

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Marcell Németh

Deep reinforcement learning based

algorithmic trading with ensemble

models
Scientific Students’ Association Report

SUPERVISOR

Dr. Gábor Szűcs

BUDAPEST, 2021

 2

Contents

Abstract .. 3

Összefoglaló ... 4

1 Introduction .. 5

1.1 Research objectives ... 5

1.2 Trading a single stock ... 5

1.3 Trading multiple stocks .. 6

2 Theory of reinforcement learning .. 8

2.1 Basic concepts ... 8

2.2 Markov decision process and the Bellman equation... 9

2.3 The main algorithms of reinforcement learning ... 11

2.3.1 TD-learner .. 11

2.3.2 SARSA... 12

2.3.3 Q-learner .. 12

3 Main algorithms of deep reinforcement learning ... 14

3.1 Deep Q-learning .. 14

3.2 Actor-critic methods ... 15

3.2.1 Deep Deterministic Policy Gradient method (DDPG) 16

3.2.2 A2C method ... 16

3.2.3 PPO method ... 17

4 Market model and environment descriptors ... 19

4.1 Data description .. 19

4.2 Technical indicators .. 20

4.3 Parameters of the trading process ... 20

5 Split feature space ensemble method ... 22

5.1 Standard ensemble model ... 22

5.1.1 Main elements of the model... 22

5.1.2 Operating principles ... 24

5.2 Splitting the feature groups ... 25

5.3 Extended risk aware ensemble model space ... 28

6 Experiments and results .. 31

7 Summary ... 38

References .. 40

Appendix .. 42

 3

 Abstract

In the financial sector, any type of trading is considered, algorithmic trading where

the determination of the order parameters (timing, price, quantity) as well as the order

management is performed by a computer algorithm, with or without limited human

intervention. The research resulting in the dissertation aims to find ways to develop and

refine deep reinforcement learning models to execute trading that maximize revenue and

minimize investment risk.

Developments using deep reinforcement learning in the literature have already

demonstrated the viability of machine trading algorithms in portfolio management. The

aim of the present research is to create a more robust reinforcement learning model that

can simulate trading with varying risk appetite in line with market dynamics while

maximizing portfolio value and minimizing risk and other negative consequences.

The dissertation begins with a theoretical overview of state-of-the-art methods of

reinforcement learning, paying special attention to the practical advantages and

disadvantages of each algorithm and model. This is followed by the introduction of an

ensemble trading model that provides the baseline for new developments, along with a

description of the simulated stock market environment, factors and data used to model

market dynamics.

The main focus of the research is on a new ensemble technique based on the

distribution of features and the optimization of decision-making by agents learning in

parallel, which is able to outperform the results of the baseline model. Initially, a single

agent, trained in the space formed by all input features, is replaced by several models, the

input factors of which cover a group of technical indicators compiled on the basis of

targeted statistical methods. Parallel learning models can use each group to make an

unbiased decision by observing some distinct aspects of the market dynamics, which are

aggregated at the very end of the Markov process, resulting in a robust decision. Further

developments are presented by discussing the reward functions of each model. The

distributed operation of the agents also allowed for different reward maximization

options: different target functions allow for more flexible management of trading

parameters, thus providing a greater degree of transparency regarding the operation of the

model.

 4

Összefoglaló

A pénzügyi szektorban algoritmikus kereskedésnek számít minden olyan

kereskedési mód, ahol a megbízás paramétereinek (időzítés, ár, mennyiség)

meghatározását, valamint a megbízás kezelését egy számítógépes algoritmus végzi,

korlátozott emberi beavatkozással vagy emberi beavatkozás nélkül. A TDK dolgozatot

eredményező kutatás célja olyan módszereket találni, mély megerősítéses tanulási

modelleket kidolgozni és fejleszteni a kereskedés végrehajtására, amelyekkel

maximalizálható a bevétel és minimalizálható a befektetés kockázata.

A szakirodalomban mély megerősítéses tanulást alkalmazó fejlesztésekkel már

bizonyították a gépi kereskedő algoritmusok létjogosultságát a portfóliók kezelésében.

Jelen kutatás célja, hogy hogyan lehet minél robusztusabb megerősítéses tanuló modellt

készíteni, amely képes változó kockázatvállalási hajlandóságú kereskedést szimulálni a

piac dinamikájához igazodva a portfólió értékének maximalizálása és a kockázat, illetve

egyéb negatív következmények minimalizálása mellett.

A dolgozat a megerősítéses tanulás state-of-the-art módszereinek elméleti

áttekintésével kezdődik, kiemelt figyelmet fordítva az egyes algoritmusok, modellek

gyakorlati előnyeire és hátrányaira. Ezt követően bemutatásra kerül az új fejlesztések

alapját biztosító kiinduló ensemble kereskedő modell a szimulációs részvénypiaci

környezet, a piac dinamikájának modellezéséhez használt faktorok és adatok ismertetése

mellett.

A TDK munka központi része egy új, a feature-ök szétosztásán és párhuzamosan

tanuló ágensek döntés optimalizálásán alapuló ensemble technikát mutat be, amely képes

az alapot jelentő fejlesztés eredményeinek felülteljesítésére. A kezdetben egyetlen ágenst,

amely az összes bementi feature által alkotott térben tanult, leváltja több modell, amelyek

bemeneti faktorai célzottan, statisztikai módszerek alapján összeállított, egy-egy

technikai indikátor csoportot fednek le. A párhuzamosan tanuló modellek az egyes

csoportokat felhasználva a piac dinamikájának egy-egy részét “látva” tudnak elfogulatlan

döntést hozni, amelyek a Markov-folyamat legvégén aggregálásra kerülnek, így

eredményezve egy robosztus döntést. További fejlesztések kerülnek tárgyalásra az egyes

modellek jutalomfüggvényeit taglalva. Az ágensek elosztott működése egyben különböző

jutalom maximalizálási lehetőségeket is lehetővé tett: eltérő célfüggvények segítségével

rugalmasabban kezelhetőek a kereskedési paraméterek, amelyek ezáltal nagyobb fokú

átláthatóságot is biztosítanak a modell működését illetően.

 5

1 Introduction

One of the most popular applications of reinforcement learning is algorithmic

stock trading. A profitable stock exchange trading strategy is vital for banks and

investment funds, to the success of which the connections recognized by machine

learning can greatly contribute.

In order to use reinforcement learning algorithms for algorithmic stock trading,

we need to formulate the problem as a Markov decision process and our trading goal as a

maximization problem. it is necessary to define the state space of the environment, the

possible activities, and the reward function.

1.1 Research objectives

The effectiveness of reinforcement learning methods in trading has already been

supported by numerous research and publications [1][9][11][14][25]. A common feature

of all such methods is that they use a single complex feature space, i.e., the technical

indicators used to determine the states are used „in bulk”.

One of the basic ideas of the present research is whether it would not be

worthwhile to separate the factors describing the states into predefined function groups.

The basic premise is that agents trained in parallel using segregated feature groups can

extract more information using separate, sub-feature spaces, and can make significantly

more robust decisions in predictions.

The research also seeks to solve a problem closely related to the first objective:

how to construct a reward function and optimize the decisions of ensemble agents in terms

of risk management so that they adapt to the volatile dynamics of the market while

maximizing profits and minimizing negative factors (e.g., drawdown).

1.2 Trading a single stock

First, let’s take the case where we only want to trade the shares of a single

company on the stock exchange and create our model for that. Here, the state space of the

environment is determined by the share price of the given company, and we can also use

the previous share prices as well as technical indicators as input data.

The model can basically perform three activities in this environment: sell, hold,

or buy stock, which is usually given in the following form, respectively: {-1, 0, 1}.

 6

However, we can also define the activities so that the model determines the number of

shares to be purchased, for example, we can use the vector {-10, ..., -1, 0, 1,…, 10} to

define the state space in which our model is able to sell or buy 10 shares [11].

Finally, we need a definition of the reward function, which is the incentive

mechanism of our model to learn to act better. In stock exchange trading, we can simply

determine the reward function by subtracting the value taken in the previous state from

the new value of the portfolio [11]. The goal is to design a trading strategy that maximizes

the positive change in the value of our portfolio in a real environment.

In one step, the model receives the state of the environment, which includes the

current and previous share price as well as the technical indicators used. Based on this,

the model selects an activity, and the next share price can be used to determine the

goodness of the activity with which we can train the model.

1.3 Trading multiple stocks

In case we no longer want to trade not only shares of a single company, but also

take into account the shares of several companies, we need to change our model and take

into account that the size of the state space and the activity space increases exponentially

in proportion to the number of shares.

In this case, the state space is no longer determined only by the share price of a

company, but also by the share prices of all the companies taken into account, as well as

the technical indicators calculated from them. Generally speaking, if we trade c shares of

a company and describe each share with l features, then the state space is defined by a

vector (1 + 𝑙)𝑐 + 1 long (the number of shares we own for each company and our

available capital) [11].

The scope of activities also changes by considering more stocks. By trading a

stock, we were able to describe the space of the actions to be performed with the vector

{-k,…, -1, 0, 1,…, k}, where k determined how many shares our model could trade at once.

In general, by trading c shares, we can define the same set for each firm, so that a vector

of length (2𝑘 + 1)𝑐 defines the space for activities.

However, the reward function does not change if we increase the number of

shares. All we have to do is change the definition of the value of the portfolio, where we

already have to multiply the number of all the shares we hold by the price of the shares

and add our available cash to that.

 7

In one step, the model determines for each stock how much to buy, sell, or just

hold the shares based on the stock prices of the companies. Based on the new exchange

rate, the goodness of the decision can be determined, with which we can train our model.

The environment thus defined can already be used for reinforcement learning. We

can also train several reinforcement learning algorithms using the environment, which we

can test to select the best one to start trading on the stock market.

 8

2 Theory of reinforcement learning

2.1 Basic concepts

Machine learning has three basic paradigms: supervised learning, unsupervised

learning, and reinforcement learning [17]. In the case of supervised learning, the goal of

machine learning is to learn a function that determines the output data from the input data,

all based on labeled examples. In contrast, for unsupervised learning, we look for

unspecified patterns in the data. In the case of reinforcement learning, we place our

machine learning model in an environment (as can be seen in Figure 2.2.1) in which the

model learns how to maximize its reward in that environment. The reward received at

time t is denoted by Rt, the state by St, and the action by at.

Figure 2.1.1. Process of reinforcement learning [2]

There are machine learning algorithms that try to build a model of the environment

based on the information gathered about it and design their behavior based on that model.

The other group is model-free algorithms, which try to determine the optimal strategy in

the environment without building an environment model. Based on the machine learning

model, we can classify reinforcement learning algorithms into several categories.

 Utility-based models (utility-based or also known as value-based) learn the state-

based utility function and use this to select their actions to maximize the expected value

of the utility available.

Instead, policy-based models try to define an action-value function, also known

as a Q-function, that can be used to clearly define how to act in a given state, since the Q-

function assigns some expected reward in a given state for a given action. Utility-based

algorithms must also have some model of the environment, but a Q-learning algorithm

 9

can compare its possible choices without knowing what they are leading to, so one doesn’t

need a model of the environment. Actor-critic algorithms [20] are both policy-based and

utility-based, storing both the utility function and the action value function, and both are

used to calculate the best decision.

2.2 Markov decision process and the Bellman equation

In the case of reinforcement learning, the best studied topic is when the problem

can be formulated as a Markov decision process [2] (MDP). In the case of MDP, the

machine learning model is able to visit a finite number of states, where it receives a reward

(a negative number means the penalty). From each state s, other states can be accessed by

performing actions. Each state has a constantly changing value, which indicates how

much reward the model can collect from that state until it reaches the end state of the

environment. The activities to be performed in the states are determined according to a

strategy (policy), which can also change as the learning process progresses. The purpose

of the model is to maximize the reward with the activities performed until it reaches the

end state of the environment.

Each of the states in the Markov decision process is a Markov state. A state can

be called Markov if the future is independent of the past, thus if our model is in a Markov

state, it is not necessary to know the series of previous states, only the current state.

Mathematically, a state st (at time t) is a Markov state if and only the state st carries the

information of all previous states:

 𝑃(𝑠𝑡+1|𝑠𝑡) = 𝑃(𝑠𝑡+1|𝑠1, … , 𝑠𝑡) (2.2.1)

The transition probability between a Markov state s and a successor state s' can

be determined as follows: 𝑃𝑠𝑠′ = 𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠). This can be stored in the form of

a matrix P, where Pi, j is equal to the value of the transmission probability between si, sj,

so that the sum of each row of the matrix P becomes 1.

A Markov Reward Process (MRP) is a tuple of (S, P, R, γ), where S is the set of

finite states with Markov states, P is the state transfer probability matrix, R is the reward

function and γ is discount factor, where 𝛾 ∈ [0, 1].

The reward function determines how much immediate reward the agent gets when

it reaches a certain state. The purpose of the model is to maximize Gt, which is the total

discounted reward, Gt can be determined using R and γ as follows:

 10

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 (2.2.2)

This value is definitely finite, since the value of γ is between 0 and 1. In the case

where γ is close to zero, the model prefers the immediate reward over future rewards,

while if it is close to one, it is just the opposite.

The Markov decision process is a value of (S, A, P, R, γ) where (S, P, R, γ) forms

an MRP and A (action) is a finite set of actions. Using the elements of this set, the model

can move from one state of the environment to another. The behavior of the model used

to select these activities can be determined by the π policy function, which can be written

as follows:

 𝜋(𝑎|𝑠) = 𝑃[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠] (2.2.3)

The machine learning model is designed to maximize the rewards it collects. To

achieve this, we need to determine the optimal utility-value function, which can be done

by the Bellman equation [3]. The Bellman equation describes that the value (utility value)

of a state can be decomposed as the sum of the discounted value of the immediate reward

and the following state:

 𝑉(𝑠) = 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝔼[𝑅𝑡+1 + γ𝑅𝑡+2 … |𝑆𝑡 = 𝑠] =

= 𝔼[𝑅𝑡+1 + γV(𝑠𝑡+1)|𝑆𝑡 = 𝑠]

(2.2.4)

The value function thus shows how good it is for our model to be in a particular

state of the environment, but it does not say anything about which activities to select. To

do this, we need the action value function, which expresses how good it is to choose an

activity in a given state s, and we can use it later to determine the best activity for the

current state:

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
(2.2.5)

The purpose of most reinforcement learning algorithms is to determine the action

value function and select the optimal action from it in any state (optimal means that the

activity with the highest value should be selected, as shown in the formula below):

 𝑞∗(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎) (2.2.6)

Using this function, we can determine the maximum reward following the π

strategy. If we know the optimal action value function then the optimal strategy can be

determined as follows:

 11

𝜋∗(𝑎|𝑠) = {

1, 𝑖𝑓 𝑎 = 𝑎𝑟𝑔max
𝑎∈𝐴

𝑞∗(𝑠, 𝑎)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.2.7)

The optimal action value function can be written recursively with the Bellman

optimality equation in the following form, where 𝑅𝑠
𝑎 means the reward at state s taking

action a and 𝑃𝑠𝑠′
𝑎 means the transition probability between state s and s’ taking action a:

 𝑞∗(𝑠, 𝑎) = 𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎

𝑠′∈𝑆

max
𝑎′

𝑞∗(𝑠′, 𝑎′)
(2.2.8)

The Bellman optimality equation cannot be written in closed form, however, there

are iterative approaches that can be applied, such as the SARSA and Q-learning

algorithms, which are presented in the next section.

2.3 The main algorithms of reinforcement learning

2.3.1 TD-learner

Temporal difference (TD) learners [21] is a group of reinforcement learning

algorithms without a model, i.e., these algorithms do not model their environment but

take samples from it and update based on it.

The simplest algorithm for a TD learner is the TD(0) algorithm. In this case, the

value function is updated after each sampling with the immediate reward and the

discounted value of the next state. This algorithm is useful in cases where the environment

has no end state because the value function is updated after each activity based on the

following formula:

 𝑉(𝑠𝑡) = 𝑉(𝑠𝑡) + 𝛼(𝑅𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)) (2.3.1)

Here, the parameter α is the learning rate, which has a value between 0 and 1.

With this parameter we can determine how fast the model learns new information.

Another popular TD learning algorithm is TD(1). In this case, the value function

is updated after an episode until the end state of the environment is reached. The update

of the value function is described by the following formula:

 𝑉(𝑠𝑡) = 𝑉(𝑠𝑡) + 𝛼(𝐺𝑡 − 𝑉(𝑠𝑡)) (2.3.2)

In case the environment has no end state but does not want to update the value

function after each step, we can use the TD(λ) algorithm, where λ is between 0 and 1 and

determines the length of the path used for the update. The higher the value of λ, the longer

the length of the path used for the update.

 12

2.3.2 SARSA

The SARSA (which stands for State, Action, Reward, State, Action) algorithm

[16], unlike the TD learner, learns the action value function. The name of the algorithm

suggests that the value of the q-function is determined by the current st state, the selected

activity t, the collected r reward, the next st+1 state, and the subsequent t+1 activity. The

policy function is updated according to the following formula:

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2.3.3)

In this algorithm, it is important to determine the initial values of the q-function.

The most commonly used method is to use the first reward received when discovering the

environment to determine its q-value.

2.3.3 Q-learner

The Q-learning algorithm [21], like SARSA, defines a q-function. The Q-learning

algorithm belongs to the group of off-policy algorithms, which means that it does not

learn exactly the same strategy as it uses to select action. (SARSA belongs to the on-

policy group, meaning the strategy it learns and evaluate is the same.)

The Q-learner uses a so-called q-table that has the same number of rows as the

number of states and the same number of columns as the activities that can be performed.

A value in the table determines how good it is to select the activity corresponding to that

column in the state corresponding to that row. The values in the q-table are updated

according to the following formula:

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∗ [𝑟𝑡+1 + 𝛾 ∗ max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2.3.4)

where the parameters are the same as for SARSA.

The new q-value is determined based on the previous value and the maximum

value of the immediate reward and the next status. The model should discover all state-

action pairs to determine the optimal q-function and be careful not to get the model stuck

in a local minimum.

The model updates its q-table based on interactions with the environment. The

model can select the following activity in two ways: either it selects the activity that seems

best based on the information gathered so far, so it has the highest value in the q-table, or

it randomly selects an activity to explore the environment. The first method is called

exploiting, while the second is called exploring. It is important to explore the environment

at the beginning of the learning phase to find the best possible solution.

 13

The rate of exploitation and exploration is most often determined using the ε-

greedy strategy. In this case, the parameter ε (its value is between 0 and 1) determines in

which part of the cases our model chooses a random activity, while with a probability of

1-ε it chooses the action that seems best. The value of ε is usually set to around 1, thus

helping the model to explore its environment, and as time and the learning process

progresses, its value decreases exponentially to a predetermined minimum level, thus

achieving that the model maximizes its reward.

 14

3 Main algorithms of deep reinforcement learning

3.1 Deep Q-learning

The Deep Q-Network (DQN) [13] is a special version of the Q-learner that is

useful when many states and activities are observed in the environment. In this case, the

size of the Q table required for the Q learner would be too large (e.g., it would not fit in

the memory of computer). A solution to this problem is provided by the DQN, which uses

a neural network (Q-network) instead of the Q table to determine Q values. The input of

the network is the state of the environment, and the output gives the Q values for the

possible activities, as shown in the following figure.

Figure 3.1.1. Difference between Q-learning and DQN [15]

When using DQN, the formula with the Q learner is simplified to the next:

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑟𝑡+1 + 𝛾 ∗ max
𝑎

𝑄(𝑠𝑡+1, 𝑎) (3.1.1)

In the case of DQN, the challenge is to map an ever-changing input to an ever-

changing output. To solve this, there are two ways to keep the target variable temporarily

in place. In the target network method, we use two neural networks for training: a target

network and a main network. The Q-values predicted by the target network are used to

train the main network. The parameters of the target network are not trained, however,

they are periodically synchronized with the parameters of the main network.

 15

Another solution to the same problem is experience replay [12]. Here, the

response of the environment (status, activity, reward, next state quadruples) is not used

immediately to train the network but is stored in a buffer. After a certain number of

iterations, we randomly select elements from this buffer and train our network with these

values. Random selection is important because samples that are usually similar to two

adjacent or close states of the environment are usually characterized by a high correlation

between two consecutive actions, which can lead to overfitting. By selecting the elements

from the buffer by uniform sampling, we can avoid the above-mentioned problems.

3.2 Actor-critic methods

One of the biggest drawbacks of methods based on traditional policy optimization

using Monte Carlo simulations is the high variance inherent in the process. Actor-critic

methods [7] try to solve this problem, which has in common that they approximate

optimal Q-values and actions at the same time by parameterizing neural networks. The

critic component of the model is responsible for learning Q-values, which are used to

systematically update the policy space parameters of the actor component. The task of the

critic network is also to estimate the expected value of the reward that can be achieved

by performing each state-action pair.

As described in the previous paragraph, the main advantage of the method is that

the coordinated work of the two components allows: due to the fact that the critic

continuously provides the actor with performance indicators of the execution of each

action, the actor is able to define the actions to be performed without the need for the Q

function.

Due to the nature of the method, the critic component is typically a function that

approximates a state-value pair. It evaluates the function for each input pair and then

decides whether the new values have improved or deteriorated the model:

 A(𝑠𝑡 , 𝑎𝑡) = rt+1 + γV(st+1) − V(st) (3.2.1)

where V is the current value function. Formula 3.2.1 is also called a TD (temporal

difference) error, which can be used to evaluate the execution of an activity t in the state

st. If the TD error is positive the activity at is more frequent if it is negative the less

frequent execution of at is recommended in subsequent decisions.

 16

3.2.1 Deep Deterministic Policy Gradient method (DDPG)

One of the most advanced versions of actor-critic type models is the DDPG

method using a total of four networks [10]. The method is based on the Advantage Actor-

Critic presented earlier but has also been extended to include a target network, which are

periodically synchronized copies of the original networks. The components of the DDPG

model are thus 𝜃𝑄𝑎𝑛𝑑 𝜃𝑄′ (Q-value and target Q-value functions) and 𝜃𝜇 𝑎𝑛𝑑 𝜃𝜇′

(policy and target policy functions). The use of the two extra networks allows for more

stable convergent learning, as periodic saving of parameters provides a solution to the

divergence that occurs during the optimization process.

In addition to updating actor-critic networks, the DDPG uses three main

techniques: experience replay, effective modification of target networks, and appropriate

sampling of activity and parameter space (exploration). The first has been discussed

before, but the other techniques are worth explaining briefly. The actor and critic

networks are updated in a similar way to the Q-learning method, except that in the DDPG

procedure, the Q-values of the following states are set by the θμ′
 and θQ′

networks:

 yi = ri + γQ′(si+1, μ′(si+1 ∣∣ θμ′
) ∣∣ θQ′

) (3.2.2)

After determining the new Q-value, using the original Q-value calculated by the

θQ network, we can obtain the cumulative error, i.e., the loss:

Loss =

1

N
∑ (yi − Q(si, ai ∣∣ θQ))

2

i

 (3.2.3)

Target networks are updated more easily by copying their parameters at a τ update rate:

 θQ′
← τθQ + (1 − τ)θQ′

θμ′
← τθμ + (1 − τ)θμ′

(3.2.4)

In the case of reinforcement learning, balancing exploitation and exploration is an

important consideration when sampling the activity that follows from the event space. In

the case of sampling from a continuous event space with random selection, we add noise

to the activity itself using the Ornstein-Uhlenbeck process [22]:

 μ′(st) = μ(st ∣∣ θt
μ

) + N (3.2.5)

3.2.2 A2C method

A2C (Advantage Actor Critic) [7] is a typical actor-critic algorithm, which is

introduced to improve the policy gradient updates. A2C utilizes an advantage function to

 17

reduce the variance of the policy gradient. Instead of only estimating the value function,

the critic network estimates the advantage function. Thus, the evaluation of an action not

only depends on how good the action is, but also considers how much better it can be. So

that it reduces the high variance of the policy networks and makes the model more robust.

A2C uses copies of the same agent working in parallel to update gradients with

different data samples. Each agent works independently to interact with the same

environment. After all the parallel agents finish calculating their gradients, A2C uses a

coordinator to pass the average gradients over all the agents to a global network. So that

the global network can update the actor and the critic network. The presence of a global

network increases the diversity of training data.

Algorithm 3.2: Advantage Actor-Critic (A2C) [12]

Initialization of parameters: s (states), θ (policy function weights), w (Q-function

weights)

for t = 1 … T:

𝒓𝒕 ~ 𝑹(𝒔, 𝒂) reward and 𝒔′ ~ 𝑷(𝒔′ | 𝒔, 𝒂) 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑜𝑓 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒

a’ ~ 𝝅𝜽(𝒂′ | 𝒔′) 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑜𝑓 𝑛𝑒𝑥𝑡 𝑎𝑐𝑡𝑖𝑜𝑛

𝜽 ← 𝜽 + 𝒂𝜽𝑸𝒘(𝒔, 𝒂)𝜵𝜽 𝒍𝒐𝒈 𝝅𝜽 (𝒂 ∣ 𝒔) policy weight update

𝜹𝒕 = 𝒓𝒕 + 𝜸𝑸𝒘(𝒔′, 𝒂′) − 𝑸𝒘(𝒔, 𝒂) TD error calculation for correction

𝒘 ← 𝒘 + 𝒂𝒘𝜹𝒕𝜵𝒘𝑸𝒘(𝒔, 𝒂) 𝑸 − 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒖𝒑𝒅𝒂𝒕𝒆 𝒘𝒊𝒕𝒉 𝒓𝒆𝒔𝒑𝒆𝒄𝒕 𝒕𝒐 𝒕𝒉𝒆 𝑻𝑫 𝒆𝒓𝒓𝒐𝒓

update: 𝒂 ← 𝐚′ és 𝐬 ← 𝐬′

end for

The synchronized gradient update is more cost-effective, faster and works better

with large batch sizes. A2C is a great model for stock trading because of its stability. The

objective function for A2C is:

∇Jθ(θ) = E [∑ ∇θ

T

t=1

log πθ (at ∣∣ st) ⋅ A(st, at)] (3.2.6)

where πθ(at ∣∣ st) is the policy network, A(st, at) is the advantage function written as:

 A(st, at) = Q(st, at) − V(st) (3.2.7)

3.2.3 PPO method

PPO (Proximal Policy Optimalization) [18] is introduced to control the policy

gradient update and ensure that the new policy will not be too different from the older

one. PPO tries to simplify the objective of Trust Region Policy Optimization (TRPO) by

 18

introducing a clipping term to the objective function. The probability ratio between old

and new policies is expressed as:

rt(θ) =

πθ(at ∣∣ st)

πθold
(at ∣∣ st)

 (3.2.8)

The clipped objective function of PPO is:

 𝐽𝑐𝑙𝑖𝑝(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴(𝑠𝑡 , 𝑎𝑡), 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 𝜀)𝐴′(𝑠𝑡 , 𝑎𝑡))] (3.2.9)

where 𝑟𝑡(𝜃)𝐴(𝑠𝑡 , 𝑎𝑡) is the normal policy gradient objective, and 𝐴′(𝑠𝑡 , 𝑎𝑡) is the

estimated advantage function. The function 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 𝜀) clips the ratio 𝑟𝑡(𝜃) to be

within [1 − 𝜀, 1 + 𝜀].

The objective function of PPO takes the minimum of the clipped and normal

objective. PPO discourages large policy change move outside of the clipped interval.

Therefore, PPO improves the stability of the policy networks training by restricting the

policy update at each training step. We select PPO for stock trading because it is stable,

fast, and simpler to implement and tune.

State-of-the-art algorithms for deep reinforcement learning have been presented

in previous chapters. In the following, we will discuss the practical application of these

algorithms in a stock trading environment.

 19

4 Market model and environment descriptors

To model the stock trading task discussed below, an environment, more precisely

the individual states of the environment, a set of multidimensional features had to be

defined, through which the agent can learn to adapt to the behavior of the market [6] with

the greatest possible efficiency.

4.1 Data description

Different model agents received the same set of money market data as input

through Yahoo Finance. The dataset contains the following 7 features by default,

downloaded in daily resolution: stock TIC ID, timestamp, daily opening price, daily

closing price, daily highest price, daily minimum price, and finally the total daily volume

traded.

For the main results of the research the DOW30 index were chosen [24], which at

the beginning of the work were: AAPL, MSFT, JPM, V, RTX, PG, GS, NKE, DIS, AXP,

HD, INTC, WMT, IBM, MRK, UNH, KO, CAT, TRV, JNJ, CVX, MCD, VZ, CSCO,

XOM, BA, MMM, PFE, WBA, DD.

Data in this resolution was available in acceptable quality through the Yahoo

Finance API until January 1, 2009, so the final dataset will cover approximately 12 and a

half years by July 20, 2021. It is important to note that obtaining financial data in as much

detail as possible will be an important step for further development.

Figure 4.1.1 Features of the stocks

The improvements presented in the following chapters do not address the

optimization of the time window of the training and test sets which in this research lasted

from 2nd of April to 20th of July 2021.

 20

4.2 Technical indicators

The state space, which is presented in more detail in the following chapters

presenting the model, has been described with the help of widely used, popular technical

indicators and utility quantities [19]. The key factors to characterize the stocks and the

portfolio itself are:

• remaining balance: the amount of cash that can still be used in the trading process

• available number of shares: the number of shares already purchased from each

share

• opening / closing share price

• adjusted closing share price: adjusted for end-of-day closing price

Technical indicators to characterize exchange rate dynamics for every stock in the

portfolio:

• momentum indicators:

o MACD, RSI 6 / 12 / 30, ADX, CCI 30

• volatility indicators:

o VR, ATR, Bollinger-band

• traded volume indicators:

o MFI, OBV, NVI, VPT, ADI

Further details about the technical indicators (14 factors) can be found in the Appendix.

4.3 Parameters of the trading process

Although the development of the trading process and strategy is carried out

entirely by the agents with the goal of maximizing the reward function, to make realistic

market trading, a few restrictions / facilitations had to be introduced [24] into the model:

• market liquidity, shortfall management: transactions take place with immediate

effect and the transactions do not significantly affect the price of the asset

• non-negative balance: the transactions of the agents cannot result in a negative

stock balance:

 𝑏𝑡+1 = 𝑏𝑡 + (𝑝𝑡
𝑠)⊤𝑘𝑡

𝑠 − (𝑝𝑡
𝐵)⊤𝑏𝑡

𝐵 ≥ 0 (4.3.1)

 21

• transaction costs: transaction costs are incurred after each transaction, which are

also implemented by the model. Such costs could be conversion, enforcement or

even SEC (Securities and Exchange Commission) fees. For the sake of simplicity,

only a single, fixed fee of 1/1000 of the value of the traded asset has been

introduced in the model (both for sales and purchases).

 𝑐𝑡 = 𝑝⊤𝑏𝑡 × 0,1% (4.3.2)

In the second half of the research, an indicator measuring market turbulence [8]

was introduced in addition to the previous constraints. This factor can warn to hold back

or even suspend trading in market situations where the market is showing unusual, overly

volatile, unstable signals. A concrete example of such periods is the 2008 crisis, market

bubbles or even wars.

 22

5 Split feature space ensemble method

Due to the stochastic nature of stock trading tasks, the present trading task is

modeled as a Markov Decision Process (MDP) problem. The decision-making process

includes tracking stock price changes, defining sales activities, and calculating rewards.

Taking into account the subtasks listed above, each agent develops their final trading

strategy, i.e., policy.

Overall, agents interact with the environment to arrive at a trading strategy that

maximizes the reward function over time. The above-mentioned environment, which is

built from the data presented in the previous chapter, was simulated using the freely

available OpenAI Gym framework.

The following subsections present the key elements of the reinforcement learning

model that are designed to maximize portfolio value and minimize risk factors that occur

during trading [25].

5.1 Standard ensemble model

The model used in the first half of the research used a single, coherent feature

space in which 3 different models were trained. The following subsections discuss the

key details of this baseline approach, which provided the basis for further developments.

5.1.1 Main elements of the model

In this chapter, the most important components of the agents implementing the

deep learning methods detailed in the theoretical introduction are presented.

To describe the state space, we used a 14 * M dimensional vector, in our case M,

i.e. the number of the different shares was 30. In the initial development contained all the

factors mentioned in the previous chapter to determine a state s: st =

[𝑏𝑡 , 𝑝𝑡 , ℎ𝑡 , 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠𝑡], where

• 𝑏𝑡 ∈ 𝑅+: available cash balance at current time step t

• 𝑝𝑡 ∈ 𝑅𝑀+: adjusted close price of each stock (M stocks)

• ℎ𝑡 ∈ 𝑁M: shares owned of each stock (M stocks)

• 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠𝑡: the 14 factors used to model the dynamics of the market

 23

To describe the action space, the vector {-k… -1, 0, 1, 2… + k} is used, where k is the

number of shares that can be sold in one state.

Figure 5.1.1 Trading process of an agent [24]

For the M shares used in the present research, the activity space is thus (2k + 1)M large

and the reward function of the agents is the change in the value of the portfolio during the

transition from 𝑠𝑡 to 𝑠𝑡+1, which can be formalized as:

 r(st, at, st+1) = γ [(bt+1 + pt+1
T ht+1) − (bt + pt

⊤ht) − ct] (5.1.1)

Change in the number of shares held, where bt
𝑠𝑜𝑙𝑑 is the amount of shares the model sold

and bt
𝑏𝑜𝑢𝑔ℎ𝑡

 means the amount of shares the model bought:

 ht+1 = ht − bt
𝑠𝑜𝑙𝑑 + bt

𝑏𝑜𝑢𝑔ℎ𝑡
 (5.1.2)

The final decision of the models results in a sequence of actions for states that

tells the probability distribution of each action in each state. The expected value of each

state with transitions for the reward function can be expressed by the value of Q, i.e. how

much expected portfolio value increase can be achieved in each state by performing each

action. In each state, 3 possible events can be performed: sell, hold (no sell, nor buy) and

buy as can be seen in Figure 5.1.2.

 24

Figure 5.1.2 Effect of actions on the portfolio value [24]

Let d be a given stock (identity of the stock) in the portfolio, where 𝑑 = (1, . . . , 𝑀):

• selling 𝒌[𝑑] ∈ [1, 𝒉[𝑑]] shares results in 𝒉𝒕+1[𝑑] = 𝒉𝒕[𝑑] − 𝒌[𝑑] amount, where

k[𝑑] ∈ Z+ and 𝑑 = (1, . . . , 𝑀)

• in case of holding 𝒉𝒕+1[𝑑] = 𝒉𝒕[𝑑]

• buying 𝒌[𝑑] shares results in 𝒉𝒕+1[𝑑] = 𝒉𝒕[𝑑] + 𝒌[𝑑] amount.

The value of the portfolio throughout the process is 𝒑𝑻𝒉 + 𝑏.

5.1.2 Operating principles

The main goal of the initial model [24] is to develop a more robust trading strategy

than previous methods using machine learning models. To do this, it uses a distributed,

standard ensemble technique [24] that takes turns using the currently best-performing

model as follows:

1. The entire trading period is divided into training and validation intervals without

overlapping.

2. A PPO, DDPG, and A2C agents are initialized and learn in parallel using the same

state descriptors.

3. We start training the models in an initial period, then evaluate them in a validation

time window of 3 months after the training period and select the currently best

performer for action prediction for the next quarter. Selection is based on the

Sharpe ratio achieved, where 𝑟𝑝̅ is the expected value of return, 𝑟𝑓 is the risk-free

interest rate and 𝜎𝑝 is the volatility (variance) of the stocks in the portfolio.

 Sharpe -ratio =

𝑟𝑝̅ − 𝑟𝑓

𝜎𝑝
 (5.1.4)

 25

4. The training period is extended by 3 months and then the loop is restarted.

5.2 Splitting the feature groups

In the standard ensemble model, a set of features put into a single group was

responsible for describing the state spaces of the parallel acting agents [24]. Factors, i.e.,

different aspects of each technical indicator, covered the dynamics of the market.

The basic idea of the first development idea was also given by the non-separate

use of features: it would be worthwhile to parallelize agents [5] not only on a model basis,

but also by feature function [4], i.e. to apply ensemble techniques [23] at the level of

factor groups.

For this solution, the first step was to define the functional groups according to

which the technical indicators could be grouped. In addition to the auxiliary factors not

used in the model (such as the day of the week), three main groups were identified:

momentum-type indicators, volatility indicators, and indicators that provide information

on the volume traded in the market. The groups do not overlap, they form disjoint sets.

The factors are also discussed in more detail in the Technical indicators section.

Dividing groups has several roles. One is to see the effectiveness of the initial

ensemble development and extend the method to the feature space, thus giving the model

a chance to find not only the best algorithm but also the most suitable feature set in a

given trading period. With this extended method, we can get new information from each

agent instance that can help us understand how each model can interact effectively with

certain groups of factors, i.e., we can gain indirect knowledge about which methods are

worth using in different market periods and what are the dynamic indicators that carry

most of the useful information.

Separating groups and using them based on different goodness metrics can not

only result in an even more robust model, but also alleviate the problem of transparency

and algorithmic transparency, which is often treated as a critical point in the financial

world. Although the application of deep learning methods continues to strengthen the

black-box nature of developments, the ensemble decision presented here can be clearly

traced back to all trading periods. Examining these decisions, we can clearly see in each

period of the market what were the strong dynamic descriptors (momentum, volatility,

traded volume) based on which the model decided to take or give up the position.

The selection of technical indicators for each group was mainly based on

statistical methods. Function groups were constructed based on the most used factors in

 26

the literature, and after normalization of the data, indicators that explained each other too

much were omitted based on Pearson correlation. It was mentioned earlier that not only

did we strive for the greatest possible independence within the groups, but there was no

overlap between the groups at all in order to increase robustness.

The initial feature space contained the factors presented in the chapter on technical

indicators, the correlation heatmap of which is shown in the following figure:

Figure 5.2.1 Correlation heatmap of the whole feature space

It can be seen that a significant number of factors explain each other, their positive

correlation is high. To avoid overfitting and to achieve robust predictions, each function

group was narrowed down using backward feature elimination. As a first step, a constant

value was defined to define a strong positive correlation, the lower limit of which became

0.3. As a next step, the technical indicators that correlated strongly positively with most

other indicators within a function group were selected. If two indicators correlated

strongly positively with other indicators similar times, then the indicator which was

referred more in the literature and used in practice stayed in place. In general, the goal

was to keep as many factors as possible during feature elimination.

The following figures show the technical indicators of the original and reduced

factor groups and their correlations. It can be noticed in the last two heatmaps containing

momentum indicators that there are strongly correlated RSI indicators even after

reduction. These factors have been intentionally left out, as they model the same market

dynamics phenomenon in different time windows, the autocorrelation of which is

inevitable, and these factors were too important to leave.

 27

1. Volume indicators:

Figure 5.2.2 Volume indicators’ correlation heatmaps before and after reduction

2. Volatility indicators:

Figure 5.2.3 Volatility indicators’ correlation heatmaps before and after reduction

3. Momentum indicators:

Figure 5.2.4 Momentum indicators’ correlation heatmaps before and after reduction

 28

5.3 Extended risk aware ensemble model space

The life cycle of the ensemble model follows the main points, similar to the initial

development. At the initial time, let p0 be the value of the shares and b0 be the value of

the capital invested. Denote by h the number of shares already purchased and in the active

portfolio, which is initially 0. The initial value of the 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) function is also 0, and

the 𝜋(𝑠) policy defined in the state space is uniformly distributed.

The value of the 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) function is updated during each interaction with the

trading environment, as a function of the current state activity pair. The optimal trading

strategy is obtained using the Bellman equation presented in the theoretical introduction,

such that the expected reward of taking action at state 𝑠𝑡 is the expectation of the

summation of the direct reward 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and the future reward in the next state 𝑠𝑡+1.

Furthermore, a discount factor for the future rewards is also introduced [24]:

 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝐸𝑠𝑡+𝟙
[𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛾𝐸𝑎𝑡+𝟙∼𝜋(𝑠𝑡+𝟙)[𝑄𝜋(𝑠𝑡+1𝑎𝑡+1)]] (5.3.1)

In the improved method, a 3x3 model was used instead of the initial 3 models.

Feature groups covering 3 types of market dynamics were assigned 3 different models

that were trained in parallel spaces. The higher an agent's Sharpe ratio, the better its

returns have been relative to the amount of investment risk it has taken. Therefore, we

pick the trading agent that can maximize the returns adjusted to the increasing risk.

At the end of each training period, out of the 9 models (initially), the policy and

status space of the portfolio producing the best Sharpe ratio was selected for the next

prediction (trading) period. The value and structure of the portfolio, i.e. the current

position defined by the state space descriptors, was synchronized with the other models

at the end of each cycle.

The technique of choosing from 9 models has had a number of other results in

addition to increased profit and reduced risk. One of these was the demonstration of the

sensitivity of the models to different market and trading situations. In addition to

performance indicators, this sub-result is also discussed in the Measurements and results

section.

One of the sub-tasks of the trading process is not only to increase the value of the

portfolio, but also to minimize the drawdown, i.e., to reduce the risk. To solve this

unavoidable problem, the following idea and methods have been used.

 29

The previously mentioned market turbulence index was included in the more

advanced model not only as a constant constraint, but as a kind of circuit breaker:

 turbulence 𝑡 = (𝑦𝑡 − 𝜇)Σ−1 ⋅ (𝑦𝑡 − 𝜇)T ∈ 𝑅 (5.3.2)

where 𝑦𝑡 denotes the stock returns for current period t, µ denotes the average of historical

returns, and Σ denotes the covariance of historical returns.

In highly volatile circumstances, when a predefined threshold is exceeded, the

reward function changes to a target function that seeks to minimize [24] portfolio value

loss by eliminating positions:

 𝑟𝑠𝑒𝑙𝑙 = (𝑝𝑡+1 − 𝑝𝑡)𝑇𝑘𝑡 (5.3.3)

Aligning with the volatility indicator, the simple reward function that maximizes

portfolio value and the ensemble decision responsible for selecting the model that

provides predictions for the next trading period has been transformed into a weighted

complex function that adapts to the most important trading subtasks. The decision

between the models was made at the end of each 3-month period based on the following:

1. The Sharpe-ratio and maximum drawdown achieved by all 9 models were

calculated.

2. Sharpe and drawdown values were scaled separately into the interval [0,1].

3. The scaled two values were aggregated per model (Eq. 5.3.4), resulting in a

standard score.

4. The turbulence index was scaled to the [0,1] interval. This value, calculated

per period and compared to the 90th percentile of the historical average, results

in a weight factor in the final score. The two factors of the decision function,

the Sharpe and drawdown ratios, separately control mainly the volatility-

adjusted increase in the value of the portfolio and the loss in the value of the

portfolio. With the introduction of the weighting factor, minimizing

drawdown plays a greater role in turbulent periods, while increasing the value

of the portfolio is more important in calmer, more stable periods.

The function of the final decision with weight factors adaptive to market turbulence can

be written as follows:

 𝑃final = [
𝛼
𝛽] ∗ [𝑆ℎ𝑎𝑟𝑝𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑑], (5.3.4)

where [
𝛼
𝛽] in the ith trading period equals to [

𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑖 / 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛

1 − (𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑖 / 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛)
].

 30

Another useful by-product of the combined use of the above metrics is that even

if the weighting factor of the drawdown member were 0 in some extreme case, risk

management does not disappear from the model either, as volatility is included in the

Sharpe-ratio.

 31

6 Experiments and results

Five metrics are used to evaluate our results:

• cumulative return:
𝑓𝑖𝑛𝑎𝑙 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑣𝑎𝑙𝑢𝑒 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑣𝑎𝑙𝑢𝑒

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑣𝑎𝑙𝑢𝑒

• annual return: √∏ 1 + 𝑅𝑛
𝑛
1

𝑛 − 1, where 𝑅𝑛 is the cumulative return of year n

• annual volatility: √252 × √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑛𝑛𝑢𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛, where 252 is the

number of trading days in a year

• maximum drawdown during the trading interval

Cumulative return reflects returns at the end of trading stage. Annualized return is the

return of the portfolio at the end of each year. Annualized volatility and maximum

drawdown measure the robustness of a model. The Sharpe ratio is a widely used metric

that combines the return and risk together.

To evaluate the results, two main measurement scenarios were defined: in the first, a

single set of features, while in the second, 3 shared feature sets were responsible for

describing the states. During the measurements, the average efficiency and its standard

deviation were calculated based on the results of 5 runs in each case.

• Sharpe-ratio:

feature

model

all features in one

group

features in 3

separate groups

only PPO 1.638 ± 0.190578 1.644 ± 0.280054

only DDPG 1.752 ± 0.221405 1.814 ± 0.278083

only A2C 1.494 ± 0.291513 1.676 ± 0.106442

standard ensemble 1.726 ± 0.11371 -

3 model ensemble - 2.194 ± 0.328831

9 model ensemble - 2.194 ± 0.197180

 Table 6.1.1 Sharpe-ratios of the different models

As of Table 6.1.1, in the first scenario, where the features were not separated, they

were added as a bulk input to the models, the DDPG model achieved the highest Sharpe-

 32

ratio. The standard ensemble model was really close to the DDPG result. From the

viewpoint of consistent efficiency, the standard ensemble can be considered better, due

to its lower standard deviation in the results.

In the second scenario, where the features were handled in three separate groups,

the highest Sharpe-ratio was achieved by the 9-model ensemble approach. However,

scoring the same average as the 3-model version derived from 5 measurements the

standard deviation of 9-model approach is lower, which is a sign of a more stable

performance. Compared to the standard ensemble, which could be considered as a

baseline, the improved development scored 0.45 more in average, which is quite a large

improvement.

• Maximum drawdown:

feature

model

all features in one

group

features in 3

separate groups

only PPO
-0.08772 ± 0.010475 -0.08886 ± 0.008784

only DDPG
-0.10472 ± 0.010284 -0.0906 ± 0.014662

only A2C
-0.09796 ± 0.016146 -0.09978 ± 0.013307

standard ensemble
-0.09704 ± 0.007469

-

3 model ensemble -
-0.08416 ± 0.017468

9 model ensemble -
-0.0875 ± 0.00882

Table 6.1.2 Maximum drawdown of the different models

As of Table 6.1.2, in the first scenario the PPO model achieved the lowest

drawdown during the whole trading interval.

In the second scenario, where the features were handled in three separate groups,

the lowest drawdown was achieved by the 3-model ensemble approach. The split feature

PPO approach and the 9-model version was also really close to this result.

 33

• Annual return:

feature

model

all features in one

group

features in 3

separate groups

only PPO 0.24394 ± 0.029312 0.2548 ± 0.060038

only DDPG 0.2986 ± 0.037177 0.3022 ± 0.050149

only A2C 0.26072 ± 0.070203 0.28794 ± 0.023736

standard ensemble 0.30504 ± 0.027429 -

3 model ensemble - 0.38524 ± 0.0453472

9 model ensemble - 0.40582 ± 0.030984

Table 6.1.3 Annual return of the different models

As of Table 6.1.3, in the first scenario the standard ensemble model achieved the

highest annual return.

In the second scenario, where the features were handled in three separate groups,

the highest annual return was achieved by the 9-model ensemble approach. Compared to

the standard ensemble, which could be considered as a baseline, the improved

development scored 10% more in average, which is a great improvement considering the

one-year trading interval.

• Annual volatility:

feature

model

all features in one

group

features in 3

separate groups

only PPO 0.13932 ± 0.006226 0.14384 ± 0.012929

only DDPG 0.1565 ± 0.009719 0.15228 ± 0.010612

only A2C 0.16212 ± 0.014332 0.15892 ± 0.009106

standard ensemble 0.16206 ± 0.004021 -

3 model ensemble - 0.15624 ± 0.020884

9 model ensemble - 0.16198 ± 0.008748

Table 6.1.4 Annual volatility of the different models

 34

As of Table 6.1.4, in the first scenario the PPO model achieved the lowest annual

volatility during the whole trading interval.

In the second scenario, where the features were handled in three separate groups,

the lowest annual volatility was also achieved by the PPO approach.

Further experiments were conducted using only a single feature group per a single

model. These results can help understanding the behavior of each model with different

factors. The following tables (from 6.1.5. to 6.1.8.) were evaluated column wise to obtain

the best scoring models per feature group.

• Sharpe-ratio:

 feature

model

volatility volume momentum

A2C 1.490 1.629 1.288

DDPG 1.747 1.741 1.562

PPO 1.929 1.357 1.357

Table 6.1.5 Sharpe-ratio of the different models

• Maximum drawdown

 feature

model

volatility volume momentum

A2C -0.075 -0.115 -0.118

DDPG -0.100 -0.078 -0.120

PPO -0.097 -0.103 -0.088

Table 6.1.6 Maximum drawdown of the different models

 35

• Annual volatility

 feature

model

volatility volume momentum

A2C 0.1393 0.1769 0.1671

DDPG 0.1604 0.1439 0.1607

PPO 0.1368 0.1430 0.1310

Table 6.1.7 Annual volatility of the different models

• Annual return

 feature

model

volatility volume momentum

A2C 0.217 0.311 0.222

DDPG 0.305 0.270 0.267

PPO 0.288 0.201 0.183

Table 6.1.8 Annual return of the different models

At annual return the best model-feature pair was A2C – volume with 0.311, which

can be compared with the previous best models, the standard ensemble and the 9-model

ensemble methods. The Table 6.1.9 presents that 9-model ensemble algorithm surpasses

the others.

model
Annual return

standard ensemble 0.305

9 model ensemble 0.406

best model-feature

pair: A2C - volume
0.311

Table 6.1.9 Annual return of the best models

The following results present the performance of the best performing 9-model

ensemble algorithm run based on the use of the Pyfolio backtest package measured from

 36

2020.07.06 to 2021.06.30. As pictured on Figure 6.1.1 the best performance of the models

could increase the annual value of the portfolio with more than 44%. The portfolio value

change is plotted against the turbulence index, which makes it easier to observe the

different behavior of the portfolio during changing market dynamics based on equation

5.3.4.

Figure 6.1.1 Performance of the portfolio with the turbulence index

Finally, the worst drawdown periods were the followings presented in Table

6.1.10 and on Figure 6.1.2 (drawdown periods and their respective loss values on the

underwater plot), where net drawdown is the maximum loss in the portfolio, peak date is

the last date where the performance was positive, valley date is the last date where the

performance was negative, recovery date is the date when the portfolio value was the

same again as at the peak date and the duration is the length of the drawdown period in

trading days.

Worst

drawdown

period

Net drawdown

in %

Peak

date

Valley

date

Recovery

date
Duration

1 9.56
2020-

09-02

2020-

10-28
2020-11-09 49

2 4.05
2021-

01-14

2021-

01-29
2021-02-04 16

 37

Worst

drawdown

period

Net drawdown

in %

Peak

date

Valley

date

Recovery

date
Duration

3 3.87
2021-

05-07

2021-

05-12
2021-06-02 19

4 3.38
2021-

06-02

2021-

06-18
2021-06-24 17

5 2.96
2021-

03-17

2021-

03-25
2021-04-09 18

Table 6.1.10 Drawdown periods during the whole trading interval

Figure 6.1.2 Drawdown periods and their coherent underwater plots

 38

7 Summary

The dissertation details the theoretical background of algorithmic trading based

on reinforcement learning methods, with a special focus on the possibilities of state-of-

the-art deep reinforcement learning algorithms. After presenting the mathematical

background of trading and deep reinforcement learning, I explored a new trading

approach through a multi-share trading problem that uses ensemble methods to train

multiple models simultaneously.

My research focused on assessing and further developing the performance of a

standard ensemble agent architecture. This standard approach used technical indicators to

describe market dynamics in a single bulk group and then selected a predictor for a

subsequent trading period based on a rolling window ensemble method from 3 different

algorithms. First, I performed individual performance measurements of each learner

algorithms for this implementation, followed by the implementation of possible

development ideas after setting up the performance profile.

In the first half of the research, an improved ensemble method was developed,

which is able to increase the value of the portfolio even in highly turbulent market

conditions while minimizing risk factors. The main development idea uses an extended

ensemble method, one of the components of which is the split feature space. Dividing the

feature space based on predefined function groups promotes the robustness of the model

decision by always preferring the best algorithm and the group of factors that best fits it

in the current market situation during the trading period.

In the second half of the research, the main goal was to effectively address risk

factors. In addition to maximizing profits, a key task is to minimize portfolio impairment

during volatile market situations. To solve this problem, an adaptive decision mechanism

has been introduced that dynamically weights the reward function used in ensemble

decision based on a turbulence index by varying the weights of the Sharpe-ratio and the

maximum drawdown values.

In the final phase of the work, the performance of the new models was recorded

by analyzing the different measurement scenarios and a number of financial metrics

within them. The results show that the stock trading task aimed at the research project

was achieved with outstanding efficiency even in turbulent market conditions.

 39

During the implementation of the project, not only new results were achieved, but

also a number of further issues were gathered. Of these, further research on reinforcement

learning algorithms, such as the further development of multi-agent approaches (MARL,

multi-agent RL) in terms of policy aggregation, may be a key topic for future

developments. Another research topic could be the information theory analysis of the

factors used in order to create a better and more informative feature space.

 40

References

[1] Bao, W., & Liu, X. (2019). Multi-Agent Deep Reinforcement Learning for

Liquidation Strategy Analysis. ArXiv, abs/1906.11046.

[2] Bellman, R. (1957). A Markovian Decision Process. Journal of Mathematics and

Mechanics. 6 (5): 679–684. JSTOR 24900506.

[3] Bellman, R. (1957). Dynamic Programming. Dover. ISBN 0-486-42809-5.

[4] Dusparic I., Cahill V. (2009) Using Reinforcement Learning for Multi-policy

Optimization in Decentralized Autonomic Systems – An Experimental

Evaluation. In: González Nieto J., Reif W., Wang G., Indulska J. (eds) Autonomic

and Trusted Computing. ATC 2009. Lecture Notes in Computer Science, vol

5586. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02704-8_9

[5] Ghosh, S., Laguna, S., Lim, S.H., Wynter, L., & Poonawala, H.A. (2020). A Deep

Ensemble Multi-Agent Reinforcement Learning Approach for Air Traffic

Control. ArXiv, abs/2004.01387.

[6] Huang, C. (2018). Financial Trading as a Game: A Deep Reinforcement Learning

Approach. ArXiv, abs/1807.02787.

[7] Konda, Vijay & Tsitsiklis, John. (2001). Actor-Critic Algorithms. Society for

Industrial and Applied Mathematics. 42.

[8] Kritzman, Mark & Li, Yuanzhen. (2010). Skulls, Financial Turbulence, and Risk

Management. Financial Analysts Journal. 66. 10.2469/faj.v66.n5.3.

[9] Lee, J. W., Park J., and Hong E., "A Multiagent Approach to Q-Learning for

Daily Stock Trading," in IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans, vol. 37, no. 6, pp. 864-877, Nov. 2007, doi:

10.1109/TSMCA.2007.904825.

[10] Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., &

Wierstra, D. (2016). Continuous control with deep reinforcement learning. CoRR,

abs/1509.02971. https://arxiv.org/abs/1509.02971

[11] Liu, X.Y., Yang, H., Chen, Q., Zhang, R., Yang, L., Xiao, B., Wang, C.D. (2020).

FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in

Quantitative Finance, ArXiv abs/2011.09607

[12] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... &

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.

In International conference on machine learning (pp. 1928-1937). PMLR.

[13] Mnih, V.; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel;

Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.

(2015). Human-level control through deep reinforcement learning. Nature. 518

(7540): 529–533.

https://arxiv.org/abs/1509.02971

 41

[14] Mosavi, A.; Faghan, Y.; Ghamisi, P.; Duan, P.; Ardabili, S.F.; Salwana, E.; Band,

S.S. Comprehensive Review of Deep Reinforcement Learning Methods and

Applications in Economics. Mathematics 2020, 8, 1640.

https://doi.org/10.3390/math8101640

[15] Nováček, O., Vaiciukevičius, D., Koch, M. (2020). Connect X with DQN and

PBT. Jun 15, 2020. (medium.com)

[16] Rummery, G. A., Niranjan, M. (1994). Online Q-learning using connectionist

systems, Technical Report CUED/F-INFENG/TR 166.

[17] Russel, S. & Norvig, P. (2005). Mesterséges intelligencia modern

megközelítésben. 2. kiadás. Panem.

[18] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).

Proximal Policy Optimization Algorithms. ArXiv, abs/1707.06347.

[19] Širůček, Martin & Šíma, Karel. (2016). Optimized Indicators of Technical

Analysis on the New York Stock Exchange. Acta Universitatis Agriculturae et

Silviculturae Mendelianae Brunensis. 64. 2123-2131.

10.11118/actaun201664062123.

[20] Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (1999). Policy

gradient methods for reinforcement learning with function approximation. In NIPs

(Vol. 99, pp. 1057-1063).

[21] Sutton, R., Barto, A. (1998). Reinforcement Learning. MIT Press. ISBN 978-0-

585-02445-5. Archived from the original on 2017-03-30.

[22] Uhlenbeck, George E and Ornstein, Leonard S. (1930). On the theory of the

brownian motion. Physical review, 36(5):823.

[23] Wiering, Marco & Van Hasselt, Hado. (2008). Ensemble Algorithms in

Reinforcement Learning. IEEE transactions on systems, man, and cybernetics.

Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics

Society. 38. 930-6. 10.1109/TSMCB.2008.920231.

[24] Yang, Hongyang and Liu, Xiao-Yang and Zhong, Shan and Walid, Anwar, Deep

Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy

(2020) http://dx.doi.org/10.2139/ssrn.3690996

[25] Zhang, Z., Zohren, S., & Roberts, S.J. (2019). Deep Reinforcement Learning for

Trading. ArXiv. https://arxiv.org/abs/1911.10107

https://dx.doi.org/10.2139/ssrn.3690996
https://arxiv.org/abs/1911.10107

 42

Appendix

Technical indicators to characterize exchange rate dynamics for every stock in the

portfolio. All the indicator details are from www.investopedia.com:

• momentum indicators:

o MACD: Moving average convergence divergence (MACD) is a trend-

following momentum indicator that shows the relationship between

two moving averages of a security’s price. The MACD is calculated by

subtracting the 26-period exponential moving average (EMA) from the

12-period EMA.

o RSI 6 / 12 / 30: The relative strength index (RSI) is a momentum

indicator used in technical analysis that measures the magnitude of recent

(6/12/60 days) price changes to evaluate overbought or oversold

conditions in the price of a stock or other asset. The RSI will rise as the

number and size of positive closes increase, and it will fall as the number

and size of losses increase.

o ADX: ADX is used to quantify trend strength. ADX calculations are based

on a moving average of price range expansion over a given period of time.

The default setting is 14 bars, although other time periods can be used.

o CCI 30: The CCI compares the current price to an average price over a

period of time. The indicator fluctuates above or below zero, moving into

positive or negative territory. While most values, approximately 75%, fall

between -100 and +100, about 25% of the values fall outside this range,

indicating a lot of weakness or strength in the price movement.

• volatility indicators:

o VR: The volatility ratio is a technical measure used to identify price

patterns and breakouts. In technical analysis, it uses true range to gain an

understanding of how a security’s price is moving on the current day in

comparison to its past volatility.

o ATR: The ATR may be used by market technicians to enter and exit

trades, and is a useful tool to add to a trading system. It was created to

allow traders to more accurately measure the daily volatility of an asset by

 43

using simple calculations. The indicator does not indicate the price

direction; rather it is used primarily to measure volatility caused by gaps

and limit up or down moves.

o Bollinger-band: A Bollinger Band® is a technical analysis tool defined by

a set of trendlines plotted two standard deviations (positively and

negatively) away from a simple moving average (SMA) of a security's

price, but which can be adjusted to user preferences.

• traded volume indicators:

o MFI: The Money Flow Index (MFI) is a technical oscillator that uses price

and volume data for identifying overbought or oversold signals in an

asset. It can also be used to spot divergences which warn of a trend change

in price.

o OBV: On-balance volume provides a running total of an asset's trading

volume and indicates whether this volume is flowing in or out of a given

security or currency pair. The OBV is a cumulative total of volume

(positive and negative).

o NVI: The negative volume index (NVI) is a technical indication line that

integrates volume and price to graphically show how price movements are

affected by down volume days.

o VPT: The volume price trend (VPT) indicator helps determine a security’s

price direction and strength of price change. The indicator consists of

a cumulative volume line that adds or subtracts a multiple of

the percentage change in a share price’s trend and current volume,

depending upon the security’s upward or downward movements.

o ADI: The accumulation distribution indicator (ADI) is a momentum

indicator that traders use to predict reversals in a trend by identifying tops

and bottoms.

