
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Solving Hive Board Game with Deep
Reinforcement Learning

Scientific Students’ Association Report

Author:

Tamás Bunth

Supervisor:

Dr. Bálint Gyires-Tóth

2019

Contents

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 The Hive game . 3

2.1.1 Movement rules . 4

2.2 Complexity of the game . 5

2.3 Reinforcement learning . 6

2.4 Neural networks . 7

2.5 Deep Learning concepts . 8

2.5.1 Convolutional neural network . 8

2.5.2 Pooling . 9

2.5.3 Adam optimizer . 9

2.5.4 Categorical Crossentropy . 9

2.5.5 Softmax . 9

2.5.6 Rectified Linear Unit (ReLU) . 10

2.6 Monte Carlo Tree Search . 10

2.6.1 Monte Carlo Tree Search for Policy Improvement 11

2.7 AlphaGo Zero . 11

3 Software Environment 14
3.1 OpenAI Gym . 14

3.2 Stable Baselines . 14

3.3 Choosing the language and the tool set . 15

3.4 Hive implementations . 15

3.5 Testing . 17

4 System Design 18
4.1 Inner representation of the board . 18

4.1.1 The previous representation . 18

4.1.2 The novel representation . 19

4.2 Matrix representation of state and action space 20

4.3 Random search for benchmark . 21

4.4 Interface for the search tree . 21

4.5 Graphical User Interface . 22

4.6 Move validation based on Hive rules . 24

4.7 The neural network . 26

5 Implementation 28
5.1 Refactor and maintain . 28

5.2 Graphical User Interface . 29

5.2.1 Future improvements . 30

5.3 Introducing Reinforcement Learning Capablilty 30

5.4 Load and save states . 32

5.4.1 Loading state . 33

5.4.2 Import from and export to json file 33

5.5 Implementing Monte Carlo Tree Search . 34

5.5.1 Components . 34

5.6 Modules for the learning phase . 35

5.6.1 Coach module . 35

5.6.2 Arena module . 37

5.6.3 Player module . 37

5.7 Structure of the network . 39

5.8 Incremental research and development . 40

5.9 Stable Baselines integration . 41

5.9.1 Implement the OpenAI Gym environment 42

5.9.2 Use Stable Baselines on environment 43

6 Testing, Evaluation and Results 45
6.1 Testing functionality . 45

6.1.1 Testing Board and movements . 45

6.1.2 Testing the representation . 46

6.2 Evaluation and Results . 47

6.2.1 Evaluating Stable Baselines algorithms 47

6.2.2 Results . 48

7 Summary 49

Bibliography 50

8 Bibliography 50

Kivonat

Jelen dokumentum célja a Hive elnevezésű stratégiai táblajáték játszására képes mester-
séges intelligencia ágens tervezését és implementálását végigkísérni. A Hive egy kétszemé-
lyes táblajáték, melyben a játékosok különböző köveket helyezhetnek le és mozgathatnak a
játék szabályainak megfelelően. A játék célja körülkeríteni az ellenfél játékosának méhkirá-
lynőjét. A projekt célja egy olyan mély megerősítéses tanulás alapú algoritmus létrehozása,
mely megközelíti a Hive játékosok teljesítményét.

A játék komplexitása hasonló a sakkéhoz. Ugyanakkor, a probléma különlegessége, hogy
fix pálya híján a játéktér virtuális, elméletben végtelen méretűre nőhet – és ennek a játék-
ban használt korongok száma szab csak határt. További kihívás, hogy az intelligens ágens
tanításához csak korlátozott erőforrás áll rendelkezésre. A problémát az teszi továbbá
különlegessé, hogy a dokumentum írásának pillanatában nem létezik olyan ágens a Hive
játékhoz, melynek teljesítménye összemérhető lenne a legjobb játékosokéval.

A cél elérése végett szükség van egy olyan szoftveres környezet létrehozására, melyben
a tanuló eljárást futtatni és tesztelni lehet. A dolgozat végigkíséri az olvasót az ágens
és a környezete tervezésének és megvalósításának folyamatain, illetve betekintést ad a
fejlesztést megelőző irodalomkutatás és tervezés lépéseibe.

A fejlesztés során sikerült megvalósítani egy olyan környezetet, mellyel megvalósítható egy
megerősítéses tanulás alapű intelligens ágens tanítása. Továbbá sikerült megvalósítani egy
olyan ágenst, melynek teljesítménye jobb egy véltelenszerű lépéseket választó ágensnél,
és mindezt az ágens szakértői tudás hozzáadása nélkül, csupán a játékszabályok ismerete
mellett éri el.

Megvalósítottam továbbá a manapság sztenderdnek tekinthető OpenAI Gym
keretrendszer[6] interfészeit, és ezáltal lefuttathatóak az erre a keretrendszerre épülő
Stable Baselines[11] algoritmusok is.

i

Abstract

Hive is an abstract strategy tabletop game for two players, in which the goal is to surround
one of the tiles of the opponent. The players can either move one of their tiles or place a
new one next to the already placed ones corresponding to the game rules. The main goal
of the project is to create a deep reinforcement learning solution for playing Hive.

The complexity of the game is similar to the complexity of chess in several aspects. One
difference, however, is the lack of a game board. Hive has a virtual game board, which
can theoretically be of infinite size – the source of the only limitation is the number of
pieces in play. Another challenge is to prepare the agent with the lack of outstanding
computational resources. The motivation behind the task is the fact that – at the time of
writing this document – no agent for Hive has been implemented which could surpass the
skills of a human expert.

In order to create an intelligent AI, investigating the already existing solutions for devel-
oping intelligent agents for Hive or other similar problems is of paramount importance.
Furthermore, a suitable implementation of the Hive game itself is necessary for the elabo-
ration and learning process of the AI itself. This documentation leads through the steppes
of the planning, design and implementation phases of the development, as well as the
decision being taken before and during the development.

I have successfully designed and implemented an framework, which can be used as an
environment for the intelligent agent. Furthermore, I implemented an agent, which could
surpass the efficiency of an AI which steps randomly.

I also realized the interface of OpenAI Gym[6], which is nowadays’ most famous standard-
ization effort for Reinforcement Learning environments, and integrated a tool set called
Stable Baselines[11].

ii

Chapter 1

Introduction

In the past few years not only computational resources, but our knowledge and tooling of
machine learning evolved. This allow us - among others - to create or improve computer-
controlled agents for tabletop games, which can play the game on the same level or even
better as a human player.

My goal is to investigate the possibilities of creating an AI - a computer controlled player
based on artificial intelligence - for the board game Hive.

Hive[1] is a two-player board game, where the object is to surround the opponent’s queen
bee with tiles. The game consists of hexagonal tiles which can be placed next to each
other. Each player has basically two type of actions: he can either place a new tile into
the hive - that is how the combination of already placed tiles is named - or move an already
placed tile of his own. Although the game technically does not contain any game board,
the game is classified as an abstract strategy board game. That is because the rule of the
game shares elements with board games like chess. The rules of hive is described more
in depth in the pre-planning section. A separate section is allocated for the analysis of
the game complexity regarding the number of possible states and actions during the game
and the so called branching factor.

In order to create an AI to play Hive, the first task to do is to construct an environ-
ment which represents the logic and enforces the rule of the game. There are already
some open-source implementations of Hive published on GitHub. I decided to use João
Lopes’s[2] solution, which serves as a ground base of my work. The description of the base
environment as well as the extensions and modifications made on the environment during
my work is explained later in the and implementation section.

There are several different approaches when we talk about computer controlled artificial
intelligence creation. The most simple approach is to define a policy for each available
state.

A in Hive means the current state of board, given by the relative positions of the tiles. A
policy is a (state, action) pair, which defines the action the AI will perform in a state.

That means we tell the agent explicitly what to do in every situation. Of course if things
were that easy, this theses work would not exists and also Hive would not be such pop-
ular game. One of the problems with that approach is that we have insufficient domain
knowledge. We can’t tell the AI the perfect moves, if we don’t know them either. In
the pre-planning section I will cover the most popular techniques which could be used to
create an AI for Hive.

1

Some of those techniques use neural networks to approximate the optimal decision at
each state. One particular area of machine learning which usually use neural networks
is reinforcement learning. I explain how reinforcement learning works and how it can be
used to create an AI for hive in the later sections.

2

Chapter 2

Background

2.1 The Hive game

Hive is a two-player board game. Each player has 11 hexagonal tiles, if they play without
extensions. Each stone represents a bug. Different bugs have different moving abilities
just as in chess. There are three grasshoppers, two spiders, two beetles, three ants and
one queen bee. The goal is to capture the queen bee of the opposite side by surrounding
it completely with six tiles. If expansions are included then players might also have a
mosquito, a ladybug and a pillbug. Since they are not implemented in the environment I
will not cover the expansions in detail.

Figure 2.1: An image of the game Hive, downloaded from the of-
ficial website

Each player can either put a new tile to the hive or move an already placed bug. The
game starts with an empty layout. One of the players may begin with placing a bug of his
choice. The next player in the second turn should place a bug of his choice next to that.
From the third turn on, the players can place bugs the following way:

• The end location of the piece must not be adjacent to any tiles of the opponent.

3

• The piece must be placed next to the hive. That means it has to be adjacent with
at least one of the pieces on the same side.

The players can place pieces until the end of game or until they run out of tiles. The
queen be has to be placed in one of the first four turns of each player. That means if a
player has already placed three tiles, but the queen bee is not yet placed, then at the next
turn he is forced to put his queen bee down. The queen bee cannot be placed in the first
turn.

Movement actions are not allowed until the queen bee of that side is placed. Furthermore,
there is an additional rule related to movement often referred as "one hive rule":

A piece cannot be moved, if the movement breaks the hive apart. That means if we
represent the board - often referred as the hive - as a graph where the vertices represents
the pieces, and there is an edge between two vertices if and only if the represented pieces are
adjacent, the graph should be connected even without the piece which is under movement.

2.1.1 Movement rules

Different bugs can move differently. One simple example is the queen bee, which can
move similarly as the king in chess: it can move to any cells adjacent to it, if the cell is
not occupied yet. There is one exception though: the queen bee - and most of the other
pieces as well - can only move in a "sliding movement". If a piece is surrounded to the
point that it can no longer physically slide out of its position, it cannot move to that tile.
This rule is often called "freedom of move rule".

Beetle can move similarly to queen bee. Although, it can also crawl up onto another
piece - that means to the top of the hive. From the top of the hive it can move everywhere
adjacent. Freedom of move rule is also valid to beetles too. Interesting fact that - even
though the game description does not emphasize it - the "freedom of move rule" applies
to the beetle as well.

The spider can move exactly three spaces around the hive. These three steps are similar
to how queen bee moves. It cannot move to those cells which could be reached with
less than three moves. In practice, it is rare that the spider can move to more than two
different tiles. It can only happen, if there is a formation similar to a fork.

In figure 2.2 we can see an example. The spider (labeled with "S") with yellow color can
move up to 4 places.

The grasshopper can jump through pieces with one movement. It can move in the six
direction to a maximum of six cells. It can only move to a direction if there is an adjacent
piece that way. If there is, it jumps through it to the first free cell in that direction.

The ants might be the most powerful pieces of all. They can move everywhere around
the layout, without violating the one hive rule and the freedom of move rule. It can repeat
the move of the queen bee as many times as you want, capable of moving everywhere on
the edge of the hive.

In other worlds - in the developer’s point of view - it can repeat the movement of the
queen n ∈ [1;∞) times.

Finally, if a player cannot place a bug and cannot move any of his bugs, then he must
pass the turn. The opponent can step multiple times, until the player can move again.

4

Figure 2.2: An example game state, where a spider (S) piece can
move to 4 different tiles

2.2 Complexity of the game

There are common practices for measuring the complexity of chess, since that game has
centuries of history behind it. Hive was published in 2001, and it is also not as well known
as chess. However, the complexity of Hive can be measured around similar metrics.

There are two main factors which should be taken into account when talking about com-
plexity: the size of the state space and the average branching factor. The state space is
the set of all the possible states of the game. The branching factor means the number of
possible moves at a given state. The state of the game is one particular state of the board
defined with the relative position of the already placed pieces. The state space is the set
of all the possible states.

Calculating the size of state space accurately is quite challenging in case of hive, since
there is no game board physically. As an upper estimate we can say that each piece can
have neighbours at six different sides, or they might not be placed on board yet. It can
be adjacent to different kind of bugs. There are 22 pieces without expansions, which leads
to (22 ∗ 21)7 possible states. We did not count that the beetle can be on top of the hive
though.

There is an algorithm called Perft, which is developed to measure the complexity of board
game chess. Since the two games are quite similar, the same algorithm can be used to
measure the complexity of Hive.

The pseudo code can be found in algorithm 1.

This idea is to represent the possible states in a tree, and count the nodes on each level.
That way the branching factor can be calculated between the nodes. The result of exe-
cuting the above algorithm on Hive shows the following:

• The average branching factor of Hive is much higher than in chess.

5

Algorithm 1 Perft algorithm
1: procedure Perft(Depth)
2: move_list← []
3: nodes← 0
4: if depth = 0 then
5: return 1
6: n_moves← GenerateLegalMoves(move_list)
7: for move inmove_list do
8: MakeMove(move)
9: nodes← nodes+ Perft(depth− 1)

10: UndoMove(move)
11: return nodes

• Since at the beginning there are more possible actions in chess than in Hive, the
total number of nodes in a tree level is less in Hive.

• Since the branching factor is higher, and there are no such events as piece removal
in Hive, the total number of nodes in Hive is higher after around the eights or ninth
movement. There are around 1011 possible states in depth 9.

The algorithm cannot be used to depth more than 7, because the cost of the algorithm
grows exponentially with the depth of the tree.

2.3 Reinforcement learning

One of the techniques used to create AI’s for games like Hive is reinforcement learning[27].
It is an area of machine learning. Consequently, it is a subset of artificial intelligence,
where the algorithm builds up a mathematical model based on sample data, called as
"training data", in order to make estimations on the optimal output.

In addition, reinforcement learning defines some terminologies used when modelling the
system:

• The agent is the part of the system which can learn, and which interacts with the
environment respectively.

• The environment is a state-full unit, where actions can be executed. The actions
will be evaluated by the environment and it can be rewarded afterwards. The action
may move the environment to a new state.

• Action is a decision made by the agent and executed on the environment. For
example moving or placing a piece in Hive.

• State: Regarding the current state of the environment, other actions may be valid,
and actions may be rewarded differently.

• Reward: The environment produces it after each action. The amount of reward may
depend on the state of the environment.

• Policy: The decision-making function of the agent. It maps states to actions.

6

• Model: The environment from the agent’s point of view. Hive has a fully observable
environment, which means that every information of the state can be handed out to
the agent. In that case the model clearly defines the state. A state can be modelled
several ways though. For example, a state of Hive - which holds the location of the
pieces - can be modelled with a two-dimensional array, where an element represents
a cell on board, or it can be modelled as a graph, where the vertices are the bugs,
and an edge is present between bugs, if they are adjacent. A weight on edges may
represent the direction of the adjacency. Some reinforcement learning algorithms do
not need any model.

Reinforcement learning is a subset of online learning[5]. In case of online learning, instead
of having a full batch of training data we train the neural network only with one data at
a time.

There are two subcategories of reinforcement learning in which people usually categorize
the known techniques: model-based and model-free reinforcement learning. The difference
between them is mainly that the model-based version stores information about the state
transitions. It stores which state will be the next given an action.

The first, least smart solution for an AI would be the following: We store every possible
path of the game as a tree. The vertices are the states and the edges are the actions. If
we are able to store every possible state action pairs, we can see every possible outcomes
and therefore we can choose the optimal solution.

Sadly, the above method does not work, since the number of possible states usually - and
in Hive too - grows exponentially in the tree. Instead, we introduce a reward function
and a value in connection with the state-action pairs that represents the value of the state
and/or the action and we use a neural neural network to calculate that.

In case of the Hive AI I implemented a probability vector is assigned over an action called
policy vector in a given state. The states are also evaluated and a scalar value is assigned
to them. Theses values source from a neural network.

The main essence of reinforcement learning is to find a balance between exploration and
exploitation. When exploring, the algorithm decides to chose an action in the current
state which is either not yet used, or it was used but it is not the best action according to
prior experiences. Exploitation means to go for the best action according to the current
knowledge of the model. At first, the AI has no experience in the game yet, so it must
explore. In the end, it usually exploits more than explores.

The environment of the reinforcement Learning paradigm is usually formulated as a
Markov decision process, as many RL algorithms for this context utilize dynamic pro-
gramming techniques. The difference between dynamic programming methods and Rein-
forcement Learning is that the latter does not assume knowledge of an exact mathematical
model, and usually RL is used on larger Markov Decision processes, where the exact meth-
ods become infeasible. Just as in our case.

2.4 Neural networks

In the section above I described how reinforcement learning can be used to create an AI
for Hive. In order to achieve that I use a neural network to predict the optimal decision
of the player in a specific state. A neural network[23] is a densely connected graph in

7

which the edges have weights. These weights are called parameters and they are updated
periodically during the learning phrase.

An artificial neural network is based on a collection of connected units or nodes called
neurons. Each connection between these nodes has a weight.

There is two phases in the life-cycle of a neural network. First, we have to make it learn,
where the weight of the edges are updated to solving a problem. In the second phase, we
use the network on a same kind of input to predict something.

In the learning phase, the weight between the neurons are paramterized in order to be
able to solve or estimate the optimal solution of a specific problem. In the second phase,
data flows through the network, and – depending on the parametrized edges – it changes
it value of the data.

A neural network is a mathematical model built for approximating a complex problem.
Given a huge amount of inputs and expected outputs - usually referred as training data -
the optimal algorithm is approximated with periodic miner changes in the mathematical
mode. Neural networks are usually used if the optimal algorithm is either too complex or
not known. The reason of the complexity can arise from the complexity of the input or
the output, or the computational complexity of the problem.

The original goal of the neural networks was to solve problems the same way as a human
brain would. Although, over time, attention moved to performing specific tasks, which
resulted in a deviation from biology.

The history of neural networks go back to 1943, when Warren McCulloch and Walter
Pitts [18] opened the subject by creating a computational model for neural networks.
This work was inspired by the way neurons work in the human brain. After that, in 1958,
Rosenblatt created the first artificial perceptron[29].

The neural network used in this implementation fΘ is parametrised by Θ that takes
the board state as an input (s), and outputs the continuous value of the board state
vΘ ∈ [−1, 1], where the value is interpreted as the reward for the current player to obtain
that state. The neural network also outputs ~pΘ(s) policy vector, which is a stochastic
policy that is handy during self-play.

2.5 Deep Learning concepts

In the following section I want to describe those functions, techniques and settings of the
neural networks, which I used in my work.

2.5.1 Convolutional neural network

Convolutional neural network (CNN)[16] is a class of deep neural networks, which is
usually applied on those areas, where the more-dimensional orientation and neighbours of
the inputs holds significant information. For example analyzing visual imagery is that kind
of task. It can be used in connection with the Hive AI as well, since the state representation
is two-dimensional, and elements next to each other in the adjacency matrix - which is
described in later sections - hold similar information.

In a convolutional layer, neurons receive input from only a restricted subarea of the previ-
ous layer. Typically the subarea is of a square shape (e.g., size 5 by 5). The input area of
a neuron is called its receptive field. With these method it achieves to reduce the number

8

of neurons needed which results in less computational time compared to a simple fully
connected layer[14].

2.5.2 Pooling

In order to reduce the dimensions of the data set I use a pooling layer[24] after the
convolutional layer. The pooling layer looks at a region - a subrectangle of the input data
- and aggregates it with a particular method. In my work I use max pooling, which means
that the output regard that region is the maximum value in that.

2.5.3 Adam optimizer

During the learning phase of a neural network, the deep learning libraries use an optimizer
to decide the method of fine-setting the learning rate and the momentum of the gradient
descent method. The learning rate is used for setting the degree of impact of the calculated
gradient on the actual weights in the network, whereas momentum is a regularization
method mostly to prevent the vanishing gradient problem[12] and the exploding gradients.

The Adam[15] optimization is an optimization method available in the Keras deep learning
library, which is an extension to stochastic gradient descent that has recently seen broader
adoption for deep learning applications in computer vision and natural language process-
ing. It makes the neural network approximating to the optimal solution faster while it is
still computationally efficient.

The Adam optimization adapts the parameter learning rates based on the average first
moment (the mean) and also makes use of the average of the second moments of the
gradients (the uncentered variance).

2.5.4 Categorical Crossentropy

Categorical crossentropy is a loss function that is used for single label categorization. This
is when only one category is applicable for each data point. In other words, an example
can belong to one class only.

This can be used to determine the policy vectors in a state of the Hive board. Later sections
provide more information how categorical crossentropy is used as the loss function of the
neural network.

L(y, ŷ) = −
∑M

j=0
∑N

i=0 yi,j log(ŷi,j)

2.5.5 Softmax

Softmax is a commonly used quite simple non-linear activation function, defined by the
formula:

softmaxi(a) = exp ai∑
exp ai

It can be used to transform the output to be a probability. The result will be a probability
in the sense that:

• Every element of the output will be positive and

• The sum of the elements is 1.

9

2.5.6 Rectified Linear Unit (ReLU)

Rectified linear unit is a commonly used non-linearity when it comes to convolutional
networks[10] [17]. The function is quite simple:

f(x) = max(0, x), where x is the input to the neuron. It is non-linear, since there is a
breakpoint at the origo. The ReLU is the most popular activation function since 2017.
The advantage is that fewer vanishing gradient problems appear compared to sigmodial
activation functions, and it can also be calculated efficiently: only a comparison and
addition and a multiplication is needed. A disadvantage of this activation function is that
it is unbounded, which can lead to exploding gradients. Moreover, it is non-differentiable
in zero. However, choosing the derivative at zero arbitrary to be 0 or 1 solves that problem.

2.6 Monte Carlo Tree Search

The Monte Carlo Tree Search[7] – often abbreviated as MCTS – is a heuristic search
algorithm, which helps prioritizing possible action paths using a tree search.

Each node represents a state of the game and each Edge is an action. There are two
possible decisions during traversing a Vertex: exploration and exploitation. Exploration
means in that we want to try out a new node even though there are nodes in the given
state which are already explored. Exploitation means that given values of nodes - which
came from an exploration processed before - the best alternative is chosen in a given state.
Each node should store at least three numbers: the number of times the node was visited,
the number of times the game has been won from this state and also a predicted value of
the state.

The operation consists of the following parts:

• Selection: given the current state of the MCTS we want to select leafs which should
be expanded. The most popular method to decide which Leaf should be expanded
is the so-called upper confidence bound which works the following way:
at = arg maxa∈AQ(a) +

√
2 log t/Nt(a)

Every step we estimate Q values using sample-average method and then we add the
bonus term that only depends on the number of time steps t and the number of
times we picked that action, Nt(a).

• Expansion: after selecting a leaf to expand we calculate the possible actions from
that date. The three should be expanded with one or more nodes.

• Simulation: in this stage we want to measure the predictable value of a given node.
This is the stage where reinforcement learning has role by predicting the value of the
given state using it’s reward function. The reward function of the learning algorithm
should be related to the outcome of the game. Winning the game should mean
positive reward, losing the game should be rewarded with a negative number. The
simulation part is not necessarily implemented using reinforcement learning, other
significantly simpler methods can be used as well. For example a possible simulation
method would be to run a complete the game with random actions performed in each
state until the game is over. The benefits of using reinforcement learning instead of
that method are that it takes much less time or calculation resources.

10

• Backpropagation: the value returned from the simulation stage should be propagated
back in the tree, which means that the values off the parental nodes -should be
updated accordingly. That means that the parental mode Should value more if its
children represent a state in which the game can be won easily.

This algorithm becomes handy when there are too many possible state-action pairs.

2.6.1 Monte Carlo Tree Search for Policy Improvement

In this AlphaGo implementation I use Monte Carlo Tree Search (MCTS) to improve upon
the policy learned by the neural network. In order to balance the exploitation with the
exploration the MCTS explores the game state - represented by the nodes of the tree -
through different actions, which are represented by the edges of the tree. There can be
a directed edge between two different game states when there is a valid action that can
cause a state transition between the two states.

For each edge we maintain a Q value assigned to a pair of (state, action) which is the
expected reward for taking that action in that state. The tree also stores the number of
times an action is taken in a state. Both values can be used to distinguish advantageous
states and/or actions from disadvantageous ones. A vector is also stored for each state,
which is called Policy Vector, P (s, ·) = −→p Θ(s). It stores the prior probability of taking an
action. The values in our case come from the neural network.

The MCTS can be used to find a policy from a given state s. First, we create an initial
tree with only a root node s. In each iteration, we calculate action a, which maximizes
the upper confidence bound. If the state after taking action a from state s (s′) is already
present in the MCTS, than we continue our simulation. If it does not exist, new nodes
are being created and initialized with a policy vector obtained from the neural network.

After that we need to estimate the value of the new node. In order to do that, we check
first whether the game has been entered to a final state. If so, than we use the result as
a value (e.g. 1 meas a victory, -1 means lose, 0 is draw). If not, than we have to use the
neural network to predict a value alongside the policy vector.

Now, we can propagate the value back up the MCTS tree, updating all Q values seen
during the simulation.

After a few simulations performed on the MCTS, we can use the already existing tree to
make predictions on actions to take.

In order to control the degree of exploration and exploitation during building up the
tree, an another parameter τ , which is called temperature is introduced. Setting τ high
means the MCTS is more likely to explore, and setting τ low reduces the probability
of exploration. I change τ dynamically during the training process, lowering it in each
iteration in order to encourage exploration in "early game", but enforce exploitation in
"late game".

Pseudo code of the Monte Carlo Tree Search is provided in Algorithm: 2

2.7 AlphaGo Zero

During my work I implemented a subset of the AlphaGo Zero Algorithm[25], which relies
mostly on reinforcement learning and uses Monte Carlo tree search. The goal here was

11

Algorithm 2 Monte Carlo Tree Search
1: procedure MCTS(s,Θ)
2: if s is terminal then
3: return game_result
4: if s /∈ Tree then
5: Tree← Tree ∪ s
6: Q(s, ·)← 0
7: N(s, ·)← 0
8: P (s, ·)← −→p Θ(s)
9: return vΘ(s)

10: else
11: a← argmaxa′∈AU(s, a′)
12: s′ ← getNextState(s, a)
13: v ←MCTS(s′)
14: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1
15: N(s, a)← N(s, a) + 1
16: return v

to create an artificial intelligence, which is able to compete with human in a challenging
domain.

AlphaGo was the first program that defeated a world champion in the game of Go. This
predecessor of the AlphaGo Zero algorithm was trained by supervised learning trained
by a database of moves consists of actions taken by human experts. This algorithm
also used reinforcement learning with self-play. The next generation, the AlphaGo Zero
algorithm is based only on reinforcement learning, thus it can be prepared without human
data, guidance, or domain knowledge beyond game rules. It uses a neural network which
improves the strength of a tree search, resulting in better decisions in each iteration.

Running AlphaGo Zero against its predecessor, AlphaGo, the new generational algorithm
won 100 times from 100 matches.

The new method uses a deep neural network fΘ with parameters Θ. The network takes the
board representation of Go s and outputs (~p, v). ~p is a vector probabilities representing
the probability of choosing action a given state s: pa = Pr(a|s), and v is the value of
the state, which is a scalar value representing the estimated outcome of the game for the
current player – a bigger value should represent a positive outcome.

The neural network in AlphaGo Zero is trained from games of self-play with the concept
of reinforcement learning. In each state s, an MCTS search is executed, guided by neural
network fΘ. The MCTS search outputs probabilities π which is usually a stronger – better
– probability vector for selecting action a than the one returned by the neural network.
Therefore, the MCTS may be viewed as a policy improvement operator[13][27].

The MCTS uses the neural network fΘ to guide its simulations. Each edge (s, a) in the
tree stores a probability P (s, a), a visit count N(s, a) and an action value Q(s, a). The
simulation of the Monte Carlo Tree Search selects edges of the tree according to an upper
confidence bound Q(s, a) + U(s, a) (see section 2.6. If a leaf node is encountered during
the search phase, than it is expanded and evaluated by the neural network to generate
p(s, a). After that, each edge is traversed in the simulation is updated by incrementing
N(s, a) and updating its action value Q(s, a) = 1/N(s, a)

∑
s′|s,a→s′ V (s′), where s′ is the

resulting state when performing action a in state s.

12

They applied to above algorithm to train AlphaGo Zero. The training started from com-
pletely random behavior and was under execution for three days. Over this time, it made
4.9 million of self-play, using 1,600 simulations for each MCTS, which corresponds of
approximately 0.4s thinking per move.

13

Chapter 3

Software Environment

3.1 OpenAI Gym

Apart from the AlphaGo Zero implementation, I also wanted to elaborate baseline solu-
tions so that I would have some results to compare the AlphaGo Zero implementation
with.

OpenAI Gym[6] is a standardization of environments which are designed to be environ-
ments of reinforcement learning methods.

As such, the OpenAI Gym standard defines a class interface called Env. Env has one of the
most important methods: step(), which takes action a – an arbitrary, yet distinguishable
Python object, and returns a tuple of (obs, r, d, i), where obs is a Python object representing
the next state, r is the reward for taking action a in the current state of Env, d is a boolean
whether it is the end of the current episode or not (i.e the end of the game), and i stands
for some arbitrary debug information passed in a dictionary.

The above function step() is the only way to change the state of the environment, except
reset() which resets the state.

Apart from the above methods, you can also query information about the environment,
e.g. the size of the action- and the state space, a human readable rendering of the current
state and a lot more.

The goal of this project is to standardize the interface of different environments so that
various reinforcement learning methods can be used on the same environment.

3.2 Stable Baselines

Stable Baselines[11] is a set of Reinforcement Learning (RL) algorithms written above
OpenAI Gym. You can choose from several RL algorithms including variations of the
Actor Critic methods [20] as well as a simple Deep Q Network implementation[19].

In case of this project, Stable Baselines can be used to try different RL methods without
the need of implementing them.

14

3.3 Choosing the language and the tool set

Before designing or implementing the desired functionality, the first question that comes
up is choosing the proper programming language and the tools that suits our needs. In
my case, the following qualities were considered:

• Performance: The implementation should be fast enough, so the learning process
would not take too long.

• Tooling: I need maintained and easily available libraries and tools to avoid rein-
venting the wheel.

• Productivity: I should be able to progress forward in reasonable time.

I decided to use Python as the main programming language. Even though, one might
choose a low level language like C++ in order to achieve better performance, for my task
it does not worth it. Python is a much better choice mainly because the available libraries.
There are several Deep Learning frameworks maintained like Keras[8], PyTorch[21] and
Tensorflow[4]. Moreover, it has a great way to handle mathematical operation on array
with the help of Numpy.

Taking productivity into regard, Python performs quite good as well.

3.4 Hive implementations

Before I could make an AI for solving Hive, first I had to create an environment where
the AI can learn and where it can be tested. Instead of implementing the whole game,
using and extending an available open-source implementation is sufficient. I choose João
Lopes’s solution on GitHub[2], because of the following reasons:

• It is written in Python. Although it was originally Python 2.7, after upgrading to
Python 3, it can be used alongside any Python machine learning framework.

• The source code is simple enough to understand easily. Also, it is easily extendible,
and it does not contain unnecessary parts. For example a graphical interface would
only just increase the complexity of the source base, while it is not usable for an
computer controlled AI. This implementation has no GUI, only a command line
output, which is far enough for testing.

• The implementation already has some tests which ensures the functionality of the
rule validation. That is a key point before creating an AI. Failures during move
validation could result in a significantly different solution. For example, the lack of
"one Hive rule" validation would result in significantly more possible states in the
environment.

The source does not contain any computer controlled AI, which means I have to implement
that myself. The program allow us to play Hive as human, using the command line.
Therefore, I also have to extend the capabilities of the game logic, in order to provide
those information about the environment, which turns out to be useful for an AI. These
are the following functionalities:

15

• The environment should be capable of providing all the possible actions in a given
state. Given that the AI can explore the actions space.

• The environment should provide a unique identifier for each state. That way the
agent will know which state he is in. Identical states should be filtered out. For
example, if we rotate the game board with 90 degrees, the result state is still valid,
and is identical with the original board. If there were any bugs, which movement
would depend on the actual direction, e.g. it could not move north, that the rotated
board would not be identical, but currently there are no expansions where a bug like
that exists.

• It might be also useful, if the environment could provide a state description, from
where domain logic could be used. For example, the task of the AI could be simplified
with saying that the less bugs surround the queen bee, the better. Those kind of
domain knowledge may lead to bad decisions on the other hand. A state description
could be for example an adjacency matrix, which describes the neighbours of each
piece.

The base source code consists of the following modules:

• Board Module: This module is responsible for providing a virtual board. The board
is stored in memory as a two dimensional array. The first bug placement will define
the (0,0) position. Figure 3.1 shows how the isometric space is mapped to a two
dimensional array. The module also provides some minor validation logic related to
the board. For example it can be queried if two pieces are in the same line. This is
useful when validating the move of the grasshoppers.

Figure 3.1: Representation of the hexagonal layout in two dimen-
sional space

• Hive Module: This module contains the logic of the game. It consists of the piece
placing validation, general rules like one hive rule, and other special rules. It also
stores the state of the game. The location of the pieces are tracked and stored.
Unfortunately, it also contained the logic of the move validation for each bug type.
I moved that logic to a separate module later.

16

• View Module: It contains a simple class which can be used to show the current
state of the environment on the command line. It can draw a pretty ascii figure of
hexagons, which helps the human player to see and understand the actual layout.

• Main Module: The is the entry point of the program. It contains the logic of creating
and configuring the game. Also, it interacts with the human players.

3.5 Testing

In order to manage test suites efficiently I decided to use the nose Python test utility[3].
Nose can be used to collect tests defined in the project and run it at once, or manage
which tests should be run and collect the results.

17

Chapter 4

System Design

4.1 Inner representation of the board

I worked with two different board representations during the project. My first intention
was to use the structure of Jclopes’ solution the way it is described in section 3.4.

Although, the original solution was not flexible enough to serve as a software environment
for the intelligent agent. It was much harder to interpret log files, because the indexes
used for identifying a hexagon was less intuitive. Moreover, it was harder to validate the
movement of pieces, especially the movement of the grasshopper.

So, I came up with another solution. The advantages and the description of the new
representation is described in the following sections in detail.

4.1.1 The previous representation

The previous representation of the board which is used for validation of moves can be found
in class Board. This object keeps track of the played pieces in a dynamically extendible
two-dimensional array. The hexagonal map is mapped to this matrix using the following
method:

• In the first turn, the two-dimensional array is created and the first bug is placed to
the (0, 0) position.

• After the first bug is placed, the next bugs should be placed next to the piece already
placed. The matrix will be expanded the way I described in section 3.4.

• When a piece is moved from its previous position, the engine won’t remove the empty
tiles from the array. It is more efficient to just leave them there.

This representation could not be used to feed the neural network of the AI, because
theoretically an infinite amount of identical states can be described with different arrays.
For example if I push the whole board to one of the six directions, the resulting state
would be identical. A possible solution to that would be to normalize the indexes after
each turn. For example the top-left piece would be at position (0, 0), no matter what.
The problem with that approach is that the in case the board is expanded to the top-left
corner, all of the pieces indexed under a different index as before. In the neural network’s

18

point of view it would mean that every piece has a new place now, so the previously learnt
correlations do not fit any more.

Still, this representation is quite useful for validating the bug placements and movements.

4.1.2 The novel representation

The above structure has the following disadvantages:

• Having a dynamically extendable two-dimensional array is impractical. Different
boards are really hard to compare, and the solution is overly complex. In order to
appends tiles to the board, new rows or columns have to be inserted to the array.

• The indexing structure showed in section 3.4 is error prone. It is hard to decide if
two tiles are in the same line - which means stepping into one of the six directions
n times we may reach one tile from the other. This property is needed for example
during the validation of a grasshopper movement.

In order to avoid the problems above, I decided to store the state of the game in a simple
dictionary instead. The key of the dictionary is a cell position, and the value is a list
of bugs, which are placed on it. The cell positions are represented with an immutable
object type with two indexes. In python, an immutable type can be defined for example
by inheriting from a so called namedtuple type. Named tuples have the same nature as
simple tuples, but they can be referred and distinguished with a name.

After creating the immutable hexagon type, which I named Hex, I paired a bunch of meth-
ods to the new class, which are relevant to the cells. For example the method neighbours
can be called to get a list of the adjacent hexagons.

Furthermore, instead of the original indexing structure, I introduced a new representation,
which is visualised in figure 4.1.

As you can see, there are coordinate pairs in the representation, which are not valid, e.g:
(1, 0). More precisely, a hexagon tuple is valid if and only if the sum of the indexes is
even.

Depending on the direction, the indexes change with the amount shown in table 4.1.

Direction ∆ Indexes
Northwest (-1, -1)
West (-2, 0)
Southwest (-1, 1)
Southeast (1, 1)
East (2, 0)
Northeast (1, -1)

Table 4.1: Unit value of each direction.

This structure has the following advantages:

• There is a linear correlation between the indexes of the hexagons in the same line.
Because of that, the validation whether two hexes are in the same line becomes easy:

19

if the following equation applies to any direction’s unit value (nb), then they are in
the same line, otherwise not:
(x1− x2, y1− y2) ≡ (0, 0) mod (nbx, nby)

• The indexes are proportional to the actual distance of the hexagons in a two-
dimensional coordinate system. It comes handy when implementing a graphical
user interface of the game.

Figure 4.1: New indexing structure

Having only a dictionary for storing pieces on board, queries for piece locations become
faster. From now on, I don’t have to store the position of the bugs inside the class which
represents it, because I can look up quickly in the dictionary. Instead, the python type
representing the bugs can also be a stateless immutable type.

4.2 Matrix representation of state and action space

In this work I use a fixed size action and state space, as varying size state and action space
would make the problem even more complex. The state space can be implemented using
the adjacency which I described in detail in the above sections.

The action space is a bit trickier. The possible actions can be described with the vector
which consists of three parts:

• Piece placement: when you want to achieve an action space with fixed size a list of
possible actions cannot be used, I need a vector instead. A brutal approximation of
the problem can be given the following way. I can place each pieces next to each
other, which ends up in 22 x 21 possible actions. Most of these actions will be invalid
though. A piece cannot be put next to itself, obviously.

• Piece movement: for some of the pieces a fixed size movement vector is no problem.
The Bee, the beetle and the Grasshopper can perform 6 steps at most. The number
off possible movements that a spider or an ant can perform is depending on the state
of the board in a pretty complex way. Because of that I decided to limit the possible

20

movement count of the spider to 15 and the ant to 50. That means that I assume
these pieces can step to no more than 15, respectively 50 steps. If it is not so, than
the algorithm will just ignore the rest of the actions.

• Initial movement: the first 2 turns have to be distinguished from the other piece
placements, because it requires another way to identify it. General piece placements
are identified using the neighbour where the piece should be put down. In the first
two turns there are no such pieces. That means that I need an action bit for each
possible initial movements as well. Since I cannot put the Bee Queen down in the
first turn there are 10 such movements.

Figure 4.2 shows how the action numbers are mapped to place piecement actions. As
you can see, the number in the table are incremented by 6 each time. Those six numbers
means the placement of the same piece next to the same adjacent neighbor, but a different
direction. If the number is shown in the table, it means a placement to the west side of the
adjacent piece. After that the directions go clockwise with the number increasing. This is
a arbitrary decision, there is no gain in going counter-clockwise or starting counting from
another side.

Figure 4.2: Decode piece placement action numbers. For example,
the action number 376 means that piece wA2 shuld be
placed west from piece wG2.

4.3 Random search for benchmark

After providing a method for obtaining state information and all the possible moves from
the Hive component, I am ready to create my first search algorithm, which is random
search. Random search can be surprisingly effective in optimization problems, thus, it can
be used as a benchmark.

The method is simple: it takes all the possible actions, then chooses one randomly and
executes it on the environment.

This functionality allows us to make some powerful testing, and it also creates a way for
complexity measurement. Having two random AI of that kind playing against each other
for even a shorter period of time can reveal failures in the Hive implementation. Because
of that, I created a test suite where two random search AI’s play for 10 seconds.

Interesting and promising detail, that the average number of wins during that 10 seconds
is around 1 win. That means that even with stepping randomly the game can be finished
in reasonable time.

4.4 Interface for the search tree

The implementation of the search tree uses an interface of the game engine, which provides
a stateless game representation. For example a step can be executed with the getNextState

21

method, which has a state and an action input, an returns the next state. The advantage
of the stateless representation is that the game can be continued in an arbitrary state.
The interface also provides a way to query the canonical representation of a state. The
canonical representation is a person-of-view model of the state which is implemented by
a side flipping logic. That way each player can see his and the opponents pieces in a
canonical way. In case of the white player there is nothing to do, the view is already
canonical. In case of the black player I have to switch the color of each pieces already
played. Practically - since it is performed on an adjacency matrix - it means the columns
of the matrix have to be set in a different order. Luckily it does not need much calculation
time.

The interface also provides a hashable representation of the state. This is currently imple-
mented via converting the adjacency matrix into a string by concatenating every elements.
After running a performance analysis on the learning process it turns out to be one of the
most expensive methods. Because of that I am planning to change the implementation
to a more effective one. The hashable representation is needed by the search tree which
stores the states in a hash map.

An other important feature of the interface - which makes the search tree much more
effective - is the filtering of identical states. In order to avoid storing the same state as
different ones in the tree, I have to identify the logically identical ones. Since the board is
hexagonal, I can rotate the whole board with 60 degree 6 times. If one of them is already
in the tree, then those states should be handled as identical states. Luckily the rotation
on the adjacency matrix can be performed with not much computational power. Since
the cells store the direction of the neighbourhood between two pieces, all I have to do
is performing an addition on each element consequently. The Hive board is invariant to
rotation and reflection.

As I mentioned earlier, the result of a step on a given state can be calculated calling the
getNextState method. The action given as input is a number, which precisely identifies
which piece should be placed where. It is possible due to the fixed size action space. The
number can be interpreted as an index which refers to an action in the action space.

The whole action space can also be queried with the getValidMoves method. This method
returns a binary vector. There is a 1 in each positions with a valid action and 0 if that
move cannot be executed in the give state of the board.

Finally, the interface provides information about the end of the game. If the game is
ended, it can also tell which player won the game. This is a mandatory feature of the
interface since the current player can win or even lose the game in his turn. It is possible
in Hive to make a suicide move and surround your own bee. The game ends up in draw
if a move surrounds both his own and the opponents bee piece in.

4.5 Graphical User Interface

The following section is going to describe the structure of the graphical interface (GUI)
implementation.

In order to implement a GUI, I had to choose a framework, with which polygons and
simple structures can be created effortlessly. I picked the Qt project[26], because it is
platform independent and easy to use.

The GUI uses the same representation as the move validation part of the code, which is a
simple dictionary, where the keys are hexagon positions, and the values are lists of bugs.

22

The GUI has the following responsibilities:

• Show the state of the game on the window. For each occupied hexagons the bug on
the top is shown. As an improvement in the future, it should also show the bugs
under the top one somehow.

• Show those hexagons as well which are not occupied, but the neighbors of one or
more occupied cells. This is important, because the user can perform actions on
those hexagons - he can move or place a bug there.

• Read and perform user action on the GUI. You can see the detailed list of user
actions below.

The following user actions - use cases - are implemented:

• Selecting a piece: It can be performed with a left click on the appropriate hexagon.
Only the hexagons with the current player’s bug on top can be selected.

• Moving a piece: It can be done only if a hexagon was selected beforehand. Left
clicking on the target cell, the piece on top of the selected hexagon will be moved if
the movement is valid.

• Placing a piece: Right click on a border cell - cell which has at least one occupied
neighbour - should open a drop-down menu, where the desired piece can be selected.
The menu item should appear only if there is a piece of that kind which is not jet
played. When clicking on one of the menu items, the placement is performed. The
placement should not be performed when it violates the rule of the game - e.g. when
there is an adjacent piece of the opponent’s color.

• Drag camera: The user can move around the map to see other parts if the board is
too huge by pressing and holding the left mouse button and drag the mouse. If the
mouse button is being hold, no selection should be performed.

The map is repainted whenever a user action is performed or when an action from the
AI is taken. Because of the camera dragging feature, an (x, y) coordinate-pair has to be
introduced. This represents the center of view (COV). Each hexagon should be shifted
with COV when painting out the hexagons. Each player has a separate color - I picked
white and red, because they are easily distinguished from each other and from the black
background.

The different type of pieces should be also distinguished. To achieve that I picked an easy
and quick solution: the beginning letter of the piece type is painted in the center of the
hexagon (see figure 4.3). The letters are ordered to the pieces according to table 4.2.

Piece Letter in GUI
Ant A
Beetle B
Grasshopper G
Spider S
Queen Q

Table 4.2: Distinguish different type of pieces in GUI

23

Figure 4.3: A screenshot of a hive match played on the graphical
interface

4.6 Move validation based on Hive rules

The move validation logic can be found in the Hive Validation Module and in the files which
contain logic about individual bugs. The following rules are considered while playing:

• One-Hive rule. This is one of the most important rules during the game play. The
rule restricts those movements which would result in having the board in two pieces.
Those moves are restricted too which leads to breaking the hive during the move.
So if I remove a piece temporary and put it somewhere else, I have to make sure
that the intermediate state is correct as well. The implementation of this rule is
quite simple: before moving the piece to its new position the validator removes it
temporarily. After that it checks if the hive is still in one piece.
In order to check if the hive did not break, the validator collects the surroundings
of the removed piece. After that it tries to reach all of them from one of them. If
it is successful, than the hive did not break and the function returns true. False
otherwise.

• The queen bee cannot be put in the first turn. Checking it is trivial.

• The queen bee should be put down until the fifth turn of a player. It is checked by
counting the already placed pieces of the same color. It the queen bee is already set
there is nothing to do.

• The player should move only his own colors. It is easy to implement, but missing
this rule would have big consequences,

• Player can place a piece only to those positions which has no surroundings of the
opposite side. The one-hive rule should be forced here too.
In order to achieve it, I have to check the surrounding tiles of the candidate cell. No
surprising concepts here.

24

• A piece cannot move to the same place it was standing. Even though saying this
rule explicitly might be a bit redundant, since the individual move rules of the pieces
also restrict it, it is wise to handle it separately for more robustness.

Apart from the rules described above, there are specific movement rules for each pieces
types. There are two different approaches when it comes to validating the movements,
which might be more efficient to implement separately: I can ask for a candidate movement
if it is valid or not, or I can ask for all the valid movements in current state. The second
approach could be implemented using the first one on every possible tile, but that would
not be efficient, so I created a separate algorithm for each bug. The movement rules are
the following:

• Moving the bee piece: In order to decide if the bee can move to place X the following
conditions should be met:

– X should be adjacent to the position of the bee (P).
– X should be free - there are no bugs on it.
– A piece exists which is adjacent to X and P.
– There is a free cell which is adjacent to X and P.

The above algorithm can be used to decide if a candidate action is valid or not. In
order to get all the possible actions, I can simply run the above algorithm on all the
surrounding tiles.

• Beetle piece: The beetle can certainly move to those places where the bee can.
Additionally, it can move on top of every bugs surrounding it. Obtaining all the
possible actions can be performed the same way as the queen bee.

• The spider: Validating the movement of the spider is a bit tricky: I perform three
queen bee moves (sub-movements). After the first two moves the reachable tiles
should be stored. It if forbidden to step on these tiles in the next sub-movements.
The available tiles of the third move are the result. The validation as well as the
query of all the possible movements work that way.

• Grasshopper: In order to validate the movement the following conditions should be
met:

– The candidate cell (X and the position of the grasshopper (G) should be in one
line on the hexagonal map. It can be tested using the get_line_dir function of
the Board object.

– Check if X and G are adjacent. If so, than its an invalid movement.
– Otherwise I have to check is there are any free cells between them. If yes, it’s

invalid, else it’s good.

Obtaining all the possible actions works a bit differently. I check the surrounding
tiles of G. If it is free, than invalid. Otherwise the movement is certainly valid, so
I can simply put a 1 there. The interpreter will deal with determining the exact
position of the move.

• Moving the ant: I have to perform bee moves repeatedly until there are no more
tiles to go.

25

Algorithm 3 Check whether moving to target from pos is available
1: procedure available_moves(pos, target)
2: if check_blocked(pos) then
3: return False
4: Remove piece temporarly
5: to_explore← {pos}
6: visited← {pos}
7: result← False
8: while to_explore not empty do
9: found← {}

10: for cinto_explore do
11: to_explore← to_explore ∪ bee_moves(c)
12: found← found \ visited
13: if target ∈ found then
14: result← True
15: break
16: visited← visited ∪ found
17: to_explore← found

18: Put back piece
19: return result

As an example, pseudo code 3 shows how the available target cells of the and piece is
resolved:

In order to test whether the ant piece can move to the target location, we should check
the state in the current position first. If there is a beetle siting on the ant piece, than
we should return False no matter what. After that, let’s just remove the ant temporarly.
Let’s do a step according to the rules of the queen piece. Store the available tiles – if
not stored already – and explore the neighbor tiles recursively (the algorithm itself is not
recursive, but the logic is easier to explain that way).

If the target tile is an element of the available cells, than return true. We can exit the
loop in that case. Otherwise, we should continue to expand the available cells until the
target cell is an element of the result, or there are no more tiles to add to the to_explore
set.

4.7 The neural network

The neural network is implemented using the Keras[9] Deep Learning library. The network
itself is defined in Hive Net Module. It can be used through an interface which provides
the following methods:

• The train method can be used during the learning period. This function trains the
neural network with examples obtained from self-play. It requires a list of training
examples of a triple (board, pi, v), where board is the state representation, pi is the
policy vector for the given board, v is its value. The board is in canonical form.

• The predict function can be used to make a prediction with the current weights of
the neural network for a given board. It returns a policy vector for each action and
a predicted value of the state.

26

• save_checkpoint and load_checkpoint methods are responsible for saving and loading
the weights. Once the network is trained I can save it for later use.

In order to be able to use the network through the above described interface there is a
wrapper class called NNet which implements the interface. It converts the inputs to a
format which is suitable for training in Keras. The neural network needs numpy arrays of
a particular shape.

27

Chapter 5

Implementation

Before I can use reinforcement learning to solve Hive, I have to extend the functionality of
the game implementation, so one can attach an AI to it. Also I need to obtain information
from the environment which at that point were not available. I started the work with a
mayor refactoring.

5.1 Refactor and maintain

First, I made an upgraded the source of João Lopes’s solution[2] from python 2.7 to python
3. I used the 2to3 tool[22] for that. After the conversion one of the grasshopper tests failed.
After some investigation I found out that it was because of an integer division which was
not upgraded to python 3. While in python 2.7 the ’/’ division operator can be used both
to float and integer division - depending on the operands - in case of python 3 that kind
of division is always interpreted as float point division. One has to say integer division
explicitly with the ’//’ operator.

After that I started to refactor the architecture of the program a bit. I introduced the
following modules:

• Environment Module: This module consists of a wrapper class for hive. It publishes
only those methods of the hive module, which is needed for the controller to manage
the game. It also publishes information for the AI’s.

• Piece Module: This module contains an abstract class for pieces. Every kind of piece
should provide information about how they can move, and what are the possible
moves according to its specific rule. This class is overriden by a class representing
the queen, beetles, grasshoppers, ants and spiders respectively.

• Arena Module: This module will be responsible to manage AI’s and human players.
It can reset the environment on demand.

After creating the above mentioned new modules, I could ship some of the functionality
from the Hive class to other modules. This results in a easier maintainable code. Now
I could extend the functionality of the Hive class to provide more information about the
current state.

I also wanted to separate the logic which provides information to the learning modules
from the stateful Hive game engine. The validation logic could also be separated from the
original Hive class. The result is the following files:

28

• Hive Representation Module: A functional module without any classes which is
responsible for converting state and action representations. For example, the neural
network of the proposed solution requires a binary vector as action space and a
two-dimensional representation of the state, which is an adjacency matrix in my
case.

• Hive Validation Module: This files contains the function which should be called in
order to decide if the action being taken is valid or not. The module works with the
inner representation, so it needs a Hive object as parameter in order to perform the
validation.

• Hive Module: The rest of the logic comes here. It uses a Board object to keep track
of the game state. It also knows which player’s turn is the next, it can be used to
load or save state.

5.2 Graphical User Interface

First thing to do was to create a class responsible for all the graphics related functionality.
I call it GameWidget. As a subclass of QtWidget, it can be shown in a new window with
simply calling the show() method. Without any further development, the window would
be a blank window.

In the constructor of the new Qt widget contains a bunch of property initialization. It ini-
tializes the background of the window, the default font style and size to use. The hexagon,
which represents the Point of View (PoV) is also instantiated to the (0, 0) hexagon.

Next, in order to make the interface interactive, I have to catch and handle mouse event.
The following methods of QtWidget have to be overriden:

• mousePressEvent: This callback is triggered when a mouse button is pressed. The
mouse button types can be distinguished inside the function body, using the event
parameter of the callback.
If it is a right mouse button, than I have to display the menu of available pieces.
The information whether the hexagon, which was being clicked, has my piece on top
can be queried from the game representation. The menu should appear only when
the hexagon mentioned above has the current player’s piece on top.
In case of a left click, it can be three different type of behaviors. It can either mean
the cancellation of the current hexagon selection. It happens if the user clicked on
a blank space. It can also be and action execution, if and only if there is a hexagon
already selected and the target hexagon – the hexagon under cursor – is a border of
the hive. The third possible action is the selection of a piece.

• mouseMoveEvent: If the cursor moves when the left mouse button is held, than
the PoV has to be changed. This can be easily done by modifying the corresponding
parameter.

• mouseReleaseEvent: This method is useful when I want to decide whether the
left mouse button is held or not.

If the user accomplished something, that changes the state of the game or the selection
of the hexagons, the whole GUI has to be repainted. It can be done with calling the
repaint() method.

29

5.2.1 Future improvements

Even though the GUI is fully functional, There are a bunch of future opportunities to
make it more convenient:

• When dragging the camera the widget is repainted each time the cursor moves. It
takes a lot of computational resources. It would be better if the repaint would occur
more rarely.

• After selecting a hexagon it would be nice to have the available possible target
hexagons highlighted.

• Textual explanation should appear when the user tries to make an invalid movement.
It should explain that the move is invalid. It would be nice if there would be an
explanation as well, e.g. "Invalid movement. One-hive rule is violated".

• Victory is not yet handled in the GUI. In case of victory, at least a message should
appear that the game is over.

5.3 Introducing Reinforcement Learning Capablilty

One thing that the computer controlled players will possibly need is a state representation.
There are two basic requirements related to the state representation:

• The representation should be fixed size. This is important because most of the
standardized RL algorithms - for example the algorithms of the Stable Baselines
framework[6] - can work only with fix sized inputs.

• The representation should be related to the reward function as much as possible.
This requirement helps finding the optimal solution for RL algorithms, because then
the neural network can learn easier the correlation between the actual state and the
upcoming rewards of the next actions.

Taking all these into consideration I came up with the following possible state represen-
tations:

• A two dimensional array with fixed size. Each element of that array holds a location,
where one ore more pieces can be located. Since physically there are no actual board
in case of Hive, I have to store than a two dimensional array of the maximal size of
the virtual board. Worst case I can have all the 22 pieces - without extension - in
one line, which leads to a table of size (22, 22).
That is fine, but in that case I have to reassign the centre position sometimes. Let’s
consider the following situation: I have a piece at the (0, 0) position. After that I
put all the pieces left from that. That way our pieces will be located from (-21, 0) to
(0, 0). If I had put the pieces to the right side of the centre piece, then I would have
got an interval of (0, 0) to (21, 0). That means I either reassign the centre position
or I need a array of size (43, 43).
The problem with the reassignment of the centre piece is that from the AI’s point
of view is seems that all of the piece moved at once. That may or may not be a
problem.

30

• Graph representation. I can represent the actual state with a graph, where vertices
holds the pieces, and edges between two pieces mean that they are adjacent. The
label - or weight - of the edges represents the direction, in which the pieces are
adjacent.

After careful considerations I choose to use the graph representation. I store the graph
in memory as and adjacency matrix. The adjacency matrix is a way to store graphs in
memory, where the graph is mapped to a two-dimensional matrix. The two axes represents
the nodes of the graph. There is an edge between two nodes if the cell is 1. There are no
edges otherwise.

One reason to use adjacency matrix is that it is more related to the reward function. As
a first approach the player gets reward +1, if he wins, 0 otherwise. I can be sure that
this case the reward function models my requirements correctly. In that case, I get a
+1 reward if and only if the agent chooses an action which results in surrounding the
opponents queen bee completely. The number of the pieces adjacent to the queen be can
be read from the adjacency matrix easily. If the row of the queen be contains no 0 columns
- where zero means that there are no adjacent pieces in that direction - then the game is
over.

However, I intend to keep the original internal representation of the state as it is - which
is a dynamically expandable two dimensional array with fixed centre. This representation
is useful for action validation.

Another thing which is needed in order to successfully create a useful environment for AI’s
is the collection of all the possible actions in a given state. Since human players do not
depend on those information, this feature was not yet implemented. Algorithm 4 shows
the general idea.

Algorithm 4 Collecting possible actions
1: procedure Get all actions(hive)
2: result← []
3: played_pieces← hive.played
4: for piece inplayed_pieces do
5: s← surroundings of piece
6: for cell in s do
7: if check_adjacent_friendly(cell) then
8: result← (unplayed pieces, cell)
9: for piece in played_pieces do

10: target_cells← get_possible_moves(piece)
11: for cell in target_cells do
12: if not validate_general_rules(cell) then
13: remove(cell, target_cells)
14: result← (piece, target_cells)

Some basic information of the pieces like their location can be obtained from the Hive
module. I would like to categorize the possible actions into two category:

• Piece placement: The hard task here is to obtain all the locations where pieces can
be played. After that - aside from the queen rules - I can place there a piece of any
kind. So I iterate over all the already played pieces and look at their neighbours. If
those cells have no neighbours of the opposite side, then I can place a piece there.

31

• Piece movement: I iterate over each already played piece. Those pieces are repre-
sented as objects, and they can be queried for all they possible actions. That’s what
the function get_possible_moves() do. After that I make a bunch of validations on
those candidate cells. I have to validate the queen specific rules, the one hive rule,
and so on.
The concatenation of the above defined two result sets will cover all our possible
moves in a given state. The above pseudo code does not deal with some details, e.g.
it does not handle beetles on the top of the hive.

5.4 Load and save states

The learning algorithm I implemented requires the possibility of loading a state of any
kind and continue playing from there. However, the initial engine did not support that.

The input of the state loading is a state represented by an adjacency matrix. The current
player should be given as well, because that cannot be determined by state sometimes.
The number of already performed actions cannot be determined from this input, but it is
not a problem, until it does not affect the validation of the subsequent possible moves.

There are some cases, where the turn number affects the game, but the turn number can
be guessed in all that cases. For example, the bee queen cannot be placed in the first two
turn. The turn number is equals the number of already placed pieces plus one in that
case. Another related rules is that the bee queen should be placed at last in the seventh
and eighth turn. That can be translated to a rule which is independent from the turn
number. As shown in figure 5.1, the needed information can be derived from the number
of already played pieces.

Figure 5.1: Deciding whether the bee piece should be placed on
the next turn

32

The logic which performs the loading of the state uses the adjacency matrix to create a two-
dimensional array, where the pieces are set. The state will be stored in that representation,
which allows the engine to validate the next moves. The loading is executed similarly as
an actual game-play, the pieces are being placed one-by-one. However, during that phase
no step validation is performed. The validation would fail, since the actual state is the
result of bug placements and movements as well, which ends up in a state that could not
be achieved by only bug placements in a normal game-play.

Saving the game means practically a conversion from the inner representation to an adja-
cency matrix. This is achieved the following way:

• Initialize a matrix width height 22 and width 21. All the elements are initialized to
0. In the end-result 0 will mean that the bug which is represented by the current
column is not yet placed. That means a matrix with a column which contains a zero
value, but not every cells are zero is invalid.
Apart from the zero value and the directions, there are other special values as well.
Numbers from 1 to 6 represents the directions. 7 means the piece under the current
item - which means that the current item is a beetle -, 8 means that there is a bug
over the current item - so it is inactive and no actions can be performed on that. 9
means that the two pieces are not adjacent, and the current piece is already set.
Introducing the number 9 is required, because otherwise the model would not be able
to distinguish the initial state from the state in turn one. Both would be represented
with a matrix filled with null values, since there are no adjacent pieces in both cases.

• I loop over each played piece - the list of played pieces is available in the inner
representation. For each piece the related column should be reset in the adjacency
matrix. The adjacent tiles of a tile can easily be queried from the Board object, which
holds the position of the played pieces in a dynamically extendible two-dimensional
array.

5.4.1 Loading state

In order to load a state, I need an adjacency matrix and the information which player’s
turn is the next. First I check if there is any numbers in the matrix besides zeros. If not,
than it represents the initial state and there is nothing to do.

After that I pick the first non-null column from the matrix and I put down that piece.
The next step is a breadth-first search on the graph represented by the adjacency matrix
starting from the piece which is already placed. While traversing the graph I put down
the pieces one-by-one.

5.4.2 Import from and export to json file

I also implemented a solution to store the state of game to the persistent storage. One
of the best ways to do that is to use the JavaScript Object Notation (json). It is a semi-
structured file format which has the advantageous nature that it can be easily parsed and
de-parsed with any programming language and it is easily readably for human as well.

For the sake of a complete backup of the game state we have to store two things:

• The current player. Json can only store a few types of data, but it causes no problem,
because the current player can be stored as a simple string.

33

• The pieces and their positions. This is stored in a dictionary, where each key is a
string holding the two indexes of a hexagon. The value is a list of strings which
represents the pieces. The pieces are represented in the usual way: a 3 digit string
holding a color, a kind, and a number (e.g. wQ1 means the white Queen, there is
only one of this kind). The position of the hexagon is converted to string with the
built-in __repr__() function of the ordinary tuple type in Python. Because the
hexagons are stored as a named tuple, it has to be converted into an ordinary tuple
before calling the str() function.

This import/export feature was a great help during debugging of the software. Using
this tool it is much easier to create a regression or unit test after a bug fix: I just have
to save the state of the game, load it from the test case and perform the very same
action which caused the faulty behaviour. Those tests are stored in a different file called
regression_test.py.

A possible future improvement in this area would be to use a json schema file to validate
the format of the import file.

5.5 Implementing Monte Carlo Tree Search

The logic related to the search tree can be found in Section 2.6 and is organized in a
class. A tree object has two methods which relevant to the learning algorithm. The
getActionProb method can be used to run a number of simulations on the tree starting
from a state which is given as parameter. This function uses the search method several
times to extend and improve the tree.

The other relevant method is search which allow us perform one iteration of the tree
search. It recursively calls itself until a leaf node is found. The action chosen at each
node is the one that the maximum upper confidence bound has chosen. Once a leaf node
is found, the neural network is called to return an initial policy P and a value V for the
state. This value is propagated up the search path. In case the leaf node is a terminal
state, the outcome is propagated up the search path.

The search tree uses the alphaGo interface of the game engine, which can be found in the
Game Module. It uses this interface to make moves in name of both of the players, and
the neural network predicts the value of each state for the canonical representation for
each player. This means practically that the colors of the pieces on board are inverted
in each step. The visited states are stored in a hash map, so that identical states can be
detected.

5.5.1 Components

The constructor of the MCTS class takes (e, n, args) as parameters, where e is the rep-
resentation of the environment, n is the neural network implementation – including the
current weights – and args is a dictionary of custom configurations. The constructor has
nothing else to do than store the initialization parameters.

The function getActionProb performs n simulations – where n is determined in dictionary
args – of MCTS starting from s, which is passed as a parameter.

The function search() takes state s as parameter, and performs one iteration of MCTS.
It is recursively called until a leaf node. The nodes of the search tree are represented

34

as a string representation of the adjacency matrix, because the string python object is
hashable. If the leaf node is found, the method asks environment e for all the valid
movements ~m = valid_actions(s), ~m ∈ {0, 1}∗ and calls neural network n for ~π policy
vector. The policy vector is masked by the validation vector: ~πv = ~π� ~m. Now all we have
to do is to store ~πv to the corresponding node of the tree and return the value returned by
the neural network multiplied by −1. This multiplication is needed, because if the value
v is the result of the current player, than the opposite is the reward for the other player.
The multiplication with −1 deals with the fact, that the next player regards the reward
differently.

5.6 Modules for the learning phase

5.6.1 Coach module

The Coach Module module contains the functionality which manages the learning process.
It uses the Monte Carlo search tree module to make predictions using a neural network.
It performs multiple iterations of self-play. After each iteration the learn method retrains
the neural network using the training examples obtained during the game. After that I
run a match with the updated neural network against the previous most successful version.
The modified neural network is saved if it beats the previous winner.

Executing one episode of self-play given a neural network means the following:

• The game starts with player one - which is the white player in case of Hive.

• As the game is played, each turn is added as a training example to a list, and the
search tree is updated.

• The game is played until somebody wins or it’s draw. After the game ends, the
outcome of the game is used to assign values to each training example. The end-
result is a list of tuples of size three. Each tuple consists of a state, a policy vector
which is predicted by the neural network and is masked with the possible actions
in that state, and a value, which comes from the result of the game. The current
implementation returns 1, if the player eventually won the game, else -1. Draw games
could be distinguished as well. That is a matter of principle if I want to teach the
AI to win, or to avoid losing. The reward function should be modified accordingly.

The module described above contains the core essence of the learning process. The Coach
object can be initialized easily, the constructor needs only the environment, a neural
network to work with. I can also pass a bunch of parameters to it, with which the learning
can be configured. The parameters are the following:

• numIters The number of iterations of learning. Each iteration has its own monte
carlo search tree, but the neural network is common. The neural network is updated
in each iteration using training examples obtained from several episodes.

• numEps The number of self-play episodes. It is the number of matches that should
be played until the end in one iteration of training. The episodes in one iteration
use the same search tree. An episode starts with the initial board and ends with a
state where there is a winner or the result is draw.

35

• numMCTSSims The number of simulations performed at once after poking the
search tree to expand himself.

• cpuct The parameter of the upper confidence bound. The lesser this value is, the
lesser the probability is that the search tree wants to explore a new or a less valuable
path.

• maxlenOfQueue The maximum length of the queue which holds the training exam-
ples. This is useful when one has limited memory capacity.

• tempThreshold A threshold of game numbers. Before tempThreshold episodes of
game I choose an action randomly from the search tree, after the threshold the best
action is taken.[28]

There are also some somewhat less interesting parameters like file name where the neural
network can be saved to and can be load from. These parameters and the creation of the
Coach object is located in the Learning Module.

The constructor of the Coach class takes e, n, a as parameter, where e is the representation
of the environment, n is the neural network to use, and a is a set of additional parameters,
which configures the MCTS and the neural network.

The constructor initializes the network as well as the competitor network. The latter is
initialized as a copy of the original neural network – which neural network is initialized
to generate its output randomly. After each episode of self-play, the neural network is
updated, but the competitor network is delayed with one generation. This way we can
challenge the neural network with the updated parameters with the predecessor network
and see whether the new model performs better.

The Coach class has two main methods: executeEpisode() and learn(). executeEpisode
executes one episode of self-play. The game is started with player 1 and played until the
end of game. Each turn is stored as a training example inside Coach in a simple list.
After the game ends, the outcome of the game is used to assign values to each example
in the training examples. The method returns a list of training examples in the form of
(s, π, v), where s is a state, π is the policy vector assigned to state s, and v is +1 if the
player eventually won the game, −1 if defeated, 0 otherwise (draw).

The pseudocode of executeEpisode can be found at algorithm 5. This algorithm is only a
simplified version of the method, because it does not deal with symmetrical states.

Algorithm 5 Execute one episode
1: procedure executeEpisode(env)
2: trainExamples← []
3: s← env.getInitBoard()
4: currentP layer ← 1
5: episodeStep← 0
6: while r 6= 0 do
7: episodeStep← episodeStep+ 1
8: cs← eng.canonical(s, currentP layer)
9: π ← mcts.getActionProb(cs)

10: r ← env.getGameEnded(cs, currentP layer)
11: trainExamples← trainExamples ∪ {(cs, π, r)}
12: return trainExamples

36

As you can see, the method always work in the first player’s point of view. This makes
sense, because the role and the game rules for the two players are identical, so the state
of one player could be used when playing with the other player. The only difference
between the two player is that conventionally the white player makes the first step, but it
is irrelevant for us.

So in order to examine the state always in a canonical manner, we need to use always one
player’s point of view. This is what happens in the method canonical(). This method of
the environment will invert the colors in case it is the other player’s turn.

The algorithm iterates until the game has ended. In each iteration it uses the MCTS to
generate a policy vector π for state s and updates the training examples. It uses π to
choose and action in state s according to the probabilities and executes that. If the next
state is terminal, than the method returns the training examples collected.

The learn() method is the starting point of the algorithm. It performs ni iterations with
ne number of episodes of self-play in each iteration. After every iteration, it retrains
the neural network with examples in the train examples – which has a maximum length
set by a configuration. It then pits the new neural network against the old one and
accepts it only if it wins w ≥ updateThreshold fraction of games. updateThreshold
is a configuration parameter which specifies how better the freshly parametrized neural
network has to perform compared to the old one.

After each iteration the weights of the neural network is stored into a file. Because of
that, the Coach module also needed two methods for saving and loading the weights of
the neural networks. There are two additional methods for storing not only the weights,
but the weights alongside the whole structure. This is called only at the end of the training
phase. The stored neural network can be reused then.

I did not append a pseudocode to this paper about the learn() method, because it has
several different responsibilities and it contains too many implementation specific details.

5.6.2 Arena module

The Arena class defines an object, which can be used to pit different players against each
other. The constructor takes the following parameters:

• player1: An object that represents the player, who starts the game.

• player2: An object that represents the player, who is the second in turn.

• Environment: This object represents the game. This parameter is optional. If
None, than the Arena object creates and initializes a game from the beginning.

5.6.3 Player module

The classes which represent players have to implement the Player interface, which was
designed by me. This interface has the following methods:

• step: The step method calculates the next desired step of the player given a state.
An Environment object is passed to the step method, and the state of the game
can be queried through the Environment object. The method does not perform
any step on the engine, it only returns the desired step. It returns a tuple of (p, t),

37

where p is the object representation of the piece, which should be moved, and t is a
hexagon, which is the target of the movement.
One can also call step if there are no available movements for the AI. In that case
the method should return the string pass.

• feedback: This method returns nothing. It is a callback function which is called
after the action returned by step is actually executed on the engine. This is useful
for logging the behavior of the AI or to communicate with the player in case it is
a human player. The method has parameter s, which is a boolean that indicates
whether the execution of the action succeeded or not.

At the time of writing this paper, the following implementations of Player exist:

• HumanPlayer: This implementation asks for decision on the standard input during
execution of the step method.

• RandomPlayer: The AI chooses a random action from the available ones.

• AplhaPlayer: The AI uses the neural network and MCTs resulting from the learn-
ing phase of the AplhaGo Zero algorithm.

• BaselinePlayer: The AI uses the result of the training of an arbitrary Stable
Baselines method.

The HumanPlayer class waits for an action from the standard input. The following text
inputs are valid:

• The string "pass". It means that I want to pass my turn. The player can only pass
if he has no available movements.

• Three characters: the first character represents the color of the piece, the second
represents the type of the piece, and the third is the number. E.g. wA2. It is a valid
action in only one case: if it is the very first action of the game.

• 8 characters: the first 3 characters are the identification of p1, the next two characters
determine the direction d, and the last 3 defines p3. d is called "point of contract"
in the code. There are six different point of contracts:

– "/*": Put p1 southeast from p2
– "*\": Put p1 southwest from p2
– "*": Put p1 northeast from p2
– "*/": Put p1 northwest from p2
– "|*": Put p1 east from p2
– "*|": Put p1 west from p2

Luckily, it is not necessary to distinguish a piece placement action from a piece movement,
because only one of them can be a valid action at the same time. For example, the
following command: "wA2 ∗ |wQ1" can either mean a bug placement next to the white
queen, or a movement. It can be decided whether it is a movement or a placement by
trying to find the piece on the board. If it is already placed, than it is a move attempt.

38

The AI based on AlphaGp Zero on the other hand requires an already prepared neural
network to be passed to its constructor. It than initializes an MCTS, which can be used
to produce an improved policy vector. The AI will choose the action with the maximum
probability in π returned by the MCTS object. The problem that I encountered here was,
that the MCTS module can only work with the white player. But what if I want to use
the AI on the opposite side?

In that case, all we have to do is to invert the state of the game. Every white piece should
turn black and every black piece should be considered as a white one. Now I can call the
getActionProb method of the MCTS to generate the π values. The resulting action is still
not perfect, because the action can be interpreted only in the inverted state. The next
task is to invert back the action to the original state.

Furthermore, in order to ensure that the action is valid, we have to mask the resulting
π vector with the possible movements vector the same way as we did it in the MCTS
algorithm. The feedback method of the AlphaP layer can simply be a blank method, or
we can use it to generate some information to the log file.

The BaselinePlayer is a quite simple player. It calls the predict function of the OpenAI
Gym’s Env interface, which generates the desired action. If it is not a valid action according
to the Hive rules, than we call predcit until it is finally valid. Finally, the resulting action
has to be decoded and returned.

As you may have already noticed, there is no player for the human to play on the graphical
interface. This has technical reasons. There has to be a different start point for the GUI
than a regular console application, so the user can start the game without pulling every
dependency needed for PyQt. Because of this, I did not integrate the GUI tightly to the
rest of the application.

5.7 Structure of the network

The neural network is parametrized by the two-dimensional representation of the game
state. There is no need to pass a boolean whether white or black player is the current
player, because we train the network always with the white player.

The neural network outputs a value vΘ ∈ [−1, 1] from the perspective of the white player
and a policy vector p, which represents the stochastic policy vector used during self-play.

The neural network uses the following formula as its loss function:

l =
∑

t(vΘ(st)− tt)2 + ~πt log(~pΘ(st))

Where t refers to the input data, vΘ is the value generated by the network, st is the state,
zt is the actual value of the state - which is the outcome of the game from the perspective
of the white player, ~πt is the improved estimate of the policy after performing MCTS
starting from st.

The layers of the neural network is the following:

• The first two layers are two-dimensional convolutional layers with paddings to output
the same size.

• The next two layers are 2D convolutional layers too, but without padding.

• After that the output of the forth convolution is made flat.

39

• Than there are two dense layers with dropout included after both of them.

• There are two outputs of the network. Both come from a dense layer after all the
above layers. One for creating the policy vector, one for predicting the value of the
state.

For the convolutional layers rectified linear unit (ReLU) is used as non-linearity. The
policy vector is made using a softmax non-linearity and the value is generated with a
tangent hyperbolic activation function.

The model uses categorical crossentropy as loss function and Adam as optimizer.

5.8 Incremental research and development

It is a common practice during the design and implementation of a Reinforcement Learning
model to restrict some of the functionalities of the model in order to simplify the problem
and incrementally make the problem more and more complex afterwards.

My first attempt to train the AI based ono AplhaGo Zero on the Hive environment was
with the following parameters (only those parameters are listed, which affects the time of
the learn phase):

• Number of iterations: 1000. It means the training process should build up 1000
different models, 1000 different search trees, and the models should always pit against
the previous ones.

• Number of episodes: 500. An episode is a self-play until the end of game working
on the same search tree. Altogether is means 1000 ∗ 500 = 500000 episodes.

• Number of MCTS simulations: 10. There are 10 simulations in each iteration of the
search tree.

• ArenaCompare: 40. After successfully collecting the training examples from the
search tree, the neural network is trained, and we have a new model. After that the
new model is tried out by making it pitting against the previous model 40 times.
The more ArenaCompare is, the better is the probability that the current model is
truly better than the previous one.

I tried to parametrize the neural network with the above parameters. It turned out that
it would take several years to run it on a low to middle-end computer.

The main reason the AI learns that slow – compared to for example the game called
Othello – is that a large number of turns might elapse until the game is over and we can
finally pass a reward to the neural network.

Theoretically, the number of turn elapsed until the end of game can be infinite. Let’s
consider for example a scenario, where the two opponents move their beetle piece back-
an-forth all the time.

Another aspect that makes my task challenging is the size of the action space. In order
to avoid this problem I could restrict the movements of the pieces, that way I would get a
problem similar, but easier to Hive. The two restrictions that were the most powerful are
the following:

40

• The pieces can only be set in a specific order for both opponents. With this restriction
the size of the action vector is reduced to less than the half of the original size. A big
disadvantage is that the resulting game is considerably different. It is a big challenge
during the game to decide which piece to put on board next time. I decided not to
make this restriction.

• Reduce the movement of the ant pieces. In the developer’s point of view the ant
is the most challenging piece to deal with, because its high degree of freedom when
it comes to moving a piece. An upper estimation of the maximum number of tiles
where the ant can move is: 5 ∗ (n− 1), where n is the number of pieces in the game
(22 without extensions). The ant can move next to n− 1 pieces (every piece except
itself) and it can choose 5 sides of the piece at most. One of the sides must be
occupied for every piece.
Without the extension, it would mean 5 ∗ 21 = 105 different tiles. Instead of doing
so, we can say that in practise that an ant piece can never be put to more than 50
tiles. I decided to use this restriction, because it does not affect the game in practice.

Another way to minimize the time needs of the software is to change the victory conditions.
There are two possible ways to efficiently do so:

• Introduce a step limit. When the total elapsed number of turns are equal to the
step limit, we make an announcement of the results. The player with more tiles
around the queen piece loses, the other player wins. If the number of adjacent pieces
are the same for both of the opponents, it is a draw.
It turns out to be a great way to simplify the problem, because it successfully solve
the problem of the AI’s playing forever.

• Change the victory conditions. The original rule is that whoever has a queen piece
with all the 6 neighbors occupied loses the game. It can be generalized to n ∈ [1;∞)
occupied neighbors instead of 6.
The case n = 1 means that whoever decides to put down the queen piece first, loses.
This is certainly not an interesting game for us, but it is a good starting point when
testing the AI. In this case the AI does not have to learn how to make or deal with
an offensive movement, thus it is a much easier game.
However, in case of n = 2 the best strategy is to place your own queen in the third
turn of yours. It shouldn’t be placed in the second turn, because the third movement
in that case can be only suicidal. The forth bug to place should be an ant, which
can defeat the opponent in the fifth’s turn.
The n = 3 seems to be not trivial already.

I tried out both the above methods to simplify the game. Both ways turn out to be
efficient, but I prefer using a step limit, because it makes sure there won’t be any matches
with unreasonable number of turns.

5.9 Stable Baselines integration

The obove algorithm based on the original AlphaGo Zero implementation[25] is a complex
way to achieve a working intelligent agent. In order to prove that this complexity is

41

mandatory, I also integrated the game environment to the Stable Baselines3.2 framework.
As a first step, my goal was to implement the interfaces provided by the OpenAI Gym3.1
project.

5.9.1 Implement the OpenAI Gym environment

The following interfaces had to be implemented:

• Env: The environment which represents the board game. Has a step() methods
with which actions can be elaborated. It can also be reset. Let the name of the
implementation be HiveEnv.

• Space: The Space interface is responsible for representing an action or observation
space. For the observation space – which is the state of the game – I could use a
builtin class called Box. Box can be used to represent the state of the game with a
multidimensional array with optional low and high bounds.
However, the action space must be implemented, because none of the builtin types
are suitable for representing the action space. The resulting class is called HiveAc-
tionSpace.

The HiveEnv class sets an object property called reward_range by initialization. This
range represents the bounds of possible rewards during the training of the model. This is
necessary to set, because some of the algorithm in the Stable Baselines implementations
might use it. I set it to [−1, 1], because the reward will be −1 in case the algorithm loses
the game, and 1 if it wins.

The observation and action space also has to be initialized in the constructor of the
environment. The action space is initialized to be a HiveActionSpace, and the other has
to be a Box. The Box can be initialized with bounds. The lowest value that can occur
is 0, the highest is 9. I use here the very same adjacency matrix as by the AlphaGo Zero
implementation. The dimensions of the box can be set in the constructor as well. In my
case it is (22, 21), i.e. the dimensions of the adjacency matrix. The type of the values
in this multidimensional array is set to numpy.uint8 which is a type used in the numpy
module that represent a simple unsigned byte.

The first and most intuitive method to implement is reset(). There is nothing else to do
than create a new Hive object – I use the same Environment object, as in the AlphaGo
Zero implementation – and reset the action- and the observation space.

An method, which is easy to implement is the render() method which can be used to
display the current state in a human readable way. I could use the graphical interface as
well, but I decided to stick with the ASCII-art board display, because it is easier to store
in a log file.

One of the most important methods is the step() method, which requires an action as a
parameter. The action can be any arbitrary object. In my case, it makes sense to use
the integer representation of the action space. That means the passed object is a simple
integer. The step() method should return a tuple of form (obs, r, d, i) (see 3.1).

The body of the step() method does the following steps:

• Perform action a, which was received as parameter. In order to do that, the integer
parameter has to be decoded.

42

• If the action did not succeed, return with (obs,−1, 0,) where obs is the original state.
Here the attempt of performing an invalid action is punished with the "reward" of
−1. The discussion whether it is a good idea or not can be found later.

• Check if the game is finished. In that case return +1 as reward if game is won, 0 if
draw, −1 otherwise.

• In case the game is unfinished, let the opponent step. In our case – as a first
attempt – the opponent is the random player (this player performs a random action
each time).

• If the game is finished as the opponent stepped, return the values accordingly. If
not, than we have to check whether the RL agent has available moves or it has to
pass.

• If there are no available moves for the agent, than we should continue stepping until
the game is finished or there are available moves for the agent.

The above description is represented by the decision diagram 5.2. One of the interesting
thing here is the handling of failure. Sadly, the Stable Baselines framework does not
support masking valid actions in the action space. Because of that, it can often happen
that the neural network makes a prediction which is illegal – against the rule descriptions
– in the current state. In that case, I decided to punish the Reinforcement Learning
algorithm with a "reward" of −1, and the state remains the origin.

Another interesting aspect is the handling of "passing" situations. When a player has no
available moves, i.e. all of its bugs are blocked by other bugs, the player has to pass. It
means the player who still has movements should make moves until the other player has
something to move. In practice, it can be handled in the AI’s point of view, that the
series of moves performed until the other player is freed counts as one single move. This
way, whenever it is the turn of the AI, we can be sure that the AI is not blocked from
movement.

Having both the players unable to move is physically impossible, so there is no need to
handle that case.

5.9.2 Use Stable Baselines on environment

In order to make use of the Gym environment, we can use the Stable Baselines framework.
It is quite easy to use. The following steps have to be performed:

• Initialize a HiveEnv object.

• Put it in a DummyV ecEnv. The Stable Baselines interface uses an environ-
ment vector, which is their standard way to support more than one environments.
DummyV ecEnv wraps the single environment so it can be used by the Stable Base-
lines interface.

• Instantiate a Reinforcement Learning model of your choice. First, I tried out the
Actor-Critic model called "A2C", because it is one of the simplest and I have already
heard of it. A policy also has to be passed to that model, which desides e.g. the
structure of the neural network behind the algorithm. I chose a builtin policy called
"MlpPolicy", which means that the algorithm will use simple multilayer perceptrons

43

Figure 5.2: Decision graph of the step() method.

(two layers with 64 nodes in each, to be specific). Again, the main reason for this
decision is simplicity.

• Call learn() on model. The number of total timesteps can be passed as a parameter.
The more timesteps the learning consists of, the better the result will be – at least
if the validation loss is decreasing. The learn() method will take care of the whole
Reinforcement Learning process related to the Actor-Critic method for us.

• Reset the environment. This is required, because the training process might leave
the state of the environment in a not initial state.

• Try out what we got. The model can be asked for a decision with the predict()
method, which asks for the current state as parameter, and returns the desired
action.

44

Chapter 6

Testing, Evaluation and Results

6.1 Testing functionality

I made several tests during my work which are separated into various unit test modules. I
use the nosetests Python utility to manage the test execution. The following test modules
can be executed:

• Board Test Module tests the Board class which is responsible for the inner game
representation.

• Hive Test Module tests the Hive object and the validation functions. It uses a pre-
created board and performs steps on that with both players.

• Representation Test Module can be used to verify the conversion logic and the func-
tions which operate with the state and action space representations used by the
learning algorithm.

• Random AI Test Module is a tricky test suite which tests both the logic of the Hive
class and the representations. It tests them with executing a game with random
moves from both opponents for a given time. The suite expects that no exception
should happen during the execution. It is a good way to test whether there are any
invalid moves listed in methods like getValidMoves.

Testing the learning process is a much more difficult problem, because that is time con-
suming process, and also the expected result is not easily testable. However, some of the
functionality of the Monte Carlo tree search could be tested.

6.1.1 Testing Board and movements

The TextHexBoard class, which can be found in Board Test Module is responsible for
testing the functionality of the Board class. It test the dynamical resizing of the board,
the functionality of get_surrounding, which can be used to get the adjacent tiles of a cell,
and the get_boundaries function, which returns the size of the board with the internally
used indexing.

The HiveTest class holds the tests for simple bug movements and placements. The class
tests the functionality of the Hive class and the hive_representation module. In the setup
phase, it creates a board shown in figure 6.1. Every pieces is represented with three

45

characters: the color, the kind and the number of the piece. For example "wS2 " refers to
the second white spider.

Figure 6.1: Initial phase of the HiveTest test suite

This layout has several advantages when it comes to testing the Hive engine:

• One hive rule can be tested easily with e.g. trying to move white spider number two.
It should not move since it would tore the board apart.

• All the pieces appear in the test. The grasshoppers appear in an even and in an
odd row index too. This is important, because the two dimensional mapping of the
hexagonal board handles even and odd rows a bit differently.

• Piece placements can be easily tested too.

I also have a separate file for regression-testing. In case of a buggy behavior, the system
automatically saves the last state of the game alongside the action that coused the failure
in a json file. This json file can be loaded in the test suite and the same action can be
performed there to make sure that this failure will never occur anymore. The system
always store only the state of the last failure. This state has to be copied manually to the
test suite.

6.1.2 Testing the representation

After testing the functionality of the Hive engine, it is also wise to test the inputs and out-
puts of the Environment module as well, which converts the representation to be suitable
to teach the neural network.

The test read its input from a json file. The json file contains an adjacency matrix, which
represents the same state that is used in HiveTest. After that, if everything went well, it

46

queries the binary representation of the action space, and it tries to execute each of them.
It also asserts the structure of the action vector with an expected value which is stored in
the json file.

With executing each actions in the binary action vector, the conversion from an action
number to a (piece, target cell) pair is tested. A missing feature from the test is that
it does not test the failure of the action, which are not allowed. In the future, it should
try to execute those action numbers from the action vector too, which are disabled. The
expected result in that case is a HiveException.

6.2 Evaluation and Results

The overall performance of a proposed solution can be measured by pitting it against other
(baseline) methods or to have it play against a human player.

In this project, at the time of writing there is only one baseline method implemented, which
is the random search algorithm. The random search algorithm takes actions randomly from
the set of available actions and executes them.

6.2.1 Evaluating Stable Baselines algorithms

Deciding the effectivity of a particular algorithm after the learning process can be done the
following way: make a match of n separate games against an arbitrary opponent and count
how many time it won. Because the learning process used the random search algorithm –
which takes an action randomly from the available ones – it makes sense to test the result
with the same AI.

At the moment of writing this paper, I did not find any configurations and algorithms of
the Stable Baselines tool set that could perform better than the random search algorithm.
The reasons are the following:

• The Stable Baselines toolset does not support having an action space, where the
actions might be illegal in some states. For example, a player cannot move pieces if
the queen piece is not yet set, i.e. a player cannot move a piece which is not yet set.
The most common way to deal with this problem is to generate negative reward
in case of an illegal movement – just like I did. The problem with that is, that
illegal movements are much more common than winning or losing a game, thus the
algorithm will optimize for avoiding illegal movements instead of finding the winning
steps for a long-term reward.

• The game is overly complex to be trained on a simple personal computer as mine. It
is also an ongoing task to use GPU for learning and to test whether it would speed
up the learning phase.

• The environment created to train the Stable Baselines models use the random search
as an opponent, because the toolkit doesn’t support multi agent environments. This
means that even if I managed to train the AI to play properly against the random
search, it would not mean automatically that the same AI would be sufficient to play
against human players.

47

6.2.2 Results

Having the victory conditions modified to n = 2 (see section 5.8), I decided to reduce the
time-consuming hyper-parameters until the learning process is less than 5 minutes. The
new configuration can be seen in table 6.1.

Hyper-parameter name Value
numIters 10
numEps 7
tempThreshold 15
updateThreshold 0.5
maxlenOfQueue 200000
numMCTSSims 2
arenaCompare 40
cpuct 0.8

Table 6.1: Configuration of time-consuming parameters to reduce time needs to 5 min-
utes

With the above configuration, after 5000 matches against the random search algorithm
(see section: 4.3), I got the following results:

• Proposed solution won: 3553 times

• random search algorithm won: 1447 times

• Draw games: 0 times

In order to make the game as simple as possible, I decided to count all the draw results
as a win of the random search algorithm. That way I did not have to handle draw games.

As it can be seen, the proposed solution won significantly more games than the Random
player, and we needed only 5 minutes of self-play to achieve that.

Before these results, I had several attempt to teach the AI. The main reason of failure
was because of the high reduction of the cpuct parameter. With the reduction of this
parameter I managed to achieve a far faster learning process. A possible drawback is that
the AI might end up in a local maximum of rewards due the lack of proper exploration of
the state space.

48

Chapter 7

Summary

Implementing an intelligent agent for Hive[1] is challenging due to various reasons.

One difficulty was to represent the state of the board game in a way it can be used to
pass to either an implementation similar to the AplhaGo Zero[25] algorithm or the Stable
Baselines[11] tool set. My solution was to design matrix based representation of the state
depending on the adjacency of the game tiles.

Once I accomplished to implement the environment capable to be used by Reinforcement
Learning[27] algorithms I implemented the random search algorithm, which could be use
as a baseline solution.

I also implemented an algorithm based on Monte Carlo Tree Search[7] and Reinforce-
ment Learning that can surpass the random search algorithm without any domain knowl-
edge of the game. The implementation was inspired by the AlphaGo Zero algorithm[25].
I managed to successfully prepare the neural network behind the algorithm, store the
parametrized network and reuse the agent against an arbitrary opponent.

Furthermore, I integrated my environment to OpenAI Gym[6] and used Stable
Baselines[11] to execute Reinforcement Learning algorithms like the A2C algorithm[20].

In order to help the implementation of the agent, I created various utility functionality for
the game, like saving and loading game state, a Graphical User Interface for the game, a
console interface for the human player and various tests for each module.

49

Chapter 8

Bibliography

[1] Official webside of hive. https://gen42.com/games/hive.

[2] Original hive implementation from joão lopes. https://github.com/jclopes/hive.

[3] Nose 1.3.7. https://github.com/nose-devs/nose, 2015.

[4] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from tensorflow.org.

[5] Terry Anderson. The theory and practice of online learning. Athabasca University
Press, 2008.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[7] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[8] François Chollet. keras. https://github.com/fchollet/keras, 2015.

[9] Antonio Gulli and Sujit Pal. Deep Learning with Keras. Packt Publishing Ltd, 2017.

[10] Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas,
and H. Sebastian Seung. Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature, 405(6789):947–951, 2000. ISSN 1476-4687.
DOI: 10.1038/35016072. URL https://doi.org/10.1038/35016072.

[11] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,

50

https://gen42.com/games/hive
https://github.com/jclopes/hive
https://github.com/nose-devs/nose
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/fchollet/keras
http://dx.doi.org/10.1038/35016072
https://doi.org/10.1038/35016072

Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

[12] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[13] Ronald A Howard. Dynamic programming and markov processes. 1960.

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian QWeinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[16] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015.

[18] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943.
ISSN 1522-9602. DOI: 10.1007/BF02478259. URL https://doi.org/10.1007/
BF02478259.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning, 2013.

[20] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning, 2016.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch. 2017.

[22] Lennart Regebro. Porting to Python 3: An in-depth guide. CreateSpace, 2011.

[23] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited„ 2016.

[24] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling operations
in convolutional architectures for object recognition. In International conference on
artificial neural networks, pages 92–101. Springer, 2010.

[25] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[26] Mark Summerfield. Rapid GUI programming with Python and Qt: the definitive guide
to PyQt programming. Pearson Education, 2007.

[27] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

51

https://github.com/hill-a/stable-baselines
http://dx.doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259

[28] Hui Wang, Michael Emmerich, Mike Preuss, and Aske Plaat. Hyper-parameter sweep
on alphazero general. arXiv preprint arXiv:1903.08129, 2019.

[29] P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-
ioral Sciences. Harvard University, 1975. URL https://books.google.hu/books?
id=z81XmgEACAAJ.

52

https://books.google.hu/books?id=z81XmgEACAAJ
https://books.google.hu/books?id=z81XmgEACAAJ

	Contents
	Kivonat
	Abstract
	Introduction
	Background
	The Hive game
	Movement rules

	Complexity of the game
	Reinforcement learning
	Neural networks
	Deep Learning concepts
	Convolutional neural network
	Pooling
	Adam optimizer
	Categorical Crossentropy
	Softmax
	Rectified Linear Unit (ReLU)

	Monte Carlo Tree Search
	Monte Carlo Tree Search for Policy Improvement

	AlphaGo Zero

	Software Environment
	OpenAI Gym
	Stable Baselines
	Choosing the language and the tool set
	Hive implementations
	Testing

	System Design
	Inner representation of the board
	The previous representation
	The novel representation

	Matrix representation of state and action space
	Random search for benchmark
	Interface for the search tree
	Graphical User Interface
	Move validation based on Hive rules
	The neural network

	Implementation
	Refactor and maintain
	Graphical User Interface
	Future improvements

	Introducing Reinforcement Learning Capablilty
	Load and save states
	Loading state
	Import from and export to json file

	Implementing Monte Carlo Tree Search
	Components

	Modules for the learning phase
	Coach module
	Arena module
	Player module

	Structure of the network
	Incremental research and development
	Stable Baselines integration
	Implement the OpenAI Gym environment
	Use Stable Baselines on environment

	Testing, Evaluation and Results
	Testing functionality
	Testing Board and movements
	Testing the representation

	Evaluation and Results
	Evaluating Stable Baselines algorithms
	Results

	Summary
	Bibliography
	Bibliography

