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Kivonat 

Sok természetben és társadalomban megtalálható komplex rendszerre jellemző a hierarchikus 

szerveződés, számos kutatás foglalkozott már különböző technológiai, ökológiai, biológiai, 

társadalmi hálózatok hierarchikus tulajdonságával. Több hálózatelméleti modell is a valós 

rendszerekben megfigyelt növekedési tulajdonságra épít, és egy érdekes, eddig kevésbé vizsgált 

kutatási kérdés a hierarchikus hálózatok időfejlődésének leírása. 

Ebben a munkában különböző adatelemzési módszerekkel vizsgáljuk az NCBI MeSH 

tárgyszavak hierarchikus hálózatának időfejlődését, mely 16 különböző, évenként frissülő 

hierarchiából áll kategóriától függően: pl.: Anatómia, Betegségek, Vegyszerek, Gyógyszerek stb.  

Mindegyik hierarchia megfeleltethető egy-egy irányított körmentes gráfnak (DAG - directed 

acyclic graph), melynek irányított élei a hierarchia felsőbb szintjei felől mutatnak az alsóbb szintek 

felé. Mivel újabb és újabb tárgyszavak jellennek meg az adatbázisban, a MeSH hierarchiák 

növekednek az idő során.  

A kutatási eredményeink szerint nem csak a növekedés, hanem a meglévő kapcsolatok közötti 

átrendeződés is nagy szerepet játszik a hierarchiák formálásában. A dolgozatban ennek az 

időfejlődésnek számos statisztikai jellemzőjét vizsgáljuk, valamint a MeSH hierarchiák általános 

tulajdonságait írjuk le.  

Habár a kutatási eredményeink a MeSH tárgyszavak hálózatára korlátozódik, valószínű, hogy a 

leírt jellemzők egy része általánosítható, és megjelenhet a legtöbb hierarchikus hálózat 

időfejlődése során. 
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Abstract 

Hierarchical organization is a prevalent feature of many complex networks appearing in nature 

and society. Recent research works on hierarchy include technological networks, ecological 

systems, social interactions and even neural networks.  

Several proposed models exist in network theory which are based on the observed growth 

patterns of real networks. A related interesting, yet less studied question is how does a hierarchical 

network evolve in time?  

Here we take a data-driven approach and examine the time evolution of the network between the 

Medical Subject Headings (MeSH) provided by the NCBI, which are organized into 16 different, 

yearly updated hierarchies such as Anatomy, Diseases, Chemicals and Drugs, etc. The natural 

representation of these hierarchies is given by directed acyclic graphs (DAGs), composed of links 

pointing from nodes higher in the hierarchy towards nodes in lower levels. Due to the appearance 

of new MeSH terms, the MeSH hierarchies are growing in time. 

According to our results, not only growing but also restructuring of the already existing 

connections plays an important role as well in forming the shape of the DAGs. We examine 

various statistical properties of the time evolution and find a few general features that are 

characteristic for all MeSH hierarchies.  

Although the empirical studies in this work are restricted to the networks between MeSH terms, 

it is quite plausible that a part of these features are more universal and occur in the time evolution 

of hierarchical networks in general. 
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1 Introduction 

1.1 Problem statement 

Hierarchical organization can be observed in large number of situations both in nature and 

society. Relevant research papers focusing on hierarchies mainly analyze real-world networks 

such as technological networks, ecological systems, social interactions and even neural networks.  

Even though there are several different approaches for modelling the dynamics of real networks, 

there is no accepted method for describing the evolution of hierarchies specifically. The purpose 

of our work is to take a step towards a general model with a data-driven approach and analyze the 

hierarchical network of Medical Subject Headings (MeSH) provided by the NCBI (National 

Center for Biotechnology Information).  

1.2 Contribution 

By defining variables which describe the evolution process and creating several hierarchy 

attributes we reveal some significant evolution patterns that are characteristic for MeSH 

hierarchies, and our intuition is that a part of these recognized features might be universal and 

might occur in the time evolution of hierarchies in general. 

We also partly contribute to solving the difficultness of maintaining the MeSH database. The 

maintenance of the thesaurus is quite challenging due to the large number of publications and the 

fast pace of the development of the biomedical field. The revealed patterns can help better 

understand the changes in MeSH.  

Even though there are some other publications which aim to predict the expansion of MeSH 

terms, we reveal that the changes in the hierarchy not only consist of growth patterns but 

restructuring is also a significant feature. Our work gives a method for describing the whole 

phenomena of evolution thus contributing to the MeSH research with novel insights. 

1.3 Structure of the report 

Chapter 2 provides a summary of relevant papers mainly covering the addressed issues related to 

MeSH and shows the theoretical foundations of our analysis by introducing the concept of 

hierarchies, showing the relevance of network theory and introducing the results of the research 

works on the evolution and dynamics of networks. Chapter 3 presents our results and analysis of 

MeSH hierarchy starting from the descriptive analysis, identifying evolution patterns then the 

modelling process. Chapter 4 is the subjective part of our report where we interpret the results of 

Chapter 3, underscore the limitations of our work and expound some possible approaches for 

further improvement. Chapter 5 summarizes the results of our paper and briefly elaborates on 

further plans for analyzing the evolution of hierarchies. 
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2  Related work  

2.1 MeSH  

2.1.1 Data 

MeSH is a hierarchy of terms called descriptors provided by the National Library of Medicine 

for indexing scientific publications and to facilitate detailed searching among them. These MeSH 

term databases are frequently updated and the yearly released files are available back to 1999 on 

PubMed. The sizes of these hierarchies are 1,000-10,000 nodes and organized into 16 different, 

yearly updated hierarchies such as Anatomy, Diseases, Chemicals and Drugs, etc. The natural 

representation of these hierarchies is given by directed acyclic graphs (DAGs), composed of links 

pointing from nodes higher in the hierarchy towards nodes in lower levels. Due to the appearance 

of new MeSH terms, the MeSH hierarchies are growing in time. 

2.1.2 Addressed issues 

There are numerous research works focusing on MeSH due to the large amount of publicly 

available data and the several problems caused by the difficultness of its maintenance. There are 

two main issues that require a comprehensive solution. The first one is the capability to annotate 

new scientific articles with MeSH terms effectively in a very accurate and rapid way. PubMed has 

already a quite fast methodology for it and there are already several proposed additional 

efficacious methods. For instance, [1] applies machine learning techniques for annotating new 

articles. 

The other relevant issue is the maintenance of the thesaurus itself due to the large number of 

publications and the fast pace of the development of the biomedical field. There is no generally 

accepted efficient automated methodology for it and our work is addressing this problem and 

tries to reveal several patterns which can contribute to a better understanding of the behavior of 

MeSH evolution.  

2.1.3 Related publications 

There are three very related articles which address the evolution problem of biomedical 

vocabularies. The issue is generally analyzed under the field called ontology evolution [2].  

The closest article to our works is [3], which applies machine learning methods to predict the 

expansion of MeSH terms based on temporal classifiers. They examined which MeSH terms the 

new descriptors will connect to and their analysis was based on several attributes: structural 

properties (depth, number of siblings, descendants of a term), citations (query results of the term 

and its descendants), annotations (number of assigned articles) and different combinations of 

them. They also analyzed temporal features and created classifiers from them (e.g. the 

acceleration of the increase in annotations). A list of MeSH terms of three hierarchies could be 

provided by their method where 80% of them expanded in the next period and they covered 

around half of the total expansion. Among the top 5 predictive attributes 3 of them were structural 
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and temporal: the temporal sibling number, the temporal number of all descendants and the 

temporal number of direct descendants (children). The other 2 predictive variables were: the 

ratio of the annotation of all descendants and the number of descendants, and the number of 

query results of all descendants of a MeSH term.  

Thus, [3] clearly indicates the importance of temporal classifiers and points out the difference 

compared to another similar research [4] where temporal features were not considered and the 

dataset was also different. It also emphasizes the complementary effect of the results with 

mentioning a sibling generation method proposed in [5] which is an approach how to suggest new 

siblings for a MeSH term based on text mining of structured HTML and published articles.  

In our research we point out that the changes in the hierarchy are not only growth and expansion 

patterns which are described in [3] [4] [5] but also restructuring is a significant feature (when 

existing terms are continuously re-categorized). We aim to grasp the whole phenomena of the 

evolution thus contributing to the MeSH research with novel and unique insights. 

There is a paper [6] which provide a general method for describing the evolution of a hierarchy 

by including not only addition but also deletion of terms, and creating a general similarity measure 

for quantifying the modifications. The research is constraint to one hierarchy (Psychology) and 

gives us some interesting examples and introduces a general insight about the magnitude of the 

changes in the MeSH dataset. 

Our goal is to give not only a broad overview but also and in-depth analysis of the evolution of 

MeSH hierarchies. Furthermore, as [3] mentions MeSH is more like a hierarchy than an 

ontology (in contrast with the Gene Ontology analysis in [4]) thus our approach will focus on the 

hierarchy aspect.  

2.2 Hierarchy 

2.2.1 Definition 

Hierarchical organization is a prevalent feature of many complex networks appearing in nature 

and society. Recent research works on hierarchy include transcriptional regulatory network of 

Escherichia coli [7], dominant–subordinate hierarchy among crayfish [8], leader–follower 

network of pigeon flocks [9], the rhesus macaque kingdoms [10], neural network [11], 

technological networks [12], social interactions [13] [14] [15], urban planning [16] [17], scientific 

journals [18], ecological systems [19] and evolution [20] [21]. 

Hierarchies can be divided into three main categories [18]:  

 Order hierarchy which is based on a defined ranking, a partial ordering of the set of 

elements [22] 

 Nested hierarchy (inclusion hierarchy or containment hierarchy) where items are 

aggregated into increasingly larger groups and the higher-level groups consist of smaller 

components which are more specific [23]  
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 Flow hierarchy which can be described as a directed graph, where the nodes are assigned 

to levels and lower-level nodes are influenced by the higher ones  

2.2.2 Network Theory 

Network theory can be an often-useful approach when we analyze hierarchies [24] [12] given the 

fact that most hierarchies can be modelled as a graph where the nodes represent the different 

elements while the directed edges indicate the hierarchical relationships between them. 

Consequently, in case of MeSH hierarchies, which can be viewed as nested hierarchy due to the 

categorization of terms from general to more specific ones, network analysis is an advantageous 

approach too. 

2.3 Evolution of Networks 

The different approaches for modelling the evolution of real networks are summarized in detail 

in [25]. Most of the models are based on the scale-free property of real networks and introducing 

new concepts for preferential attachment and in some cases adding different attributes for nodes 

and edges such as fitness, aging, or inheritance behavior for better performance. 

Most these models are either based on the degree of the nodes or on other newly added arbitrary 

parameters (e.g. age, fitness value). In our research, we are focusing on identifying the effect of 

different attributes in the evolution process.  
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3 Data Analysis and Results 

3.1 Data Source 

MeSH is a hierarchy of terms called descriptors provided by the National Library of Medicine 

for indexing scientific publications and to facilitate detailed searching among them. These MeSH 

term databases are frequently updated and the yearly released files are available back to 1999 on 

PubMed. The sizes of these hierarchies are 1,000-10,000 nodes and organized into 16 different, 

yearly updated hierarchies. In Table 3.1 we can see all the hierarchies and their names. The 

datasets are available on different sites of PubMed [26] [27] with detailed explanation and several 

documentations [28] [29] [30]. 

A Anatomy 

B Organisms 

C Diseases 

D Chemical and Drugs 

E Analytical, Diagnostic and Therapeutic Techniques and Equipment 

F Psychiatry and Psychology 

G Phenomena and Processes 

H Disciplines and Occupations 

I Anthropology, Education, Sociology and Social Phenomena 

J Technology, Industry, Agriculture 

K Humanities  

L Information Science  

M Named Groups 

N Health Care 

V Publication Characteristics  

Z Geographicals 

Table 3.1 Names of different hierarchies 

It is important to mention even though most of the MeSH terms appear in only one dataset 

(92%), there are some descriptors which belong to multiple hierarchies. The sizes of the 

hierarchies vary significantly and the largest ones are Organisms (B), Diseases (C) and Chemical 

and Drugs (D) as Table 3.2 indicates. Our analysis is based on these three hierarchies to detect 

better the relatively small changes in the hierarchies throughout the years.  

 

Table 3.2 Number of MeSH terms in different hierarchies 
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Most of the preprocessing and data cleaning has been already done as a part of my Project 

Laboratory work [31]. It mainly covered the data extraction from the XML format, the process 

of building up the network of the data and finally cleaning and selection of relevant date attributes. 

In Table 3.3 the extracted attributes are listed, two of them are identifying the MeSH term while 

the Established Year attribute refers to the age of the descriptor which plays an important role in 

the evolution analysis. 

Descriptor UI 
Descriptor Unique Identifier. Seven-character alpha-numeric string uniquely 

identifying the record. 

Descriptor Name Name of the MeSH term 

Date Established 
First day of the first full month when the record first becomes available for searching 

in NLM's online databases, such as PubMed 

Table 3.3 Number of MeSH terms in different hierarchies 

3.1.1 Directed Acyclic Graph (DAG) 

The hierarchies can be represented as directed acyclic graphs (DAGs) where the edges are 

directed to the lower levels and there is no cycle in the graph and there is no path to the higher 

levels from the lower ones. It is important to underscore that one MeSH can have not only 

multiple outgoing edges (children) but also multiple incoming edges (parents).  

Figure 3.1 depicts a small part of a hierarchy and we can immediately infer the logical arrangement 

of the MeSH terms. For example, Ear is a child of Sense Organs and Head while the parents of 

Eyebrows are Hair and Eye as well. The sizes are proportional to the Total Degree of each node. 

For example, Musculoskeletal System and Body Regions are relatively large while Hip, Eyebrows 

and Eyelashes have few incoming and outgoing edges. 

 
Figure 3.1 Sample from the Anatomy hierarchy 

As [29] clearly describes “these trees should not be regarded as representing an authoritative 

subject classification system but rather as arrangements of descriptors for the guidance and 

convenience of persons who are assigning subject headings to documents or are searching for 
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literature. Their structure frequently represents a compromise among the views and needs of 

particular disciplines and users, in the absence of any single universally accepted arrangement”. 

So, there are several different approaches to arranging these MeSH terms in a logical manner 

and as we can see later the applied logic obviously changes over time. 

3.1.2 Defining attributes 

Based on the availability and the features of the datasets we created different types of attributes 

shown in Table 3.4. We could calculate all this attributes for all the MeSH terms in all hierarchies 

in 14 different years (from 2002 to 2015). The Annotation features [27] were only available from 

2013.  

Category Name Description 

Time feature Age 
Subtracting the Established Year from the year we 

examined the MeSH term 

Hierarchy features 

Level  

(Maximum Depth) 

Root nodes are on the first level, the longest path 

from them ranges from 1 to 12 

Minimum Depth 
Minimum distance from the root, ranges from 1 to 

12 

All Children Number 
The number of nodes which are in the branch of the 

given MeSH term 

Sibling Number The number of nodes which share the same parent 

Network features 

 

In Degree  

(Parent Number) 

Number of incoming edges which is equal to the 

number of parents 

Out Degree  

(Children Number) 

Number of outgoing edges which is equal to the 

number of children 

Total Degree 
Number of total edges which is equal to the sum of 

incoming edges and outgoing edges. 

Annotation features 

Annotation 
Number of articles assigned to as a Mesh term (with 

or without subheading) 

Major Annotation 
Number of articles assigned to where marked as 

major MeSH term 

Annotation without 

subheading 

Number of articles assigned to as a Mesh term 

where there was no subheading assigned 

Annotation with 

subheading 

Number of articles assigned to as a Mesh term 

where there was subheading assigned 

Table 3.4 Examined attributes of a MeSH term 

3.1.3 Distributions of attributes 

We created the distributions of the 12 defined attributes to understand our data better. The 

following figures are based on the 2016 version of Disease (C) hierarchy but most of the other 

hierarchies have similar features.  

From Figure 3.2 we can infer the shape of the hierarchy, most nodes are in the middle levels and 

their minimum distance from the roots are around 3 or 4 while there are relatively few top and 

bottom MeSH terms. The number of Levels and consequently the Minimum Depth is limited to 

12 by NLM [29]. In Figure 3.3 the distribution of the age of different nodes shows us that every 

year the number of new MeSH terms were similar except for the recent 10 years when the 

number of incoming nodes doubled. 
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Figure 3.2 Distribution of depths in the hierarchy of 

Diseases (C) in 2016 

Figure 3.3 Distribution of age in the hierarchy of 

Diseases (C) in 2016 

It is interesting that the degree distributions of the hierarchy follow a power law for in-degree and 

out-degree, thus the total degree, the sum of them shows a similar pattern (It is important to 

mention that around 3000 of the nodes are “leaves” and their out degree is 0). The power-law 

distributions can be observed in scale-free networks [25]. However, the absolute value of the 

slope of the fitted line is not between 2 and 3 as the scale-free model suggests, it is more than 10 

in all cases. 

   

Figure 3.4 Power law distribution of 

Out Degree for Disease hierarchy 
Figure 3.5 Power law distribution of 

Total Degree for Disease hierarchy 
Figure 3.6 Power law distribution 

of In Degree for Disease hierarchy 

In Figure 3.5 we chose a logarithmic scale (natural) to show the distribution of the number of 

siblings and all children due to the large number of nodes which had very few siblings and terms 

in their branch as well.  

 

Figure 3.7 Distribution of siblings and all children in the hierarchy of Diseases in 2016 
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The distributions of the annotation numbers, which basically imply the popularity of each MeSH 

terms, can be seen in Figure 3.6 and the logarithmic scale appeared to be advantageous in these 

cases too. 

 

Figure 3.8 Distribution of annotation numbers in the hierarchy of Diseases in 2016   

3.1.4 Correlation between attributes 

By examining the scatter plots of each variables, then calculating the Pearson-correlation matrix 

(Table 3.4), we identified some relevant relationship properties between our attributes. We took 

the logarithm of most of the attributes to normalize their distributions, thus getting interpretable 

correlation values. 

 Age 

Log of 

All 

Children 

Log of 

Total 

Degree 

Log of 

In 

Degree 

Log of 

Out 

Degree 

Log of 

Sibling 

 

Min 

Depth 
Level 

Log of 

Annot. 

Log of 

Major 

Annot. 

Log of 

Annot. 

(no s.) 

Log of All 

Children 
-0.004          

Log of Total 

Degree 
-0.007 0.914          

Log of In 

Degree 
-0.066 0.541 0.541         

Log of Out 

Degree 
-0.036 0.973 0.973 0.342       

Log of 

SiblingNumber 
-0.042 0.362 0.362 0.442 0.237      

Min Depth 

 
-0.069 -0.226 -0.226 0.002 -0.128 -0.321     

Level 

 
-0.079 0.031 0.031 0.439 0.009 -0.089 0.742     

Log of 

Annotation 
0.121 0.261 0.261 -0.012 0.193 0.072 -0.202 -0.192   

Log of Major 

Annotation 
-0.051 0.266 0.266 -0.097 0.204 0.043 -0.274 -0.295 0.717   

Log of Annot. 

(no subh.) 
-0.166 0.278 0.278 0.066 0.207 0.126 -0.155 -0.125 0.738 0.669 

 

Log of Annot. 

(with subh.) 
0.191 0.235 0.235 -0.044 0.185 0.048 -0.208 -0.201 0.959 0.691 0.691 

Table 3.5 Pearson-correlation matrix of defined attributes 
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There is a significant correlation between All Children, Total Degree and Out Degree. The 

correlation of the last two is quite intuitive due to the much lower number of indegree compared 

to the outdegree of an average node.  

Between Level (Maximum Depth) and Minimum Depth we can also realize a strong correlation 

effect. This can be explained with the fact that most of the nodes might have their parents from 

similar levels and not from completely different parts of the hierarchy. 

High correlation values are prevalent between Annotation features too, especially between 

Annotation and Annotation with subheadings. This means that a MeSH Term with a high 

annotation number has high number for all attributes which belong to Annotation features. 

3.2 Evolution patterns 

3.2.1 Example 

Figure 3.9 and 3.10 serve as an example for the evolution patterns in the MeSH hierarchies. The 

red edges and nodes are those which went under some change within this 1 year (from 2002 to 

2003).  

 

Figure 3.9 Sample from the Anatomy Hierarchy in 2002 
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Figure 3.10 Sample from the Anatomy Hierarchy in 2003 

As we can see the term Skin in 2002 had Body Region as its parent but in 2003 it was reorganized 

under Integumentary System which just joined the hierarchy. It also lost both Scalp and Hair as 

a child, because Hair went under the Integumentary System directly as well, becoming the sibling 

of its previous parent, and Scalp was connected to Head. Head got a new child, Skull Base from 

a completely different branch, and this Skull Base was expanded by two new children. On the 

other side of the hierarchy there was a significant rearrangement around the Extremities resulting 

a division to Upper Extremity and Lower Extremity branches. Foot and Hip was realigned under 

the newcomer Lower Extremity from Leg and Buttocks joined as a new sibling to them and left 

his previous position from being under Body Regions directly. Elbow and Hand went under 

similar changes and joined to Upper Extremity from their previous parent Arm.  

In conclusion, the changes in the hierarchy are far from simple and obviously not only consists 

of expanding branch features, several rearrangements can also be detected. 

3.2.2 Defining growing and restructuring 

The purpose of our work is to describe the whole evolution process and to not only focus on the 

expansion. Our current approach (after several previous ones) is based on the edges and 

specifically on the direction of them as Table 3.5 indicates.  

Growing event 

The number of new outgoing edges of a MeSH Term 

The number of Growing events is x for a MeSH term being part of a 

hierarchy in year n, if in year n+1 MeSH is still part of the hierarchy 

and got x new outgoing edges (we do not count with the deletions, so 
it is not the absolute increase of outdegree) 

Restructuring event 

The number of new incoming edges of a MeSH Term 

The number of Restructuring events is x for a MeSH term being part 

of a hierarchy in year n, if in year n+1 MeSH is still part of the 

hierarchy and got x new incoming edges (we do not count with the 
deletions, so it is not the absolute increase of indegree) 

Table 3.6 Definition of evolution patterns 
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This way we can easily separate expansion and rearrangement modifications in the hierarchy and 

we can also make it quantifiable for each MeSH term. It is important to mention that we do not 

take the degree changes of completely new nodes into account during our calculations and we 

also neglect the deletions. We also do not differentiate between the cases when there are new 

nodes on the other end of the new edges or old ones.  

We can measure these changes yearly given the rate of the updates of the hierarchies by PubMed. 

Figure 3.10 shows the yearly proportion of Growing and Restructuring events in case of Disease 

hierarchy and we can see that the ratio of Restructuring events is not negligible varying from 

around 10% to 50% of the total changes. 

 

Figure 3.11 Growing and Restructuring for the Disease (C) hierarchy from 2003 to 2016 

In Figure 3.12 and 3.13 the distribution of Growing events and Restructuring can be seen, and 

both follow a power law, similarly to the previously described degree distributions (Figure 3.4, 3.5 
and 3.6). This means for instance that the number of nodes with very few Growing events is 

significantly large, while nodes with relatively high number of new outgoing edges are quite scarce.  

  
Figure 3.12 Power law distribution of growing events 

for the Disease (C) hierarchy from in 2016 

Figure 3.13 Power law distribution of restructuring 

events for the Disease (C) hierarchy from in 2016 

 

The charts above do not contain the 0 values; thus, we should highlight the relatively small 

number of occurrences of Growing and Restructuring events compared to the size of the 

hierarchies. The proportion of the nodes which get new incoming or outgoing edges is usually 

less than 4 percent in each year for most datasets.  
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 A B C D E F G 

Average number of nodes with Growing events  1,9% 1,4% 1,9% 1,7% 2,5% 2,0% 3,0% 

Average number of nodes with Restructuring events  1,5% 1,0% 1,2% 1,5% 1,7% 1,1% 3,9% 

Table 3.7 Average ratio of effected nodes by Growing and Restructuring (yearly) for the largest hierarchies 

This low ratio can cause several issues during modelling, mainly leading to predictive models 

with low recall rate and high precision due to the imbalanced dataset feature. 

3.2.3 Parent-Child relationships 

Age 

As we could see earlier the age distribution of MeSH terms is quite flat except for the last 10 years 

(Figure 3.3), but it shows some correlation with level and minimum depth. In Table 3.7 the 

proportions show the ratios when the target node or the source node is younger, aggregated for 

all edges in each hierarchy. 

Younger source Younger target Hierarchy  

8% 92% K. Humanities  

16% 84% L. Information Science  

18% 82% N. Health Care  

19% 81% D. Chemical and Drugs  

20% 80% B. Organisms  

22% 78% F. Psychiatry and Psychology  

24% 76% I. Anthropology, Education, Sociology and Social Phenomena  

25% 75% H. Disciplines and Occupations  

27% 73% J. Technology, Industry, Agriculture  

28% 72% E. Analytical, Diagnostic and Therapeutic Techniques and Equipment  

30% 70% A. Anatomy  

31% 69% Z. Geographicals 

32%  68% M. Named Groups 

32%  68% C. Diseases 

37% 63% G. Phenomena and Processes 

65% 35% V. Publication Characteristics 

Table 3.7 Comparing the proportion of younger target and older source nodes for all edges in each hierarchy 

In almost all hierarchies (except for Publication Characteristics) we can see that usually the source 

node is the older one. It means that generally the lower-level nodes are younger, but there are 

some younger nodes which attach to higher levels. Or it can be also interpreted as an upward 

wandering of nodes in the hierarchy and older nodes soon become source nodes rather than 

target ones. 
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Annotations 

In case of annotations a very similar feature can be observed, in most cases, the higher annotation 

numbers belong to the source node and the lower ones to the target nodes. It is true for all 

annotation features (Annotation, Major Annotation, Annotation without subheading, Annotation 

with subheading) and the ratio varies between 60% to 80% in favor of the source nodes.  

3.2.4 Evolution effects of different attributes 

The following figures (Figure 3.14 – 3.23) were made by an aggregating and binning method to 

identify the major influencer attributes in the evolution process. Due to the low number of 

incoming and outgoing edges, the general features of the hierarchies do change significantly 

throughout the 13 years that we analyzed. Consequently, the distributions (Figure 3.2-3.8) can be 

considered static and we can analyze each attribute effect by taking the average of Growing and 

Restructuring events aggregated on the distributions (most of these figures have log-log axis) 

neglecting the dimension of time. It is important to underline that the if we take the attributes of 

a MeSH term from year n then we calculate the number of Growing or Restructuring events that 

effected it by comparing year n and year n+1. 

For example, in Figure 3.14 the horizontal axis, the logarithm of In Degree, is divided into 20 

equal range bins and the first data point shows that the average number of Growing events for 

nodes with relatively low In Degree in the previous year (for those who are inside the bin) is quite 

low (this aggregation covers every year).  

The same methodology applies to the other graphs too, all of them have a horizontal axis with 20 

bins which serve as a basis for calculating the averages.  

Preferential attachment, network features 

Scale-free networks with power law distributions can be observed in real systems, and preferential 

attachment model is an appropriate way of describing of their patterns. In [25] preferential 

attachment is proved for some real networks.   

In our case, we are not exactly examining the same situation due to the definition of Growing and 

Restructuring. We mainly observe the attachment of edges, not nodes, we have a directed network 

and indeed we separate the attachment of outgoing and incoming edges. 

Furthermore, our network is a special one, a directed acyclic graph, and we could also see from 

the degree distribution that despite the power law it is significantly different from scale-free 

networks which was shown by the steep slope of the fitted line (in Figure 3.4-3.6). 

In Figure 3.14 and 3.15 a special kind of preferential attachment can be seen, the higher the In 

Degree the more Restructuring events happens on average. This feature can be visible for most 

of the hierarchies, two examples illustrate the similarity between them. 
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Figure 3.14 Average number of Restructuring events 

for binned In Degree for the Disease (C) hierarchy 

Figure 3.15 Average number of Restructuring events 

for binned In Degree for Organisms (B) hierarchy 

 

In Figure 3.16 and 3.17 another special kind of preferential attachment can be observed, the 

higher the Out Degree the more Growing events happens on average. This feature can be seen 

in most cases, here the Disease and the Chemical and Drugs hierarchies serve as illustrations. 

(The effect of Total Degree is the same as the impact of Out Degree due to the high correlation) 

  
Figure 3.16 Average number of Growing events for 

binned Out Degree for the Disease (C) hierarchy 

Figure 3.17 Average number of Growing events for 

binned Out Degree for Chemical and Drugs (D) 

hierarchy 

These two features are very similar to preferential attachment. The probability of getting new 

outgoing edges is bigger when the node already has higher number of existing ones and the 

probability of getting new incoming edges is also bigger when the node already has higher number 

of parents.  

Hierarchical features 

Figure 3.18 and 3.19 show that higher the number of siblings the more Restructuring events 

happens on average. This feature can be visible for most of the hierarchies, two examples illustrate 

the similarity between them. Here we should mention that this pattern is not always the same for 

all hierarchies (e.g. for the Disease (C) hierarchy this trend does not exist). 
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Figure 3.18 Average number of Restructuring events 

for binned Singling number for the Disease (B) 

hierarchy 

Figure 3.19 Average number of Restructuring events 

for binned Singling number for Chemical and Drugs 

(D) hierarchy 

 

The previously described pattern might seem logical if we think about the probable effect when 

a node has more siblings. One would think that the probability of their arrangement of these 

terms can certainly depend on their complexity which can also be measured with the number of 

siblings. 

Figure 3.20 and 3.21 refer to a pattern that higher the number of nodes in the sub branch of a 

node the more Growing events effects it on average. This feature is true for most Mesh datasets; 

two of them can be observed here.  

  
Figure 3.20 Average number of Growing events for 

binned In Degree for the Organisms (B) hierarchy 

Figure 3.21 Average number of Growing events for 

binned All Children for Chemical and Drugs (D) 

hierarchy 

This feature might not be that intuitive as the previous ones. But due to the high correlation 

between All Children and Out Degree this result is also understandable.  

In Figure 3.22 and 3.23 we can see two hierarchies when top level nodes usually get more outgoing 

edges on average than the lower ones (in log-log scale the scatter plot could be also fitted to a 

straight line but it is not that meaningful to take the logarithm of the discrete values of Levels, and 

here we did not have to bin twice, the separate levels served as bins). 

-5

-4

-3

-2

-1

0

0 2 4 6
L

o
g 

o
f 

av
e
ra

ge
 n

u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g 

e
ve

n
ts

Logarithm of number of Siblings (bin)
-6

-5

-4

-3

-2

-1

0

0 2 4 6

L
o

g 
o

f 
av

e
ra

ge
 n

u
m

b
e
r 

o
f 

R
e
st

ru
ct

u
ri

n
g 

e
ve

n
ts

Logarithm of number of Siblings (bin)

-5

-4

-3

-2

-1

0

0 2 4 6 8 10

L
o

g 
o

f 
av

e
ra

ge
 n

u
m

b
e
r 

o
f 

G
ro

w
in

g 
e
ve

n
ts

Logarithm of All Children (bin)
-5

-4

-3

-2

-1

0

1

0 2 4 6 8 10

L
o

g 
o

f 
av

e
ra

ge
 n

u
m

b
e
r 

o
f 

G
ro

w
in

g 
e
ve

n
ts

Logarithm of All Children (bin)



21 

 

  
Figure 3.22 Average number of Growing events for 

Level number for the Organisms (B) hierarchy 

Figure 3.23 Average number of Growing events for 

Level number for Chemical and Drugs (D) hierarchy 

 

In case of Minimum Depth, the effect is similar (owing to the strong correlation between them). 

This result may be a little against our intuition that a hierarchy evolve mainly by extending its 

lower levels. But we have to pay attention that our model does not only consider the expansions 

by new MeSH terms but also reconnections to existing ones when we talk about new outgoing 

edges. 

Annotation features 

Figure 3.24 and 3.25 show that higher the number of Major Annotations the more Growing 

events happens on average for most of the hierarchies, the Organisms (B) and Chemical and 

Drugs (D) hierarchies are our illustrations this time.  

  
Figure 3.24 Average number of Growing events for 

binned Major Annotation number for the Organisms 

(B) hierarchy 

Figure 3.25 Average number of Growing events for 

binned Major Annotation number for Chemical and 

Drugs (D) hierarchy 

 

The Annotation feature can be construed as a popularity measure for each MeSH term, the more 

popular a descriptor is the more articles it gets assigned to. This interpretation makes the results 

above more comprehensible and straightforward, a popular node has a higher chance to expand.  

Other Annotation features, such as Annotations without subheading, due to the correlation 

between each other, also indicate analogous formula.   

Summary of the effects 

In conclusion, these observations revealed strong relationships between the defined attributes and 

Growing and Restructuring event numbers. For Restructuring the identified attributes were In 
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Degree (preferential attachment) and Sibling Number while for Growing we found Level, Total 

Degree, Out Degree (preferential attachment), All Children and most Annotation features 

relevant. 

3.3 Modelling  

3.3.1 Question 

Our purpose is to predict which MeSH term is effected by Growing or Restructuring event in the 

next year. Thus, the target variables (Table 3.8) are not the number of Growing events or 

Restructuring events for each MeSH term, it is a binary value for both cases. The value is 1 if the 

number of events exceeds 0, and it 0 in the rest of the cases. 

Target variable Possible values 

Growing Binary 0/1 

Restructuring Binary 0/1 

Table 3.8 Target variables 

3.3.2 Input variables 

We defined the input variables based on the previously described attributes. It is important to 

underline that the we take the attributes of a MeSH term from year n and we aim to predict the 

value of Growing Binary and Restructuring Binary in year n+1. 

Category Name 

Time feature Age 

Hierarchy features 

Level (Maximum Depth) 

Minimum Depth 

All Children Number 

Sibling Number 

Network features 

 

In Degree (Parent Number) 

Out Degree (Children Number) 

Total Degree 

Annotation features 

Annotation 

Major Annotation 

Annotation without subheading 

Annotation with subheading 

Logarithm of all attributes Log*attribute name* 

Temporal attributes  
Temp*attribute name* = 
𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆(𝒊𝒏 𝒚𝒆𝒂𝒓 𝒏)−𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆(𝒊𝒏 𝒚𝒆𝒂𝒓 𝒏−𝟏)

𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆(𝒊𝒏 𝒚𝒆𝒂𝒓 𝒏)
 

Table 3.9 Input variables 
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3.3.3 Method and model 

Training and testing dataset 

In our predictive model training dataset was all the data before 2016, while the testing data was 

the records that belonged to 2016. 

Imbalanced data 

Based on our previous descriptive analysis we face an imbalanced data issue due to the low ratios 

of Growing and Restructuring events (Table 3.7). There are several research works which aim to 

find a general solution for it, and mostly they recommend random undersampling or random 

oversampling  [32] [33]. Based on the results and recommendations we chose the random 

undersampling due to the over-fitting problem of random over sampling [32].  

During our modeling, we balanced the data to different ratios to find the best proportion: 5%-

95%, 10%-90%, 30%-50% and 50%-50%. We got the best result for 10%-90% balance (Figure 
3.26). (The explanation of F-measure and the model can be read in the next section) 

 

Figure 3.26 Random under sampling results for the  

predictive model of hierarchy E 

Selecting model 

We did not only use the built-in model recommendation by SPSS Modeler, but also manually 

compared the performance of them, and finally selected the CHAID (Chi-squared Automatic 

Interaction Detection) model. 
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Figure 3.26 Results of different models for hierarchy E 

3.3.4 Evaluation metrics 

Due to the still quite imbalanced data despite the random undersampling we cannot use accuracy 

for measuring how good our model. Therefore, we select F-measure which weights recall and 

precision the same way. The definition of F-measure is based on the Recall and Precision which 

are based on the confusion matrix (Figure 3.27)  

  Prediction outcome 

  1 0 

Actual value  

1 
True 

Positive 

False 

Negative 

0 
False 

Positive 

True 

Negative 

Table 3.10 Confusion matrix 

The definitions of Recall and Precision are the following: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 3.1 Definition of Recall and Precision 

The definition of F-measure is the harmonic mean of Recall and Precision: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Equation 3.2 Definition of F-measure 
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3.3.5 Results 

We calculated the value of the confusion matrix, precision, recall and F-measure manually based 

on the result of the testing data. We show the main outputs for the hierarchy E (Analytical, 

Diagnostic and Therapeutic Techniques and Equipment).  

Growing 

The confusion matrix results:  

  Prediction outcome 

  1 0 

Actual value  

1 9 53 

0 14 2684 

Table 3.11 Confusion matrix for modelling Growing for hierarchy E 

Precision, Recall and F-measure: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 14,52% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 39,13% 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 21,18% 

Equation 3.3 Results of precision, recall and F-measure for modelling Growing for hierarchy E 

Predictor importance produced by the model: 

 

Figure 3.27 Predictor importance of input variables for modelling Growing for hierarchy E 

Restructuring 

The confusion matrix results:  
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  Prediction outcome 

  1 0 

Actual value  

1 19 15 

0 329 2397 

Table 3.12 Confusion matrix for modelling Restructuring for hierarchy E 

Precision, Recall and F-measure: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 55,88% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 5,46% 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 9,95% 

Equation 3.4 Results of precision, recall and F-measure for modelling Restructuring for hierarchy E 

Predictor importance produced by the model: 

 

Figure 3.28 Predictor importance of input variables for modelling Restructuring for hierarchy E 

Evaluation of the model results  

Even though the F-measures are not very high in both Growing and Restructuring, we can see 

that it successfully validated our previously described evolution patterns.  

For Restructuring it also identified Sibling Number and In Degree as an important attribute and 

for Growing it also found Level, Out Degree, All Children relevant. One more takeaway from 

the model results is that the temporal attributes also play an important role in the evolution of 

hierarchies. 
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4 Discussion 

4.1 Interpreting the results, limitations 

4.1.1 Definition, approach 

Our results are strictly based on our current approach, the definition of Growing and 

Restructuring. Even though this method is simple and intuitive, we neglect the deletions and we 

also do not differentiate between the cases when there are new nodes on the other end of the new 

edges or old ones which might suggest different scenarios.  

One logical approach would be a completely edge based one where we define the evolution 

patterns with Table 4.1 considering the fact whether the ends of the new edge are connected to 

an old node or a new node. This way we can model rewiring and deletion as well, while group 

attachments remain intangible.  

Target \ Source Old New 

Old Rewiring / Deletion Growing 

New Restructuring 
Group  

attachment 

Table 4.1 A different, edge based approach 

We can realize that the previously mentioned model conflicts with our current method because 

those edges which are rewired are included in the definition of Growing and Restructuring, 

basically we count them twice.  

Target \ Source Old New 

Old 
Growing and 

Restructuring 
Growing 

New Restructuring Group attachment 

Table 4.2 Our current method in the perspective of another model 

This difference does not necessary mean that one of the approach is not correct, further research 

can tell which model works better.  

4.1.2 Defining attributes 

In our research, we defined several different attributes and we also divided them into different 

categories (Time, Hierarchy, Network and Annotation feature). We considered these ones as the 

most important ones but it might be probable that we did not include some other relevant ones. 

There are several network properties (clustering coefficient, centrality measures, distance, etc.) 

which are mostly irrelevant due to the hierarchical feature of our network. There are also global 

characteristics (density, average path length, etc.) which are also not important for us since we 
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based our analysis on the stability of the whole hierarchy (low number of changes), so these global 

variables are constant too.  

However, a more important fact is that we only considered one year data for describing the 

evolution patterns of the following year (e.g. the acceleration and history of different attributes 

might play some role too), and we only included them in our predictive models. In [3] the 

importance of temporal classifiers is emphasized and among their top 5 predictive attributes 3 of 

them were not only structural but also temporal: the temporal sibling number, the temporal 

number of all descendants and the temporal number of direct descendants (children). 

Furthermore, one of their other predictive variables were the number of query results of all 

descendants of a MeSH term which we did not consider at all.  

Even though that our approach is completely different from [3], temporal features or other 

external attributes might be relevant in our case as well. 

4.1.3 Dataset 

Our results and analysis is limited to this specific dataset; we cannot derive a general conclusion 

about the evolution behavior of other hierarchies. MeSH has some features which might not be 

prevalent in other cases, one of it is the limited number of levels (12) which might influence 

significantly the changes in the dataset (even though most hierarchies has not reached this 

maximum number yet).  

The examination of the evolution is also limited due to the frequency of updates (yearly) and the 

amount of publicly available data (form 2002 – 2016). On the other hand, each MeSH term has 

an Established Date assigned which not only consists of year but also, month and day. In our 

research, we did not analyze the month and day value, because the structural changes are only 

recorded yearly.  

Another relevant feature of the data is that is artificially generated and maintained. MeSH Terms 

are added and updated manually and our observations might not be valid for those hierarchies 

where the construction of the data is less centralized. 

4.2 Further improvements 

Based on our analysis in the chapter of Limitations, our work might be further improved by 

creating broader definitions for describing the evolution process and finding some relevant 

additional attributes might be also advantageous.  
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5 Conclusion 

5.1 Results 

The main results of our work are the identified evolution patterns and the selection of significant 

attributes which effect the changes in the hierarchies over time. Furthermore, we also depicted 

how these attributes contribute to the evolution process. 

To achieve this outcome, we defined two variables which describe the evolution process – 

Growing and Restructuring – and created several descriptive attributes for each MeSH term. 

While our methods and definitions for evolution could be further enhanced, the current results 

not only show that the evolution is not random but also indicate that there are numerous attributes 

which contribute significantly to the process. 

For Restructuring the identified influential attributes were In Degree and Sibling Number while 

for Growing we found Level, Total Degree, Out Degree, All Children and most Annotation 

features relevant (Figure 3.14-3.25). We could observe a preferential attachment behavior due to 

the power law correlations between Restructuring and In Degree, and between Growing and Out 

Degree.  

We showed that creating a predictive model based on the defined attributes could be a promising 

prospect despite the imbalanced data issue. Our initial predictive models validated our 

recognized patterns and suggested that not only static but also temporal attributes play an 

important role in evolution for both Restructuring and Growing.  

Our research work can help better understand the changes in MeSH, thus complementary to the 

research works focusing on solving the difficultness of maintaining the MeSH database. We also 

hope that it can also serve as a basis for further research on the evolution of hierarchies. 

5.2 Future work 

We aim to progress in the current direction since the results are promising, and try to reveal some 

other interesting patterns and finalize the predictive modelling part. Based on our result analysis 

in the discussion section we may extend our definitions and try to identify more attributes which 

are also relevant. 

A fascinating question is whether our revealed patterns are ubiquitous and applies to the evolution 

of hierarchies in general, so a certain next step is to validate the concept on other datasets. For 

instance, one interesting dataset could be an evolving hierarchical brain network (e.g. in [34] the 

researchers did not only succeed to model the brain data with directed edges but also revealed 

an interesting evolution behavior). 
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