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Chapter 1

Introduction

Markovian fluid queues are stochastic models with a wide range of applications. Although
the model can easily be understood, the numerically stable calculation of it’s properties is
a complicated task. First this paper compares two stable approaches, according to their
speed and stability. Then it presents a method for the analysis of RED processes.

The model based analysis of telecommunication networks is an important part of the
dimensioning of network devices. A widely applied model is the queuing system, which
is based on probabilistic assumptions. For these systems we divide the network processes
into two categories. The first is the arriving of the demands, which increases the load of
the server. The second is the servicing of these demands. Both types of processes can
have certain properties, (for example memoryless or deterministic property,) which can
be considered in the system.

If the buffer has a large capacity, one can take the continuous limit of these models.
In this limit the demands are not separated from each other, the load of the system is
handled as if it was a continuous material. This models can be imagined the following
way: Let us take a container, (the buffer,) which is filled with fluid to a certain height.
Because of the arrival and the service of the demands, the height of the fluid may change
with time, as the load on the network varies. The rate of the rising of the fluid-level is
determined by an environmental process. The fluid level will rise if the environment is in
a state where the arrival of the demands is faster than the serving process. Similarly if the
serving of the demands is faster, than the fluid level will decrease. Usually we presume
that the environmental process is memoryless. (The future states of the system depends
on it’s present state, but not on it’s past.) In this case the environmental process can be
described with a Markov process. These models are called Markovian-fluid models.

The first sections of this paper discusses the theory of these models. For large buffer-
limits the differential equations needed to solve the model may get unstable. The second
part of the paper will focus on this problem, and the algorithms developed to solve them.
In order to examine their numerical properties I implemented the methods in MATLAB.
In the last section the results will be applied for the analysis of RED processes.
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To make the notations used throughout the paper clear, they are collected below:

Notation

Z(t), S, Q As it is mentioned before, we assume, that the environmental
process defining the rate with which the fluid level varies, is
a Markov-process. This process is only time-depended, it will
be denoted by Z(t). It is defined over the state space denoted
by S, which is considered to be finite. The generator-matrix
of the process is Q. The jith element of Q will be denoted by
Qji.

X(t), R X(t) notates the level of the fluid in the buffer. It varies with
the rate defined by Z(t). A diagonal matrix can be generated
which will represent the rate for all states of the Z(t) process.
This matrix will be referred to as the drift matrix, and will be
denoted with R: R(i, i) = r(Z(t) = i) = dX

dt
|Z(t)=i ∀i ∈ S

B B denotes the capacity of the system. In several occasions it
can be considered infinite.

F (t, x, i), f(t, x, i) F (t, x, i) is the fluid-distribution of the process at time t:
F (t, x, i) = P (X(t) ≤ x, Z(t) = i)
f(t, x, i) is the probability density function:
f(t, x, i) = dF (t, x, i)/dx
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Chapter 2

The model, spectral solution

2.1 The equations for F(t,x,i)

In this section we will be summarizing the theorems of the model. First of all, when
calculating the fluid rates one needs to consider that the fluid level can not be negative,
neither can it exceed the buffer-level:

dX(t)
dt

=

{r(Z(t))+ if X(t) = 0
r(Z(t)) if 0 < X(t) < B
r(Z(t))− if X(t) = B

Where f+ = max(f, 0) and f− = min(f, 0). The meaning of the first line of the formula
is the following: When the buffer is empty it means that there are no demands in the
system. At this level if the system is in a state where the rate is negative, than if a new
demand arrives, it will be served immediately. For these states of the Markov process,
as the fluid level can not decrease below zero, the rate is equal to 0. The last line has a
similar meaning, it considers, that fluid level can not be higher, than the capacity of the
system.

The process Z(t) is considered to be an irreducible continuous-time Markov chain.
Therefore it has a stationary distribution:

πj = lim
t→∞

P (Z(t) = j)

Let us define a vector, which consists of the πj probabilities: π = (π1, π2, ..., πn). From the
theory of continuous-time Markov chains follows that π satisfies the following equation:

πQ = 0

As all properties of the model can be calculated from F (t, x, i), our goal is to obtain
this function. Besides calculating the expected value and the deviation of the fluid level,
F (t, x, i) can also be used to compute the efficiency of the system, as it will be shown in
the last section of the paper.

In [7] an equation was deducted, that we can use to compute the fluid-distribution.
It can be proved, that the vector F (t, x) = [F (t, x, 1), F (t, x, 2), ..., F (t, x, n)] satisfies a
differential-equation, which has a form similar to the continuity-equations:

∂F (t, x)

∂t
+

∂F (t, x)

∂x
R = F (t, x)Q (2.1)
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The boundary conditions of (2.1):

F (t, 0, i) = 0 if r(i) > 0 F (t, B, i) = πi if r(i) < 0

The first boundary condition represents, that for states with positive drift, the buffer
can not be empty. (If the environmental process switches to this state at x = 0 the fluid
level will immediately rise above the x = 0 height.) The second boundary condition has
a similar meaning. Because the fluid level can not exceed the buffer-limit, it’s height can
not be B for states with negative drift.

Usually one is interested in the stationary probability distribution: F (x) = lim
t→∞

F (t, x).

(Assuming that with time the system advances towards a stationary solution.) For these
functions equation (2.1) takes the following form:

∂F (x)

∂x
R = F (x)Q (2.2)

2.2 Spectral solution

A logical approach to the problem would be searching for the solution of equation (2.2)
using it’s spectral representation:

F (x) = eλxΓ

λ is a scalar and Γ is a row vector of length n. (n is the cardinality of the state-space of
the environmental process.) Inserting this representation into equation (2.1) it takes the
following form:

λeλxΓR = eλxΓQ (2.3)

Which can only be solved, when det(λR−Q) = 0. The equation led to a generalized
eigenvalue-problem. T he eigenvalues and the eigenvectors will be denoted by λi and Γi.
After solving the problem, one can write F (x) in the following form:

F (x) =
∑
i

aie
λixΓi

The ai parameters of F (x) can be attained by fitting the parameters to the boundary
conditions. These will result in linear equations for the ai parameters. At the margins
the linear equations take the following form:

At x = 0:
n∑
i

aiΓij = 0 if r(j) > 0

At x = B:
n∑
i

aiΓike
λiB = πk if r(k) < 0

The n linearly independent equations above define all ai parameters. The numerical
problem arises in the second equation. For the ai parameters, where λi > 0, eλiB rises
to infinity, as B rises. On the other hand, if λi < 0 the eλiB parameter converges to
zero. This extremity, which depends on the sign of λi, makes the equation ill-conditioned,
resulting in instability. In the following this paper will present two methods solving this
problem.
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Chapter 3

The additive decomposition method

In [1], [6] a method is proposed which avoids the numerical-instability of the problem.
This method separates the eigenvectors using their sign. It is also applicable when the
generator and the drift matrices are level-dependent.

Instead of the transition probabilities this method uses the density function, as the
boundary conditions are easier to derive for this case. By differentiating equation (2.1)
with respect to x one finds, that the differential-equations determining f(x) take the
same form as for F (x). In order to solve the equation one needs to obtain the boundary
conditions of the problem.

3.1 Boundary conditions

3.1.1 Boundary conditions at x = 0

To solve the differential equation, the boundary values of the density function are needed.
First let us consider the x = 0 level and a state i with positive drift. To obtain the
probability-density function, one needs to calculate the probability, that the fluid is in
state i ∈ S and that the fluid is at an x ≤ ∆ level. If ∆ is very small, this probability is
equal to the sum of the probability that the buffer is empty and f(t, 0, i)∆. From this we
will be able to obtain the density function at level 0 by taking the ∆ → 0 limit.

At time t+ dt the x ≤ ∆ state can be reached from two states. (It is important note,
that dt and ∆ are independent of each other.) These states are:

(1) At time t the fluid was in a state j 6= i, and in the dt time-interval the state switched
to i. It can be proved, that we can assume that the fluid level was varying with rj
during the whole dt time interval. As a result at t− dt the fluid-level had to be at
x ≤ ∆ − rj ∗ dt. The probability of switching to i in the interval is Qjidt + o(dt).
Consequently the probability of the whole event is:

P (Z(t) = j,X(t) ≤ ∆− rj ∗ dt)Qjidt+ o(dt)

(2) At time t the fluid was already in state i, and the environmental process did not
switch in the dt interval. Hence the fluid level had to be x ≤ ∆ − ri ∗ dt. The
probability, that during the dt time-interval no state switches occurred is (1+Qiidt)+
o(dt):
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P (Z(t) = i, X(t) ≤ −ridt)(1 + Qiidt) + o(dt)

By summarizing the two possibilities and using the notation P (i, X ≤ ∆, t) = P (Z(t) =
i, X(t) ≤ ∆) one obtains:

P (i, X ≤ ∆, t+dt) =
n∑

j=1 j 6=i

P (j,X ≤ ∆−rj∗dt, t)Qjidt+P (i, X ≤ ∆−ridt, t)(1+Qiidt)

P (i, X ≤ ∆, t + dt)− P (i, X ≤ ∆− ridt, t) =

n∑

j=1

P (j,X(t) ≤ ∆− rj ∗ dt, t)Qjidt (3.1)

Dividing equation (3.1) by dt and taking the dt → 0 limit one finds:

∂P (i, x ≤ ∆, t)

∂t
+ ri ∗

∂P (i, x ≤ ∆, t)

∂x
=

n∑
j

P (j, x ≤ ∆, t) ∗Qji

The partial derivative with respect to x is the probability density function. The partial
derivative with respect to t is equal to zero in the stationary (t → ∞) state. Taking the
∆ → 0 limit the equation takes the form:

rifi(i, 0) =
n∑

j=1

P (j, 0) ∗Qji

For the states, where rj > 0 P (j, 0) = 0 as the fluid immediately drifts away from the
zero level. This statement is equal to the boundary conditions in (2.1).

As the states with negative drifts have finite probabilities at level 0, the probability
density function for these states does not exist. Therefore one can not use the deduction
used before are not valid for them. Nevertheless one can calculate the f(x → 0) limits.
The method used to obtain the equation for these states is similar to the one proposed
before:

P (i, 0, t+ dt) = P (i, x ≤ −ridt, t)(1 +Qiidt) +
n∑

j≤i

P (j,X ≤ −rjdt, t) ∗Qjidt (3.2)

Taking the first order Taylor polynomial of F (i,−ridt, t) = P (i, X ≤ −ridt, t) one obtains:

P (i, x ≤ −ridt, t) = P (i, 0, t)− ridt ∗ f(i, 0, t) + o(dt)

Substituting this to equation (3.2) it takes the following form for stationary states:

f(i, 0)ri =
n∑
j

P (j, 0)Qji

In conclusion the matrix equation describing the boundary conditions at the x = 0
level:

f(0) ∗R = P (0) ∗Q

Where f(0) = [f(1, 0), f(2, 0), ...] and P (0) = [P (1, 0), P (2, 0), ...].
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3.1.2 Boundary conditions at the buffer limit

The same method used to calculate the boundary conditions at x = 0 can be used at the
x = B buffer limit. The result is:

−f(B) ∗R = P (B) ∗Q

3.1.3 Boundary conditions at the threshold level

Let us take a fluid model with a threshold at level a. Both the drift matrix and the
generator matrix may change at this level. It is also possible, that for some states the
sign of the drift also changes. For example let us consider a state where the drift is positive
below the threshold level, and is negative above it. In this case if the fluid reaches this
level at this state it stays there. (As the level decreases above this height, and it increases
below it.) As a result this state will have a non-zero probability at level a. As a result,
the probability-distribution function will be non-continuous, the density function will not
exist here. The possible drift changes at the threshold level are shown in Figure 3.1.

Figure 3.1: The possible behaviours around threshold level. The arrows indicate the sign of the fluid

rate. The small arrows, and 0 indicate the fluid rate at the threshold level, which can be zero.

The boundary conditions can be derived with the same technique used in section ??. A
detailed analysis of the problem can be found in [5]. The solutions, using the enumeration
in Figure 3.1, are summarized below:

1. pj(a) = 0
fj(a+ 0)rj(a+ 0) = fj(a− 0)rj(a− 0) +

∑
k 6=j

pk(a)Qkj(a)

2. fj(a+ 0) = 0
pj(a)Qjj(a) + fj(a− 0)rj(a− 0) +

∑
k 6=j

pk(a)Qkj(a) = 0

3. pj(a)Qjj(a)− fj(a+ 0)rj(a+ 0) + fj(a− 0)rj(a− 0) +
∑
k 6=j

pk(a)Qkj(a) = 0

4. pj(a) = 0 and fj(a− 0) = 0
fj(a+ 0)rj(a+ 0) =

∑
k 6=j

pk(a)Qkj(a)
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5. fj(a− 0) = 0 and fj(a + 0) = 0
pj(a)Qjj(a) +

∑
k 6=j

pk(a)Qkj(a) = 0

6. pj(a) = 0 and fj(a+ 0) = 0
−fj(a− 0)rj(a− 0) =

∑
k 6=j

pk(a)Qkj(a)

7. fj(a− 0) = 0 pj(a)Qjj(a)− fj(a + 0)rj(a+ 0) +
∑
k 6=j

pk(a)Qkj(a) = 0

8. pj(a) = 0 −fj(a− 0)rj(a− 0) = −fj(a+ 0)rj(a+ 0) +
∑
k 6=j

pk(a)Qkj(a)

3.2 Application of additive decomposition

Let us first discuss a fluid model with no thresholds. The instability of the generalized
eigenvectors appeared because of the different signs of the generalized eigenvalues. Thus
separating them based on their signs is a logical approach to the problem. First let us
define a new matrix, A:

A ≡ Q ∗R−1

For this definition we needed to assume, that the R matrix is invertible, hence none of
the rates for the state space is 0. Often this assumption can not be made. In these cases
one can censor out the zero-rate states and a different R and Q matrix can be defined. In
[1] it is shown, that by solving the censored fluid model one can obtain the solution for
the original model.

The reason for defining A is that it has the same eigenvalues and eigenvectors as the
Q,R system. By multiplying equation (2.3) with R−1:

λΓRR−1 = ΓQR−1

λΓ = ΓA

Using generalized Schur decomposition one can find a matrix T such that:

T−1AT =



0 0 0
0 λA− 0
0 0 λA+


 (3.3)

Where the real part of the eigenvalues of A− is negative, while for A+ it is positive.
Let us denote the number of columns in A− with n and the number of columns in A+

with p. (As the matrices are square, n and p also equal with the number of rows.) The
algorithm of finding T is the following:

(1) First we use the Schur decomposition create an orthogonal U matrix to separate
the eigenvalues:

Z = UTAU =



0 Z01 Z02

0 Z11 Z1

0 0 Z22
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Using the ordered Schur form we can set U so that the eigenvalues of Z11 are negative
while for Z22 they are positive. (Z11 and Z22 are a square matrices with n and p
columns in respect. Z01 is a row vector with n columns while Z02 has p coloumns..)

(2) Next we eliminate the Z0 and the Z11 matrices. First we try to eliminate Z0. Let
us create an V vector with the same size as Z0 which fulfills the following equation
(I represents the identity matrices):

(
I V
0 I

)

0 Z01 Z02

0 Z11 Z1

0 0 Z22



(
I −V
0 I

)
=



0 0 0
0 Z11 Z1

0 0 Z22


 (3.4)

This results in a Sylvester matrix-equation for V. To elminate Z1 we define W , an
n ∗ p size matrix with satisfies an equation similar to (3.4):



I 0 0
0 I W
0 0 I





0 0 0
0 Z11 Z1

0 0 Z22





I 0 0
0 I −W
0 0 I


 =



0 0 0
0 Z11 0
0 0 Z22


 (3.5)

We can obtain T by multiplying the the solutions for (3.4) and (3.4):

T =



I 0 0
0 I −W
0 0 I



(
I −V
0 I

)
U

In order to obtain a numerically stable method one needs to define a new row vector
using the T matrix and the probability density function. We will solve the equations for
this vector and will use it to find the probability density function:

f(x)T ≡ z(x) = [t(x) u(x) v(x)]

t(x) is a scalar, u(x) is a 1× n row vector and v(x) is a 1× p row vector. By multiplying
with the inverse of U one finds

f(x) = t(x)L1 + u(x)L2 + v(x)L3, where T−1 =



L1

L2

L3


 (3.6)

Substituting f defined above to the differential equation, the following equations can be
derived:

dt(x)

dx
= 0

du(x)

dx
= u(x)A−

dv(x)

dx
R22 = v(x)A+

10



The solutions of the differential equations are:
t(x) = c is a constant
u(x) = u(0)eA−

x

v(x) = v(0)eA+x = v(B)e−A+(B−x)

The second part of the last formula is the key to the stability of the method, because A+

has eigenvalues with positive real parts, consequently the eigenvalues of −A+ are negative.
By using v(B) instead of v(0) the formula for v(x) becomes numerically stable, even for
the large values for x. Substituting the solutions in equation (3.6) one obtains:

f(x) = cL1 + u(0)eA−
xL2 + v(B)e−A+(B−x)L3

For fluid models with thresholds at levels x1, x2 etc. one needs to decompose to
calculate and decompose the A matrices in every homogeneous part. This will result in
different T matrices for every part. As a consequence the A−,A+ matrices and the L1,
L2, L3 will be level-dependent. To retrieve a numerically stable formula for f(x) will also
change slightly:

f(x) = ciLi
1 + u(xi)

ieA
i
−

(x−xi)Li
2 + v(xi+1)e

−Ai
+(xi+1−x)Li

3, if xi < x < xi+1 (3.7)

Using the formula in equation (8), a numerically stable solution can be obtained for the
boundary conditions. For example one can always build a homogeneous linear equation
system (C):

sol ∗ C = 0

, where sol is a row vector which contains the ci, u(xi), v(xi+1) vectors for every i and also
the threshold probabilities. C is a well-conditioned matrix consisting of matrices such as
e−Ai

+(xi−xi−1)Li
3. The solutions of the linear equation is indefinite, as it can be multiplied

by a constant, and it will still solve the equation. This indetermination can be removed
with the normalization condition:

∫ B

0

f(x)dx+
∑

thresholds

pi = 1 (3.8)
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Chapter 4

The matrix analytic solution

In [3],[4] another way of solving the numerical instability is presented. It is based on
the analogy of the fluid model with QBD processes. The long, detailed derivation of the
method will not be discussed here.

It is still assumed, that the R and Qmatrices are constant between the threshold levels.
In [5] and [6] the author also analyzes a fluid model, where at the threshold levels the R
and Q matrices are right continuous. (Which means, that Q, and R are constant between
[xi, xi+1), where xi denotes the threshold level.) The method can be easily generalized
for fluid models, where the matrices are not right continuous at the threshold levels. In
order to calculate the probability density function a few new definitions and notations are
needed:

ϕi
−, ϕ

i
+ ϕi

−, ϕ
i
+ notates the different states of the S state space. ϕi

− consists of
the states where the drift is positive in the [xi, xi+1] interval. In ϕi

− the
drift is negative in [xi, xi+1]. The state space S is the sum of these sets:
S = ϕi

− ∪ ϕi
+.

ϕi
u, ϕ

i
s, ϕ

i
r, ϕ

i
d These notations also describe sets of the state space S. ϕi

u = ϕi−1
+ ∩ϕi

+

is the set of the states where the fluid rate is positive both below, and
above the i-th threshold level. The other definitions are: ϕi

s = ϕi−1
+ ∩ϕi

−,
ϕi
r = ϕi−1

− ∩ϕi
+, ϕi

d = ϕi−1
− ∩ϕi

−. The indexes u, s, r, d will notate the

ϕi
u (up), ϕi

s (sticky), ϕ
i
r (repulsive), ϕ

i
d (down) sets. For example Q

(i)
sd is

the generator matrix from ϕi
s to ϕi

d. For x ∈ [x0 = 0, x1] there are only
two type of sets ϕi

s and ϕi
u. Similarly for x ∈ [xn−1, B]: S = ϕn

d ∪ ϕn
s .

Ψ(i), K(i), U (i) Ψ
(i)
jk is the probability, that starting from (X = xi, Z = j) the fluid

returns to level xi in a finite amount of time, and that it returns in
state k. j ∈ ϕi

+ and k ∈ ϕi
−. K(i) and U (i) are matrices defined as:

K(i) = (R
(i)
+ )−1Q

(i)
++ +Ψ(i)(R

(i)
− )−1Q

(i)
−+, U (i) = Q

(i)
−− +Q

(i)
−+Ψ

i.

Λ
(i)
++, Υ

(i)
+− (Λ

(i)
++)jk is the probability, that starting from (xi, j ∈ ϕi

+) the fluid level

reaches (xi+1) in state k ∈ ϕi
+) before returning to xi. (Υ

(i)
+−)jk defines

the probability, that starting from (xi, j ∈ ϕi
+) the fluid level returns to

(xi) in state k ∈ ϕi
+) before reaching xi+1.
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K̂(i), Û (i), Λ̂i
−− etc. These matrices have the same meaning as the original ones without the

̂ , but for the reversed model. In the reversed model the drift matrix
R is replaced with R̂ = R.

4.1 Probabilities at x = 0, x = B and at the threshold

levels

Let us assume that there are n thresholds x1, x2, ..., and let us denote the bottom of the
container with x0 = 0, and the buffer limit with xn = B. Using stochastic thought the Ω
matrix can be derived to calculate the probability values at x0, x1, ...xn

Ω =




S(0) U (0) 0 0 0 0
L(1) S(1) U (1) 0 0 0
0 L(2) S(2) U (2) 0 0
0 0 ... ... ... 0
0 0 0 L(n−1) S(n−1) U (n−1)

0 0 0 0 L(n) S(n)




Where the following notations were applied:

S(i) =




0 0 Υ
(i)
us Υ

(i)
ud

0 0 Υ
(i)
rs Υ

(i)
rd

P
(i)
su P

(i)
sr P

(i)
ss P

(i)
sd

Υ̂
(i−1)
du 0 Υ̂

(0)
ds 0


 U (i) =




Λ
(i)
uu 0 Λ

(i)
us 0

Λ
(i)
ru 0 Λ

(i)
rs 0

0 0 0 0
0 0 0 0


 L(i) =




0 0 0 0
0 0 0 0
0 0 0 0

0 0 Λ̂
(i−1)
ds Λ̂

(i−1)
dd




S(0) =

(
0 Υ

(0)
us

P
(0)
su P

(0)
ss

)
U (0) =

(
Λ

(0)
uu 0 Λ

(0)
us 0

0 0 0 0

)
L(1) =




0 0
0 0
0 0

0 Λ̂
(0)
ds




S(n) =

(
P

(n)
ss P

(n)
sd

Υ̂
(n−1)
ds 0

)
U (n−1) =




Λ
(n−1)
us 0

Λ
(n−1)
rs 0
0 0
0 0


 L(n) =

(
0 0 0 0

0 0 Λ̂
(n−1)
ds Λ̂

(n−1)
dd

)

We assumed, that Qn = Qn−1. P (i) = 1 + (Φ(i))(−1)Q(i) where Φ(i) is the matrix of the

diagonal elements of−Q(i). P
(i)
i j is the conditional probability, that for the next transition

in the environmental process, it switches from state i to state j.
Ω can be interpreted as the transition matrix of a Markov chain between the threshold

levels. S(i) represents the probability, that the fluid level returns to the i-th threshold
level, before reaching any other of the threshold levels, if the walk started from xi. U (i)

is the conditional probability that the fluid level reaches xi+ 1 before returning to xi or
reaching xi−1. Similarly L(i) is the conditional property of reaching xi−1.
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From this interpretation one can understand the different elements of S(i), U (i) and
L(i). The lines of these block-matrices represent the initial subsets: The first line indicates
the up states (ϕi

u). The other three lines belong to ϕi
r, ϕ

i
s, ϕ

i
d in respect. The different

elements of the first row of S(i) are the following: The first is the conditional property that
the fluid returns to xi in a state of ϕi

u if it started from the same subset. This is equal to
0, because the initial had positive rate, hence the fluid level ascended immediately above
xi, and it can only return in a state with negative drift. As a result the second member of
the line is also 0. The third and fourth are equal to Υ

(i)
us and Υ

(i)
ud by definition. The same

train of thought can be used to understand the U (i), L(i) matrices and the other elements
of S(i).

As Ω is the transition matrix for the threshold levels, it’s stationary solution gives us
the probabilities at these levels. As the only states with non-zero probabilities are the
sticky states of the different threshold levels, these are the parts of the solutions we are
interested in. As a result it is logical to filter out the up, repulsive and down states. This
can be achieved by switching a few rows and columns in Ω matrix, to attain the form
below:

Ω′ =




P
(0)
ss 0 ... 0

0 P
(1)
ss ... 0

... ... ... ...

0 0 ... P
(n)
ss

E

F G




E, F ,G are only notations for the blocks in the mixed Ω matrix. Let us define:

Ω′′ =




P
(0)
ss 0 ... 0

0 P
(1)
ss ... 0

... ... ... ...

0 0 ... P
(n)
ss


+ E(I −G)−1F (4.1)

It can be proved, that this is the transition matrix for the sticky states. As a result
from Ω′′ the stationary probabilities for i ∈ φi

s can be obtained by solving:

pΦ(Ω′′ − 1) = 0 where p = (p
(0)
s , p

(1)
s , ..., p

(n)
s )

p
(i)
s is a row vector which consists of the probabilities for the states i ∈ φi

s at xi. As p
is a solution to a homogeneous linear equation λp will also solve equation (4.1). This
indefiniteness of p can be solved by the normalization condition (3.8).

4.2 Calculation of the probability density

From the solution of (4.1) the values of the probability density function can be attained
near the threshold levels. The the absolute value of R(i) will be denoted with C(i):
C(i) = diag(|rj|wherej ∈ S).
For 2 ≤ i ≤ n− 1:
fu(xi+0) = (p

(i)
s Q

(i)
su+p

(i−1)
s Q

(i−1)
sr Λ

(i−1)
ru +fu(xi−1+0)C

(i−1)
u Λ

(i−1)
uu +fd(ci−0)C

(i−1)
d Υ̂

(i−1)
du )(C

(i)
u )−1
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For 1 ≤ i ≤ n− 2:
fd(xi − 0) = (p

(i)
s Q

(i)
sd + p

(i)
s Q

(i)
srΥ

(i)
rd + fu(xi + 0)C

(i)
u Υ

(i)
ud + fd(ci+1 − 0)C

(i)
d Λ̂

(i)
dd)(C

(i−1)
d )−1

Furthermore:
fu(x1 + 0) = (p1sQ

(1)
su + p

(0)
s Q

(0)
suΛ

(0)
uu + fd(c1 − 0)C

(0)
d Υ̂

(0)
du )(C

(1)
u )−1

fd(xn−1 − 0) = (p
(n−1)
s Q

(n−1)
sd + p

(n)
s Q

(n−1)
sd Λ̂

(n−1)
dd + fu(xn−1 + 0)C

(n−1)
u Υ

(n−1)
ud )(C

(n−2)
d )−1

The meaning of these formulas can be understood by using the equations for the
boundary conditions derived in section 3.1. The first equation can be derived from the
formula for the boundary conditions at threshold levels.

f(xi + 0)R(i) − f(xi − 0)R(i−1) = p(i) ∗Q

The formula is the same as in section 3.1, but it is written slightly differently. For the up
states of level xi the equation will be the following:

fu(xi + 0)R
(i)
u − fu(xi − 0)R

(i−1)
u = p

(i)
s ∗Qsu

As only the probabilities for the sticky states have nonzero value at the threshold levels.
fu(xi − 0)R

(i−1)
u can be expressed with the values of the probability density function at

different states and threshold levels, if we condition on the last visits on the threshold
levels. By conditioning we mean, that we check the last threshold level the fluid visited
and also the state it visited it in. Then we try to find the probability that it reaches xi

in a state of ϕi
u before visiting any other threshold level or state of xi. This means the

analysis of a censored process, similar to the one performed for Ω. The different possible
cases for this event are the following:

1. (1)The state can be reached from an up state of xi−1 if the fluid reaches the xi level
before returning to the starting fluid height, and does so in an upstate of xi. The
probability of this whole process is fu(xi−1 + 0)Λ

(i−1)
uu

2. (2)If the last fluid level was at xi it may still reach xi in an state of ϕi
u, if it started

in a down state, and was able to return before reaching xi−1. By the definition of

Υ̂ The probability of this event is fd(xi − 0)Υ̂
(i−1)
du

3. (3)Moreover if the last threshold visited was xi−1, and it was in a sticky state, again,
it could reach xi in an up state. This requires that at xi−1 the environmental process

switched to a repulsive state: p
(i−1)
s ∗Q

(i−1)
sr Λ

(i−1)
ru

Those are the only three events which contribute to fu(xi − 0). The other options
are can easily be filtered out. For example ϕi

u can not be reached from a sticky state of
xi, because if it switches to an up or a repulsive state, the fluid level will rise above xi

immediately. Thus if it will return to xi it will happen in a state with negative rate at
that threshold level. This means that it will return in either a down or a sticky state.
Also, if the environmental process will switch to a down state from ϕi

s, it will not add to
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the probability, because this event is present in the value of fd(xi−0). The final equation
for fu(xi − 0) is the following:

fu(xi − 0)C(i−1)
u = fu(xi−1 + 0)C(i−1)

u Λ(i−1)
uu + fd(xi − 0)C

(i−1)
d Υ̂

(i−1)
du + p(i−1)

s ∗Q(i−1)
sr Λ(i−1)

ru

(4.2)
The origin for the appearance of the C matrices requires a longer derivation, which

will not be discussed. For the calculation of the other equations for the boundary values
of the probability density function requires a similar algorithm.

By solving these equations, the probability density functions can be calculated.
For xi < x < xi+1, where 1 ≤ i ≤ n− 2:

f(x) = (fu(xi + 0)C
(i)
u N

(i)
u (0; x− xi) + p

(i)
s Q

(i)
srN

(i)
r (0; x− xi) + fd(xi+1 − 0)C

(i)
d

∗N
(i)
d (xi+1 − xi, x− xi))(C

(i))−1

For 0 < x < x1:
f(x) = (p

(0)
s Q

(0)
su N

(0)
u (0; x) + fd(x1 − 0)C

(0)
d N

(0)
d (x1, x))(C

(0))−1

For xn−1 < x < xn

f(x) = (fu(xn−1+0)C
(n−1)
u N

(n−1)
u (0, x−xn−1)+p

(n−1)
s Q

(n−1)
sr N

(n−1)
r (0, x−xn−1))(C

(n−1))−1

The N(xi; x) = N(0; x− xi) matrices can be interpreted as the expected value of the
number of events of reaching x before arriving to the threshold levels, assuming that the
starting fluid height was xi. The method of deriving of the equations above is the same
as it was for the boundary values of f(x). It can be proved, that the N matrices can be
calculated with the following formula:

N (i) =

(
N

(i)
+ (0, x)

N
(i)
− (xi+1 − xi, x)

)
=

(
1 eK

(i)(xi+1−xi)Ψ(i)

eK̂
(i)(xi+1−xi)Ψ̂(i) 1

)−1(
eK

(i)x eK
(i)xΨ(i)

eK̂
(i)(xi+1−xi−x)Ψ̂(i) eK̂

(i)(xi+1−xi−x)

)

4.3 The calculation of Ψ

As seen in section 4.2 the only thing one needs to calculate both the probability density
function and the probabilities at the threshold levels is Ψ(i) for every i. In [3] it is shown
that it can be computed using equation (4.3).

G = A− + A0G+ A+G
2 (4.3)

A+ =

(
1
2
∗ 1 0
0 0

)
A0 =

(
1
2
P++ 0
P−+ 0

)
A=

(
0 1

2
P+−

0 P−−

)

The minimal nonnegative solution of (4.3) will take the form:

G =

(
0 Ψ
0 V

)
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The numerical stability of this approach can be understood by it’s stochastic inter-
pretation. As mentioned before the N

(i)
+ (0; x− xi) matrix equals the expected number of

visits of a fluid-level xi + x after visiting xi in a state with positive drift, and before re-
turning to level xi. Consequently N

(i)
+ (0, x) monotonously decreases with x, as it becomes

less probable that the fluid reaches x before returning to the starting threshold level.
Mathematically is only possible if K(i) is a stable matrix. Similarly it can be proven that
K̂(i) is also a stable matrix. This means that all linear equations are numerically stable,
even for the large values of x.
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Chapter 5

Comparing the two methods

I have implemented the two methods summarized above using MATLAB, and compared
them based on their numerical stability and speed. Approximately both methods can be
divided into three parts. The schematic representations of the methods can be seen in
Figure 5.1.

Figure 5.1: The different sections of the algorithms

5.1 Numerical stability

Both methods are quite successful in computing the stationary values of the probability
density function. The main problem which may occur arises when one tries to decompose
the matrix during the additive decomposition method, or when one tries to solve (4.3) in
the matrix analytic method. Although it happens rarely, but the problem may arise in
an infinite buffer system when the mean drift is close to zero and x → ∞. The mean drift
is the expected value of the rate with which the fluid level rises at a certain level. It can
be calculated using the stationary distribution π, defined at the beginning of the paper:

d =

n∑

i

πiri (5.1)
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As both Q and R are allowed to be level-dependent, the value of d may also change with
the fluid level. (In this case it may change at threshold levels.)

If lim x→∞d(x) = 0 means that the fluid has a nonzero probability of rising above any
limits. (As the probability of rising and decreasing would be the same at any given point.)
This would result in an instability, such systems will not be analysed in this paper.

On the other hand it is possible, that the mean drift is a negative number with
a very small absolute value. In this case the stationary probability density function
would decrease slowly with the fluid level. Because of this at least one of the generalized
eigenvalues in the spectral representation would have to be a negative number with a
very small absolute value. Because of the numerical representation of this eigenvalue is
not exact, this could result in high inaccuracy. As the additive decomposition method is
based on the spectral representation, this may present a limit for it’s applicability.

As a consequence the matrix analytic method may also have problems when calculating
the properties of the fluid queue. When examining QBD solvers one can usually make
the following picture of their algorithm: For large buffers when calculating Υ they only
use those paths in the calculation which have a small maximum value of x. A path is
the trajectory of the fluid-height. Then as the algorithm progresses they start to consider
the paths which reach higher fluid levels. If the mean drift is small, then the algorithms
will converge fast, as it is very likely, that the fluid will not reach high levels. For large
drifts it is quite possible that the fluid will reach higher levels, but from these heights it
is likely that they will not return to the starting level. Therefore for higher drifts the first
few paths, with smaller maximum, will be more important, the algorithms will converge
fast. The problem will arise for mean drifts close to zero, as all fluid-heights are easily
reachable from all levels, the iteration will converge much slower.

To analyze this problem, both methods were implemented for a homogeneous infinite
buffer system. The programs were tested for different mean drift values. The different
drift values were obtained by changing the values of both Q and R matrices. For the Schur
decomposition, S.N. Bangert’s Lyapunov equation solver was used. A few algorithms were
tested for the quadratic equations of the matrix analytic method. (Newton Iteration, Log-
arithmic Reduction, Invariant Subspace Iteration, Functional Iteration, Cyclic Reduction)
The most promising results, both in speed and stability, were calculated using a cyclic
reduction program created by Benny VanHoudt [2].

The probability mass at zero height was calculated with both methods. The results
were same for both until a mean drift as small as d = −10−6. Then a minor relative
difference appeared in their values, around 0.01 which started to increase rapidly, as the
absolute value of the mean drift was decreasing. As the d was increasing, (it’s absolute
value was decreasing,) one would expect that the probability mass at x = 0 level would
decrease. It appeared that for lower drifts than d = −10−8 the additive decomposition
method was unable to fulfill this condition, while no limit was found for the matrix
analytic method. Therefore it is probable that the matrix analytic method is the more
powerful one. It is important to mention that from all the solvers analyzed, only the
cyclic reduction was able solve the problem for every mean drift.
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5.2 Comparison based on calculation speed

To examine both algorithms, numerous tests with different parameters were conducted.
The programs were tested on a Pentium 4, 3 GHz computer, with 512 MB RAM (Physical
Address Extension).

5.2.1 Dependence on number of states

The first tests were made in order to define how much time it took for the methods
to calculate the probability masses at the threshold levels and the parameters of the
probability density function, and how they depended on the cardinality of the state-
space. Also we were interested whether the cyclic reduction QBD solver and the Lyapunov
equation solver could cope with the large matrices. The same program as in the previous
section was used to test this attribute of the algorithms. The largest cardinality was 900
but both methods could solve the problem, the relative differences in the results were less
than 10−9. On the other hand there were significant differences in their runtime as it can
be seen in Figure 5.2.
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 additive decomposition
 matrix analytic

Figure 5.2: The cardinality-dependence of the runtime for the additive decomposition and the matrix

analytic method on log-log scale

For both algorithms, the runtime depended on the cube of the cardinality. The fits on
the curve were:

Additive decomposition: t = (6.87± 0.07)10−8 ∗ x3

Matrix analytic: t = (15, 62± 0.14)10−8 ∗ x3

Both from the figure and the fits it is visible that the additive decomposition is about
2.31± 0.03 times faster than the matrix analytic method. It may be possible to speed up
the cyclic reduction with about 30% but that would still leave the additive decomposition
method the faster.

20



5.2.2 Calculation time for the linear equations

For this section we were interested how the methods scale with the number of thresholds.
Roughly, the programs can be divided into two sections, one is solving the QBDs for the
matrix analytic method or the Schur-decomposition for the additive-decomposition. The
second part is the time it takes to solve the linear equations. The runtime of first part
can be analyzed with a homogeneous fluid model with infinite buffer system, which is the
same type of systems which were used in the previous sections.

25 37,5 50 62,5 7587,5100 125 250 375 500
0,01

0,1

1

10

 

 

ru
nt

im
e(

s)

cardinality

 additive decomposition
 matrix analytic

Figure 5.3: The runtime for the QBD and the Schur decomposition on logharitmic scale.

It is visible, that approximately both algorithms scale the same way with the time:
t = ẽ

(7.82±0.45)∗10−3∗x

Also the Schur decomposition proved to be a much faster method: t(Schur)
tQBD

= 0.116± 0.03
Usually it does not take much time to solve the linear equations, as a result measuring

the runtime can get quite inaccurate. For this task a different program was used, in which
the number of thresholds can be changed to any number. It was used to measure runtime
for different threshold numbers and state space-cardinality. The results are summarized
in Figure 5.4.

From the graphs one can see that again, both methods scale the same way with the
number of states and the number of thresholds. On the other hand the matrix analytic
method gave much faster results. The reason for this is, that while for the additive
decomposition method at every threshold there is an equation for every state, for the
matrix analytic method Ω′′ has the equations only for the sticky states at the threshold
levels. This was achieved by filtering out the up, repulsive and down states of the Ω
matrix. The time needed for this algorithm was also added to the ”calculation time for
the linear equations”. As about one fourth of the states are sticky at every threshold,
and the Gauss elimination is a cubic method, this property itself would make the matrix
analytic method much times faster. Also, because in the tests random matrices were used,
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Figure 5.4: The runtime of the additive decompositon and the matrix analytic method
for solving the linear equations

the number of sticky states was not always one fourth of all the states, as a result these
graphs look a bit more stochastic.

5.2.3 Calculation of the probability density function

Often the most important part of the results is the values of the probability density
function at different points. In addition one is usually interested in the values at a
numerous points, so the calculation speed is a critical property of the algorithms. To
test this characteristic of the methods, the same multi-threshold programs were used
as in the previous section. The functions were calculated in ten thousand points. The
most resource-consuming part of the calculation is the matrix exponential parts which
are present in both methods. The only difference in the two methods are the size of the
matrices. While in the matrix analytic approach the sum of the sizes of K and K̂ equals
the number of states. For the additive decomposition the sum of the sizes of G1 and G2

equals the cardinality of the state space minus one. As a result it is expected that the
latter will be the faster one.

The results are coherent with the theoretical expectations. As computing the station-
ary probability density function is usually one of the main aims of the calculations, this
difference in their speed is of great importance.

5.3 Summary

In our comparison the matrix analytic method performed as a robust, reliable approach.
For every test, the results were plausible, and no limits were found for it’s applicability.
On the other hand the additive decomposition algorithm appeared slightly less stable.
When examining the runtimes it seemed that none of the methods were faster, their
speed compared to each other was highly dependent on the system. An example of the
runtimes can be seen in table below. The threshold number was 14 and the cardinality
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Figure 5.5: The calculation time for the density function

of the state space was 25. The summary of the results can be seen in Figure 5.6.

Runtime Matrix analytic (s) Additive decomposition (s)

Cyclic red./Schur dec. 0.034 0.015
Solving the equation 0.312 11.483
Calculating the probability density 2.252 0.817

Sum 2.598 12.315
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Figure 5.6: These figures show which method was faster if the density function was
calculated in 10000 and 2000 points

From Figure 5.6 it is visible that the additive decomposition method is more useful for
lower threshold numbers and cardinality, and if one is interested in the density function
in a lot of points.

In conclusion, while the matrix analytic method performed more stability, but for most
systems the additive decomposition method was also quite stable. The main difference of
the methods is that their speed scale differently from the system.
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Chapter 6

Application of the fluid models for
RED processes

As it is mentioned in the introduction, one of the possible applications of stochastic
fluid models is the analysis of servers of telecommunication networks. The fluid level
represents the amount of demands in the system, and the arrival and the service process
is modulated by an environmental Markov-process defining R and Q. Let us assume that
there are N users in the system with identical properties. We presume that either they
are in an ON state, when the system receives requests from them continually, or they
are in an OFF state when they do not generate requests. As the fluid model needs the
environmental process to be memoryless, we assume that the time for which the users
stay in an ON or an OFF state are defined by an exponential probability distribution.
Finally we assume, that the server has a limited serving speed, and may also reject some
requests with 1 − s probability. This last functional property of the server is called the
”random early detection” (RED) mechanism.

For the ON state we will notate the expected value of the exponential distribution
with 1/α. For the OFF state it will be denoted by 1/β. Furthermore the rate with which
the user produces the requests will be denoted by r. The speed of the serving process is
c. As mentioned before, the server will only accept the new requests with s probability.
A representation of the system can be seen in Figure 6.1 .
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Figure 6.1: The schematic visualization of the process

6.1 The calculation of the Q and R matrices

Let us differentiate the states of the environmental process based on the number of users
in ON state. If n users are ON at time t, then in the following a dt interval three things
may happen

1. One or more of the N − n users in OFF states may switch to an on state. As the
transitions between states are independent for the different users, and the probability
distribution for this event is continuous with time, it is highly unlikely that more
users will switch their states in a small dt interval. If we want to calculate this
probability, we can use the memoryless property of the exponential distribution: If
there were no transitions before t, than the probability of a transition at the [t,t+dt]
is the same as in [0,dt]. The users which switch to ON will be denoted with i, j will
be used for the ones which were in OFF state and stay there, and k for those which
stay in ON.
P(One user switches ON, all others stay in the same state between [t,t+dt]|n were
ON at t)=P(One user switches ON, all others stay in the same state between [0,dt]| n
were ON at 0)=

∑
i

[P(the i-th user switches ON in [0,dt]|it was OFF at t=0)
∏
j

P(the

j-th user stays OFF between [0,dt]|it was OFF at t=0)
∏
k

P(the j-th user stays ON

between [0,dt]|it was ON at t=0)]=
∑
i

βe−β0dt ∗
∏
j

(1− βe−β0dt) ∗
∏
k

(1−αe−α0dt) =
∑
i

βdt+ o(dt) = (N − n)βdt+ o(dt)

2. One of the n users in ON state switch OFF, similarly, the probability of this tran-
sition is:
P(One switches OFF in [t,t+dt] | n were ON at t)=nαdt+ o(dt)
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3. All users stay in the same state they were at time t: P(No transition occurs in
[t,t+dt] | n were ON at t)=1− nαdt− (N − n)βdt+ o(dt)

If the lines of the Q matrix correspond to the number of states ON, then it will take
the following form:

Q =




−Nβ Nβ 0 0 0 0
α −α− (N − 1)β (N − 1)β 0 0 0
0 2α −2α− (N − 2)β (N − 2)β 0 0
0 0 ... ... ... 0
0 0 0 (N − 1)α −(N − 1)α− β β
0 0 0 0 Nα −Nα




The calculation of the R matrix is an easier task. In a state where n users are ON, they
produce n ∗ r requests. But the server does not accept all requests, they are filtered out
randomly, with 1− s probability. In addition, the serving process is constantly c. Hence
in our model the fluid level in the buffer system will only rise with n ∗ r ∗ s− c.

R =




−c 0 0 0 0
0 rs− c 0 0 0 0
0 0 2rs− c 0 0 0
0 0 ... ... ... 0
0 0 0 0 (N − 1)rs− c
0 0 0 0 0 Nrs− c




6.2 Calculation of the loss (L)

The loss is the number of requests that the system is unable to serve. This may be caused
by two phenomenons. The first is because of the filtering of the RED processes. In a state,
where n users are producing request with r rate, this loss is equal to L = (1− s)nr. The
second reason for the loss appears if the fluid reaches the buffer-limit of the system. In
this case, beside the loss because of the filtering, the server may also loose requests which
it is unable to store. As the requests are served with a speed c, this is also the maximum
speed the system is able to accept new requests, if it is full. (It can be interpreted as if
the model was full with fluid, but we would still like to pour water into it, then some of
it would spill out of the storage.) The additional loss at this level is the following: The
requests pass the filter, with s probability, but the server is only able to store them with
c speed: L = snr − c.

The minimal available loss for the system is defined by the speed of the serving process.
Although the filtering method may change the probability-density function of the fluid-
level, but it is only achieved by loosing some of the requests before they get stored in
the server. This does not result in increased serving speed, therefore the loss can not
be decreased with RED processes. An approximation of the relative loss (Lmin) can be
calculated using the mean drift, defined in 5.1. If the mean drift, d is smaller then c,
then it is unlikely that the fluid will reach the buffer-limit, therefore the loss is close to
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0. If d > c, and the filtering is turned off, then eventually the fluid level will reach the
buffer-limit, therefore some of the requests will ”spill out” of the storage.:

Lmin =
mean drift− storing speed

mean drift
=

d− c

d
(6.1)

This is just an approximation, as even if d < c, it is possible, that there are states
wher enough users are in the ON state to make the fluid rate positive. If the fluid height
reaches the buffer-limit in such a state eventually some fluid will spill out.

As we are able to analyse fluid models, where the R matrix changes with the fluid
level, we can use our implementations for systems, where the passing probability changes
with the fluid height. (Although we must limit the system, so that s only changes at
certain threshold levels.) The exact loss of the system consists of two parts:

1. The system may loose some requests because of the filtering process. If the envi-
ronmental process is in state i, then at level x the rate with which the requests are
lost is ri(1 − s(x)). (ri is the rate for state i.) Thus the expected value of the loss
is:

L1 =
B∫
0

ri(1− s(x))fi(x)dx+
∑
j,k

p(xj , k)rk(1− s(xj)

Where fix is the stationary probability distribution for state i, and p(xj , k) is the
probability at threshold level xj for state k. (The 0 level and the buffer limit are
also among the xj-s.)

2. Moreover requests may be lost at the buffer limit, even if they pass the filter, as the
system is only able to store them with c speed:

L2 =
∑
k

p(B, k)(s(B)rk − c)

For the states, where s(B)rk > c.

The relative loss is: L = L1+L2
B∫

0

rifi(x)dx+
∑
j,k

p(xj ,k)rk

6.3 Benefits of RED processes

The advantage of the RED method lies in it’s capability to change the stationary proba-
bility distribution function. An extreme example for this can be, that if the server does
not accept any new requests if the fluid level reaches a certain height, then the fluid can
not ascend above this level, the probability distribution will be 0 above this altitude.
Because the filtering can only decrease the incoming rate, it will increase the probability
that the fluid is in a lower level. Hence the expected value of the fluid level can be lowered
with this method. This has a positive effect on the amount of time a user has to wait
before being served. This can be understood by a simple model. Let us assume, that
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the requests are served in the same order they arrive. (These are the ”first in, first out”
systems.) For our approach this means, that the new requests are added to the top of
the ”fluid”, and their serving time depends on the height of the fluid beneath them. For
a new request the expected serving time (T ) is:

T =
Expected fluid height

Decreasing speed
=

E(X)

c
(6.2)

A further benefit is that some protocols detect if their requests are rejected, and are
able to alter their demands towards the server accordingly. Thus if the server is under
high load, and rejects some requests, then it may help to decrease the system’s actual
demand.

6.4 Applying the method, results

We can use our fluid model for the optimization of the s(x). The object was to minimalize
the expected value of the fluid height. It is also important, that we do not loose to many
requests in our system. Therefore a restriction was added to the problem: The possible
values of s(x) was limited, so that the overall loss, L could not exceed a certain number.
In our model AMR voice traffic was analysed. The parameters for this system are the
following:

α 2/31
s

β 11
s

r 12.2kbps
Number of users 25

The mean drift for this system is d = 183kbps. A system with c = 190kbps serving
speed and B = 30kb buffer limit was analysed.

With our models we are only able to calculate fluid models which are made of homo-
geneous sections. (The R,Q parameters of the systems only change at threshold levels.)
Hence the s(x) function I have used also had this property. The buffer was divided into
three or six parts. I did not try to optimize the threshold levels, they were fixed during
the optimization process. Therefore the only parameter that could be changed was the
value of s(x) in the different sections. For example if the system was divided into three
sections, then s(x) could be defined by three numbers (s1, s2 and s3): it’s value in [x0, x1],
in [x1, x2] and in [x2, x3]. (xi represents the threshold levels, x0 = 0 is the bottom and
x3 = B is the top of the buffer.) So s is defined by the [s1, s2, s3] vector.

I used the gradient method to optimize the system: We start from a random [s1, s2, s3]
vector, and check whether there is a [s1+∆s1, s2+∆s2, s3+∆s3] vector in it’s neighborhood
which has a smaller expected value for the fluid height. (∆ represents, that ∆si is small.)
If there is one, we check whether the L loss, which belongs to this new s function, is
smaller then the maximum acceptable value of the loss, what we defined previously. If
L is to high we neglected this vector. From the new s vectors we select the one with
the smallest expected fluid level. Then we check the neighborhood of this vector, and
continue with our algorithm. We stop the algorithm, when it is unable to find a better
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s(x) function then the current one. The matrix analytic method was used to compute the
solution of the system, as it seemed more stable when it was compared with the additive
decomposition in Chapter 5.

Our results were the following:

1 2 3
Threshold levels 0,10,20,30 0,5,10,15 0,5,10,15,20,25,30
Limit of loss 0.1 0.1 0.1
Expected fluid height without filtering 11.0633 11.0633 11.0633
Loss without filtering 0.0467 0.0467 0.0467

Results
Minimal fluid height 2.4931 1.626 1.3839
Loss 0.0999 0.0985 0.0995
Optimal s s1=0.9465 s1=1.0000 s1=0.9437

s2=0.8197 s2=0.8368 s2=0.8209
s3=0.7521 s3=0.9637 s3=0.7200

s4=0.7200
s5=0.8800
s6=0.9570

When comparing the first and the second column, we see, that for smaller L limit the
expected fluid level rises. It is logical, as the only way we can decrease the expected fluid
is by loosing some requests. (This is the reason why the optimal system had a loss so
close to the limit.) Furthermore, in the parameters of the third and the first column the
only difference is in the number of thresholds. By duplicating the number of sections the
expected value of the fluid level has decreased by 44%. This is also plausible as we can
optimalize a higher number of parameters.

The density functions can be seen in Figure 6.2. From the first graph one can under-
stand why the s function is high for the lower fluid height. It is quite probable that the
fluid is at this level, thus a slight decrease in the passing probability could result in a large
increase in the loss. This is the part that mainly defines the loss of the system. Hence,
the passing probability needs to be high because of the limit for L. For higher levels the
probability density function is close to zero, even the small passing probabilities do not
affect the system too much.
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Figure 6.2: From left to right, top to bottom: The first graph shows the density function
when the filtering is turned off. The other three correspond to the columns of the table
of results.
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Chapter 7

Summary

This paper aimed at analysing fluid models. In the first part the basic properties of the
system and it’s numerical problem for large buffer-limit was discussed. Two methods were
presented in Chapter 3 and 4 which solve the problem. When I analyzed these methods,
both performed quite well, but the matrix analytic method seemed to be the more robust.
The speed of the methods were highly dependent on the problem we tried to solve. For
certain systems the matrix analytic method was the faster, but for other problems the
additive decomposition had significantly smaller runtime.

In the last chapter I applied the model for a practical problem. We tried to optimize
the request-filters of a server to decrease the expected fluid level, while keeping the overall
loss as small as possible. The results seemed plausible, the methods probably converged
to a local optimum. From the promising results I believe, that this model could be an
effective method for a wide range of problems, with stochastic properties.
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