
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Computer Science and Information Theory

Simulation of quantum walks
on a classical computer

Scientific Students’ Association Report

Author:

Viktória Nemkin

Advisor:

dr. Katalin Friedl

2021

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Classical random walks 3

3 Quantum computing 5

3.1 The postulates of quantum mechanics . 5

4 Quantum walks 10

4.1 Formulating the Quantum coin . 10
4.1.1 Hadamard coin . 10
4.1.2 Grover coin . 11
4.1.3 Fourier coin . 12

4.2 Quantum walks on the line . 12
4.2.1 State space . 13
4.2.2 Evolution . 13
4.2.3 Measurement . 16

4.3 Generalization of Quantum Walks . 16
4.3.1 Generalization using multiple independent 2 dimensional coins . . . 16
4.3.2 Generalization using a single higher dimensional coin 20

5 Simulator software 23

5.1 Currently available solutions . 23
5.2 Architecture . 23
5.3 Language choice . 24
5.4 High level design . 24

5.4.1 Graph models . 25
5.4.2 Simulators . 26

5.4.3 Running, configuration and result collection 26
5.4.4 Availability . 26

6 Results 27

6.1 Walks on the line . 27
6.2 Walks on the grid . 29
6.3 Walks on hypercube . 34

7 Conclusion 38

Acknowledgements 39

Bibliography 40

Kivonat

Az utóbbi években egyre nagyobb figyelem összpontosul a kvantuminformatikára. Olyan
globális vállalatok, mint az IBM, a Google, a Microsoft és az Amazon jelentős összegeket
fektetnek kutatásba, hardver- és szoftverfejlesztésekbe ezen a területen, míg az Európai
Unió és Magyarország számos olyan programot indított, melyek a kvantuminformatikai
kutatások fellendítését célozzák meg.

A jelenlegi kvantumszámítógépekben elérhető qubitek (kvantumbitek) mennyisége
még csekély, de sokan úgy vélik hogy a jövőben ez a szám növekedni fog. Az első olyan,
a gyakorlatban is hasznos kvantumalgoritmusok, amiket ezeken a processzorokon futtat-
ni tudunk majd, várhatóan azok lesznek, melyek takarékosan bánnak a rendelkezésre álló
qubitekkel. A kvantumséta, mely a klasszikus véletlen bolyongás általánosítása kvantumos
esetben, pontosan ilyen algoritmus. Mivel a qubit igénye a gráf csúcsszámában logaritmi-
kus, így ez egy érdekes módszernek ígérkezik akár a közeljövőre nézve is. A kvantumséták
erejét bizonyítja, hogy a Grover keresés (mely több kvantumalgoritmus alapját képezi) is
értelmezhető ezek egy speciális fajtájának.

Dolgozatomban leírom a kvantumséták matematikai alapjait, részletezve a megvalósí-
tás szempontjából fontos pontokat, melyek a szakirodalomban kisebb hangsúllyal szerepel-
nek. Ismertetem az általam írt szimulátor program architekturális felépítését és működését,
továbbá a futtatott szimulációim eredményeit.

A szimulátor programot Python 3 nyelven írtam, a Stratégia tervezési minta alapján.
A szakirodalomban tipikusan használt gráfokat beépítetten támogatja, melyek kombiná-
lásával tetszőlegesen bonyolult reguláris gráf előállítható, ez az előállítás képezi a kvan-
tumséta alapját is. A szoftver reguláris gráfokon történő kvantum és klasszikus séták
szimulációját teszi lehetővé, az eredményekről pedig egy részletes report fájlt generál. A
kvantumos séták esetében a séta tulajdonságai a valószínűségek generálásához felhasznált
érmétől is függnek, melyet többféleképpen is lehet definiálni. A program beépítetten tar-
talmazza az Hadamard-, a Grover- és a Fourier-érméket, de felépítéséből adódóan könnyen
bővíthető tetszőleges érmével is.

Szimulációim segítségével összehasonlítottam a klasszikus és a kvantum séták viselke-
dését, továbbá kimutattam az elméleti szakirodalom alapján elvárt kvantumos jellegzetes-
ségeket, az Hadamard-séta ballisztikus természetét és a kvantumséták ciklikus tulajdon-
ságát.

i

Abstract

In recent years, there has been an increasing focus on quantum informatics. Influential
global companies such as IBM, Google, Microsoft, and Amazon have invested significant
amounts into studying and developing hardware and software for this sector, while the
European Union and Hungary have launched several programs to accelerate quantum
research.
Current technology is yet to produce a significant number of qubits (quantum bits) in
a quantum processor, but many believe the amount will increase over the years. The
first practical quantum algorithms to be run on these processors are likely to be the
ones that use qubits sparingly. Quantum walking, the generalized version of classical
random walking, is exactly this kind of algorithm. The number of qubits required to run a
quantum walk on a graph is logarithmic in the number of vertices, making it a promising
technique for the near future. Furthermore, Grover’s search algorithm (a basis for many
quantum algorithms) can be viewed as a special case of quantum walks, which illustrates
the potential power of this method.
In my dissertation, I present the mathematical framework for quantum walks, detailing
the points critical for implementation, which are given less emphasis in the literature. I
describe the architecture and capabilities of the simulator program I have written and the
conclusions of the simulations I have run.
I developed the software using Python 3, based on the Strategy design pattern. It supports
graphs commonly found in the literature while also providing a method for combining
them, facilitating experimentation on several kinds of regular graphs. This composition
is also the foundation of the quantum walk. It can simulate classical and quantum walks
on the same graphs and produce a report file detailing the results. In the quantum case,
the characteristics of the walk are also dependent on the type of coin used to generate the
probabilities, which can be defined in several ways. The program includes the Hadamard,
Grover, and Fourier coins and can easily be extended with others.
Running several simulations, I compared the behavior of classical and quantum walks and
demonstrated the quantum characteristics expected from the theoretical literature, the
ballistic nature of the Hadamard walk, and the cyclic property of quantum walks.

ii

Chapter 1

Introduction

Classical random walks are well-known tools for describing different stochastic processes.
Many real-life scientific approaches rely on these methods, including stock price movement
prediction, natural language processing, Brownian motion description; and evolution, pop-
ulation and disease outbreak models. Other algorithms utilize random walks to gain speed
or combat the search space’s scale, most notably Google’s Page Rank algorithm and vari-
ous recommender systems. [12].
In recent years quantum computing has been gaining traction amongst researchers and
computer scientists. While there exists a wide variety of quantum algorithms to be ex-
plored, I specifically targeted quantum walks due to their reasonable hardware require-
ments and promising features. Quantum walks provide a quadratic speedup compared
to their classical counterparts and display behaviour, such as the ballistic nature and the
cyclic property that their classical equivalent does not, while only requiring logarithmic
space, which due to the various limitations of physical qubit realization is particularly
valuable. [9]
Since currently, the publicly available quantum computers can operate with only around
5-10 qubits, I created a simulator software that runs on a regular computer to experiment
with the algorithm. I am hopeful that the time for feasibly switching to quantum hardware
is just around the corner.
During my research, I have observed a significant lack of software engineering perspective
on this subject. Most research papers are written by physicists who are well acquainted
with the details of quantum mechanics with a heavy focus on physics-related formulas
and functional descriptions. It has been a strenuous process to gather the motivation and
justification of certain implementation choices that seem to be the standard for someone
in the inner circle but strange for me, just getting started with the topic.
This report aims to provide a comprehensible introduction to quantum walking from the
software engineer’s perspective, spending extra effort on implementation-specific details
and mathematical proofs missing from the available literature. In contrast with the func-
tional descriptions, I describe the algorithms using linear algebra, allowing for a more
natural way to implement the simulation.
The rest of this report is structured in the following way: In Chapters 2 and 3, I briefly
introduce classical random walks and quantum computing, using only the necessary for-
mulas and focusing on the details employed later in the report. In Chapter 4, I introduce
quantum walking in a bottom-up approach, starting from the simplest form and then
generalizing it. Contrary to many authors, I use linear algebra exclusively to describe

1

each step since implementation on a universal quantum computer requires the definition
to come in the form of unitary transformations.
Section 4.3 discusses two of the generalization techniques found in [9]. I present my
improvement to one of these methods, which I have proven to have the equivalent result
but remove an exponential memory requirement from the implementation. The other
method in [9] uses a constraint about the evolution operator, for which I have not found
proof in the literature. Here, I present my more generalized version of this constraint and
the proof I have given.
In Chapter 5, I describe the architecture and implementation details of my simulator
software, then in Chapter 6, I present the results obtained from my simulation runs.

2

Chapter 2

Classical random walks

Before introducing quantum computation and specifically quantum walks, I first overview
classical random walks, based on the book Probability and Computing, written by Michael
Mitzenmacher and Eli Upfal [8].
A random walk is a stochastic process modeled by a particular type of Markov chain. While
a variety of Markov chains exist, in this work, I use the following definition exclusively.

Definition 2.1 (Markov chain). A discrete time stochastic process X0, X1, X2, . . . on
a finite state space A is a Markov chain if it has the Markov property:

P (Xk = ak | Xk−1 = ak−1, . . . , X0 = a0) = P (Xk = ak | Xk−1 = ak−1) ∀a0, . . . , ak ∈ A.

Without loss of generality, we can assume, that A = {0, 1, . . . , n}.
If the Markov chain is homogenous (time-invariant), the probability of moving from state
i ∈ A to state j ∈ A is independent of k, and thus can be shortened the following way:

P (Xk = j | Xk−1 = i) = pj←i = pj,i ∀k ∈ Z+.

Where pj,i is called the transition probability between states i and j.
The transition matrix P is formed by the transition probabilities.

P[j, i] = pj,i

It follows, that for each column in P, the sum is 1.

n∑
j=0

P[j, i] = 1 ∀i ∈ {0, . . . , n}

Let the probability distribution of the process in the t-th step be πt. Then, πt can be
computed from the starting distribution π0 using P.

3

πt = Ptπ0

The stationary distribution (π) of the Markov chain is a distribution that does not change
with a transition, i.e. π = Pπ.
Markov chains can be represented using graphs. A directed, weighted graph G(V,E) with
weight function w : E → [0, 1] represents a Markov chain, if V = A and w(i, j) = P[j, i].
If P[j, i] = 0, then {i, j} 6∈ E.
A random walk on graph G starts from X0 = a0 and visits the vertices of the graph
according to the states of the Markov-chain: X1 = a1, X2 = a2,
Frequently studied characteristics of random walks are hitting time [12] and mixing
time [8]. Informally, hitting time describes how quickly can a vertex be reached from
another vertex in the graph, while mixing time expresses how fast the walk reaches the
stationary distribution, where the starting vertex can no longer be identified.

Definition 2.2 (Hitting time). Let hj,i be the expected number of steps before node
j is visited in a random walk starting from node i. Then, hj,i is given by the following
recursive formula:

hj,i =

 1 + ∑
k∈A

pj,khk,i if i 6= j

0 if i = j

Definition 2.3 (Mixing time). The smallest time index of the Markov chain, where
the total variational distance between the current and the stationary distribution is not
greater than a given ε. This measure still depends on the starting distrubiton π0, so we
take the maximum over all of the possible π0 distributions.

m(ε) = max
π0
{min{t :

n∑
j=0
|πt[j]− π[j]| ≤ ε}}

4

Chapter 3

Quantum computing

Algorithms in quantum computing are derived from the postulates of quantum mechanics.
These fundamental rules define how a quantum computer operates, and therefore they are
essential for any discourse on quantum algorithms.

3.1 The postulates of quantum mechanics

This introduction is based on the following books: Quantum Computing and Communica-
tions by Sándor Imre and Ferenc Balázs [2], Quantum Computing by Mika Hirvensalo [5]
and Quantum Walks and Search Algorithms by Renato Portugal [9].

Postulate I. State space

The state of an isolated physical system can be described using a unit length state vector
in a Hilbert space (i.e. complex linear vector space), or state space, equipped with an
inner product.

Definition 3.1 (Qubit). A state vector in the 2 dimensional Hilbert space (H2) is a
qubit. The base vectors in this space are

|0〉 =
(

1
0

)
, and |1〉 =

(
0
1

)
.

A generic qubit is written in the form

a |0〉+ b |1〉 =
(
a
b

)

where a, b ∈ C and |a|2 + |b|2 = 1.

Definition 3.2 (Superposition). A quantum system is said to be in superpotion, if its
state vector is a linear combination of multiple basis states.

5

For example a |0〉+b |1〉 is in a superposition of the basis states |0〉 and |1〉, with probability
amplitudes a and b.

Postulate II. Evolution

The time evolution of an isolated physical system is described using unitary transforma-
tion, which depends only on the starting and finishing time of the evolution.
A quantum algorithm is a sequence of unitary operators applied to an initial state.

Definition 3.3 (Unitary matrix). U is unitary if U† = U−1 [4].
The following definitions are equivalent:

1. U’s rows form an orthonormal basis of Cn.

2. U’s columns form an orthonormal basis of Cn.

3. U is an isometry: it is injective and preserves length.

4. U preserves the inner product.

Postulate III. Measurement

A quantum measurement is defined by a set of measurement operators {Mm}, where m
stands for the possible results of the measurement. The probability of measuring m if the
system is in state |v〉 is

P (m| |v〉) = 〈v|M†
mMm |v〉 .

The state of the system after measuring m is then

∣∣v′〉 = Mm |v〉√
〈v|M†

mMm |v〉
.

The set of measurement operators have to satisfy the following completeness relation:

∑
m

M†
mMm = I,

due to

1 =
∑
m

P (m| |v〉) =
∑
m

〈v|M†
mMm |v〉 .

6

Projective measurement

To distinguish a set of orthonormal states {|ϕm〉}, the corresponding measurement oper-
ators can be produced as Pm = |ϕm〉 〈ϕm|, with the following properties.

Property 3.1 (Pm is self adjoint).

P†m = Pm

Since

P†m = (|ϕm〉 〈ϕm|)† = 〈ϕm|† |ϕm〉† = |ϕm〉 〈ϕm| = Pm.

Property 3.2 (Pm is a projection).

PmPm = Pm

Since

PmPm = (|ϕm〉 〈ϕm|)(|ϕm〉 〈ϕm|) = |ϕm〉 (〈ϕm|ϕm〉) 〈ϕm| = |ϕm〉 1 〈ϕm| = |ϕm〉 〈ϕm| = Pm.

Property 3.3 (The Pm are orthogonal).

m 6= n⇒ PmPn = 0

Since

PmPn = (|ϕm〉 〈ϕm|)(|ϕn〉 〈ϕn|) = |ϕm〉 (〈ϕm|ϕn〉) 〈ϕn| = |ϕm〉 0 〈ϕn| = 0.

From these properties follows, that the probability of measuring m in case of a projective
measurement is

P (m| |v〉) = 〈v|P†mPm |v〉 = 〈v|PmPm |v〉 = 〈v|Pm |v〉 = 〈v|ϕm〉 〈ϕm|v〉 = | 〈ϕm|v〉 |2.

For example, the value of a qubit can be any unit length vector in H2, however when we
measure it, we will receive one of the base vectors of H2. For a |0〉 + b |1〉 we measure 0
with probability |a|2 and 1 with probability |b|2.

Postulate IV. Composite systems

The state space of an isolated composite physical system is the tensor product of the state
spaces of the individual components. The current state vector of the composite system is
the tensor product of the current state vectors of the individual systems.
If V1, . . . , Vn are the state spaces of the individual systems, then V1 ⊗ · · · ⊗ Vn is the
composite state space and for |v1〉 ∈ V1, . . . , |vn〉 ∈ Vn state vectors, |v1〉 ⊗ · · · ⊗ |vn〉 =
|v1, . . . , vn〉 is the state vector of the composite system.

7

Definition 3.4 (Tensor product). The tensor product A ⊗ B of matrix A(r×s) and
matrix B(t×u) is of size (rt× su) and is defined as follows [4]:

For A =


a11 a12 . . . a1s
a21 a22 . . . a2s
...

...
ar1 ar2

. . . ars

 , and B =


b11 b12 . . . b1u
b21 b22 . . . b2u
...

...
bt1 bt2

. . . btu



A⊗B =


a11B a12B . . . a1sB
a21B a22B . . . a2sB
...

...
ar1B ar2B . . . arsB


and has the following properties:

Property 3.4 (Associativity).

(A⊗B)⊗C = A⊗ (B⊗C)

Property 3.5 (Mixed product property). If the corresponding matrices are compat-
ible, then

(A⊗B)(C⊗D) = (AC)⊗ (BD),

and as an immediate consequence, we obtain

(A⊗ I)(I⊗B) = A⊗B.

Definition 3.5 (Quantum register). The composite system of n qubits is a quantum
register, having the composite state space

H⊗n2 = H2 ⊗H2 ⊗ ...⊗H2

and for |qn−1〉 ∈ H2, . . . , |q0〉 ∈ H2 individual state vectors, the composite state vector is

|qn−1〉 ⊗ · · · ⊗ |q0〉 = |qn−1, . . . , q0〉 .

Definition 3.6 (Entangled state). Any state consisting of multiple qubits, that is not
decomposable, i.e. that can not be written in the form of a composite system of qubits is
entangled.

For example, the state 1√
2(|00〉+ |11〉) is entangled, since it can not be written in the form

8

(a0 |0〉+ a1 |1〉)⊗ (b0 |0〉+ b1 |1〉) = a0b0 |00〉+ a0b1 |01〉+ a1b0 |10〉+ a1b1 |11〉

since that would require from a0b0 = a1b1 = 1√
2 , for all coefficients to be non-zero and from

a0b1 = a1b0 = 0 for either a0 or b1 and either a1 or b0 to be zero, which is a contradiction.

9

Chapter 4

Quantum walks

In classical random walks, the walker moves from the current vertex via one of its out-
going edges, chosen randomly, weighted by the edge weights. This random choice can be
interpreted as a (generalized) coin toss.
To formulate a quantum version of graph walking, we define the quantum coin, which will
replace the classical concept of randomness with quantum superposition.

4.1 Formulating the Quantum coin

I used Renato Portugal’s Quantum Walks and Search Algorithms [9] book as a reference
for the different types of coins presented in this section.
A quantum coin is a quantum system, which behaves according to the postulates of quan-
tum mechanics. It has a current state, represented by a state vector in a Hilbert space
and a unitary time evolution operator, describing a coin toss.
After tossing the coin, the resulting coin state chooses the next step of the quantum
walker. If there are d outgoing edges to choose from, then the coin’s state space must have
d orthonormal basis states, each corresponding to one of the possible edges. If the current
state is one of the basis states, then the walker moves in that direction. However, in the
quantum world, the coin can also be in a superposition, consisting of multiple basis states.
This means that the walker will simultaneously move in all corresponding directions and
occupy more than one vertex at the same time, resulting in the walker spreading over the
graph in a superposition.
For the d dimensional coin state, the corresponding coin flip operator is a (d× d) dimen-
sional unitary matrix. Based on what the transition operator is, several types of coins can
be defined. The following ones are typically used in quantum walks.

4.1.1 Hadamard coin

The Hadamard coin is the most commonly used quantum coin. It is defined by the
Hadamard-matrix as a transition operator:

H = 1√
2

(
1 1
1 −1

)
.

10

If the starting coin state is |0〉, then flipping the coin once results in the following state:

H |0〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
= 1√

2

(
1
1

)
= 1√

2
|0〉+ 1√

2
|1〉 .

If we measured the above coin, the probability of measuring 0 is

P (0 | 1√
2

(|0〉+ |1〉)) =
∣∣∣∣ 1√

2

∣∣∣∣2 = 1
2 .

Similarly, if the starting coin state is |1〉, then flipping the coin once results in the following
state:

H |1〉 = 1√
2

(
1 1
1 −1

)(
0
1

)
= 1√

2

(
1
−1

)
= 1√

2
|0〉 − 1√

2
|1〉 .

The probability of measuring 1 here is similarly

P (1 | 1√
2

(|0〉 − |1〉)) =
∣∣∣∣− 1√

2

∣∣∣∣2 = 1
2 .

An unexpected feature of this coin comes from the fact, that the Hadamard-matrix is
Hermitian (self-adjoint), i.e. H† = H, while also unitary, i.e. H† = H−1, which results in
H−1 = H, thus HH = I. This means, that after flipping the coin twice without measuring
it, it will return the coin state to its origin. For example, starting from |0〉:

H2 |0〉 = H 1√
2

(|0〉+ |1〉) = 1
2(|0〉+ |1〉+ |0〉 − |1〉) = |0〉 .

After the second flip, the probability of measuring |0〉 is 1, due to the destructive inter-
ference between the two |1〉 probability amplitudes, demonstrating a significant contrast
between classical and quantum walks.

Definition 4.1 (2n dimensional Hadamard-coin). A 2n dimensional Hadamard-coin
operator can be created by taking the tensor product of the 2 dimensional Hadamard-coin
n times: H⊗n.

4.1.2 Grover coin

The Grover coin originates from Grover’s search algorithm, where it is applied as the
diffusion operator.
Let |D〉 be the following state:

11

|D〉 = H⊗n |0〉 = 1√
2n

2n−1∑
i=0
|i〉 .

Using |D〉, the Grover coin is the following unitary matrix:

G = 2 |D〉 〈D| − I.

If N = 2n, then G unrolls to the following representation:

G =


2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N...
...

2
N

2
N

. . . 2
N − 1

 .

4.1.3 Fourier coin

In contrast to the Hadamard and Grover coins, the Fourier coin can be of any size, not
just a power of 2. A size N Fourier-coin, FN is defined by the matrix of the Quantum
Fourier Transform:

F[k, l] = 1√
N
ωkl

where ω is the N -th root of unity,

ω = e
2πi
N .

F unrolls to the following representation:

F = 1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)



4.2 Quantum walks on the line

Kempe introduces quantum walks from a physicist’s perspective in [6] using a particle
characterised by its position on the line |x〉 and its spin state |s〉.

12

4.2.1 State space

Spin state

The spin state is in H2 with the basis states spin up and down:

|↑〉 = |0〉 ,
|↓〉 = |1〉 .

The spin state vector is then given by:

|s〉 = s0 |↑〉+ s1 |↓〉 .

Position state

At the start of the walk the particle is at the origin |0〉 and the walking lasts for N steps.
The position state is in H(2N+1) with the following basis vectors corresponding to the
possible positions on the line.

{|−N〉 , |−(N − 1)〉 , . . . , |−1〉 , |0〉 , |1〉 , . . . , |N − 1〉 , |N〉}

I index the basis states using negative numbers to match the labels on the axis.
The position state vector is then given by:

|x〉 =
N∑

i=−N
xi |i〉 .

Composite state

The composite state of the system, according to [PostulateIV] is then

|x〉 ⊗ |s〉 .

4.2.2 Evolution

The particle travels on the line based on its current spin state:

• If the current spin state is |0〉, the particle moves to the left, i.e. from position |i〉
the particle travels to position |i− 1〉.

• If the current spin state is |1〉, the particle moves to the right, i.e. from position |i〉
the particle travels to position |i+ 1〉.

13

This step is realised with the unitary matrix S which operates on the complete state of
the system, |x〉 ⊗ |s〉 and is assembled from a left and a right shift operator acting on |x〉
and another operator for checking |s〉 compiled using tensor product.

Definition 4.2 (Left shift operator). To move from position |i〉 to the left (|i− 1〉)
the position vector is multiplied with the following L matrix, containing 1’s above the
diagonal. To keep S unitary, an unused transition must be added in the lower left corner
(see Theorem 4.1).

L = |N〉 〈−N |+
N∑

i=−(N−1)
|i− 1〉 〈i| =



0 1 0 · · · 0
.

... 0
0 . . . 1
1 0 · · · 0


(4.1)

For a given basis vector |j〉 only one of the summands in L is non-zero, where i = j,
resulting in the required shift being performed.

L |j〉 = |j − 1〉 〈j|j〉 = |j − 1〉

Definition 4.3 (Right shift operator). To move from position |i〉 to the right (|i+ 1〉)
the position vector is multiplied with the following R matrix, containing 1’s under the
diagonal. To keep S unitary, an unused transition must be added in the top right corner
(see Theorem 4.1).

R = |−N〉 〈N |+
N−1∑
i=−N

|i+ 1〉 〈i| =



0 · · · 0 1
1 . . . 0
0
...
0 · · · 0 1 0


(4.2)

For a given basis vector |j〉 only one of the summands in R is non-zero, where i = j,
resulting in the required shift being performed.

R |j〉 = |j + 1〉 〈j|j〉 = |j + 1〉

Shift operator

Using matrixes L and R operating on the position register |x〉 only, we construct a unitary
operator S, which operates on the composite state of the system, |x〉 ⊗ |s〉, executing
matrix L on |x〉 only when |s〉 = |0〉 and matrix R only when |s〉 = |1〉.

14

S = L⊗ |0〉 〈0|+ R ⊗ |1〉 〈1| (4.3)

The execution logic is as follows:

S(|x〉 ⊗ |s〉) =
(L⊗ |0〉 〈0|+ R ⊗ |1〉 〈1|)(|x〉 ⊗ |s〉) =

(L⊗ |0〉 〈0|)(|x〉 ⊗ |s〉) + (R ⊗ |1〉 〈1|)(|x〉 ⊗ |s〉) = . . .

using [TensorMixedProduct]:

· · · = L |x〉 ⊗ (|0〉 〈0|s〉) + R |x〉 ⊗ (|1〉 〈1|s〉) =
|x− 1〉 ⊗ s0 |0〉+ |x+ 1〉 ⊗ s1 |1〉 =

s0 |x− 1, 0〉+ s1 |x+ 1, 1〉 .

• If the spin state was |s〉 = |0〉 at the beginning, then s0 = 1 and s1 = 0, which means
that the resulting system state is |x− 1, 0〉, which means that the particle shifted to
the left, as designed.

• If the spin state was |s〉 = |1〉 at the beginning, then s0 = 0 and s1 = 1, which means
that the resulting system state is |x+ 1, 1〉, which means that the particle shifted to
the right, also as intended.

Furthermore, the spin state can be any mixed state s0 |0〉+ s1 |1〉 as well. In this case the
particle will shift both to the left and to the right, at the same time. When measured,
the particle can be found in position |x− 1〉 with probability |s0|2 and in position |x+ 1〉
with probability |s1|2.
In quantum graph walks, the walker can simultaneously explore multiple parallel paths in
the graph, at the same time. With good design, this behaviour can be used to search the
graph faster than in classical random graph walks.

Coin operator

To inject the quantum superposition into the walk, the particle’s spin state is transformed
using any 2 dimensional unitary matrix between shift operations. The Hadamard, Grover
and Fourier coins mentioned earlier are commonly used as coin operators.
For any C operator on the coin register, the unitary transform for the composite system
is defined as follows:

Ĉ = I⊗C

since the coin operator does not modify the position register.

15

Evolution operator

Combining the shift operator and the coin operator together, we obtain the following
evolution operator, defining one step of the quantum walk on the line. The step consists
of flipping the coin once, then applying the shifting the walker’s position accordingly, as
follows:

U = SĈ = S(I⊗C)

4.2.3 Measurement

To measure the probability of the particle being at position |i〉, the projective measurement
operator acting on |x〉 is defined as Pi = |i〉 〈i|, in accordance with [PostulateIIIProjective].
Since the coin register need not be measured, we apply the identity operator on it, using
Pi ⊗ I on the complete system to measure the particle’s current position.
The probability of finding the particle in position i is:

P (i| |x〉) = 〈x, s|Pi ⊗ I |x, s〉 = . . .

using [TensorMixedProduct]:

· · · = 〈x|Pi |x〉 〈s| I |s〉 = 〈x|Pi |x〉 1 = 〈x|Pi |x〉 = 〈x|i〉 〈i|x〉 = | 〈i|x〉 |2 = |xi|2

4.3 Generalization of Quantum Walks

After presenting quantum walking on the line, I review and extend two approaches to
generalize it in this chapter.

1. Section 4.3.1: Use multiple two-dimensional coins: In [9], Renato Portugal
shows the generalization of quantum walks on a line to a two-dimensional grid,
using a method with 2 two-dimensional coins. In this work, I prove how his method
reduces to effectively two synchronous independent walks on the x and y axes. Then
I improve his technique by generalizing to arbitrarily large dimensional grids in a
more memory-efficient way than what would naturally follow from his description.

2. Section 4.3.2: Use a single higher dimensional coin: In [9], Renato Portugal
describes the generalization of a quantum walk on a line to an arbitrary undirected
graph and gives the necessary condition for creating the unitary transition matrix
without proof. In this work, I generalize to directed graphs and give proof of the
generalization of the condition using directed graphs.

4.3.1 Generalization using multiple independent 2 dimensional coins

In [9], Renato Portugal defines the following method for Quantum Walking on a 2D grid:

16

Let the position state of the walker be |x, y〉 and the two coins |cx〉, acting on the x
coordinate and |cy〉, acting on the y coordinate of the walker.
The shift operator moves the walker on the grid diagonally, according to the current state
of the two coins, described by

S |x, y〉 |cx〉 |cy〉 = |x+ (−1)cx , y + (−1)cy〉 |cx〉 |cy〉 , (4.4)

and the coin operator leaves the position state in place while flipping both coins at the
same time, described by

Ĉ = I⊗C4 = I⊗ (C2 ⊗C2). (4.5)

Issues with this method

In 4.4, we can see how the matrix S will quickly increase in size, as further dimensions are
added to the equation. In 2D, if the walker takes N steps, the size of S is

(2N + 1)2(2N + 1)22222 = 16(2N + 1)4 = O(N4).

To increase the dimension count, one would naturally append more coordinates to the
composite position state and add further coins, for example in 3D S would become

S |x, y, z〉 |cx〉 |cy〉 |cz〉 = |x+ (−1)cx , y + (−1)cy , z + (−1)cz〉 |cx〉 |cy〉 |cz〉 ,

For a dimension count d, the size of S is exponential in d.

((2N + 1)2)d(22)d = (4(2N + 1)2)d = O(N2d).

My improvements

Since in 4.4 the coordinates of the walker are updated independently by the separate
coins, I was able to disassemble S into smaller matrices, using the properties of the tensor
product.
To do this, in what follows, I first define S in 2D explicitly (as opposed to the implicit
definition in 4.4, stating only how S updates the state of the system). I will be using the
matrices L defined by Equation (4.1) and R defined by Equation (4.2).
Notice that R increases the walker’s coordinates on the line, while L decreases them. This
means, that on the y axis R acts by moving the walker up, and L acts by moving the
walker down.
When the coins are in the state |cx, cy〉 = |0, 0〉, the walker moves up and to the right.
This movement is captured by S0,0, acting on the position state:

17

S0,0 = R ⊗R

The other three Scx,cy matrices are defined similarly:

S0,1 = R ⊗ L
S1,0 = L⊗R
S1,1 = L⊗ L

Then, I assemble S using S0,0, S0,1, S1,0 and S1,1 the following way:

• S0,0 acts only when |cx, cy〉 = |0, 0〉,

• S0,1 acts only when |cx, cy〉 = |0, 1〉,

• S1,0 acts only when |cx, cy〉 = |1, 0〉, and finally

• S1,1 acts only when |cx, cy〉 = |1, 1〉.

Using the same method as in Equation (4.3) I arrive at:

S = S0,0 ⊗ |0, 0〉 〈0, 0|+
S0,1 ⊗ |0, 1〉 〈0, 1|+
S1,0 ⊗ |1, 0〉 〈1, 0|+
S1,1 ⊗ |1, 1〉 〈1, 1|

After substituting the Scx,cy matrices in:

S = (R ⊗R)⊗ |0, 0〉 〈0, 0|+
(R ⊗ L)⊗ |0, 1〉 〈0, 1|+
(L⊗R)⊗ |1, 0〉 〈1, 0|+
(L⊗ L)⊗ |1, 1〉 〈1, 1|

Let us name the coin state |0〉 heads and the coin state |1〉 tails. Then, using the following
equalities and introducing matrices H and T, as shorthands:

|0, 0〉 〈0, 0| = (|0〉 〈0|)⊗ (|0〉 〈0|) = H⊗H
|0, 1〉 〈0, 1| = (|0〉 〈0|)⊗ (|1〉 〈1|) = H⊗T
|1, 0〉 〈1, 0| = (|1〉 〈1|)⊗ (|0〉 〈0|) = T⊗H
|1, 1〉 〈1, 1| = (|1〉 〈1|)⊗ (|1〉 〈1|) = T⊗T

I arrive at:

18

S = (R ⊗R)⊗ (H⊗H)+
(R ⊗ L)⊗ (H⊗T)+
(L⊗R)⊗ (T⊗H)+
(L⊗ L)⊗ (T⊗T)

Then, using [TensorMixedProduct] I inflate the equation with (appropriately sized) I
matrices:

S = ((R ⊗ I)(I⊗R))⊗ ((H⊗ I)(I⊗H))+
((R ⊗ I)(I⊗ L))⊗ ((H⊗ I)(I⊗T))+
((L⊗ I)(I⊗R))⊗ ((T⊗ I)(I⊗H))+
((L⊗ I)(I⊗ L))⊗ ((T⊗ I)(I⊗T))

At this point, I introduce a few aliases to make the equation more manageable. Notice, how
for example I⊗R is acting on the 2D position state, but only updating the y coordinate to
move the walker upward. This gives a way to naturally define Sup = I⊗R, and similarly:

Sright = R ⊗ I
Sleft = L⊗ I
Sup = I⊗R

Sdown = I⊗ L

At the same time, for example I ⊗ H is acting on the composite coin state, but only
checking if the second coin’s state is heads, which is the coin for the y axis. This gives a
way to naturally define Hy = I⊗H, and similarly:

Hx = H⊗ I
Tx = T⊗ I
Hy = I⊗H
Ty = I⊗T

Substituting all of the aliases:

S = (SrightSup)⊗ (HxHy)+
(SrightSdown)⊗ (HxTy)+

(SleftSup)⊗ (TxHy)+
(SleftSdown)⊗ (TxTy)

19

Then, using [TensorMixedProduct] again, I arrive at:

S = (Sright ⊗Hx)(Sup ⊗Hy)+
(Sright ⊗Hx)(Sdown ⊗Ty)+

(Sleft ⊗Tx)(Sup ⊗Hy)+
(Sleft ⊗Tx)(Sdown ⊗Ty)

Then using the distributive property of matrix multiplication with respect to matrix ad-
dition I finally arrive at:

S = ((Sright ⊗Hx) + (Sleft ⊗Tx))((Sup ⊗Hy) + (Sdown ⊗Ty))

We can see from the equation above, that S is actually the product of two shift operators,
one only acting on the x coordinate using the first coin’s state, the other acting only on
the y coordinate, according to the second coin’s state.

Sx = (Sright ⊗Hx) + (Sleft ⊗Tx)
Sy = (Sup ⊗Hy) + (Sdown ⊗Ty)

S = SxSy

This proves, that the walk on the 2D grid decomposes into two independent line walks
on the axes, since Sx only touches the x coordinate and the first coin, while Sy only
touches the y coordinate and the second coin and there is no entanglement between the
registers of the x and y axes. Using this fact, we can simply simulate two independent
quantum walks on the line in parallel, or sequentially, using the same registers, which
wastly decreases the memory needs of the algorithm. Running in parallel, the memory
needs is now d(4(2N + 1)2) = O(dN2), or running sequentially (4(2N + 1))2 = O(N2),
however the latter uses dN steps, instead of N , and d measurements, instead of 1.

4.3.2 Generalization using a single higher dimensional coin

Using this method, we generalize quantum walking to arbitrary directed graphs. To do
so, we first generalize to regular graphs, then discuss how non-regular graphs can be
regularized.
In a d-regular graph, the vertices have d neighbours, meaning the walker must choose from
d possible directions at every step. Thus the coin is d dimensional. Using this idea as
a starting point, we can reverse engineer the generalized walk from the walk on the line
by starting from the evolution operator, which assumes nothing about the given graph or
coin.

20

U = SĈ = S(I⊗C)

In this equation, C can be any d-dimensional unitary matrix. The definition of S re-
quires more thought, since S has to encode the graph’s structure, while also satisfying
[PostulateII].
In one dimension, S was defined the following way:

S = L⊗ |0〉 〈0|+ R ⊗ |1〉 〈1| .

|0〉 〈0| and |1〉 〈1| were matrices that checked the current state of the coin and ”activated”
the transition L or R accordingly. In d dimensions, the coin has d possible states, i.e.
”sides”

{|0〉 , |1〉 , . . . , |d− 1〉},

which means S will be constructed using d transition matrices, describing the graph’s
structure

S = S0 |0〉 〈0|+ S1 |1〉 〈1|+ · · ·+ Sd−1 |d− 1〉 〈d− 1| .

In the 1 dimensional case L and R described stepping to the left and to the right, which
are the directed edges of the line graph and L + R is the adjacency matrix of the line
graph. To generalize this, S0 + S1 + · · ·+ Sd−1 is going to be the adjacency matrix of the
d-regular graph.
The question is how do we construct the matrices S0,S1, . . . ,Sd−1 from a given adjacency
matrix of a d-regular graph? It turns out, that in order for S to satisfy [PostulateII], there
are strict rules on how these Si matrices can be defined.
It seems to be a well-known fact in the literature, that for d-regular undirected graphs with
a valid edge coloring using d colors, a possible choice for the sides of the coin correspond
to the colorsets of the edges. This means, that the Si adjacency matrix contains all of the
edges that have the ith color assigned to them, in both directions (i.e. Si is symmetric).
This is also mentioned in [9], however no proof is given in this book or any other books
and articles I have found during research.
In the following section, I present a more generalized theorem for directed d-regular graphs
formulated and proven by me. Then I discuss how the special case of the theorem for
undirected graphs gives the edge coloring as a result.

Theorem 4.1. Given a coined quantum walk on a directed, d-regular graph G, in the

shift operator of the walk: S =
d−1∑
i=0

Si ⊗ |i〉 〈i|, assuming the Si are nonnegative, real
matrices, it follows that they are permutation matrices.

Proof.

21

According to [PostulateII], S must be unitary.
According to [Unitary] the columns of S form an orthonormal basis. This means, that the
inner product of any two different columns is 0.
Let S be a matrix of size (N ×N). Then

(S |k〉)†(S |j〉) = 0 ∀j 6= k, 0 ≤ j, k ≤ N.

Since both the Si matrices and the |i〉 〈i| matrices contain only non-complex, non-negative
values, this means that S contains also only non-complex, non-negative values. Thus the
only way the inner product of two different columns can be 0 is if the columns don’t
contain non-zero values in the same row.
From this observation follows, that for each individual Si matrix, no two different columns
can contain non-zero values in the same row. If there were two different columns in Si, that
contained non-zero values in the same row, then that would result in Si⊗|i〉 〈i| containing
two different columns containing non-zero values in the same row, which would result in
S containing two different columns containing non-zero values in the same row (since no
matrices contain negative or complex values), which is a contradiction.
Using [Unitary], the rows of S also form an orthonormal basis. With similar reasoning,
it can be proven that for each individual Si matrix, no two different rows can contain
non-zero values in the same column.
From these two observations follows, that each matrix Si contains exactly one non-zero
value in each row and also each column. Adding the fact, that the rows and columns of
S are normalized, means that this non-zero value must always be a 1, resulting in the Si
being permutation matrices.

�.

When this theorem is applied to undirected graphs, the adjacency matrices Si can be
contructed to be symmetric (since the graph’s adjacency matrix is also symmetric) and
in this case they correspond to a valid edge coloring using d colors (since if Si[j, k] = 1,
then also Si[k, j] = 1 due to symmetry, and the {k, j} edge has the color i, while no other
edges of vertex j or k have the ith color, since Si is a permutation matrix).
Applying Vizing’s theorem to d-regular graphs, the graphs can be categorized into two
classes:

• Class 1 d-regular graphs: Their edge-chromatic number is d. The construction
defined in this section works for these graphs.

• Class 2 d-regular graphs: Their edge-chromatic number is d + 1. [9] seems to
state, that for these types of graphs, the position-coin notation does not give a way
to construct a quantum walk on them (and the arc notation shall be used), however
using Theorem (4.1) if we extend the method to directed graphs, it can be possible
to do so. For example, the triangle is 2-regular, but its edge-chromatic number is
3. However, if we direct the edges both ways, we suddenly arrive at two cycles of
length 3, for which the adjacancy matrices are permutation matrices, allowing for
the construction of a unitary evolution operator.

22

Chapter 5

Simulator software

In this chapter, I present the simulator software I wrote. I discuss the currently available
solutions, why I chose to write the software, the architecture, the components and design
patterns I used, the challenges I faced during the development and the solutions I found.

5.1 Currently available solutions

Since publicly accessible quantum computers currently only have around 5-10 qubits, it
is not viable at the moment to run quantum walks on a real quantum computer. Hence
why, when I started researching quantum walks, I quickly began looking into simulator
software. While there are many of these currently available, most of them have at least
one of the following issues:

1. Not maintained and developed anymore: the last commit was years ago.

2. Written in a low-level language, like C++, in a script-like fashion, with a promi-
nent focus on memory and performance optimization while neglecting readability,
modularity and extensibility.

3. Works exclusively on a specific type of graph, for example, n-dimensional lattices
only.

4. Unable to compare and contrast classical and quantum walks on the same graph,
running only quantum simulations.

5. Hard to understand as a novice.

There is no general, open-source solution available that is designed and developed using
sound software engineering practices and an architecture that allows for experimentation
with different kinds of graphs with both classical and quantum simulations available.
I intend my solution to be valuable for research purposes while also providing a readable
open-source codebase for college students to study the algorithm.

5.2 Architecture

The architecture of my simulator program employs the Strategy design pattern, which is
described in the following way:

23

”Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.” [3]

Figure 5.1: UML diagram for the Strategy design pattern from [3]

This is a great design pattern for research purposes since it facilitates experimentation
with various algorithms for the same purpose. It also makes the code easily readable, as
the Strategy interface provides an abstraction layer between the Context and the concrete
implementation.

5.3 Language choice

With the specified goals and the architecture in mind, I needed a language that is object-
oriented, easily readable by beginners and has extensive capabilities for using complex
numbers, linear algebra and plotting. For these purposes, I choose the Python language.
Python is concise, it reads like pseudocode and has libraries such as NumPy, SciPy and
Matplotlib, and so on, covering all areas of data science. Furthermore, it is well-known
and extensively used by researchers with no software engineering background, allowing for
easier collaboration.

5.4 High level design

The source code of the software can be divided into three parts:

• Graph models

• Simulators

• Running, configuration and result collection

24

Figure 5.2: UML diagram for the Graph models and Simulators

On the UML diagram above, the SubGraph class is a Strategy, with the following Con-
creteStrategy implementations:

• BinaryTree

• Bipartite

• Circle

• Grid

• Hypercube

• Path

• Random

Each of these employs an oracle that calculates neighbouring vertices on-the-fly.
Furthermore, the Simulator is also a Strategy, implemented by the Classical and the
Quantum classes, the latter using the Coin Strategy, implemented by the Hadamard,
Grover and Fourier (DFT) classes.
(For a cleaner diagram, I did not picture the SubGraph and Coin implementations.)

5.4.1 Graph models

I ran several experiments on various graphs while researching quantum graph walks, in-
cluding paths, circles, bipartite graphs, hypercubes, and grids. Initially, I directly gen-
erated and stored their adjacency matrices, however, I quickly ran into memory scaling
issues with this approach. Furthermore, in quantum research, graphs are typically built
like ’Legos’, glueing together a few common types, which was challenging to do with my
original approach.
To combat these issues, I switched from the adjacency matrix representation to the oracle
representation. The oracle is a function that returns the neighbours of a given vertex. Since
I was using common graphs, I could calculate neighbouring indexes on-the-fly without
storing anything about these graphs and only querying what is needed at the current step,
dramatically reducing the memory requirements of the graph models.

25

5.4.2 Simulators

I implemented a classical and a quantum simulator class. The quantum simulator can
currently simulate directed k regular graphs, however since the permutation matrix de-
composition, or in the undirected case, the edge coloring of the matrix is an NP-complete
problem, in the current setup, the graph oracle must be implemented in a way that re-
turns the neighbours in the same color order for all inputs. Since the human programmer
designs the oracle, this is not a critical limitation at the moment. I have implemented a
check as a safety guard to ensure the resulting shift matrices are unitary in case an error
is made while coding one of the oracles.

5.4.3 Running, configuration and result collection

Using the above classes, I developed a framework in which experimental runs can be con-
figured very quickly. The results of the run are collected in an aggregated Latex document,
using Matplotlib for creating various graphics. It contains the given graph, the named
type of the subgraphs, the adjacency matrices, the distribution results of the simulations,
including empirical hitting and mixing times and the eigenvalues and eigenvectors of the
evolution operators. In the following chapter, I present several examples collected from
these Latex reports of my experiments.

5.4.4 Availability

My simulator software is available under the open-source MIT license on my personal
Github account, under the following link:
https://github.com/nemkin/quantum

26

https://github.com/nemkin/quantum

Chapter 6

Results

In this chapter, I review classical and quantum walking on three specific graphs, for which
interesting results can be observed. I discuss the evolution of the probability distributions
and the hitting and mixing times for classical and quantum walks with the Hadamard,
Grover and Fourier (DFT) coins.

6.1 Walks on the line

The first graph to be reviewed is the line (with 100 vertices), using the adjacency matrix
below. It is important to note, that an extra edge has to be added to connect the two
ends of the line (see Theorem (4.1) for details).

Figure 6.1: Adjacency matrix of the line

In the following pictures, we can see the changes in the probability distribution during
the walk. The x axis contains the vertices, and the y axis contains the steps. The
walker starts from the centre, and in the classical case, multiple runs are done to arrive
at a probability distribution, while in the quantum case, a single walker is enough, as it
spreads in superposition over the graph.

27

The ballistic nature of the walk can be seen from steps 0 to 50, where the bright yellow
diagonals represent a strong probability concentration spreading to the two ends of the
line. When the probability bumps reach the sides, they cross over and travel to the
opposite ends.
From steps 50 to 200, we can see secondary, tertiary, and further yellow bumps travelling
alongside the main ones. These reach the ends slower and cross over each other later. This
results in a beautiful weaved pattern in the picture.
Since the line is a 2-regular graph, 2 dimensional coins are used. The 2 dimensional
Hadamard-coin and Fourier-coin are identical, while the 2 dimensional Grover-coin results
in the walker not moving away from the starting position, hence why only the Hadmard
coin is shown in the distributions.

(a) Classical walk (b) Quantum walk with the Hadamard coin

Figure 6.2: Probability distribution of classical and quantum walks on the line

I have empirically measured hitting and mixing times for the different types of walks.
Hitting time is the expected number of steps to reach a specific vertex from the starting
point. For this, I have plotted the number of steps it took to first reach a particular
vertex from the starting point. Mixing time is the number of steps it takes before reaching
the stationary distribution with ε error. For this, I have plotted the Euclidean difference
between the walk’s current and the end distribution.

28

In the following pictures, we can see the classical hitting and mixing times. Since my
classical simulator approximates the distribution by running multiple walkers, the hitting
time is slightly asymmetric. We can see from comparing the classical and the quantum
hitting times that the quantum walk spreads faster than the classical one.
On the classical mixing time, we can see that the walker has not reached the stationary
distribution. This is because until the walker reaches the ends of the line, the graph is
essentially bipartite with two different limiting distributions and only after crossing over
to the other side can the walk spread uniformly. This can also be seen in the probability
distribution image above. At around step 300, the colour of the image intensifies at the
sides. Before that, the distribution alternates between odd and even indexes having 0
probability, resulting in a chessboard pattern of white and colorful rectangles.
The quantum walk is mixing much better, as can be seen by the mixing time and the
distribution image as well.

(a) Classical hitting time (b) Classical mixing time

Figure 6.3: Classical hitting and mixing times on the line

(a) Hadamard hitting time (b) Hadamard mixing time

Figure 6.4: Quantum (Hadamard) hitting and mixing times on the line

6.2 Walks on the grid

The second graph reviewed is the 2 dimensional grid (with 4× 4 = 16 vertices), using the
adjacency matrix below.

29

Figure 6.5: Adjacency matrix of the grid

The following 4 images contain the classical, the quantum Hadamard, the quantum Grover
and the quantum Fourier walks on the grid. The classical walk quickly spreads over the
graph since all vertices are close to each other (as opposed to the line, where the maximum
distance is large).
In the quantum case, using the Hadamard and Grover coins, an important quality of
the quantum walks can be distinctly observed: quantum walks are periodic since the
eigenvalues of the evolution operator are complex roots of unity. Furthermore, by choosing
a vertex count that is a power of 2, I was able to create an evolution operator that has
specific eigenvalues that result in the walker returning to its starting position with 100%
probability (see the repeated red rectangles in the images), showing the cyclic nature of
the quantum walk.
The Fourier coin mixes the state much better, resulting in no specific order in that image.

30

(a) Classical walk (b) Quantum walk with the Hadamard coin

Figure 6.6: Probability distribution of classical and quantum walks on the grid

31

(a) Quantum walk with the Grover coin (b) Quantum walk with the Fourier coin

Figure 6.7: Probability distribution of quantum walks on the grid

Interestingly, the hitting times of the 4 walks are similar. This is probably due to the
fact, that the graph is small, which allows the classical walk to spread just as quickly
as its quantum counterpart. We can see, that neither of the walks reached a stationary
distribution. In the quantum case, we know that the walks are periodic, so there is no
stationary distribution, while in the classical case, the graph is bipartite.

32

(a) Classical hitting time (b) Classical mixing time

Figure 6.8: Classical hitting and mixing times on the grid

(a) Hadamard hitting time (b) Hadamard mixing time

Figure 6.9: Quantum (Hadamard) hitting and mixing times on the grid

(a) Grover hitting time (b) Grover mixing time

Figure 6.10: Quantum (Grover) hitting and mixing times on the grid

33

(a) Fourier hitting time (b) Fourier mixing time

Figure 6.11: Quantum (Fourier) hitting and mixing times on the grid

6.3 Walks on hypercube

The third graph reviewed is the 4 dimensional boolean hypercube (with 24 = 16 vertices),
using the adjacency matrix below.

Figure 6.12: Adjacency graph of the hypercube

Similarly to the grid, the walks are recurrent (cyclic) in the Hadamard and Grover case.
Interestingly in this case the periodicity can be visibly observed with the Fourier coin,
however the walk does not return to its original starting point with 100% probability.
This is due to the eigenvalues of the evolution operator just being slightly off, so there is
no small exponent for which the evolution operator is the identity.

34

(a) Classical walk (b) Quantum walk with the Hadamard coin

Figure 6.13: Probability distribution of classical and quantum walks on the hy-
percube

35

(a) Quantum walk with the Grover coin (b) Quantum walk with the Fourier coin

Figure 6.14: Probability distribution of quantum walks on the hypercube

Similarly to the grid, the hitting times are identical, since the graph is small and the
classical walk’s disadvantage is not visible. The hypercube is also bipartite, resulting in
no stationary distribution for the classical walk either.

(a) Classical hitting time (b) Classical mixing time

Figure 6.15: Classical hitting and mixing times on the hypercube

36

(a) Hadamard hitting time (b) Hadamard mixing time

Figure 6.16: Quantum (Hadamard) hitting and mixing times on the hypercube

(a) Grover hitting time (b) Grover mixing time

Figure 6.17: Quantum (Grover) hitting and mixing times on the hypercube

(a) Fourier hitting time (b) Fourier mixing time

Figure 6.18: Quantum (Fourier) hitting and mixing times on the hypercube

37

Chapter 7

Conclusion

During my research and development, I have read several excellent sources [1, 6, 9, 10, 12]
and lecture notes, and found [9] to be a comprehensive general introduction. I reformulated
its descriptions to the language of matrices in an explicit manner, which matches both
classical random walk descriptions and universal quantum computing hardware require-
ments. I believe these are easier to understand for someone with a college-level software
engineering background who is new to the subject.
Besides this, I gave a generalized requirement for constructing quantum random walks on
d-regular graphs employing the position-coin notation and improved the memory require-
ment of n-dimensional lattice walks. I presented my proofs for both of these advancements.
Furthermore, I implemented a simulator software in Python, employing an architectural
pattern that makes it straightforward to understand and extend the codebase. This soft-
ware is available under the open-source MIT license on my personal Github account, under
the following link:
https://github.com/nemkin/quantum

The software is still under heavy development. In the future, I would like to revise the
report generation since the pdf format has proven to be too rigid. Instead of Latex,
I believe a static website with an organized link hierarchy and the possibility for user
interaction would prove much more helpful. Moreover, I am interested in extending my
software’s capabilities by implementing other quantum walk models. For example, inspired
by the work of Ambainis, Szegedy [11] designed a different kind of approach to quantum
walks by creating a general method to quantize classical Markov chains.
Furthermore, I plan to study applications of quantum walking, such as the MNRS quan-
tum walk based search algorithm [7] which improves various aspects of many previous
walk based algorithms. I aim to apply quantum walk based algorithms to bioinformatics
research, such as medicine development.

38

https://github.com/nemkin/quantum

Acknowledgements

Firstly, I would like to thank my advisor, dr. Katalin Friedl, for her commitment to
spending a significant amount of time with me, discussing my research both during the
school year and over the summer. Without her supervision and mathematical expertise,
this effort would not have been achievable.
Secondly, I would like to thank the Quantum Information National Laboratory for provid-
ing me with a quantum research scholarship, which motivated me to work strenuously over
the past months and submit this report to the Scientific Students’ Associations Conference
this year.

39

Bibliography

[1] Yakir Aharonov, Luiz Davidovich, and Nicim Zagury. Quantum random walks. Phys-
ical Review A, 48:1687–1690, 1993.

[2] Ferenc Balázs and Sándor Imre. Quantum computing and communications: an engi-
neering approach. Wiley, Hoboken, N.J., 2013. ISBN 9781118725474.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley professional com-
puting series. Addison-Wesley, 1995. ISBN 9780201633610.

[4] Paul R. Halmos. Finite-dimensional vector spaces. Undergraduate texts in mathe-
matics. Springer-Verlag, New York, 1974. ISBN 9780387900933.

[5] Mika Hirvensalo. Quantum computing. Springer, Berlin; New York, 2001. ISBN
9783540407041.

[6] Julia Kempe. Quantum random walks: An introductory overview. Contemporary
Physics, 44(4):307–327, 2003.

[7] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via
quantum walk. SIAM Journal on Computing, 40(1):142–164, 2011.

[8] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Al-
gorithms and Probabilistic Analysis. Cambridge University Press, New York, 2005.
ISBN 9780521835404.

[9] Renato Portugal. Quantum Walks and Search Algorithms. Quantum Science and
Technology. Springer, Berlin; New York, 2018. ISBN 9783319978130.

[10] Miklos Santha. Quantum walk based search algorithms. In Manindra Agrawal,
Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory and Applications
of Models of Computation, pages 31–46, Berlin, Heidelberg, 2008. Springer. ISBN
9783540792284.

[11] Mario Szegedy. Quantum speed-up of markov chain based algorithms. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pages 32–41,
Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[12] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie Kong.
Random walks: A review of algorithms and applications. IEEE Transactions on
Emerging Topics in Computational Intelligence, 4(2):95–107, 2020.

40

	Kivonat
	Abstract
	Introduction
	Classical random walks
	Quantum computing
	The postulates of quantum mechanics

	Quantum walks
	Formulating the Quantum coin
	Hadamard coin
	Grover coin
	Fourier coin

	Quantum walks on the line
	State space
	Evolution
	Measurement

	Generalization of Quantum Walks
	Generalization using multiple independent 2 dimensional coins
	Generalization using a single higher dimensional coin

	Simulator software
	Currently available solutions
	Architecture
	Language choice
	High level design
	Graph models
	Simulators
	Running, configuration and result collection
	Availability

	Results
	Walks on the line
	Walks on the grid
	Walks on hypercube

	Conclusion
	Acknowledgements
	Bibliography

