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Kivonat

Fizikai környezetünk megértése és modellezése egy régóta fennálló kihívás, ami rengeteg
tudományterületet érint az időjárás előrejelzéstől kezdve, járművek tervezésén át egészen a
számítógépes grafikáig. Fizikai rendszereket általában parciális differenciálegyenletek segít-
ségével írunk le, amiket meglévő numerikus módszerekkel tudunk közelíteni. A szimuláció
mellett fontos feladat lehet egy fizikai folyamat irányítása is.

Dolgozatom központi témája, hogy hogyan tudunk gradiens-alapú optimalizálási mód-
szerek számára meglévő tudást átadni fizikai folyamatok működéséről. A folyamat gradi-
ensei a felügyelt tanításban megszokott hibafüggvény értéke mellett arról is tudást adnak
át az optimalizációnak („ágensnek”), hogy egy adott pillanatban hozott döntése hogyan
befolyásolja nemlineáris fizikai rendszerek lefolyását.

Több kutatási irány összekapcsolásával azt járom körbe, hogyan tudjuk folyadékok
viselkedését leírni és irányítani egy csökkentett dimenziójú módszer segítségével. Sűrűség-
függvények advekcióját mintapontokkal közelítem, amiket részecskeként szimulálok a fo-
lyadék sebességmezőjében. A módszer előnye, hogy a Laplace-operátor sajátfüggvényeinek
lineáris kombinációjaként a sebességmező zárt alakban mintavételezhető. Így a folyadékot
a benne áramló anyagokkal együtt anélkül tudjuk szimulálni, hogy a teljes tartományt
számon kellene tartani.

Dolgozatomban különböző megközelítésekkel egyre összetettebb problémákat model-
lezek. Először egyes esetek megoldására nyújtok megoldást gradiens alapú optimalizálás
segítségével, majd általánosítva a problémát neurális hálókat tanítok be a fizikai folyamat
kívánt módon történő irányítására.

i



Abstract

Understanding and modeling our environment is a great and important challenge, span-
ning many disciplines from weather and climate forecast, through vehicle design to com-
puter graphics. Physical systems are usually described by Partial Differential Equations
(PDEs), which we can approximate using established numerical techniques. Next to pre-
dicting outcomes, planning interactions to control physical systems is also a long-standing
problem.
In our work, we investigate the use of Laplacian eigenfunctions to model and control fluid
flow. We make use of an explicit description of our simulation domain to derive gradients
of the physical simulation. By leveraging current advances in physics-based deep learning,
we provide knowledge to the optimization methods on the underlying model equations
governing non-linear physical problems.
We introduce different approaches to model physics-based optimization problems of in-
creasing complexity. First, we provide a solution to solve individual problems by gradient-
based optimization techniques, building up to a generalized solution by training neural
networks to control the physical process to achieve desired outcomes.
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Chapter 1

Introduction

Positioned at the crossroads of physical simulation, and deep learning techniques, our work
is inspired by current advances in physics-based deep learning. We investigate the general
problem of controlling simulation parameters to achieve target outcomes.
Our novel method solves problems in fluid simulation by utilizing gradients of a differen-
tiable physics simulation. More specifically, we use gradients from a reduced order fluid
simulation technique based on eigenfunctions of the vector Laplacian operator. Instead
of simulating the full domain, a reduced dimensional space is utilized, resulting in signifi-
cant speed-ups. We show some of the possibilities arising when differentiating a Laplacian
eigenfluids simulation, and investigate how the resulting gradients can drive optimization
in different scenarios.
In this chapter, we briefly discuss previous research that served as inspiration as well as a
base for our current work. We also give an overview of the overall structure of our thesis.

1.1 Previous Work

1.1.1 Fluid Simulation

Most simulation methods are based on either an Eulerian (i.e. grid-based), or Lagrangian
(i.e. particle-based) representation of the fluid. For an overview of fluid simulation tech-
niques in computer graphics, see Bridson and Müller-Fischer [3] and Bridson [2].
For advecting marker density in our fluid, as well as a comparative "baseline" simulation,
we will use Eulerian simulation techniques, mostly as described by Stam [21].

Reduced Order Modeling of Fluids

Dimension reduction-based techniques have been applied to fluid simulation in multiple
previous works. Wiewel et al. [27] demonstrated that functions of an evolving physics
system can be predicted within the latent space of neural networks. Their efficient encoder-
decoder architecture predicted pressure fields, yielding two orders of magnitudes faster
simulation times than a traditional pressure solver.
Recently, Wiewel et al. [26] predicted the evolution of fluid flow via training a convolu-
tional neural network (CNN) for spatial compression, with another network predicting the
temporal evolution in this compressed subspace. The main novelty of [26] was the subdi-
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vision of the learned latent space, allowing interpretability, as well as external control of
quantities such as velocity and density of the fluid.

Eigenfluids

Instead of learning a reduced-order representation, another option is to analytically derive
the dimension reduction, and its time evolution. De Witt et al. [7] introduced a computa-
tionally efficient fluid simulation technique to the computer graphics community. Rather
than using an Eulerian grid or Lagrangian particles, they represent fluid fields using a
basis of global functions defined over the entire simulation domain. The fluid velocity is
reconstructed as a linear combination of these bases.
They propose the use of Laplacian eigenfunctions as these global functions. Following their
method, the fluid simulation becomes a matter of evolving basis coefficients in the space
spanned by these eigenfunctions, resulting in a speed-up characteristic of reduced-order
methods.
Following up on the work of De Witt et al. [7], multiple papers proposed improvements
to the use of Laplacian eigenfunctions for the simulation of incompressible fluid flow. Liu
et al. [16] extended the technique to handle arbitrarily-shaped domains. Jones et al. [14]
used Discrete Cosine Transform (DCT) on the eigenfunctions for compression. Cui et al.
[6] improved scalability of the technique, and modified the method to handle different
types of boundary conditions. Cui et al. [6] refer to the fluid simulation technique using
Laplacian eigenfunctions as eigenfluids, which we also adhere to in the following.

1.1.2 Differentiable Solvers

Differentiable solvers have shown tremendous success lately for optimization problems,
including training neural network models [10, 11, 18].
Holl et al. [10] address grid-based solvers, noting them as particularly appropriate for
dense, volumetric phenomena. They put forth ΦFlow, an open-source simulation toolkit
built for optimization and machine learning applications, written mostly in Python.

Physics-based Deep Learning

Despite being a topic of research for a long time [20], the interest in neural network
algorithms is a relatively new phenomenon. This is especially true for the use of learning-
based methods in physical and numerical simulations, which is a rapidly developing area of
current research. Recently, integrating physical solvers in such methods have been shown
to outperform previously used learning approaches [25].
Drawing on a wide breadth of current research, Thuerey et al. [24] give an overview of
deep learning methods in the context of physical simulations.

1.2 Structure

In chapter 2, we give an overview of mathematical foundations, introducing notation used
throughout the text, as well as discuss preliminaries we base later chapters on.
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In chapter 3, the basics of physical simulations are introduced. Building on the multivari-
able calculus introduced in chapter 2, the concept of differentiable physics simulation is
introduced.
Diving deeper into a more specific area of physical simulations, chapter 4 gives a deep
dive into fluid simulation techniques, discussing the Laplacian eigenfluids method more
in-depth in section 4.1.
Finally, as a culmination of all that came before, chapter 5 describes our proposed method
of Controlling Laplacian Eigenfluids.
We close our work with a short discussion and possible future directions in chapter 6.

3



Chapter 2

Mathematical Foundations

This chapter gives a short overview of the mathematical foundations for the techniques
we discuss later on, while also establishing the notation used in later sections.
In the following,

i =

1
0
0

 j =

0
1
0

 k =

0
0
1


will denote the canonical basis vectors.

2.1 Basic Notation

x ∈ Rn is considered a column-matrix, i.e. Rn = Rn×1. This also means that xT (the
transpose of x) is a row-matrix.
We denote the scalar components of a vector x ∈ Rn as (x1, x2, . . . , xn)T . When x denotes
a position in 3D or 2D space, we also use x = (x, y, z)T , and x = (x, y)T , respectively.
Bold uppercase letters denote matrices: A ∈ Rn×m, and its elements are indexed with
Ai,j .
A function f(x1, . . . , xn) is a scalar-valued function Rn → R. When f : Rn → Rm is a
vector field, we will denote it as

f(x) = f(x1, . . . , xn) = (f1(x), . . . , fm(x))T

In keeping with the conventions of fluid mechanics literature, we use the letter u to denote
the velocity of a fluid. It is hard to say where this notation came from, but it fits another
convention to call the three components of 3D velocity (u, v, w)T (dropping w for the 2D
case).

2.2 Multivariable Calculus

Gradient

The gradient ∇ is a generalization of the derivative to multiple dimensions. The symbol ∇
is called nabla, and typically denotes taking partial derivatives along all spatial dimensions.

4



In three dimensions,
∇f(x, y, z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

and in two dimensions,
∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
.

It can be helpful to think of the gradient operator as a symbolic vector, e.g. in three
dimensions:

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

Taking the gradient of vector-valued functions results in a matrix of all its first-order
partial derivatives, called the Jacobian (matrix). With f : Rn → Rm, its Jacobian takes
the form:

∇f = J(f) = Jf =


∇f1
∇f2

...
∇fn


T

=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn...

... . . . ...
∂fm

∂x1
∂fm

∂x2
. . . ∂fm

∂xn

. (2.1)

When f(x1, . . . xn) = (f1, . . . , fn)T , i.e. f : Rn → Rn, mapping the n dimensional Euclidean
space onto itself, its determinant is called the Jacobian determinant.

Divergence

The divergence operator measures how much the values of a vector field are converging or
diverging at any point in space. In three dimensions:

∇ · u(x, y, z) = ∇ · (u(x), v(x), w(x))T = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
.

Note that the input is a vector, and the output is a scalar, i.e. u : R3 → R3,∇·u : R3 → R.
Heuristically, in the case of a fluid velocity field u, this translates to a measure of whether
a given point acts as a source, or a sink, i.e. whether particles are created or lost in that
infinitesimal region. (Later on, we will come back to the notion of a divergence-free fluid.)

Curl

The curl operator measures how much a vector field is rotating around any point. In three
dimensions, it is given by the vector

∇×u(x, y, z) =

∂/∂x
∂/∂y
∂/∂z


T

×

u(x, y, z)
v(x, y, z)
w(x, y, z)

 =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
u v w

∣∣∣∣∣∣∣ =

∂w/∂y − ∂v/∂z
∂u/∂z − ∂w/∂x
∂v/∂x − ∂u/∂y

.
We can reduce this formula to two dimensions by taking the third component of the
expression above, as if we were looking at the three-dimensional vector field (u, v, 0).
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Thus, the two-dimensional curl is a scalar:

∇ × u(x, y) =
(
∂/∂x
∂/∂y

)
×
(
u(x, y)
v(x, y)

)
= ∂v

∂x
− ∂u

∂y
.

We can also interpret this value as the third component of a three-dimensional vector,
perpendicular to the vector field (u, v, 0):

∇ × u(x, y) =
(
∂/∂x
∂/∂y

)
×
(
u(x, y)
v(x, y)

)
=

 0
0

∂v
∂x −

∂u
∂y

.

Material Derivative

For a velocity u(t, x, y, z) =

uv
w

, we define the material derivative as

du
dt = ∂u

∂t
+ (u · ∇)u,

a special case of the total derivative. As x, y, z describe the spatial position of a
particle traveling through space over time, they depend on time t themselves, i.e.
u(t, x(t), y(t), z(t)). Utilizing the chain rule, we can arrive on the above definition by
taking the total derivative of u(t, x(t), y(t), z(t)), and rearranging the terms:

du
dt = ∂u

∂t

dt
dt + ∂u

∂x

dx
dt + ∂u

∂y

dy
dt + ∂u

∂z

dz
dt

= ∂u
∂t

1 + ∂u
∂x

u + ∂u
∂y
v + ∂u

∂z
w

= ∂u
∂t

1 + u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= ∂u
∂t

+
(

u ·
[
∂

∂x
,
∂

∂y
,
∂

∂z

])
· u

= ∂u
∂t

+ (u · ∇) · u.

Laplacian

The Laplacian operator is defined as the divergence of the gradient of a scalar function f .
In general, for f(x) : Rn → R, it is given by

∆f = ∇2f = ∇ · ∇f =
n∑
i=1

∂2f

∂x2
i

.

In three dimensions, this reduces to

∇ · ∇f = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2 ,
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and in two dimensions,

∇ · ∇f = ∂2f

∂x2 + ∂2f

∂y2 .

Taking the divergence of the gradient corresponds to an averaging of how much a value at
a given position differs from its neighborhood. As an example, we can look at a non-static
scalar field, with a rate of change proportional to its Laplacian with proportionality α:

∂Φ
∂t

= α∇2Φ,

which is the well-known heat equation, and governs diffusion of the field. It is essentially a
smoothing operation that results in an averaging of values at every point in space. Using
heat as an analogy, hot and cold spots diffuse throughout the field, resulting in a more
uniform distribution of the heat in the field, eventually reaching a uniform distribution of
heat.

Vector Laplacian

The Laplacian can also be applied to vector (or even matrix) fields, and the result is simply
the Laplacian of each component.
Essentially, the vector Laplacian is what we have been building towards so far, as this op-
erator is going to be the cornerstone of the eigenfluids simulation technique in section 4.1.
As such, we will show some important properties of this operator, and will return to these
in later sections.
The vector Laplacian of a vector field f is defined as

∆f︸︷︷︸
vector Laplacian

= ∇(∇ · f)︸ ︷︷ ︸
gradient of the divergence

−∇ × (∇ × f)︸ ︷︷ ︸
curl of curl=curl2

= grad(div(f))− curl(curl(f))︸ ︷︷ ︸
curl2(f)

In Cartesian coordinates, the vector Laplacian simplifies to taking the Laplacian of each
component:

∆f(x, y, z) = (∇ · ∇)f =

∆f1
∆f2
∆f3

 =


∂2f1
∂x2 + ∂2f1

∂y2 + ∂2f1
∂z2

∂2f2
∂x2 + ∂2f2

∂y2 + ∂2f2
∂z2

∂2f3
∂x2 + ∂2f3

∂y2 + ∂2f3
∂z2

. (2.2)

We can see that these are equivalent by writing out grad(div(f))− curl(f) explicitly:

∇(∇ · f)−∇×(∇ × f) =


∂2f1
∂x2 +

�
��∂2f2

∂x∂y + �
��∂2f3

∂x∂z

�
��∂2f1

∂y∂x + ∂2f2
∂y2 +

�
��∂2f3

∂y∂z

�
��∂2f1

∂z∂x +
�

��∂2f2
∂z∂y + ∂2f3

∂z2

−

�

��∂2f2
∂x∂y −

∂2f1
∂y2 − (∂2f1

∂z2 −�
��∂2f3

∂x∂z )

�
��∂2f3

∂y∂z −
∂2f2
∂z2 − (∂2f2

∂x2 −�
��∂2f1

∂y∂x )

�
��∂2f1

∂z∂x −
∂2f3
∂x2 − (∂2f3

∂y2 −
�

��∂2f2
∂z∂y )

, (2.3)
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where the mixed second order partial derivatives cancel each other out, giving us equa-
tion (2.2).

Differential Identities

It can be shown [13] that for any smooth function u,

∇ · (∇ × u) ≡ 0, (2.4)
∇ × (∇u) ≡ 0.

The idea behind the Helmholtz or Hodge decomposition is that any vector field u can be
written as the composition of a divergence-free part, and a curl-free part. Making use of
Equations (2.4), we can write the divergence-free part as the curl of something, and the
curl-free part can be written as the gradient of something else. In three dimensions,

u = ∇ × Ψ−∇p,

where Ψ is a vector-valued potential function, and p is a scalar potential function. In two
dimensions, Ψ is also scalar:

u = ∇ × Ψ−∇p.

This decomposition technique becomes highly relevant for incompressible fluid flows, where
we would like to make our velocity field u divergence-free (i.e. no particles should be lost
or created). Simulation techniques often decompose an intermediate fluid field ut+1 into
a divergence-free part, and interpreting p as the pressure that is keeping the fluid flow
divergence-free, usually throwing away the values of p immediately.
Rearranging equation (2.3), we can derive another useful identity:

∇ × (∇ × u) ≡∇(∇ · u)−∇ · ∇u.

2.3 Optimization

Iterative optimization algorithms look for a solution by iteratively applying some update
step ∆ to some starting parameter x0, giving an estimation of how to approach some
optimal parameter x∗, with the goal to continuously lower the error as defined by a loss
function L. We address optimization scenarios where the target is to minimize a scalar-
valued loss function L(x) : RN → R with respect to one of its inputs:

arg min
x
L(x) = x∗.

Among the vast number of established optimization algorithms, Gradient Descent (GD)
is the most basic and straightforward. Making use of the Jacobian matrix as defined in
(2.1), it gives us an update step ∆ given a parameter x, consisting of the transposed
Jacobian matrix of f scaled by a scalar learning rate λ. Repeatedly applying the update
step ∆(x) = −λJT (x), the steps of a Gradient Descent (GD) optimization can be written
out as:

8



x0 (2.5)
x1 = x0 − λ∆ = x0 − λJTL (x0) = x0 − λ∇LT (x0)

...
xt = xt−1 − λJTL (xt−1)
x∗ = xt − λJTL (xt),

which is exactly what we will be utilizing in our first couple of optimization scenarios in
chapter 5. Note that as our loss is scalar-valued, the transposed Jacobian matrix of L has
the same dimensionality as the input x, i.e. JTL ∈ RN×1; x ∈ RN×1, making them both a
column vector of size N , which means that they can indeed be added together.
We can also think about these optimization steps as continuously moving towards some
locally observed lowest point in the error landscape. The gradient ∇L is giving us the
direction of steepest ascent, which means that the opposite direction, −∇L will be the
direction of the steepest descent locally, guiding us towards some (potentially only local)
error minimum.
We show examples of utilizing the GD steps as written in (2.5) for minimizing the error
between a simulated and target state of physical simulations in sections 5.1,5.2.2, and
5.2.3.

2.3.1 Neural Networks

The goal of Deep Learning (DL) is to approximate an unknown function

f∗(x) = y∗,

where y∗ denotes ground truth solutions. f∗(x) is approximated by a Neural Network (NN)
representation

f(x,θ) = y,

where θ is a vector of weights, influencing the output of the NN. DL is about finding θ
parameters such that the outputs of the NN match the y∗ outputs of the original function
f∗ as closely as possible, as measured by some scalar-valued loss function L:

arg min
θ
L
(
f(x,θ),y∗).

In the simplest case, using a mean-square error (also known as L2 norm):

arg min
θ
L2
(
f(x,θ),y∗) = arg min

θ
|f(x,θ)− y∗|22. (2.6)

As discussed in section 2.3, we can use the gradients of the loss function L with respect
to the weights θ (i.e. ∂L/∂θ ) to solve equation (2.6), yielding the optimal θ parameters.
We optimize, i.e. train our NN with a Stochasitc Gradient Descent (SGD) optimizer, such
as Adam [15].

9



In the case of a fully-connected NN, we can write its ith layer as

oi = σ
(
Wioi−1 + bi

)
, (2.7)

where oi is the output of the ith layer, σ is a non-linear activation function, such as the
rectified linear unit (ReLU) function, and Wi and bi are the weight matrix and the bias
of layer i, respectively. We call Wi and bi the parameters of the NN, and collect their
values from all layers in θ.
It is worth explicitly noting that the term Deep Learning (DL) is referring to a "deep"
Neural Network (NN), meaning that many layers are stringed after each other. People
usually refer to a NN as DL, when its architecture consists of more than three layers. In
turn, both NNs and DL are a subset of the more general paradigm of Machine Learning
(ML). Finally, Artificial Intelligence (AI) is the broadest term used to classify any and all
techniques that aim to create a form of (human-like) intelligence in computers.
In the context of DL, it is helpful to think of the derivative as function sensitivity, denoting
how a small change in an input variable changes the output of the function. For finding
the θ parameters of a NN, this is exactly what we need: how to tweak θ to reduce the
output of a loss function L(x, θ).
As we already showed in equation (2.2), the chain rule gives us the derivatives of composite
functions. For a multivariable function f : R2 → R, it can be summarized as:

d
dtf(x(t), y(t)) = ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
(2.8)

and expressed with vector notation

= ∂

∂t
f ◦ x(t) = ∂

∂t
f(x(t)) = ∇f · x(t) (2.9)

As we will use it in section 5.2.4, a fully-connected NN can be written as a function
composition of layers and activation functions σ. In the case of a simple fully-connected
NN with layer weights Wi and ReLU(x) = max(0,x) activation functions, this becomes:

linear function: f(x,θ) = Wx (2.10)
2 layers: f(x,θ) = W2max(0,W1x)
3 layers: f(x,θ) = W3max(0,W2max(0,W1x))
4 layers: f(x,θ) = W4max(0,W3max(W2max(0,W1x)))

. . .

Note that, as in equation (2.7), there is an additional +bi scalar addition at each layer
that we did not write out in (2.10) for clarity.
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Given some target values y∗, also known as ground truth data, we can use a scalar (also
known as regression) loss to measure the error of the predictions of the NN:

L1 loss L(x,y∗,θ) = 1
N

N∑
i

∥f(x,θ)− y∗∥1 (2.11)

MSE (or L2
2) loss L(x,y∗,θ) = 1

N

N∑
i

∥f(x,θ)− y∗∥22, (2.12)

where the Mean Square Error (MSE) is the squared L2 loss. The L2 norm of a vector is
its length in Euclidean space. In 3D: L2(x) =

√
x2 + y2 + z2, and we will also denote it

later on as |·|22.
In the context of Physics-based Deep Learning (PBDL), it is especially important to
understand the flow of gradients, as in the next chapter, we will integrate differentiable
physical simulations into this learning setup.
Regarding nomenclature, in classical literature, adjoint method and reverse mode differ-
entiation are equivalent names for backpropagation.

11



Chapter 3

Physical Simulations

Modeling the world around us is a longstanding problem of science. For many physical
processes, model equations exist, describing how a given system evolves through time.
From weather and climate forecasts [22] over quantum physics [19], to the control of
plasma fusion [12], or optimizing the shape of vehicles [23], it has become an integral
part of engineering applications to use numerical methods to derive solutions from model
equations.
In this section, we build up an understanding of modeling physical phenomena with Partial
Differential Equations (PDEs). We also introduce the notion of Differentiable Physics (DP)
after a brief introduction to classical numerical methods.

3.1 Partial Differential Equations

PDEs are the most fundamental description of evolving systems from quantum mechanics
to turbulent flows. PDEs are equations relating the partial derivatives of some unknown
function. For a physical system u(x, t), the governing PDE can be written as

∂u
∂t

= P
(

u, ∂u
∂x

,
∂2u
∂x2 , . . . ,y(t)

)
, (3.1)

where P models the physical behavior of the system, and y(t) denotes an (optional)
external force factor.

3.1.1 Numerical Methods

Analytic solutions (i.e. closed-form expressions) can be found only for a very small subset
of Partial Differential Equations (PDEs). The main idea behind numerical methods is to
discretize an equation, reducing a continuous equation (such as 3.1) to a finite number
of unknowns. We discretize the temporal dimension by introducing a ∆t step size. For
spatial dimensions, a typical solution is discretization by assigning values to grid cells or
particles: we call these the Eulerian, and the Lagrangian perspective, respectively.
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Numerical Integration with Explicit Schemes

As we introduce only a small subset of numerical methods, we refer to Baraff and Witkin
[1] to give an introduction to numerically approximating Partial Differential Equations
(PDEs) from a computer graphics perspective for use in physically based modeling. They
discuss the respective shortcomings of the techniques in a visual way.
Euler’s method (introduced back in 1768) starts with an initial value, and steps along the
tangent of the function. Given a first order Ordinary Differential Equation (ODE)

dx(t)
dt = f(x, y)

describing the derivative of a function x(t) = y, and starting with an initial condition x0,
y0, and step size ∆t at time t0, an Euler step

y1 = y0 + ∆tf(x0, y0)

gives the y1 estimation for x(t0 + ∆t). With this, we can compute f(x1, y1) and so on,
giving us an estimated trajectory for x(t). Note that yn ̸= x(t0 + n∆t), as the function
x(t) is unknown.
Euler’s method gives us a first order approximation of the function. The midpoint method
achieves second order accuracy by evaluating the derivative at an intermediate half step:

ỹ = y0 + ∆t
2 f(x0, y0)

y1 = y0 + ∆tf(x0 + ∆t/2, ỹ).

The midpoint is actually a 2nd order Runge-Kutta (RK) method. The RK family of
integrators can be used to construct integrators of arbitrary order. In practice, the 4th
order RK gives a good compromise between accuracy and computation cost:

k1 = f(x0, y0) (compute a first estimate of the slope)
k2 = f(x0 + ∆t/2, y0 + ∆t/2k1) (predict the tangent at midpoint)
k3 = f(x0 + ∆t/2, y0 + ∆t/2k2) (correct the estimate)
k4 = f(x0 + ∆t, y0 + ∆tk3) (predict slope with full step)

y0 = y0 + 1
6(k1 + 2k2 + 2k3 + k4) (finally, perform step with weighted slopes).

3.2 Differentiable Physics

Given u(x, t), described by a PDE as in Equation (3.1), a regular solver can move the
system forward in time via Euler steps:

u(x, t) = Solver [u(ti),y(ti)] = u(ti) + ∆t · P (u(ti), . . . ,y(ti))] , (3.2)

computing a solution trajectory u(t), that approximates a solution to the PDE. Although
(3.2) is differentiable, it is not well-suited to solve optimization problems, as gradients
can only be approximated by finite differencing, and (especially for high-dimensional or
continuous systems), this method would become computationally expensive, because a full
trajectory needs to be computed for each optimizable parameter.
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Holl et al. [10] address this issue via the use of differentiable solvers, backpropagating
through the chain of operations via analytic derivatives. Differentiable solvers can effi-
ciently compute the derivatives with respect to any of the inputs ∂u(ti+1)/∂u(ti) and
∂u(ti+1)/∂y(ti) .

3.2.1 Loss Functions for Differentiable Physics

In chapter 5, we will introduce optimization scenarios, where we take a physical simulation,
and by tweaking its parameters, our goal is to reach a target state. To measure “reaching a
target state”, and how good we are doing, we have to introduce a measure for the goodness
of a solution. More specifically, this measure will be given as a loss function, measuring
how bad we are doing, conventionally called the error. Knowing how to decrease this error
lets us find a better solution. A gradient is something that tells us exactly this: how
a change in an input variable (i.e. simulation parameter) changes the output (i.e. the
error from the loss function). With this idea in the back of our mind, we first lay some
groundwork for setting up these kinds of problems.
Given a model M of a physical system with initial state M0, and observed part o(M),
our goal is to match some target observation o∗ at time t. With P describing the time
evolution of M, we can write the resulting loss function as

L(M0, o∗) =
∣∣∣o(Pt(M0)

)
− o∗

∣∣∣, (3.3)

where |·| denotes some distance metric between the observations.
As a toy example, in section 3.2.2, M describes a projectile traveling in the 2D (x, y)
plane. Here, P describes the projectile flying through the air, colliding with the ground
floor at y = 0.
In our experiments in chapter 5,M describes some particles p advected in a fluid flowing
with velocity u, and P solving the Navier-Stokes equations 4.1.
By phrasing equation 3.3 in a general way, our intent is to highlight that there is a vast
applicability of physics-based loss functions well beyond our discussion and examples. The
general requirement of solving a problem with DP is a differentiable solver for P, which
is often not readily available.

3.2.2 Comparison with Supervised Learning

Figure 3.1 shows the results of a comparison between a supervised and Differentiable
Physics (DP) manner of teaching two networks for solving a ballistic problem. The main
setting is an object being thrown from position (x, y), with velocity v and angle α. The
point of impact xfinal at ground level y = 0 is given by the function f(x, y, v, α). Both the
supervised and the DP network approximate the inverse function f−1(xfinal) : R 7→ R4,
mapping the final position to some initial values the object was thrown with. We can
already see that this problem is multimodal, i.e. it has multiple solutions.
In both cases, the same network architecture (and initialization )is used, with the same
number of training examples. Both supervised and DP teaching uses an L2 norm to
measure the error between the point of impact resulting from the predicted initial values
and the intended position.
Looking at figure 3.1, it is evident that the DP network is able to get orders of magnitude
closer than the supervised network, which has no knowledge of the underlying physical
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Figure 3.1: Learning to throw. The goal is to give an initial velocity v, angle α, and position x for a
projectile, that hits a target at the ground floor when simulated. The supervised network is outperformed
by the DP approach, as it always hits closer to the target by orders of magnitude than its supervised
counterpart. The only difference between the two models is the way they derive their gradients from the same
L2 error: while the DP network gains an understanding of the underlying physical system via gradients
of the simulation, the supervised network only sees examples of input-output pairs, where multimodality
becomes an inherent problem. (Figure recreated after Holl [9].)

system, and it’s best guess is to interpolate between the closest data points it has seen
during training, which results in a coarse approximation. Also, as the result space to this
problem is not unimodal, the supervised model is further thrown off, and will give values
that are the results of an averaging of examples seen during training. This means that
even if we increase the training data, the supervised model struggles to properly solve this
problem.
Following the notation introduced in section 2.3.1, we can write the loss functions as

L(xtarget) =
∣∣∣P(f(xtarget,θ)

)
− xtarget

∣∣∣2
2

(3.4)

for the differentiable physics loss, and

L(xtarget, y
∗) =

∣∣∣f(xtarget; θ
)
− y∗

∣∣∣2
2

(3.5)

for the supervised loss. Notice how (3.4) does not require ground truth y∗ initial pa-
rameters, but measures how close its predictions were via running a differentiable physics
simulation P at training time to calculate the point of impact. The gradients of P are
then part of the backpropagation chain. This type of solver-in-the-loop technique was
introduced by Um et al. [25], outperforming previously used learning approaches. For
more details and examples on Physics-based Deep Learning (PBDL) in general, also see
Thuerey et al. [24].
In summary, gradients of a differentiable physics simulation give a learning method an
inductive physical bias, i.e. existing knowledge to solve a problem at hand. Although
a further investigation of the modality of our experiments remains a direction for future
research, in section 5.1, we show how our optimization makes use of an inductive physical
bias to find solutions of an inverse problem.
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Chapter 4

Fluid Simulation

Simulating convincing fluid dynamics is a continuing challenge of computer graphics, es-
pecially when considering real-time applications. There are multiple established ways to
simulate fluids, the most widespread being Eulerian (i.e. grid-based) and Lagrangian (i.e.
particle-based) methods. Here, we restrict ourselves to discussing Eulerian methods, and
also introduce the Laplacian Eigenfunction method, introduced by De Witt et al. [7].
The dynamics of fluids are governed by the Navier-Stokes Equations:

∂u
∂t

+ (u ·∇)u = −1
ρ

∇p+ ν∇2u + f , (4.1)

where u is the velocity of the fluid, ρ is the density, p is the scalar pressure field, ν
is the viscosity constant, and f denotes external forces. For incompressible fluids, the
divergence-freeness also has to hold, i.e. ∇ · u = 0
Even though equation (4.1) already describes the evolution of the fluid as a Partial Differ-
ential Equation (PDE), it is too complex for simply stepping it forward in time with Euler
steps. Instead, a technique called operator splitting is applied for numerical simulations,
where each term is treated individually, and their effect is combined to fully approximate
the original equation. We give a short overview of each term to get a general understand-
ing of fluid simulation, first treating the problem in an Eulerian way (i.e. sampling u on
a grid), building up our way towards the Laplacian Eigenfunction method discussed in
section 4.1. For a more complete overview of established fluid simulation techniques, see
[3] and [2].
Equation (4.1) is usually split by separating out the advection part, the external force
part, and the pressure/incompressibility part. When viscosity is important, that can also
be separated. This means, we work out methods for solving these simpler equations:

dq
dt = 0 (advection)
∂u
∂t

= f (external forces)
∂u
∂t

+ 1
ρ

∇p = 0

such that ∇ · u = 0. (pressure, enforcing incompressibility)

A generic quantity q is used in the advection equation, because as we also show later on
in our experiments, we may be interested in advecting other field quantities than just the
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velocity u. For the advection part, the Advect(u,∆t, q) algorithm is introduced: it advects
quantity q through the velocity field u for a time interval ∆t.
For the external forces, any traditional numerical integration approach, such as a simple
Euler step can be used: ut+1 = ut + ∆tf . (See section 3.1.1.)
For calculating the pressure, an algorithm Project(∆t,u) calculates and applies just the
right amount of pressure to the velocity field to make it divergence-free, and also enforce
any solid wall boundary conditions. The term "project" comes from the fact that the al-
gorithm essentially projects u to the closest divergence-free velocity field, and interpreting
the difference between these two fields as a pressure resulting from "particles" being too
close together. We do not go into the details of a pressure solve here, as our velocity field
u from the Laplacian Eigenfunction method (section 4.1) will already be divergence-free
by construction.
Note that the order in which these algorithms are being applied matters a lot, as the
advection must be done on a divergence-free field. Putting all of these together, a basic
fluid simulation algorithm can be written as:

u0 ← an initial divergence-free velocity field
for t = 0, 1, 2 . . . do

∆t← a suitable time step to go from tn to tn+1
ũ← Advect(un,∆t,un)
ũ← ũ + ∆tf
un+1 ← Project(ũ,∆t)

end for ▷ [u0, . . . ,ut] is the simulated fluid flow for t time steps.

Advect

Before moving on, we briefly discuss the Advect algorithm on grids. As already shown in
section 2.2, we can write out the advection dq

dt in 3D as

∂u
∂t

dt
dt + ∂u

∂x

dx
dt + ∂u

∂y

dy
dt + ∂u

∂z

dz
dt

A simple and physically-motivated advection approach, called the semi-Lagrangian method
was introduced by Stam [21]. Advection in a Lagrangian frame is trivial: moving particles
through a velocity field u automatically solves dq

dt = 0. (Which is something we will
fundamentally base our experiments on in chapter 5.)
To find a new value q at some point x in space, the semi-Lagrangian method conceptually
finds the particle, that ended up there from the previous time step. As we know that
the “particle” ended up at x from the previous time step, we can trace it backwards
through the velocity field to find where it came from, grabbing the old value of q at that
previous point. When simulating on a grid, but the start point was not on the grid, then
interpolation is applied.
For tracing a particle at position x backwards in time by ∆t through a velocity field u, we
can utilize integration schemes introduced in section 3.1.1. The simplest way is an Euler
step:

xold = x−∆u(x).
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In practice, it is advised to apply at least a midpoint method:

x̃ = x− 1
2∆tu(x)

xold = x−∆tu(x̃).

Once we calculated xold, we can now simply grab the value of q from the previous time
step from there, and assign it to our new position in the current time step, i.e. qt(x) =
qt−1(xold).
For our smoke simulation examples in chapter 5 , we are using a MacCormak advection
scheme [17] that uses a forward as well as a backward lookup to estimate and correct the
error of the semi-Lagrangian advection.

4.1 The Laplacian Eigenfunction Method

De Witt et al. [7] introduced the method of using Laplacian eigenfunctions for fluid sim-
ulation. Cui et al. [6] addressed scalability and generalization issues, and referred to the
technique as eigenfluids, which we also adhere to.
The main idea is to express the velocity field u(x) via the linear combination of N global
functions:

u(x) =
N∑
i

wiΦi(x), (4.2)

where the elements of w = [w0, . . . , wN ] are called basis coefficients, and Φi are basis
functions.
As our basis functions, we choose eigenfunctions of the vector Laplacian operator ∆ =
∇2 = grad(div) − curl2 (see section 2.2), which further simplifies to ∇2 = −curl2 for
divergence-free fields.
Besides being eigenfunctions of the vector Laplacian operator, if we further require our
basis fields Φk to be divergence-free, and to satisfy a free-slip boundary condition, our
basis functions are fully characterized by

∇2Φk = λkΦk

∇ · Φk = 0
Φk · n = 0 at ∂D,

where n is the normal vector at boundary ∂D.
Closed-form expressions of Φk exist on the two dimensionalD ∈ [0, π]×[0, π] square domain
[5]. Notating the two scalar components in the x and y directions Φk = (Φk,x,Φk,y), we
can write them as

Φk,x(x, y) = ηk
(
k2 sin(k1x) cos(k2y)

)
(4.3)

Φk,y(x, y) = −ηk
(
− k1 cos(k1x) sin(k2y)

)
,

where k = (k1, k2) ∈ Z2 is the vector wave number, λk = −(k2
1 + k2

2) is the eigenvalue,
and ηk = 1

−λk
= 1

k2
1+k2

2
is a normalization parameter. Cui et al. [6] use 1√

−λ = 1√
k2

1+k2
2
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(a) Velocity field Φ(4,3). (b) Curl field ∇ × Φ(4,3) = ϕ(4,3).

Figure 4.1: Visualizing Φ(4,3) sampled on a 20 × 20 grid in our simulation domain D = [0, π] × [0, π].

for normalization, but we keep the non-root version, as we did not observe any noticeable
difference between the two during implementation.
As an example, Φ(4,3)(x, y) is visualized in figure 4.1. In appendix A.1, we also plot the
first 16 basis fields.
This is a good time to mention that higher wave lengths corresponding to smaller scales
of vorticity has a very literal meaning in our simulation. As we choose to truncate the
spectrum of Φk at some number N , the error we incur is well defined: we lose the ability
to simulate vortices smaller than a given scale. Also, as we will see later on, this corre-
spondence to spatial scales of vorticity lets us control the viscosity (i.e. energy decay) in
relation to the scales of vortices by modifying the base coefficients. By setting the mag-
nitude of each basis coefficient to decay with a time constant equal to the eigenvalue, we
get the physically correct behavior that small vortices dissipate faster than large vortices.

Vorticity Basis Fields

For the simulation technique, we further require the vorticity field ω = ∇ × u and a set
of vorticity basis functions ϕ = ∇ × Φ. Taking the curl (as introduced in section 2.2) of
the velocity basis fields Φk from equation (4.3) gives us the vorticity basis fields:

ϕk = ∇ × Φk = ∂Φk,y
∂x

−
∂Φk,x
∂y

= −µkk1 sin(k2y)k1(−sin(k1x))− µkk2 sin(k1x)k2(− sin(k2y))
= µk sin(k1x) sin(k2y)(k2

1 + k2
2) = sin(k1x) sin(k2y)

We can also interpret this value as the third component of a 3D vector,

ϕk = ∇ × Φk =

 0
0

sin(k1x) sin(k2y)

. (4.4)
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As the velocity field u and vorticity field ω are orthogonal, the vorticity basis functions
ϕk have only a normal component at the boundary, and satisfy

∇2ϕk = λkϕk (4.5)
ϕk × n = 0 at ∂D. (4.6)

Dynamics

The vorticity formulation of the (4.1) Navier-Stokes equation is

ω̇ = Advect(u,ω) + ν∆ω + ∇ × f , (4.7)

where ω = ∇ × u, and f denotes external forces.
We now apply the basic building blocks of fluid simulation introduced in the beginning of
chapter 4 to derive the time evolution of a fluid’s velocity by the continuous change of the
coefficient vector w. We derive the time derivative dw

dt = ẇ in terms of only the coefficient
vector w.
The velocity u formed by the eigenfunctions Φk is intrinsically divergence free, and hence
no pressure projection step is needed, when simulating the fluid dynamics in this coordinate
system.
Damping due to viscosity is given by the first-order differential equation ẇk = νλkwk,
which corresponds to a point-wise exponential decay similar to [21]:

wt+1
k = wtke

νλk∆t.

External forces f given on the original domain D ∈ [0, π] × [0, π] can be incorporated by
projecting f to the velocity basis, representing them as a base coefficient vector fw in the
coordinate system with basis {Φk}. The contribution of the external forces is then defined
as:

ẇ = fw.

Advection

Looking at equation (4.7), we can see that after dealing with both viscosity and the
external forces, the only right-hand term left is the advection.
Following De Witt et al. [7], we perform projection to a Laplacian eigenfunction basis
by substituting the expansions ω = ∑

iwiϕi,u = ∑
j wjΦj , and ω̇ = ∑

k ẇϕk into equa-
tion (4.7). With rearranging the terms through linearity of operators, we get

∑
k

ẇϕk =
N∑
i

N∑
j

wiwjAdvect(Φi, ϕj)︸ ︷︷ ︸
Advection

+ ν
N∑
i

∇2wiϕi︸ ︷︷ ︸
Viscosity

+ curl(f)︸ ︷︷ ︸
External forces

. (4.8)

The Advect(Φi, ϕj) terms represent the non-linear advection of basis fields. As the terms
are constant, we precompute them, and the basis coefficients of the results are stored in
“a set of Ck matrices” (De Witt et al. [7]), resulting in N number of N ×N matrices, or
equivalently, a “3rd order advection tensor C” (Cui et al. [6]). The dimensions of C and
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C are both N × N × N . In the following, we will refer to these precomputed advection
values as N Ck matrices. The respective works also propose different ways to precompute
these values.
De Witt et al. [7] propose

Cg[h, i] =
(
∇ × (ϕh × Φi)

)
· ϕg. (4.9)

Cui et al. [6] improve on (4.9) by using the method introduced by Liu et al. [16]:

C(g, h, i) =
∫
D

(∇ × Φi) · (Φg × Φh)dD, (4.10)

noting improvements such as preserving the anti-symmetry of the tensor by construction,
i.e. C(g, h, i) = −C(h, g, i).
In our implementation, we keep with computing the basis coefficients according to equa-
tion (4.9), as it was working well enough for our purposes of differentiable physics simula-
tion. Also note that as these are just constant values of the same dimension and used the
same way, it is trivial to change them out at will in an implementation.

Time Evolution Equation

Putting it all together, the time derivative of each basis coefficient is

ẇk = wCkw + νλkwk + fw,k, (4.11)

governing all of our reduced-order fluid simulations in chapter 5.

Time Integration

Any standard numerical technique (such as the ones discussed in section 3.1.1) can be
used to integrate equation (4.11) forward in time. However, De Witt et al. [7] describe
a preferred technique that in order to preserve kinetic energy, renormalizes the energy of
the fluid simulation after each integration step. De Witt et al. [7] show that due to the
orthogonality of the basis functions, the total kinetic energy can be calculated as a sum
of squared coefficients. With this final addition, the final algorithm that we implemented
for our experiments in chapter 5 can be described as:
e1 = ∑N

i w[i]2 ▷ store kinetic energy of velocity field
for k = 1 . . . N do

ẇ[k] = wTCkw ▷ matrix-vector products for advection
end for
w += ẇ∆t ▷ explicit Euler integration step
e2 = ∑N

i w[i]2 ▷ calculate energy after time step
w ∗=

√
e1/e2 ▷ renormalize energy

for k = 1 . . . N do
ẇ[k] ∗= eλk∆t ▷ dissipate energy for viscosity
ẇ[k] += f [k] ▷ add external forces

end for.
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Precalculating the Advection Matrices

Before moving on, we discuss how to compute each element of the Ck matrices in an
implementation.
For finding the structure coefficients of the Ck matrices, we can start with writing out the
advection operator Advect(Φi, ϕj) = ∇ × (ϕj × Φi) as

∇ × (ϕj × Φi) =
( 1
λi
i1j2 cos(i1x) cos(j2y) sin(j1x) sin(i2y)

− 1
λi
i2j1 cos(j1x) cos(i2y) sin(i1x) sin(j2y)

)
.

The trigonometric identity cos(α) sin(β) = 1
2 sin(α+ β) − 1

2 sin(α− β) enables factoring
to a suitable expression which is in the span of {ϕk}:

Advect(Φi, ϕj) = 1
4λi

[
(i1j2 − i2j1)ϕi1+j1,i2+j2

− (i1j2 + i2j1)ϕi1+j1,i2−j2

+ (i1j2 + i2j1)ϕi1−j1,i2+j2

− (i1j2 − i2j1)ϕi1−j1,i2−j2

]
.

The resulting coefficients are1

Ci1+j1,i2+j2 [i, j] = − 1
4(i21 − i22)(i1j2 − i2j1) (4.12)

Ci1+j1,i2−j2 [i, j] = 1
4(i21 + i22)(i1j2 + i2j1)

Ci1−j1,i2+j2 [i, j] = − 1
4(i21 + i22)(i1j2 + i2j1)

Ci1−j1,i2−j2 [i, j] = 1
4(i21 − i22)(i1j2 − i2j1).

Note: We are using k = (kx, ky) = (k1, k2) interchangeably. A single (non-vector) k
is also used for indexing over all of the basis fields – a slight, but very useful abuse of
notation, stemming from the fact that a suitable remapping from vector wave lengths
(k1, k2) to positive integers is necessary in an implementation, as seen in the indexing of
the Ck values in (4.12) above.

1Deriving the underlying equations by hand, and consulting the original implementation by De Witt
et al. [7], one of the signs is purposefully different from the appendix in [7].
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Chapter 5

Controlling Laplacian Eigenfluids

Many real world applications require us to optimize for some parameters of a physics-
based problem. A toy example would be to optimize for some initial angle and velocity of
a projectile to hit some target (see figure 3.1). As a more involved example, Chen et al.
[4] address finding the best shape to minimize drag. These kinds of inverse problems have
been around for quite some time in engineering applications.
Building on all of the previous ideas, we now introduce our investigation into the use of
eigenfluids in fluid control problems, making use of their explicit closed-form description
of a velocity field (equation (4.3)) to derive gradients used for optimization. Our main
proposition is to achieve reduced-order modeling-like speed increase: in lieu of representing
the fluid on a grid, we reconstruct the velocity field only at discrete points in space, while
simulating the dynamics of the fluid in a reduced dimensional space as in equation (4.2).
In the following, we showcase different optimization scenarios, where we try out differ-
ent aspects of controlling eigenfluids via Differentiable Physics (DP) gradients. (See sec-
tion 3.2.1.)
We start with examples of "traditional" optimization scenarios. By "traditional", we mean
finding individual solutions to problems via some optimization technique – in our case,
Gradient Descent (GD). Moving further, we look for generalized solutions to a set of
problems by training Neural Networks (NNs).
After trying out multiple recent frameworks aimed at differentiable simulations [18, 11],
we implemented all of our experiments using ΦFlow [10].

5.1 Matching Velocities

To verify the feasibility of our technique before moving on to more involved setups, our
most straightforward optimization scenario is finding an initial basis coefficient vector
w0 ∈ RN for an eigenfluid simulation using N = 16 basis fields, such that when simulated
for t time steps, the reconstructed Rwt = ut velocity field will match some precalculated
u∗ : [0, π]× [0, π]→ R2 target velocity field:

L(w) =
∣∣∣RPt(w)− u∗

∣∣∣2
2
, (5.1)

where Pt(w) = P ◦ P · · · ◦ P(w) is the physical simulation of base coefficients w (in the
reduced dimension) t times.
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For the optimization, we initialize a winit ∈ RN vector with random numbers (from a
normal/Gaussian distribution), and run the eigenfluid simulation for t time steps, after
which, we measure the error as given by loss function (5.1). Relying on backpropagation
to derive the necessary gradients, we use the GD optimization method as introduced in
equations (2.5) to iteratively find a vector woptim, yielding a low scalar loss L(woptim).
To be able to make some further evaluation of the end results possible, we step an eigenfluid
solver for time t to precalculate the target u∗ velocity field, sampled on a 32 × 32 grid.
We denote the initial base coefficient vector of this reference simulation w∗, but keep in
mind that the optimization has absolutely zero knowledge of this value, as it sees only the
32×32×2 velocity values of u∗ at time t. Also, these values could have been precalculated
from any other kind of fluid simulation as well, or even just initialized randomly. Deriving
u∗ as the result of an eigenfluid simulation has the added benefit of exposing to us a
solution w∗ that we can use to compare with the solution of the optimizer.
We test this setup on two scenarios, with differing the number of time steps simulated:
first with t = 16, and then with t = 100.
For t = 16 simulation steps, starting from a loss of around 400, the first 100 GD optimiza-
tion steps with λ = 10−3 reduced the loss to under 1.0, while 200 steps further decreased
it to under 4 ∗ 10−4, with each further step still continuously decreasing the error.
Naturally, this very basic method has its limits. Optimizing for initial coefficients based
solely on that when reconstructed on a 32× 32 grid after 100 steps of a non-linear simula-
tion, they should match a given velocity field, proved to be a substantially harder problem,
as even a relatively small error can accumulate into major deviations over these longer
time steps, resulting in much less stable gradients. With using the same learning rate, the
optimization diverged almost instantly. With some tuning of the learning rate λ in the
range of [10−4, 10−8], we were able to get the loss below 0.14. (Starting from an initial
loss of 320 from the random initialization.)
We visualize the results of these two scenarios in Figure 5.1. It is interesting to observe that
even though the optimization had absolutely no knowledge of w∗, only a comparison with a
precomputed u∗ velocity field at time step 100, the optimized woptim vector already starts
to look similar to w∗. Keep in mind that this is not guaranteed at all, as highlighted
with the learning to throw example on figure 3.1. In some other cases of running this
optimization setup, we also observed woptims that are completely different from w∗. Due
to the physical constraints of the eigenfluids simulation, in these cases the optimization
could not change any of the 16 values of woptim locally in a way that would further reduce
the loss below some small number, and was stuck in a local minima of the parameter
space.
Although there are a number of ways to tweak this setup, we can already verify from
these results that the flow of the gradients is working, and is ready to be tested in more
advanced scenarios.

5.2 Controlling Shape Transitions

In the following, we showcase an optimization scenario, with the target of controlling the
transition between two marker shapes in a fluid simulation setup. 1 The work of Holl et al.
[10] formulated this problem in an Eulerian representation, with explicitly simulating the

1Note that we use the terms smoke, marker, density, and scalar valued density/marker function inter-
changeably throughout the text.
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(a) winit, woptim, and w∗, optimizing for velocity field after 16 time steps

(b) Target u∗, and u16, reconstructed from P16(woptim)

(c) Initial basis coefficients winit, woptim, and w∗, optimizing for velocity field after 100 time steps

(d) Target u∗, and u100, reconstructed from P100(woptim)

Figure 5.1: Results of optimizing for an initial w0 basis coefficient vector that matches a target velocity
field u∗ when reconstructed after simulating for t time steps.
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shapes as scalar marker densities being advected by the velocity field of the simulated
fluid.
Playing to the strength of the eigenfluids method, our method makes use of an explicit,
closed-form description of the fluid velocity u as in equation (4.3). We stay independent
of a grid resolution, and approximate the 2D shapes via a set of sample points. We recon-
struct the velocity field only partially at these discrete points as needed for the advection
of these particles. This results in both a faster fluid simulation as well as optimization as
compared to fully simulating an N ×N grid, advecting a marker density, and backpropa-
gating gradients of a physical simulation with much more degrees of freedom.
We formulate three different control problems, each with a different mean to exert control
over the fluid simulation.

• First, in a similar vein to the problem statement in section 5.1, we are looking for an
initial coefficient vector w0 of an eigenfluids simulation, such that when simulated
for t time steps, the reconstructed velocity field advects some initial points to the
desired positions.

• Second, we optimize for some force vector f ∈ Rt×N , such that ft ∈ RN applied
as external force to each time step of an eigenfluid simulation, it yields the desired
outcome.

• Finally, we generalize the problem to looking for a function that exerts the neces-
sary control force at time t, such that particles currently at positions pt end up at
target positions pt+1 at the next time step. We formulate this third task as a Neu-
ral Network (NN) model in the form f(pt,pt+1,wt,θ), also passing in the current
basis coefficient vector wt, and optimizing for its parameters θ to yield the desired
outcome.

In each of these tasks, a velocity field u = Rw advects a set of initial points p0 =[
p0

0, . . . ,pi0
]

to line up with target positions pt =
[
p0
t , . . . ,pit

]
. We formulate this as

L(w,p0,pt) =
∣∣∣Pt(p0,w)− pt

∣∣∣2
2

=
∑
i

∣∣∣Pt(pi0,w)− pit
∣∣∣2
2
, (5.2)

where Pt(w,p) = P ◦ P ◦ · · · ◦ P(w,p)︸ ︷︷ ︸
t times

denotes the physical simulation of base coefficients

w and points p in u = Rw, the velocity field reconstructed from w. We use a simple
mean-square error (also known as squared L2 norm) for measuring the error.

5.2.1 Sampling

Advection of some scalar quantity in a fluid is an abstract problem that describes many
real-world phenomena. We can think of the transport of some ink dropped into water,
clouds in the air, or some buoyant smoke rising. Phenomena such as these can be modeled
as a density function ψ(x) defined over the simulation domain D. In a fluid with velocity
u, and ∇ · u = 0 (i.e. the fluid is incompressible), the advection is governed by the
equation

∂ψ

∂t
+ u ·∇ψ = 0.

26



In Eulerian fluid simulation methods [21], both u and ψ are sampled on grids, numerically
approximating the evolution of the field quantities. Instead, our method proposes sam-
pling the density function at discrete particle positions, thus rephrasing the process in a
Lagrangian way.
In the context of Laplacian eigenfluids, a Lagrangian viewpoint is especially inviting, as
the explicit description of the fluid velocity u (equation (4.3)) allows us to reconstruct u
only partially, while keeping the simulation of the fluid dynamics in a reduced dimensional
space. In a forward physics simulation, this can already lead to substantial speed-ups,
but this formulation seems especially promising when the backpropagation of variables is
desired, such as the optimization scenarios introduced herein.
A straightforward way to define a shape is

ψ(x) =
{

1, inside the shape
0, outside the shape.

(5.3)

Sampled on an N×N grid, this is equivalent to a binary image with a resolution of N×N .
Moreover, when sampled on a grid, and advected, it is straightforward to interpret the
resulting grid and its values as a grayscale image with values [0, . . . , 1].
Often used in 3D scanning, reconstruction and scene understanding problems, a Signed
Distance Function (SDF) can be defined as the distance to the surface (in 2D, the edge) of
an object, with positive values outside, and negative values inside. In our implementation,
we define our shapes as SDFs. For example, a circle with radius r and center o = (ox, oy)T
is defined as

SDFcircle(x,o, r) = |x− o| − r =
√

(x− ox)2 + (y − o2
y)− r.

For simulating (and visualizing) the advection dynamics of these shapes, we transform the
SDFs to a binary form as in equation (5.3).
As we neither want to lose too much information about our original function, nor want
to keep track of an unnecessary number of points, the feasibility of this method necessi-
tates an efficient sampling of ψ(x). We use a simple rejection-based sampling technique.
Transforming the shapes to fit inside the unit rectangle [0, 1]× [0, 1], we generate random
points psample ∈ [0, 1]× [0, 1], rejecting them if they lie outside the shape.
As we consider shape transitions given start and target shapes S0 and St, it is important
to take into consideration the connection between these shapes. To balance finding spatial
correspondences between the shapes, while still approximating their unique shapes, we
sample O overlapping, and U unique points. For the overlapping points, we accept only
psample ∈ S0 ∪St, i.e. we reject points that are not inside both shapes (transforming both
shapes to fit inside the unit square for the sampling). For the unique points we sample a
different set of points for each shape.
To generate low-discrepancy, quasi-random 2D coordinates, we use a Halton sequence [8],
giving deterministic coordinates, given coprimes p and q. Using one set of primes for
sampling O overlapping points, and another set of primes for sampling U unique points
can give us further overlapping points, as the proposed (but potentially rejected) sequence
of points will be the same for both shapes.
We further generate T = 5 trivial points that are hand-picked to best resemble the given
shape, as well as line up between different shapes. We choose these to be the center, upper
right, upper left, lower left, and lower right corners of the shape.
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(a) The O = 30 overlapping (blue), U = 30 unique
(green), and T = 5 trivial (red) points for each shape.

(b) Sample points plotted over ψtriangle + ψcircle.

Figure 5.2: Sampling strategy for transitioning from a triangle to a circle. Halton series with base (2, 7)
and (3, 11) were used to generate the overlapping and unique positions, respectively.

In conclusion, our final set of p0 initial, and pt target sample positions are given by
concatenating the O overlapping, U unique, and T trivial points for each shape, resulting
in two set of sample points p0,pt ∈ RO+U+T .
Figure 5.2 shows the result of our sampling strategy for a triangle and a circle shape.

5.2.2 Optimizing for Initial Velocity

As introduced the problem in the beginning of the chapter (see equation 5.2), our goal
is to find an initial velocity field Rw = u that advects points p0 to line up with target
positions pt after t steps. We can write optimizing for base coefficients w as:

arg min
w

∣∣∣Pt(p0,w)− pt
∣∣∣2
2
.

Making use of the differentiability of our physical simulator P, and the multivariable chain
rule for deriving the gradient of the above Pt = P ◦ · · · ◦ P function composition, we can
derive its gradient with respect to the initial coefficients:

∂Pt(w,p)
∂w .

Finally, as introduced in (2.5), we simply iterate a GD optimizer to find a (good enough)
solution for our above minimization problem:

wbetter = w− λ∂L(w,p0,pt)
∂w ,

where L is the same as in equation (5.2):

L(w,p0,pt) =
∣∣∣Pt(p0,w)− pt

∣∣∣2
2
.
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The main difficulty of this non-linear optimization problem lies in that we have no control
over the natural flow of the fluid besides supplying an initial w0 vector.
We showcase two different setups in Figure 5.3, with the details of both experiments
described in Table 5.1.

Table 5.1: Details of the 2 optimization scenarios shown in Figure 5.3

Figure 5.3d Figure 5.3e
N 16 36

Sampling size for smoke simulation 32 32
Eigenfluid initialization time 6.19 sec 68.47 sec

Time for 51 optimization steps 108.05 sec 230.48 sec
Initial loss 2.3 2.19
Final loss 0.08 0.09

Number of overlapping points O 0 30
Number of unique points U 0 30
Number of trivial points T 5 0

5.2.3 Control Force Estimation

In this scenario, we optimize for a force vector f ∈ Rt×N , such that ft ∈ RN applied as
external force at each time step of an eigenfluid simulation, some initial positions p0 will
be advected to target positions pt after t time steps:

arg min
f

∣∣∣Pt(p0,w, f)− pt
∣∣∣2
2
,

where Pt(p0,w, f) = P ◦ · · · ◦ Pt(p0,w, f) denotes simulating the physical system for t
time steps, applying ft force at each time step.
Results of the optimization are shown in Figure 5.4.
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(a) O = 0, U = 0, T = 5 (b) O = 30, U = 30, T = 0

(c) Initial (blue), and target (red) sample points.

(d) Using N = 16 basis fields, and the T = 5 trivial points.

(e) Using N = 36 basis fields, and using a total of 60 sampling points.

Figure 5.3: Solving the shape transition problem by optimizing for an initial coefficient vector w without
any further control over the simulation.

(a) Initial (blue), and target (red) sample points. (O = 1, U = 1, T = 5)

(b) Optimized trajectory of the sample points underlying the optimization.

(c) Smoke advection for qualitative comparison, reconstructed on a 100 × 100 grid.

Figure 5.4: Force optimization results with 16 time steps, and using N = 16 basis fields.
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5.2.4 Neural Network Training

We generalize the Control Force Estimation (CFE) problem by defining a function
f(p0,pt,w) : R2·2(O+U+T )+N → RN , that gives a force vector f ∈ RN to be applied
at the current time step to move points p0 to pt in the next time step. Its inputs are
the (x, y) coordinates of p0 and pt, as well as the basis coefficient vector w at the current
time step concatenated after each other, giving 2 · 2(O+U + T ) +N values, where O, U ,
and T denote the number of overlapping, unique, and trivial sample points, respectively,
as introduced in section 5.2.1.
We approximate the CFE function f with a Control Force Estimator Neural Network (NN)
f(p0,pt,w, θ).
Each layer is constructed exactly as described in equation (2.7) with ReLU non-linearities,
making the resulting concatenation of layers the same as in equation (2.10). Figure 5.5
gives an overview of our NN architecture.
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Figure 5.5: The CFE NN transforms the input vector of size 2 · 2(O + U + T ) + N into a force vector f
that can be added to the w coefficients as external force. The output size of each layer matches the input
size of the following layer, and a ReLU non-linearity is applied after each layer.

As the input size to the NN is dependent on the specific problem, the number of trainable
parameters also varies, and a new NN has to be trained when using a different number of
basis fields, or different number of total sample points. As an example, for N = 16 basis
fields, and 75 sample points, the NN has 337392 trainable parameters.

Overfitting to a single training sample

Testing the setup, we overfit the NN to a single training sample. Plotting the results of
the time evolution on figure 5.6, we observe that a reduced degrees of freedom can yield
comparable, or even better results with the same setup, and training time.
Using an Adam optimizer [15] with learning rate 10−3, the results shown in Figure 5.6
were achieved in 260 epochs. The training took 53.94 seconds.

Training

We generate 2000 samples, using 1800 for training, and 200 for validation. Using N = 16
basis fields, we train the NN for the CFE problem detailed above. (See Figure 5.7a.)
At the end of the training, we generate further data the NN has not seen during training
to further test generalization. (See Figure 5.7b.)
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(a) N = 16 basis fields

(b) N = 36 basis fields

Figure 5.6: Time evolution of simulating two overfitted CFE NNs to a single shape transition for 16 time
steps t = [0 . . . 15]. Using O = 30 overlapping, U = 40 unique, and T = 5 trivial sample points.

Using an Adam [15] optimizer with learning rate 10−3, the results shown in Figure 5.7
were achieved in 260 epochs. The training took 1201.74 seconds (20 minutes).
As we did not experience any overfitting issues during training, no additional regularization
schemes were applied.
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(a) Performance after training on the training data. (Randomly sampled.)

(b) Testing on previously unseen test data. (Randomly sampled.)

Figure 5.7: Randomly sampled time evolution of controlled shape transition tasks. Using N = 16 basis
fields, sampling the smokes on a 32×32 grid, approximating them with O = 30 overlapping, U = 40 unique
and T = 5 trivial sample points, through 16 time steps t = [0 . . . 15].
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Chapter 6

Discussion and Future Work

In this work, after assessing established techniques and current research advancements in
the related fields, we introduced a novel approach to control shape transitions by using
the gradients of a fluid simulation technique based on the eigenfunctions of the vector
Laplacian operator.
Owing to the reduced-order nature of the approach, we achieved speed-ups that usually
result in convergence times of minutes even in the case of more advanced setups (and
sub-minute, or seconds in the more straight-forward ones).
At multiple points while connecting different areas to form our proposed solution, we re-
sorted to baseline methods. Moving forward, our method could benefit from incorporating
a number of state-of-the-art solutions.
Although not a silver bullet, we believe that this approach complements and connects
existing techniques in a new and exciting way, offering a fresh perspective on thinking
about Neural Networks as universal function approximators. In the last part of our thesis,
we consider some of the possible future research directions.

Generalizing to 3D

All of the introduced methods generalize to 3D in a very straightforward way. As shown
by Cui et al. [6], the Laplacian Eigenfluids technique is a viable simulation for three
dimensional incompressible fluid flow. The exponential increase of simulation variables is
a problem not only in forward simulations, but especially when computing gradients for
optimizing.

General Improvements to the NN

After introducing a simple training process, and purposefully keeping our architecture
simple, a number of improvements from the continuously expanding literature on DL and
AI techniques could be incorporated to improve our solution.

Improving the Loss Function

The loss function for the shape transition problem could also be improved in a number
of ways. In our solution, we estimate the trajectory as a linear interpolation between
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start and end positions. Recalculating the trajectory based on the actual path taken by
applying the control forces could potentially lead to more natural transition paths.
Moving further, our solution could also be improved by implementing predictor-scheme as
introduced by Holl et al. [10].

Point Sampling

In general, estimating functions by sampling discrete points fits into a vast body of existing
literature. The sampling strategies introduced in section 5.2.1 could be expanded upon in
a number ways, among which improving on the correspondences between the initial and
target shapes is a noteworthy option.
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Appendix

A.1 Plotting the First 16 Basis Fields

Figure A.1.1: Visualizing the curl of the first 16 Φk basis fields (i.e. ϕk), sampled on a 40 × 40 grid in
our simulation domain D = [0, π] × [0, π]. Larger magnitudes of eigenvalues correspond to smaller scale
vortices.
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