all pre-
existing graphs we also mark the new read as revisitable, and place it in the corresponding
R. However, in every other case we also mark all reads in the new node’s (po ∪ rf )-prefix
non-revisitable to avoid redundant exploration. The resulting 8 execution graphs can be
seen in Figure 4.6.

4.1.4 Handling Revisit Sets

If we try to insert the last remaining node W (x, 2), we run into the problem of deciding
which (if any) existing reads should get its value instead of the one represented on the
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W(x, 0)

W(x, 1)

W(x, 2)

R(x)

R(x)

(a) a = 0 ∧ b = 0

W(x, 0)

W(x, 1)

W(x, 2)

R(x)

(b) a = 2

W(x, 0)

W(x, 1)

W(x, 2)

R(x)

R(x)

(c) a = 0 ∧ b = 2

Figure 4.7: One mo-order of the subexecutions of Figure 4.6a.

existing graphs. This is where the sets of revisitable reads (R) come into play: they contain
the reads that are not necessarily bound to their current incoming rf edge.
As for po and mo edges, everything goes as discussed earlier: we bind the first write to
the second via a po edge, and then multiplicate the graph as many times as necessary to
being able to place the new node in mo in any order – in this case before the mo-first
write, after the mo-last write or in-between. This makes the set of execution graphs grow
threefold.
After dealing with the po and mo edges, new rf edges have to be added. Firstly, we
calculate all independent (i.e. the reads cannot reach each other through po ∪ rf ) subsets
of R to get the so-called revisit sets R. Afterwards, we yet again multiplicate the graph
to get the number of revisit sets, and assign each their own R. In each of these execution
graphs, the elements of R lose their incoming rf edges, and instead new rf edges are
added between the new write and these reads. We remove all (po ∪ rf )-future these reads
might have had (as this new value potentially disturbs the program flow later on), and
mark these nodes and all of their (po ∪ rf )-predecessors non-revisitable in the resulting
R.
Following this procedure, we are left with 42 execution graphs1. This is more than I can
present here, so I included only a subset of the subexecutions of Figure 4.6a in Figure 4.7.
Note the lack of an a = 2 ∧ b = 2 outcome – because we revisited the first read, its entire
future had to be erased as to not breach program flow. However, that outcome will be
generated – the missing read can be re-added with all the rules that apply when handling
a read, and there will be a corresponding outcome.

4.1.5 Effect of the Memory Model

As we have previously seen, even a seemingly simple program might have numerous execu-
tion graphs due to the different combinations of rf -edges and mo-orders. However, most of
these combinations are most likely illegal according to the underlying memory model – the
execution graphs greatly outnumber consistent execution graphs in most cases. However,
striving to be memory consistency-independent, the algorithm cannot discard executions
without proof that a specific execution will cause a memory model violation.
In this work, I evaluate two separate approaches to this problem. One method is to
generate all execution graphs without paying attention to legality, until such an execution
is found that violates the safety criteria. If that execution is allowed by the memory
model, the violation is observable and should be reported that the program does not

1Revisiting 4.6a and 4.6e yield 3-3 new execution graphs, 4.6c and 4.6g yield 2-2 and the others remain
untouched. Growth from the mo order is threefold, so 3 ∗ (3 + 1+ 2+ 1) ∗ 2 = 42 new graphs are created.
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Algorithm 1: ExecutionGraphs(p) returns the set of execution graphs in p

Input: A program p(T,Q)
Output: The set of execution graphs in p

1 S← {( InitialStack(T ), EmptyGraph(), T )}
2 EG← ∅
3 while |S| > 0 do
4 (S,EG,E)← s ∈ S
5 S← S \ {(S,EG,E)}
6 while ¬IsBlocked(p, S,E) do // IsBlocked returns true if p is blocked
7 q ← GetNextStmt(p, S,E) // GetNextStmt returns an enabled statement
8 S← S ∪ Execute(q, s) // Execute builds EG, returns new states
9 end

10 EG← EG ∪ {EG}
11 end
12 return EG

satisfy its requirements. Otherwise, the search continues until such a violation is found,
or all executions are explored.
Another method is to keep track of violations as they happen. A disadvantage of this
approach is the overhead of checking for violations every time a new element is added
to the execution graph, but this can potentially generate significantly fewer executions in
comparison with the former approach. The key idea is to classify violations as transient
or permanent based on the possibility of being dissolved by the rules of execution graph
construction. If a permanent violation is found, no subexecution of the execution graph
can be legal (as the violation can never be dissolved), and therefore there is no need
in exploring them. If however, a transient violation is found, it does not permit this
broad discarding procedure but rather potentially filters the threads that can supply new
instructions. The details to this approach can be found in Section 4.3.

4.2 Generating the Executions

In this section I formalize the algorithm introduced in Section 4.1. To summarize its goals:

• The algorithm should generate all possible execution graphs of its input program

• No execution graph should be generated multiple times

• All subexecutions are self-contained, i.e. they are entirely independent of each other
(to achieve statelessness)

The entry point to this algorithm is the ExecutionGraphs procedure, visible as Algo-
rithm 1. At first, the set of current states S is initialized with the starting state of the
program, expressed as a tuple (S,EG,E). This tuple is slightly different from the one
defined in Definition 2.1.2, as the global valuation has been replaced with an execution
graph EG. However, EG contains a superset of the information contained in the global
valuation (as this is readily available in the form of rf edges), so we do not lose any
information.
The main loop of the algorithm (starting at line 3) runs until there are states to be explored
in S and fills up the previously initialized set EG with execution graphs, by choosing one
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in each iteration (s) the elements of which are S,EG,E, respectively. Firstly, this element
is subtracted from EG (to avoid being used multiple times), then all of its instructions are
processed in the loop starting in line 6). This loop runs until all threads become blocked
(i.e. they have finished execution, or are blocked by some other construct – indicated
by the predicate IsBlocked), as after that no instructions remain to be processed. If
execution has not yet finished, let q be an enabled statement (i.e. in a non-blocked thread,
fulfilling all possible prerequisites in S) received from GetNextStmt. After processing
q in Execute (see Section 4.2.1), we add the newly created states to S. If a blocked state
is reached, we add the execution graph EG to the EG set. When the set of states S is
empty, we return EG and the algorithm is finished.

4.2.1 Executing a Statement

For the purposes of this algorithm, there are four distinct types of statements in a program:

1. Read instructions (assigning a local variable the value of a global variable)

2. Write instructions (assigning a literal to a global variable)

3. Fence instructions (semantics depends on the memory model)

4. Other instructions (local variable assignments, program flow modifiers, etc.)

The 4th type of statement is only used by the algorithm to determine which statements
are enabled (in the form of an if or assume statement, for example) and to keep track of
the local variables which appear on the local valuation. These statements are not present
on the execution graphs, unlike the first three, which appear directly.
The first three types are handled by the procedures NewRead, NewWrite and
NewFence, respectively, which are called by the Execute procedure based on their
type. The role of these procedures is to maintain the set of revisitable reads R, and insert
or delete nodes and edges in the execution graph EG. The NewFence procedure only
places the fence at the end of the corresponding thread with a po edge, and therefore it
will not be further discussed. Its importance will come up in Section 4.3.
Note, that for the sake of simplicity the R set is assumed to contain reads from a single
memory location. Were this not the case, a simple filtration can yield the variable-specific
set of revisitable reads, after which it behaves exactly as described.

4.2.1.1 NewRead

When processing a read statement qr, the goal is to find suitable write statements to read
from, and to make sure any future write statement will be able to supply a value as well.
To make this happen, we must explore all such subexecutions of EG where qr reads from
an existing write, and in exactly one of those subexecutions we also add qr to the set of
revisitable reads R. This means that in exactly one subexecution the write qr reads from
is not fixed, and therefore any future write might revisit it, i.e. supply its own value to qr.
The algorithm that satisfies these requirements can be seen as Algorithm 2. It iterates
over all the writes to the global variable where qr reads from, and it creates a new state
with an added w ∈W → qr rf edge2 for every such w. In all but the last case (where the

2And the po edges as well (from the last instruction of the given thread when that exists, or all the
initial writes if it does not)
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Algorithm 2: NewRead(qr, s) returns the set of new states after adding qr

Input: A read qr(l, g) and a state s(S,EG,E) (l: local-, g: global variable)
Output: The new states after applying qr to s

1 S← ∅
2 W ←W (EG, g) // All writes in EG writing to g

3 while |W | > 0 do
4 w ∈W
5 W ←W \ {w}
6 if |W | = 0 then
7 s←AddRRead(s, w, qr) // AddRRead creates a revisitable read w → qr

8 else
9 s′ ←AddRead(s, w, qr) // AddRead creates a simple read w → qr

10 S← S ∪ {MarkFinal(s′, {w, qr})}
// MarkFinal marks the (po ∪ rf)-predecessors non-revisitable

11 end
12 end
13 return S

remaining W set is empty), this new state gets put into S, where it corresponds to a newly
created and to-be-explored subexecution. When the last w is processed, the resulting state
replaces the old state of the execution under construction.
An important difference between the new states and the current state’s replacement is
revisitability. When the current state is replaced with a new one, qr is marked to be
revisitable, and is put into R. In all other cases, the read is not only not marked to be
revisitable, but all (po ∪ rf )-predecessors of both w and qr are marked as non-revisitable
as well. This is done to avoid redundant exploration – the set of revisitable reads that
we discarded this way are included as a subset of the R set in the former case, and are
therefore properly handled.

4.2.1.2 NewWrite

A write statement qw is the source of rf edges and supply the values to read statements.
When a new one is added, on the one hand all possible rf edges need to be drawn,
while on the other all possible mo-orders have to be generated, while remaining non-
redundant in all subexecutions (and therefore optimal in the terms of generated execution
graphs). Special care has to be taken when generating the mo-orders, because those are
not reflected in the final execution graphs as value assignments, and therefore it is easy to
create non-unique subexplorations.
The resulting algorithm can be seen as Algorithm 3. It starts off by creating two sets:

• R: The set of all possible revisit sets R. This includes all subsets of R filtered by
the Independent function, which only lets sets containing (po ∪ rf )-independent
reads remain.

• W : The set of (ordered) list of writes to the same memory location as qw, with the
new write qw included at every possible position.
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Algorithm 3: NewWrite(qw, s) returns the set of new states after adding qw

Input: A write qw(g, v) and a state s(S,EG,E) (g: global variable, v: value)
Output: The new states after applying qw to s

1 S← ∅
2 R←Independent(2R(EG)) // Set of all possible independent Rs
3 W ←Sequence(W (EG, g)) // All sequences among writes in EG writing to g

4 while |R| > 0 do
5 R ∈ R, R← R \ {R}
6 while |W | > 0 do
7 w ∈W , W ←W \ {w}
8 s′ ←UpdateMo(s, w) // UpdateMo updates the mo-order to reflect w

9 while |R| > 0 do
10 r ∈ R, R← R \ {r}
11 s′ ←Invalidate(s′, r) // Invalidate invalidates r's (po ∪ rf)-future
12 s′ ←AddRead(s′, qw, r)
13 s′ ←MarkFinal(s′, {r})
14 end
15 if |W | > 0 ∧ ¬is_lastw(qw) then s′ ←MarkFinal(s′, {succw(qw)})
16 if |W | = 0 ∧ |R| = 0 then
17 s← s′

18 else
19 S← S ∪ {MarkFinal(s′, {qw})}
20 end
21 end
22 end
23 return S

The procedure then iterates over the elements of the product of these two sets, and in each
step it updates the mo-order to that of w ∈ W , and then performs the following actions
on R ∈ R:

1. Invalidates the effects of ∀r ∈ R on the execution graph (i.e. removes all nodes from
their (po ∪ rf )-future)

2. Adds a (non-revisitable) rf edge between qw and every r ∈ R

3. Removes ∀r ∈ R and all of their (po ∪ rf )-predecessors from R

If this iteration is not yet final over W , and qw is not the last element of the mo-order,
all reads (po ∪ rf )-preceding the mo-next write of qw in w are removed from the revisit
set R.
Afterwards, the procedure adds this newly created state (while marking all (po ∪ rf )-
predecessors of qw non-revisitable) to the set of new states (S) – unless it is the last
iteration over W × R, in which case the old state is replaced by this new state in the
subexecution that called NewWrite in the first place. With this step, the procedure
concludes and returns S.
So far, the algorithm generates all possible execution graphs, without paying attention to
legality. As discussed earlier, this is one of the approaches to this problem – generate all
executions first, and when a safety violation is found, check if the execution leading up
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to it was legal. However, there is also the approach when we want to eliminate illegal
instructions early on. In this case, the procedures adding to and removing from the
execution graphs (nodes and/or edges) must test the result for violations, and either stop
the subexecution’s exploration (in the case of a permanent violation), or constrain the
enabled threads (when a transient violation is found).

4.3 Is an Execution Legal?

Inspired by the cat language [7] employed by herd [6], memory inconsistency patterns are
described over an execution graph using:

1. its edges and nodes,

2. constructs of these edges and nodes, and

3. their primitive properties such as acyclicity, emptyness and irreflexivity.

The edges that the execution graph contains by default (as seen in previous sections) are
po, mo and rf edges. Nodes are Writes, Reads and Fences. Expressions (constructs)
among these edges can be of the following types (expressed as n-ary functions):

1. empty()→ new empty execution graph

2. next(EG,EG1, EG2)→ new execution graph only containing existing edges in EG,
whose origin nodes are in EG1 and target nodes are in EG2

3. succ(EG,EG1, EG2)→ new execution graph only containing edges between nodes
that reach each other in EG, whose origin nodes are in EG1 and target nodes are in
EG2

4. source(EG)→ new execution graph only containing edges’ origin nodes in EG

5. target(EG)→ new execution graph only containing edges’ target nodes in EG

6. multiply(EG1, EG2) → new execution graph containing edges between all nodes
of EG1 and EG2

7. subtract(EG1, EG2) → new execution graph containing the differences between
EG1 and EG2

8. intersect(EG1, EG2) → new execution graph containing the intersection of EG1

and EG2

9. union(EG1, EG2)→ new execution graph containing the union of EG1 and EG2

Furthermore, execution graphs can be filtered by type (edge- and node types as well), and
we also define expressions for the following constructs:

1. ForEachThread(expr)→ expr is evaluated for ∀t ∈ T

2. ForEachVariable(expr)→ expr is evaluated for ∀v ∈ Q

3. ForEachNode(EG, expr)→ expr is evaluated for ∀node ∈ EG
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Empty(
ForEachThread(

next(
rf( EG ),
CurrentThread( W( EG ) ),
CurrentThread( R( EG ) )

)
)

)

Listing 1: Constraint on the lack of
intra-thread rf edges

For each of these complex constructs, nodes can be filtered by the current iteration of
threads, variables or nodes – for example, in Listing 1, the CurrentThread filter will
only let those nodes in EG pass through to the next function, which are in the thread of
the current iteration step in ForEachThread.3

Furthermore, properties (acyclicity, irreflexivity and emptyness) can be combined through
the Boolean operations and and or, but cannot be negated (see Section 4.3.1 for justifica-
tion).
Beside following rules constructed from the expressions above, memory models must also
abide by the following rules:

• Reads can only read from existing writes4

• Both Writes and Reads behave correctly, i.e. they atomically interact with exactly
one memory location (and that location is fixed from the source)

However, if these constraints are satisfied, any memory model can be specified. To justify
this, consider the constructs the cat language describes [7]. It is easy to see that all such
constructs either exist in this model as well, or can be created by combining some functions
above – see Appendix A.

4.3.1 Permanence

As mentioned in previous sections (4.1.5, 4.2), we classify inconsistencies as transient or
permanent. The better an algorithm is at identifying permanent violations, the fewer
pointless executions we have to explore – the goal is to keep this number at 0.
The permanent violations only consist of nodes that are:

• not (po ∪ rf )-preceded by any revisitable reads

and edges that are:

• not removable later (e.g. rf edge going to a non-revisitable read), or

• not path-removable5 later (only in the case of succ, e.g. mo)
3Note that this example expresses inconsistencies in the form of same-thread rf edges, which is rarely

a violation in any memory model.
4If a write gets removed from the execution graph, no read can read from it anymore
5If there is an edge a → b, then in all subexecutions there will be a path a⇝ b
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1 Empty(
2 ForEachNode(
3 R( EG ),
4 next(
5 rf( EG ),
6 source(
7 succ(
8 mo( EG ),
9 W( EG ),

10 source(
11 next(
12 rf( EG ),
13 W( EG ),
14 CurrentNode()
15 )
16 )
17 )
18 ),
19 target(
20 succ(
21 po( EG ),
22 CurrentNode(),
23 R( EG )
24 )
25 )
26 )
27 )
28 )

Listing 2: Coherence relation for weak
memory

W(x, 0)

W(x, 1) W(x, 2) R(x) R(x)

R(x) R(x)

(a) 1 is written before 2

W(x, 0)

W(x, 1) W(x, 2) R(x) R(x)

R(x) R(x)

(b) 1 is written after 2

Figure 4.8: Four threads demonstrat-
ing incoherence

Any other violation is classified as a transient violation.
The reason why negation of the properties is not allowed in the memory model is this
permanence detection – it is easy to decide whether a result might become non-empty,
acyclic or irreflexive but deciding the same about their negations is much harder (e.g. will
an empty set become non-empty at some point?). Lacking information on permanence will
lead to suboptimal exploration, which we are trying to avoid – so this constraint on the
properties exists to aid that. Furthermore, there is no reason why a violation might come
from being acyclic, empty or irreflexive – an empty execution graph would be violating if
that were the case, and then there is no point in running the algorithm.
As an example, see Figure 4.8 and the accompanying rule coherence on Listing 2. The
rule states that there shall be no such construct for any read instruction (lines 1-3) where
an rf edge exists (lines 4-5) between a write node such that it is mo-succeeded by the write
(lines 6-9) the chosen read reads from (lines 10-16); and a read node that is po-preceded
by the chosen read (lines 19-25). Consider the two executions in Figure 4.8 in light of
this rule – in the first case (4.8a) W (x, 2) is sequenced after W (x, 1) and therefore the
4th thread is incoherent (there is a mo-previous write of the write a read reads from,
which supplies its value to a po-successor of the same read), while in 4.8b the same can be
said about thread 3 – furthermore, there are no executions where the two threads could
read the values in a different order (this is what coherence is about). As there are no
revisitable reads in either of the executions, and the only removable edge type (mo) is not
path-removable and is only present in succ functions, all violations are permanent, i.e. no
further exploration is necessary to know that every subexecution will also be in violation
of the MCM.
Now consider the execution in Figure 4.9 where on the violating reader thread the first
read is revisitable. Even though this is the same violation as in Figure 4.8b, the nodes

26



W(x, 0)

W(x, 1) W(x, 2) R(x) R(x)

R(x) R(x)

Figure 4.9: The first read is revisitable on thread 3

and edges that make up the violation are not all non-removable. The rf edge going to
the revisitable read is easily removable by a new write to x, and by extension to that the
next read disappears (as the (po ∪ rf )-future of the first read is discarded), making it
removable as well. This means that the exploration must not end here, there still might be
a future subexexution where this violation is dissolved – but it does not mean that nothing
can be done. We can constrain the set of enabled threads to aid dissolving this issue: all
the threads that contain removable nodes that also constitute a violation are disabled until
this violation is sorted out. This does not remove any possible subexecutions from the set
of possible ones – on the one hand, the order of handling instructions does not matter,
and on the other hand that future would always be removed if the removable nodes get
removed (because any po-successor to a removable is also a removable).

4.4 Soundness and Optimality

As the algorithm is based on the one described by Kokologiannakis et al. [24], their proofs
on optimality and soundness (with minor modifications) hold for this method as well.
Therefore, only an outline will be presented here that is necessary to understand how this
algorithm works, and not a full formal proof.

4.4.1 Soundness

To prove that the algorithm is sound, it needs to be shown that there will never be any
false positive and false negative results.
False negatives in this context mean that we failed to report a program that breaks a
safety requirement. This can be caused by three things: either the assertion (or other
violation) was not reached in program flow, the assertion was evaluated to be true when it
should have been false, or a false MCM violation was reported and therefore the assertion
violation was dismissed. The first case is impossible following the subexecution generation
algorithm: all reads will eventually try to read from all writes (see [24] for further details),
and therefore every possible branch of the program will be explored. The second is also
impossible when the algorithm is implemented correctly: the state vector holds a valuation
to all variables, and therefore any expression can be easily and correctly evaluated. The
final possibility for a false negative outcome is in the hands of the specification designer:
if the MCM was correctly specified, there will never be an incorrectly reported violation.
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R(x)

W(x, 1)

(a) W (x, 1) is removable because R(x) ∈ R

R(x)W(x, 1)

(b) R(x) → W (x, 1) is removable because
R(x) ∈ R

Figure 4.10: Types of removability

False positives on the other hand are cases where we reported a safety criterion violation
by mistake. Through the same reasoning as with false negatives, this can never happen –
the algorithm will always correctly evaluate both an assertion- and a MCM violation.

4.4.2 Optimality

To show that the algorithm is optimal, consider the method where we discard any perma-
nent violations. I show that in each step, all explored subexecutions have the potential to
be legal over the given MCM.
As seen in [24], their algorithm (that hardcoded the check for RC11 memory model vio-
lations) is optimal in the sense that it never generates two identical subexecutions. This
needs to be extended with the fact that no subexecution will be explored that can only
yield violating ones.
To do this, I show that no transient violations exist that yield only violating subexecutions.
Consider the types of removables – either a node that is (po ∪ rf )-preceded by a revisitable
read, or an edge that is not yet final, i.e. that can be re-routed when more information is
added to the execution (see Figures 4.10a and 4.10b).
In both cases, the violation might come from the following sources:

1. W (x, 1) or the rf edge is in an execution graph that is supposed to be empty

2. W (x, 1) or the rf edge is part of a cycle in an execution graph that is supposed to
be acyclic

3. W (x, 1) or the rf edge is part of a reflexive relation in an execution graph that is
supposed to be irreflexive

In all cases, the lack of the removables consitute a dissolution of the violation – in the
case of the emptyness property this is trivial, as it leaves the set that is supposed to be
empty; in the case of the cycle it is broken if any edge or node is taken out; and in the
last case a reflexive relation ceases to exist when either of the two edges (that constitute
the relation) or the node disappears. Thus, there will be no such subexecution where a
violation is marked as transient but no legal execution can come of it as a subexecution6.

6note that in a specific execution this might still be the case – but from the information at hand during
this decision that could not be deduced
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Chapter 5

Implementation

In the previous chapter I introduced the algorithm for generating consistent execution
graphs given a specific memory model. However, that description was purely theoretical
for the sake of formality – in this chapter, I present a practical implementation as part
of the Theta framework1 [31], which is a generic and configurable verification framework
supporting various formalisms and algorithms.

5.1 The Formalisms

In order to implement the algorithm, I needed two formalisms: one for the representation
of the programs defined in Definition 2.1.1 and another for the representation of the
memory model as seen in Section 4.3. For the latter, I also could have used the feature-
wise similar cat language [7], but to aid the simplicity of the implementation I opted for
a DSL consisting of a few constructs (as opposed to the syntactically rich cat language).
Its grammar (in BNF-like format) is:
<specification> ::= <definition>* <constraint>*

<definition> ::= <id> "=" <expr>
<expr> ::= "(" <expr> ")" # enclosedExpr

| "{}" # emptysetExpr
| <id> # namedExpr
| <id> ("[" <tag> "]")* # taggedExpr
| <id> "(" <expr> "->" <expr> ")" # nextExpr
| <id> "(" <expr> "-->" <expr> ")" # succExpr
| "for_each_var begin" <expr> "end" # forEachVarExpr
| "for_each_thrd begin" <expr> "end" # forEachThreadExpr
| "for_each_node" <expr> "begin" <expr> "end" # forEachNodeExpr
| <expr> "union" <expr> # unionExpr
| <expr> "intersect" <expr> # sectionExpr
| <expr> "\" <expr> # differenceExpr
| <expr> "*" <expr> # multiplyExpr
| "source(" <expr> ")" # sourceExpr
| "target(" <expr> ")" # targetExpr

<constraint> ::= <id> ("acyclic" | "irreflexive" | "empty") # simpleConstraint
| "(" <constraint> ")" # enclosedConstraint
| <constraint> "&" <constraint> # andConstraint
| <constraint> "|" <constraint> # orConstraint

<id> ::= "[a-zA-Z]"("[a-zA-Z0-9_]")*

1https://github.com/ftsrg/theta/
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main process simple {
var err : bool

init loc L0
loc L1
error loc Le
final loc Lf

L0 -> L1 {
havoc err

}

L1 -> Le {
assume err

}

L1 -> Lf {
assume not err

}
}

(a) Source code

L0

L1

Le Lf

havoc err

assume err assume not err

(b) Graphical representation

Figure 5.1: A fairly minimal CFA program

Semantically, expressions are functions of the type e(p∗i )→ (EG
∨
{nodes}), i.e. they take

some arguments and produce either an execution graph or a set of nodes2. The definitions
consist of a named expression, whose name can also be used as part of a constraint (or
a namedExpr) to specify properties of the expression. These properties include the three
checks (acyclicity, irreflexivity, emptyness) and boolean and and or operations among
them.
As for the representation of a concurrent program, I opted to use the eXtended Control
Flow Automaton (XCFA) formalism, which I had previously integrated into the Theta
framework and it exists as a beta future of the tool3. This formalism relies on the CFA
formalism at its core, which has the following elements:

• Variables

• Locations

– Initial location
– Final location (not mandatory)
– Error location (not mandatory)

• Transitions between Locations

• Statements on transitions

– Assume statements as guards
– Arithmetical and logical statements of variables
– Havoc statements for as nondeterministic inputs
– Skip statements for no-op transitions

See Figure 5.1 as an example to a pure CFA model.
2For a more detailed specification see Appendix A
3https://github.com/ftsrg/theta/blob/xcfa/
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var err : bool (false)
main process reader {

main procedure mproc() {
var l_err : bool

init loc L0
loc L1
error loc Le
final loc Lf

L0 -> L1 {
l_err <- err

}

L1 -> Le {
assume l_err

}

L1 -> Lf {
assume not l_err

}
}

}
process writer {

main procedure mproc() {
var l_err : bool
init loc L0
final loc L1

L0 -> L1 {
l_err := true
l_err -> err

}
}

}

(a) Source code

L0

L1

Le Lf

l_err <- err

assume l_err assume not l_err

(b) reader thread

L0

L1

l_err := truel_err := true
l_err -> err

(c) writer thread

Figure 5.2: A fairly minimal XCFA program

XCFA on the other hand extends CFA the following ways:

• CFAs represent procedures, which are self-contained pieces of behavior embedded
into processes

• Processes represent the threads of a concurrent program

• Global variables are accessible from any scope, thread-local variables are accessible
from the containing process, and local variables are the variables of the CFA-like
procedures

• New statements aid concurrent program representation

– AtomicBegin, AtomicEnd statements for atomic blocks
– Wait, Notify, NotifyAll statements for conditional synchronization
– MutexLock, MutexUnlock statements for mutual exclusion
– Load and Store statements for global variable accesses
– Call statements for procedure calls

• Variables can have initial values

A similar program to Figure 5.1 can be seen as an XCFA program in Figure 5.2.
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Semantically, an XCFA program is handled the following way in this implementation:

1. All processes are started at the beginning of the execution and run asynchronously

2. A process starts at its main procedure’s initial location and finishes in its final

3. An error-state can either be defined as an error location (when it is local), or as a
predicate on the state vector

4. Atomic blocks run exclusively when active (i.e. no other thread can perform anything
during its execution)

5. Atomic accesses are denoted by the Load and Store statements, non-atomic accesses
by the Assignment statement

6. Accesses to global memory are not ordered

As the algorithm is working with the accesses to the global memory area, other types of
synchronization are forbidden (conditional and mutex-based synchronizations).

5.2 The Algorithm

As mentioned above, I developed a PoC implementation to the proposed algorithm as part
of the Theta framework [31]. As this framework is predominantly developed in Java, I
opted to use this language as well – because I am only trying to show the applicability of
the approach and not the absolute best performance it could achieve, this is not a problem
and also allows for a more concise implementation.
The core of the algorithm for generating executions is about the closest it can get to the
pseudocode in Section 4.2. The main difference is the use of a maximal depth parameter
to avoid being stuck in a loop forever.
Furthermore, the use of an ThreadPoolExecutor to explore the subexecutions means that
the algorithm can work concurrently on the set of execution graphs – as a subexecution
barely accesses globally available structures, this can mean a significant speedup compared
to the single-threaded approach. This affects neither soundness nor optimality, because
due to the statelessness of the algorithm all subexecutions are independent of each other
(except for direct descendants).
As part of the CLI tool for the algorithm, a number of attributes are customizable before
running the algorithm. These are the following:

--insitu-filtering
Enables in-situ filtering for memory model violations (Default: false)

--all-states
Print all resulting states as .dot files (Default: false)

* --mcm
Path of the input MCM model

* --model
Path of the input XCFA model

--poolsize
Size of the thread pool (Default: 1)

--print-cex
Print counterexample as cex.dot (Default: false)

--max-depth
Maximal depth of exploration in any thread (0 for unlimited depth) (Default: 0)

As seen from these switches, there are two main options for the algorithm: if the
--all-states switch is specified, then the algorithm will not stop at the first error
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W(err, 0)_0

R(err)_0

rf

W(err, 1)_1

mo

Assertion violation

W(err, 0)_0

R(err)_0 W(err, 1)_1

mo

rf

(a) --all-states --insitu-filtering

Violated samevar_w

W(err, 0)_0

R(err)_0

rf

W(err, 1)_1

mo

Violated samevar_w

W(err, 0)_0

R(err)_0 W(err, 1)_1

mo

rf

W(err, 0)_0

R(err)_0

rf

W(err, 1)_1

mo

Assertion violation

W(err, 0)_0

R(err)_0 W(err, 1)_1

mo

rf

(b) --all-states --no-insitu-filtering

Assertion violation

W(err, 0)_0

R(err)_0 W(err, 1)_1

mo

rf

(c) --no-all-states --insitu-filtering
Assertion violation

W(err, 0)_0

R(err)_0 W(err, 1)_1

mo

rf

(d) --no-all-states --no-insitu-filtering

java -jar theta-xcfa-cli-stateless-2.7.1-all.jar --mcm mcm/weak.mcm --model xcfa/err.xcfa

Figure 5.3: Returned graphs of Figure 5.2 over a weak memory model

state but will rather explore all executions and print the results as .dot files, and if the
--insitu-filtering switch is specified not all subexecutions will be explored, only those
containing no permanent violations. This gives four possible methods for verifying a pro-
gram, as seen in Figure 5.3 – they all produce the counterexample when the read reads
from the second write, but the set of returned states differ.
The maximal depth attribute comes in handy when a thread is updating its state based
on a global variable in a continuous loop. Consider the program in Figure 5.4 – it is
almost the same as Figure 5.2, but this time the reader process waits in a loop until the
value of err becomes true. When verifying this with a --max-depth value of 1, we get the
same results as in Figure 5.3 – except for the assertion violations, because after adding
the first node on the execution graph, we cease to explore instructions on that thread.
However, if we increment this number, we get the possible executions that can happen in
that amount of iterations4 as seen in Figure 5.5. At a bound of N , the output (with the
--insitu-filtering switch) contains all executions where at the nth(n < N) iteration
the reader thread finally reads true and the error location is reached (e.g. an assertion is
violated), and two further executions, where one represents the possibility that the reader
thread never reads true under this bound, and the other represents the case that the
thread reads true at exactly the bound value – this causes execution to stop, so the XCFA
cannot step into its error location.
Without this upper bound on the number of nodes in the execution graph, exploration of
the state space will never terminate – there will always be a case where the loop can still
read false in its next iteration. Of course, this also means that we have constrained the
set of verifiable programs to those with a finite state space, and to any other program we
can only say whether it violates safety criteria in the first N instructions. This is however

4In general, the number of added nodes is what counts – any number of unrelated instructions can
happen, the execution graph can only contain that many nodes in a given thread
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Figure 5.5: Output of the verification with a given bound

a practice employed by many tools that operate with a Bounded Model Checking (BMC)
algorithm – and therefore I classify this as a minor limitation as opposed to an unsuitable
approach.
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Chapter 6

Evaluation

In order to show the capabilities of the proposed approach, in this chapter I show how
simple problems can be mapped to the inputs of the implementation, and how it performs
compared to tools targeting similar fields (Nidhugg [2] and RCMC [24]). Finally, I discuss
future improvements to the approach.

6.1 Carrying Out Hardware-Software Co-Verification Tasks

As seen throughout the chapters of this work, the proposed algorithm takes two formal
models as inputs: a memory consistency model and a concurrent program, the formalisms
for which have been introduced in 5. In this section I show how the three basic memory
consistency models (as seen in Section 4.1.5) can be mapped to their declarative specifi-
cation and elaborate on the transformation of concurrent programs written in a high-level
language to the formal XCFA language.

6.1.1 Memory Modeling

When it comes to memory models, there are two basic aspects to handling them:

1. How fence-less W → R, R → W , W → W and R → R relationships behave (both
intra- and inter-thread)

2. How fences modify the above relationships

The toolset for handling these questions is the functions and properties in the memory
specification language. Firstly, let us see the weakest memory model (Definition 2.2.4)
– there are no constraints on different-location accesses at all, but every same-location
access in the source defines a partial order in the program. Furthermore, the architecture
is causal and coherent – meaning a read must read from a non-po-successor write, and any
two threads must read the same location in a non-contradicting order. These rules yield
the following definitions:

1. samevar_w: same variable write events are ordered in po, i.e. the mo and po edges
cannot form cycles.

2. causality: no rf edge can span backwards in the po tree.
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(b) Three threaded illegal execution

Figure 6.1: Two examples of synchronization using fences: direct and transitive con-
straints on executions

3. coherence: no read event shall read from a write such that a po successor read reads
from a mo previous write.

The fence instruction can have multiple interpretations based on the specific architecture1.
For the sake of this example, consider an architecture, where a fence means that any Write,
Read event before the fence must finish before any Write, Read event finishes after the
fence. In terms of a weak memory model, this means that if a fence is between two read
instructions on any (po ∪ rf )-path, then they cannot read from two writes that have a
fence instruction between them on any (po ∪ rf )-path and are in a reverse order to the
reads (See Figure 6.1).
With these rules, we get following specification:
porf = po union rf

samevar_w = po(W --> W) union mo(W --> W)

causality = rf(W -> R) union po(R --> W)

fence = for_each_node F begin
for_each_node F begin

porf(
source( porf(

source(rf(W --> target(porf(F[node1] --> R))))
-->
F[node0])

)
-->
target( porf(

F[node0]
-->
source(rf(W --> source(porf(R --> F[node1])))))

)
)

end
end

coherence = for_each_node R begin
rf(source(mo(W --> source(rf(W -> R[node])))) -> target(po(R[node] --> R)))

end

fence empty
coherence empty
samevar_w acyclic
causality acyclic

1And there can be more than one type of fence – in the implementation, a string literal can be used to
distinguish them, but this feature is not used here.
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To adapt this memory model to the other two consistency families (SC, TSO), the only rule
that needs to change is the coherence relation. The other rules might become unnecessary
(e.g. the fence relation is unnecessary over SC), but they will never be too constraining.
The coherence relation should always forbid same-variable reads that would observe writes
in a different order than what either ppo or mo allows. mo directly appears on the
execution graphs and therefore using it to specify coherency is easy, and in the case of
weak memory ppo is a subset of mo. However as memory gets stricter, ppo outgrows mo:
in the case of TSO, a ppo edge appears between all Write events on the same thread, and
in the case of SC, a ppo edge is present between all such events that can reach each other
via po.
The revised memory model is as follows (I omitted the unchanged rules):
ppo = po(A --> A) // SC
ppo = po(W --> W) // TSO

moppo = mo union ppo

coherence = for_each_node R begin
rf(source(moppo(W --> source(rf(W -> R[node])))) -> target(po(R[node] --> R)))

end

coherence empty

6.1.1.1 Modeling Faulty Hardware

As discussed in Section 3.3, just because a hardware has a design flaw, we might be able to
still use it, even for safety critical tasks – but we have to verify whether a specific program
could become unsafe when run on the architecture. To achieve this, we must be able to
model the flaws of the hardware.
Consider the ARM Cortex-A9 processor. It has a design flaw that allows incoherent reads
from any given thread if there are no fences between two reads to the same location – this
is called the Read→ Read hazard [1]. Otherwise (being ARM), it employs a weak memory
model similar to the previously constructed one.
In this case, removing the coherence relation from the memory model yields the (faulty)
architecture’s specification. Any two reads might read from writes not in mo-order, but
if we place a fence (such as the DMB instruction in ARM’s ISA), the problem is solved,
coherency is achieved yet again.

6.1.2 Mapping Programs to Formal Models

A concurrent program is most likely to be given in source code format to the verification
tool, as that is a convenient location – formally verified compilers exist [25], and can pro-
duce binaries with certain guarantees towards safety, implying the source itself is written
well. Furthermore, feedback to binaries might not be as straightforward to incorporate
into the product as the same towards the source itself. However, source code must be
transformed into the formal model a verification tool works on.
In this case, concurrent program sources must be translated into the XCFA formalism.
This can either be done by hand by the software designer, or via an automated method.
The first approach works best for cases where demonstrational purposes are important (e.g.
models in this document), but is unreliable due to the human element in the verification
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relaxed release acquire seq_cst
Memory access types Store, Load Store Load Store, Load
Fence before no yes no yes
Fence after no no yes yes

Table 6.1: Memory ordering types mapped to fence usage in XCFA

chain. The second is designed to produce a true abstraction of the program2 reproducibly
and verifiably.
Such a tool exists for the XCFA formalism using LLVM as a compiler, integrated into
Gazer3 [29], the sister project of Theta, in an alpha state. Right now it supports most
necessary elements for the algorithm, but has not yet been tested for edge cases – ele-
vating its state to stable is part of the immediate plans towards producing an end-to-end
verification tool. The programs in this work have been in part translated by hand and in
part by this tool, but in this latter case the models have been cross-checked to check if
they are indeed correct.
Even though this tool enables the translation of concurrent programs (mainly written in C)
to XCFA, there is still a discrepancy between the two languages needing to be addressed:
the memory ordering rules. In C11 [22] (and most concurrent programming languages),
memory ordering types are used in place of architecture-dependent implementations of
elevated sequentiality for atomic memory accesses. For example, on an SC system, all
atomic accesses (independent of their ordering) are sequential. For a weak memory system
however, there is a difference between e.g. a relaxed and an acquire load – the latter
providing synchronization capabilities not exposed by a simple memory instruction. The
compiler will then map this to assembly instructions (such as fences around the memory
access).
Memory ordering types are not yet supported by either the translation tool or the algo-
rithm itself. Instead, compiler mappings can be used to mimic their behavior – this is an
accepted procedure employed by other tools as well [32]. These compiler mappings can be
found in Table 6.1.

6.1.3 Verifying Litmus Tests

To show the workflow of verifying hardware-software systems by the presented algorithm
and tool, I use it to generate all consistent states to some litmus tests over the previously
defined memory models. The set of litmus tests in question can be seen in Figure 6.2 and
it contains the following litmus tests:

• 6.2a (2w2r): A simple litmus test containing two writes and two reads to different
locations on two threads.

• 6.2b (cow2r): A litmus test for verifying coherency, one thread writes and another
threads reads it back twice.

• 6.2c (coww2r2r): A complex litmus test for verifying coherency, two threads write
two values and two threads read it back twice (each).

• 6.2d (mp): A message-passing litmus test for verifying fences.

2i.e. it shall not introduce any new behavior
3https://github.com/ftsrg/gazer
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Figure 6.2: Litmus tests
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Figure 6.3: Executions of the litmus test in Figure 6.2a

From the four memory models (weak, TSO, SC, weak-a9) and four litmus tests, a total
of 16 configurations could be run. In the following sections, I show the outcome of the
“interesting” runs among these test cases. In every case, I ran the algorithm with the
--all-states and --insitu-filtering switches to return all consistent executions of
the input programs. Note that the resulting graphs are the visualization of the raw output
the tool produces, and therefore the lack of visual appeal can be justified by the use of an
automated tool (graphviz dot4).

6.1.3.1 The 2w2r Litmus Test

This litmus test aims to bring out the reordering capabilities of the weakly ordered systems.
If we contrast the weak and sc runs of this litmus test in Figure 6.3, we can see that there
is only one execution that is disallowed by the sequential model, where the first read reads
1, but the second read still reads the initial 0.

6.1.3.2 The cow2r Litmus Test

This litmus test aims to bring out incoherent behavior from a weakly ordered system. Over
all correct memory models (weak, SC, TSO) the outcome r1 = 1 ∧ r2 = 0 is not allowed,
as that would violate coherency. However, in the case of the ARM Cortex-A9 memory
model, this outcome is present in the set possible executions, as seen in Figure 6.4.

4https://graphviz.org
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Figure 6.4: Executions of the litmus test in Figure 6.2b
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Figure 6.5: Assertion violating execution of the litmus test in Figure 6.2c

6.1.3.3 The coww2r2r Litmus Test

This litmus test (akin to the cow2r litmus test) tries to cause incoherent behavior. In this
case, (in)coherency is harder to detect: the two writes execute arbitrarily, and therefore
incoherency is not interpretable for a single reader thread. With two such threads however,
incoherency would mean that one reads in a different order then the other. Over all correct
memory models (weak, SC, TSO) this is not observable. However, in the case of the ARM
Cortex-A9 memory model, threads can read incoherently, as seen in Figure 6.5 – this case
the --all-states switch was omitted, as more than 100 consistent execution graphs were
otherwise produced, and therefore the tool only reported whether there was a violation of
the criterion above.

6.1.3.4 The mp Litmus Test

The mp litmus test uses fences to force the sequentiality of instructions, even on weakly
ordered systems. The name is the abbreviation of the message passing expression, as the
acquire-release semantics used here can make sure a complex (and possibly non-atomic)
message ha been written entirely to memory when the reader reads an atomic “done” flag
– in this case, the message is the variable x, and the flag is y. The reader shall never read
r1 = 1 ∧ r2 = 0.
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Figure 6.6: Executions of the litmus test in Figure 6.2d

All previously modeled architectures pass this test – even the weak-a9 model respects
fences. Now consider another faulty memory model, nofence, where the fence relation is
not respected by the architecture. The results can be seen in Figure 6.6.

6.2 Performance Evaluation

In order to get a picture on the scalability of the approach, I compare the execution time
and memory consumption of three tools:

1. Nidhugg [2], because it can handle different memory models;

2. RCMC [24], because it serves as the basis of this work;

3. The PoC implementation of the proposed algorithm in four configurations (called
TUE in short for Tool under Evaluation):

(a) Verification mode (i.e. it stops at the first observable safety violation)
(b) Filtering verification mode (i.e. it stops at the first observable safety violation,

only explores consistent subexecutions)
(c) State generation mode (i.e. it explores all subexecutions of the program)
(d) Filtering state generation mode (i.e. it explores all consistent subexecutions of

the program)

I have used the tool benchexec [11] to reliably measure the execution time and memory
consumption of the above configurations on a virtual server running on the BME Füred
cloud infrastructure5. The server was equipped with 8 cores and 64GB memory running
Ubuntu 18.04.05 LTS. The benchmarks were run with a timeout of 10 minutes CPU time.

5https://fured.cloud.bme.hu/
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TUE Nidhugg RCMC
0.895 s 0.170 s 0.066 s

Table 6.2: Comparison of the baseline execution times

The findings of the performance evaluation are as follows (I elaborate on the details and
provide visualizations to the data in later sections):

• Neither Nidhugg nor RCMC can handle infinite loops. The presented tool can.

• Due to the language disparities, the absolute minimum execution times of the pre-
sented tool (written in Java) is higher than the natively compiled Nidhugg and RCMC.

• The presented tool outperforms Nidhugg in the majority of the scenarios.

• The presented tool’s performance is similar, but slightly worse than the algorithm
with the hardcoded MCM in RCMC.

• The in-situ filtered verification mode of the presented tool performs significantly
better in some scenarios, and marginally worse in other scenarios than the simple
verification mode.

• The tool scales well by the number of available processor cores.

6.2.1 Performance Evaluation Details

To support the claims above, I present the methodology of the benchmarking and its
results. I used parameterizable benchmark templates to get scalability data from the tools
under testing.
These benchmark templates are the following:

1. Readers: One thread writes a value with a given memory ordering, and N other
threads read it back with another given memory ordering. Customizable are the
number of threads N + 1, and the memory ordering types; in the benchmark run
I used N = 1..20, read accesses = {relaxed, acquire, seq_cst}, write accesses =
{relaxed, release, seq_cst} to yield 180 tests. (When necessary, the safety criterion
can be: all threads read the same value written by the first thread)

2. Loop: One thread writes data in a loop, and N other threads read it back in a loop.
In the benchmark run I used N = 1..10 to yield 10 tests. (When necessary, the
safety criterion can be: a reader thread skips at least one value (e.g. jumps from 2
to 4))

3. Coherence: One thread writes data K times, and another thread reads it back K
times. In the benchmark run I used K = 1..20 to yield 20 tests. (When necessary,
the safety criterion can be: the reader reads the highest value possible (K + 1))

4. Empty: To get a baseline of the time needed for starting, parsing and finalizing the
executions, I used a completely empty input file to measure that. The outcomes can
be seen in Table 6.2.

42



TUE TUE-insitu Nidhugg RCMC

R
ea

de
rs

Lo
op

C
oh

er
en

ce

R
ea

de
rs

Lo
op

C
oh

er
en

ce

R
ea

de
rs

Lo
op

C
oh

er
en

ce

R
ea

de
rs

Lo
op

C
oh

er
en

ce

OK 170 10 17 176 9 19 69 0 6 178 0 19
TIMEOUT 10 0 3 4 1 1 0 0 0 2 10 1

ERROR 0 0 0 0 0 0 111 10 14 0 0 0

Table 6.3: Outcomes of the tests. TUE and Nidhugg contain only the weak (arm) results

(a) Nidhugg vs. the presented tool (b) RCMC vs. the presented tool

Figure 6.7: The Readers benchmark (without assertions, on a logarithmic scale)

As it can be deduced from the number of distinct tests above, the main benchmark I used
was the Readers benchmark. This is taken from the paper by Kokologiannakis et al. [24],
and they used it to show how poorly Nidhugg scaled in comparison with their tool, RCMC.
The other benchmarks were mostly there for feature evaluation, as opposed to performance
evaluation. The outcomes of these benchmark runs (complete with assertions) can be seen
in Table 6.3.
The only contender capable of solving the Loop benchmark was the presented tool, the
other two either timed out or ran into a problem while executing due to memory allocation
problems. This is possibly due to its BMC-like behavior, as it can handle infinite loops
by ignoring the rest of the execution after a certain number of iterations. Even though
RCMC claims to handle infinite loops [24], this feature seems to be constrained to busy-
wait loops, rather than a general solution. Of course, without an upper bound on the
number of iterations, the state space is infinite, but there was an assertion in each test
that was missed this way – a smarter exploration technique might have had helped even
without BMC.
The other two families of benchmarks paint a similar picture of the three tools: Nidhugg
fails to complete the tasks in the majority of the outcomes, while RCMC and the presented
tool mostly solve them in time (and correctly). It is worth noting that RCMC and the
presented tool behave in a very similar way across the bechmark runs – which is unsur-
prising, given that the basis of the proposed algorithm is implemented in RCMC. When
we compare the two tools execution times (as seen in Figure 6.7b) in a benchmark run
without assertions (but with in-situ filtering), the correlation is remarkable: even though
the presented tool is always outperformed by RCMC, this only occurs by a small margin
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Figure 6.8: The multi-threaded performance of the presented tool

(a) Without assertions (b) With assertions

Figure 6.9: The Coherence benchmark (presented tool only)

– which is acceptable, given the lack of customizability in RCMC and the general per-
formance of Java programs compared to native ones. In comparison, when Nidhugg is
compared to the tool in Figure 6.7a, the two tools’ execution times do not show such a
strong relationship. It is obvious that the tool outperforms Nidhugg in the majority of the
scenarios, but there are some cases where it produces significantly worse execution times.
(Note that only those tests were included where both tools produced a result in the given
timeframe, and the empty execution times were subtracted from the tests).
The Coherence benchmark provides a great tool for vetting whether filtering is worth it,
as the other benchmarks finish too early when assertions are enabled, and therefore their
performance is not measurably different. In the case of the Coherence benchmark however,
there is a significant difference between the tests’ execution times, as seen in Figure 6.9
in both cases (with and without assertions). According to the charts, there are some
cases when the filtering-induced overhead is slightly greater than its advantage, but in the
majority of the tests the in-situ filtering approach won clearly – therefore it is worth using
in the algorithm.
As for the customizability of the presented tool, the number of MCM-rules and their inner
structure did not matter greatly in terms of execution time or utilized memory, when the
tool was running without in-situ filtering – as seen on the charts in Figure 6.10, both
metrics stayed almost constant among the different memory consistency models in the
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(a) Average memory usage in the benchmark
families (without filtering)

(b) Sum of execution times in the benchmark
families (without filtering)

(c) Average memory usage in the benchmark
families (with filtering)

(d) Sum of execution times in the benchmark
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Figure 6.10: The effect of the MCM on the executions (presented tool only)

three families of the benchmark set. However, when in-situ filtering was enabled on the
same benchmark set, the results changed quite a bit: the SC-model caused execution
times to be almost half the weak ones, with TSO being in-between. This can be justified
by the number of executions the runs had to enumerate – sequential consistency allows
a lot fewer executions than weak memory does. Memory usage, however, stayed almost
the same, which is caused by the stateless aspect of the tool: if the states are not stored
globally, their number does not affect the memory usage greatly.

6.3 Future Work

Even though the presented approach works and scales well (as discussed earlier in the
chapter), there is still work to be done to perfect the algorithm and the implementation.
Some of the current limitations and future plans are the following:

• Stable translation tool for source code → XCFA transformation

• Simplify memory models for better performance

• Handling RMW (Read-modify-write) instructions (and other atomic expressions)

• Handling dynamic thread creation

• Changing the hard-coded generation of the mo-order to another method with fewer
subexecutions

• Implementing a program slicing method, where the global state is handled by the
presented algorithm, but locally a simpler model checking algorithm is used
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The most interesting directions of development are the last two: the former is about the
exponential growth of the state space when a new write is added due to all the new mo-
orders. This is taken entirely from RCMC’s algorithm [24] – if we could get rid of this and
still manage to stay sound (which is possible, as e.g. herd does not use such a relationship
[6]), the result would be an even better performing algorithm, which could potentially
outperform RCMC as well.
The last point of future plans is the most significant: right now, the implementation only
handles local instructions if they are deterministic. There is no support for an uninitialized
variable, for example – even though that can happen in a real-world scenario. However,
if this approach was combined with a single-threaded model checking algorithm (such as
CEGAR, as that is readily implemented in Theta [31]), the resulting tool could handle
any combination of hard concurrent and thread-local problems.
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Appendix A

MCM Mapping Among
Formalisms

The cat language has been shown to be capable of modeling complex memory architec-
tures. By designing a simpler formalism instead, I only strived for syntactically easier
representation of the same semantics, and therefore I show here how the basic building
blocks of the language are mappable to the memory model introduced in Section 4.3 and
to the DSL of the same model, introduced in Section 5.1.

cat MCM DSL
events Writes, Reads, Fences W, R, F
po, rf po, rf po, rf

tag Current* [tag]
definition embedding (not necessary) name = <expression>

Set algebra Multiply, Subtract, Intersect, Union *, \, intersect, union
loc ForEachVar for_each_var
ext ForEachThread for_each_thread
r? Next edgetype(A ->B)
r* Succ edgetype(A –>B)
r+ Subtract(Succ, Next) edgetype(A –>B) \edgetype(A ->B)
∼r NA (no pre-defined universe) NA (no pre-defined universe)

inverse (r^-1) Next(B, A) edgetype(B ->A)
sequence ForEachNode for_each_node
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