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Abstract

In quantum mechanics, the wave function describes the state of a physical system. In the non-
relativistic case, the time evolution of the wave function is described by the time-dependent Schrö-
dinger equation. In 1982, D Kosloff and R Kosloff proposed a method [1] to solve the time-dependent
Schrödinger equation efficiently using Fourier transformation. The computational physics research
group, led by Géza I. Márk in the Nanotechnology Departement, Institute for Technical Physics and
Materials Science, Centre for Energy Research, in collaboration with Belgian researchers developed
a simulation method based on three-dimensional wave packet dynamics for the study of the electron
dynamics in nanosystems. A simplified, interactive two-dimensional version for educational purposes
was published in 2020 [2]. In this work, we demonstrate two improvements of the wave packed
dynamical simulation software: (i) the use of Graphical Processing Unit (GPU), which results in a
vast (up to 50x) increase in simulation speed, and (ii) the introduction of advanced visualization
techniques [3, 4] which are important to correctly interpret huge 4D space-time wave function
data sets obtained from the simulation. We used our implementation to simulate typical quantum
phenomena using wave packet dynamics. First, we tried the method on analytically describable
cases, such as the simulation of the double-slit experiment, and then we investigated the operation
of flash memory. We used raytraced volumetric visualization to render the resulting probability
density. In our work, we introduce the basics of wave packet dynamics in quantum mechanics. We
describe the used method in detail and showcase our simulation results.
For further information and animations, please visite
https://zoltansimon.info/src/content/research/wavepacketsim.html
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1 Introduction

In the first quarter of the 20th century Quantum Mechanics (QM) opened a whole new window
to understand our universe. Tamás Geszti, in his book [5] writes: ”learning QM is part of the
process of understanding the world, and the person who masters it, understands the world better”.
It is a standard view that while Albert Einstein’s General Relativity (GR) provides a model that
accurately describes the laws of nature governing large-scale phenomena [6], quantum theory excels
at atomic scale1. Although humanity has not yet accepted a single theory that would be capable
of modeling both the small and large, thus bridging the gap between QM and GR, there are many
use-cases where technology heavily depends on both theories. QM can be used efficiently to model
the behavior of atomic particles. It describes how electrons behave in the orbitals around the atomic
core and explains chemical reactions. It can be used to model the structure of molecules. QM made
it possible for humanity to make use of nuclear energy in power plants, thus creating a new and
efficient source of power. Computers –as we know them today– wouldn’t be possible without a deep
understanding of various quantum phenomena. These systems use transistors [7], which can also
be thought of as a product of QM.

In nanotechnology, it is crucial to make quantum mechanical calculations to predict –and, in
many cases, explain– the behavior of different nanostructures. One exciting field of study is the
science of single-layer materials [8]. These are also known as 2D materials. One such carbon
structure is called graphene [9, 10, 11]. This single-layered structure conducts heat and electricity
very efficiently, thus raising high hopes in many when it comes to possible use-cases. Nowadays,
quantum information science is getting a larger and larger audience [12]. Quantum Computing
promises a newer seen increase in computation capabilities due to the massively parallel nature of
quantum systems leveraging quantum superposition. Quantum Communication, on the other hand,
opens new possibilities for secure information exchange with efficient channel encoding. Although
both of the last two fields mentioned await technological evolution in order to be deployable at
scale due to a large number of technical challenges, they both show that QM has a lot of real-life
applications, and the spectrum of these will only become more colorful as technology evolves.

Inspired by the previously enumerated large amount of various fields of application, we set
the goal to study the behavior of quantum systems by computer simulation. Such simulations
are beneficial for scientists. They use such methods to accurately model the interaction between
particles and various potential fields. In order to accomplish this goal, we choose a method that
uses the Fast Fourier Transform (FFT) to efficiently calculate the time development of the quantum
mechanical wave function. In QM, the wave function describes the state of a physical system.
In the non-relativistic case, the time evolution of the wave function is described by the time-
dependent Schrödinger equation [13]. In 1982, D Kosloff and R Kosloff proposed a method [1] to
solve the time-dependent Schrödinger equation efficiently using Fourier transformation. In 2020,
Géza István Márk published a paper [2] describing a computer program for the interactive solution
of the time-dependent and stationary two-dimensional (2D) Schrödinger equation. Some details

1Under extreme circumstances such as in black holes macroscopic quantum phenomena are also present
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of quantum phenomena are only observable by calculating with all three spatial dimensions. We
found it worth stepping out from the two-dimensional plane and investigating these phenomena in
three dimensions. Géza István Márk and his colleagues have already used 3D calculations in their
research work [14, 15]. The difference is that their implementation uses solely the Central Processing
Unit (CPU) of a computer. For visualization of the resulting probability density so far, they used
the isosurface method. Our contribution mainly lies in leveraging the parallelization potential of
the modern Graphical Processing Unit (GPU), thus significantly boosting the calculation speed
by approximately a factor of 50 on our test hardware. We also apply state-of-the-art volumetric
visualization techniques to create pleasing and comprehensible visuals to analyze the probability
density evolution in 3D space. We believe that by combining the knowledge available for computer
visualization specialists and physicists we can arrive to something greater than the possibilities
available if each of us would be working only in his or her own domain of expertise. We write our
implementation with future extendibility in mind since we would like to continue our work and
develop a capable simulation platform that can be deployed as a tool for state-of-the-art scientific
research.

In Section 2 of this work, we start by discussing the theoretical background. Then, in Section
3, we proceed to describe the used Fourier method to simulate the time development of the wave
function. In Section 4, we provide an overview of the implementation details of our program. After
this, in Section 5, we showcase our simulation results. Here, we compare the result of simple,
analytically describable simulation scenarios to the mathematical model. At the end of Section 6,
we summarize our results in a short discussion.

2 Theoretical background

2.1 Beginnings of quantum mechanical wave dynamics

In this section, we would like to give a brief introduction to the theory of QM. In this summary of
physics history, we rely mainly on Tamás Geszti’s QM book [5]. For English literature, we would like
to point the reader’s attention towards the critically acclaimed book of Claude Cohen-Tannoudji et
al. [16].

In 1924, Louis de Broglie recognized that an electron moving with momentum of p = Mev can
also be thought of as the propagation of some kind of a matter wave with λ wavelength.

λ =
h

p
(1)

where h is called the Planck constant and equals to h = 6, 6 × 10−34 Js. This also explains the
discrete energy levels in Bohr’s model. The allowed orbitals are those where the wave is a single-
valued function and thus closes into itself after one full rotation of 2π radians. If we use polar
coordinates, this means that the wave has the same complex amplitude for coordinates α and
α+ n2π where n = 0, 1, 2, . . . . Here we can further modify equation 1 and arrive to

p⃗ = h̄k⃗ (2)
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where k⃗ is the wave vector and h̄ = h
2π is the reduced Planck constant. The amplitude of this vector

equals ∥k⃗∥ = 2π
λ , and its direction is perpendicular to the wavefront.

Experiments show that matter waves exhibit self-interfering behavior similar to electromagnetic
waves2. For example, the double-slit experiment, where a wave propagates through a barrier with
a pair of two narrow slits and consequently creates an interference pattern on a canvas placed
after the barrier, can be performed not only with light but a single electron as well. When the
experiment is performed with electrons, the canvas is replaced with a measurement device that is
able to register the incoming electron. By performing this experiment once, the measuring device
will only register the electron at a single location. The interference becomes noticeable only after
repeating the measurement multiple times since the distribution of the measured electron impact
locations converges to the interference pattern. This behavior is also referred to as wave–particle
duality because the particle interferes with itself, but also, there is only one single impact at the
measuring device for each iteration of the experiment. Another important experimental observation
is that if we create the linear combination of multiple matter waves and then the combined wave
evolves over time than the resulting wave is precisely the same as if the originally combined waves
would have evolved independently and we would only have combined the resulting waves. This
latter property was also true for electromagnetic waves, and its called the superposition principle.
Please note that although we keep comparing electromagnetic waves with matter waves, the two
are different phenomena. One significant difference is that interference of electromagnetic waves
happen due to different strength of electric and magnetic fields. In QM the wave function has a
complex value thus, it can interfere even when only the phase is different and the amplitude is the
same. Our goal in emphasizing the similarities is only to reinforce a possible intuition in those
perhaps more familiar with the world of electromagnetism.

2.2 Wave packet dynamics

Erwin Schrödinger introduced the concept of the Wave Packet (WP) to show that in limiting cases
QM gives back the classical particle model where small bullets are moving around and colliding.
This particle-like propagation of a WP of the wave is due to the superposition of waves with
different frequencies forming peaks. These waves extinguish each other for the most part, but at
some position and time coordinates, the amplitudes add up to larger amplitude. An example of
this is demonstrated in figure 1.

Ψk denotes the complex amplitude of a matter wave with k = 2π
λ wave number. The formula of

a plane wave propagating in positive x direction can be described in the form of equation 3.

Ψk(x, t) = ei(kx−ωt) (3)

Let’s calculate the superposition of waves with different wave numbers! We assume that the
angular velocity omega(k) depends on the k wave number and that the waves with different wave

2An electron always only interferes with itself while light waves coming from multiple light sources can also interfere
with each other.
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Figure 1: Superposition of cosine waves with different wavelength: the superposition forms a peak
at the x = 0 coordinate

numbers have various c(k) weights in the linear combination. This gives the following Fourier
integral:

Ψ(x, t) =

∫
k
c(k)sin[kx− ω(k)t] dk (4)

By analyzing this formula, we can determine the propagation velocity of the amplitude peaks.
In equation 4, the peaks form where and when the phase of the sine function is not dependent on
the k integration variable. In other words, the derivative of the phase with respect to k is zero.

d

dk
[kx− ω(k)t] = x− d

dk
ω(k)t = 0 (5)

By generalizing for all spatial coordinates and rearranging equation 5, we get the group velocity
of the wave.

v⃗group =
δω(k⃗)

δk⃗
(6)

By using the E := h̄ω and h̄k⃗ = p⃗ substitutions for the energy and momentum, we arrive at the
classically known formula for a particle of mass m

v⃗group =
δE(p⃗, r⃗)

δp⃗
=

δ

δp⃗

[
∥p⃗∥2

2m
+ V (r⃗)

]
=

p⃗

m
(7)

There are, however significant differences between the classical and QM model. The particle analogy
comes with its limits. In 1927, Werner Heisenberg formulated his uncertainty principle. This states
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that simultaneously, the position and the momentum of a particle can not be determined precisely.
Only with a specific ∆ precision. The result can be written in the form of equation 8.

∆x ·∆p ≥ h̄

2
(8)

A similar relation holds between time and energy.

∆t ·∆E ≥ h̄

2
(9)

2.3 The Schrödinger equation

So far, we know that atomic particles exhibit wave-like behavior, and in bounded systems, they can
absorb or release energy only in discrete quanta. These matter waves can interfere with each other,
and the superposition principle holds true. Along the way, we obtained a seemingly satisfactory
energy, momentum, and velocity concept. One last step is to, instead of real amplitudes we allow
complex amplitudes. This solves the problem of energy conservation.

All of these advancements led up to the formalization of the Schrödinger equation in 1926 by
Erwin Schrödinger [13]. Already in the 19th century, in the field of optics, it was common practice
to use linear partial differential equations to calculate light propagation. Linearity is a requirement
for matter waves as well, since by the definition of superposition a general equation that aims to
describe the behavior of matter waves adequately must be satisfied by the simple waves and also by
the linear combination of these waves. Let us write the Ψ plane wave as a complex-valued function

Ψ(r⃗, t) = ei(k⃗·r⃗−ωt) = e
i
h̄
(p⃗·r⃗−Et) (10)

First, let’s assume that our wave is propagating in free space. The total energy of the particle
consists only of kinetic part.

E =
p2

2m
(11)

We don’t know the equation for the wave function yet, but it must incorporate this relation between
the energy and momentum. In the wave function, both the energy and the momentum are in
exponent. To express them, we have to take the derivative of the function with respect to position
and time. The operation of calculating the partial derivative with respect to position is often
referred to as calculating the gradient vector and is denoted by the ∇ (”nabla”) symbol.

d

dt
Ψ(r⃗, t) = − i

h̄
E Ψ(r⃗, t)

δ

δr⃗
Ψ(r⃗, t) = ∇Ψ(r⃗, t) =

i

h̄
p⃗ Ψ(r⃗, t)

(12)

In the kinetic energy equation 11, we actually need the square of the magnitude of momentum. To
calculate it, we introduce the ∆ = ∇⃗ · ∇⃗ Laplace operator. By combining equation 11 and 12 we
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can arrive to the following linear differential equation

ih̄
d

dt
Ψ(r⃗, t) = − h̄2

2m
∆Ψ(r⃗, t) (13)

This is the Schrödinger equation for matter wave propagating in free space. Let’s generalize this by
eliminating the previous assumption that the total energy is solely kinetic. Now, we allow an V (r⃗)
localized potential energy to be an arbitrary function of location. Thus, the total energy becomes

E =
p2

2m
+ V (r⃗) = H(p⃗, r⃗) (14)

Here, we introduced the H notation to express that this is a form of the so-called Hamiltonian func-
tion named after William Rowan Hamilton, who used his formalism to describe classical mechanics
in the 19th century [17]. Using equation 14 to modify equation 13, we trivially arrive at the more
general form of the Schrödinger equation

ih̄
d

dt
Ψ(r⃗, t) = − h̄2

2m
∆Ψ(r⃗, t) + V (r⃗)Ψ(r⃗, t)

d

dt
Ψ(r⃗, t) = − i

h̄
ĤΨ(r⃗, t)

(15)

We can see that on the left side, we basically take the first derivative of the wave function with
respect to the time and on the right side we let a Ĥ = − h̄2

2m∆ + V (r⃗) operator affect the wave
function. By solving this differential equation and specifying an initial state, we can predict the
time development of a quantum mechanical wave function.

The only remaining question also meaningful for our simulation is that how exactly should we
interpret the resulting function? What’s the actual physical meaning behind the amplitude of the
wave? Experiments show that the square of the absolute value of the complex amplitude is the
probability density associated with the particle being found in a given infinitesimally small portion
of space at a given time. For convenience and to be sound with probability theory, we normalize
the amplitude of the wave function so that the velocity of the particle being found ”somewhere” in
space equals IP = 1. ∫

V
|Ψ(r⃗, t)|2 d3r = 1 (16)

3 Calculation method

3.1 Survey and comparison of available methods

In our simulation, we numerically solve the time-dependent Schrödinger equation. There are mul-
tiple available algorithms for this task. A widely used category of solving strategies are the Finite
Difference in Time Domain (FDTD) methods. This approach is also widely adopted to simulate
the solution of Maxwell equations [18, 19]. FDTD technique for the analysis of quantum devices
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(FDTD-Q) however exhibit numerical instability [20]. After a longer sequence of simulation steps,
the solutions diverge. There are various alterations to the basic method. One such method was
proposed by Min Zhu et al. [21] in the year 2014. Their algorithm is called the Runge-Kutta
High-Order Finite Difference in Time Domain (RK-HO-FDTD). In 2021, a follow-up paper [22]
demonstrated the superiority of RK-HO-FDTD over the basic FDTD-Q approach. In the same
year, Frederick Ira Moxley et al. [23] proposed another method based on FDTD-Q. These methods
solve the majority of problems related to FDTD-Q.

However, in our work, we use a different approach. Back in 1982, D Kosloff and R Kosloff
proposed a method [1] to solve the time-dependent Schrödinger equation efficiently using Fourier
transformation. The advantage of this algorithm is the high numerical stability of the time evolution
step. In the adopted FFT method, no signs of divergence are present even after a large number of
simulation steps. The time development step of the algorithm has a time complexity of O(N logN)
since it only uses six FFT runs (O(N logN) each) and three element-wise multiplication between
tensors (O(N) each). The amount of FFT runs and multiplications can be reduced further if we do
not want to read the results of the time development in each step. A significant speed-up can be
reached by using a parallelized implementation of the FFT algorithm as we did by using an efficient
GPU implementation.

3.2 Detailed explanation of the split-time Fourier method

In the following part, we would like to explain the FFT method in detail. Let us start by deriving
the formal solution of the 15 differential equation.∫ t

t0

d

dτ
Ψ(r⃗, τ) dτ =

∫ t

t0

− i
h̄
ĤΨ(r⃗, τ) dτ

Ψ(r⃗, t)−Ψ(r⃗, t0) =

∫ t

t0

− i
h̄
ĤΨ(r⃗, τ) dτ

...

Ψ(r⃗, t) = e−
i
h̄
Ĥ(t−t0)Ψ(r⃗, t0)

(17)

where Ψ(r⃗, t0) is a specified initial state and Ψ(r⃗, t) is the state after some δt = t − t0 time. The
problematic part is the Hamiltonian operator in the exponent. The kinetic and potential operators
can not be commuted in general. Hence, exponential can not be factored. We can decomposes the
exponential by the symmetrical unitary product [24, 25] as shown in the form 18.

e−
i
h̄
Ĥδt = e−

i
h̄
(K̂+V̂ )δt ≈ e−

i
h̄
K̂δt/2 e−

i
h̄
V̂ δt e−

i
h̄
K̂δt/2 (18)

The error of this approximation is O(δt3); therefore, we have to be careful with selecting a small
enough time resolution. When the potential energy is localized, the V̂ operator is a simple multi-
plication with V (r⃗) function; thus the middle part of the product is as follows

e−
i
h̄
V̂ δtΨ = e−

i
h̄
V (r⃗)δtΨ (19)
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The K̂ kinetic operator involves calculating the spatial derivative of the wave function.
Previously in equation 12 we have seen that calculating the spatial gradient ∇Ψ(r⃗, t) yields

multiplication by i
h̄ p⃗ = ik⃗. We only need to get the value of the wave vector. This is when the

Fourier transform comes into play, which transforms between real space and momentum space. The
following relation holds for the derivative of an arbitrary f function and its Fourier transform

ikF{f} = F{f ′} (20)

Taking the derivative in real space means multiplication by ik imaginary wave number in momentum
space. We work with the ∆ = ∇ · ∇ Laplace operator, so we have to multiply by (ik)2 = −k2. By
exploiting the linearity of the Fourier transform, we arrive at the following formula for the kinetic
energy part of the Hamiltonian function

K̂Ψ =
p2

2m
Ψ = − h̄2

2m
∆Ψ = − h̄2

2m
F−1{−k2F{Ψ}} (21)

where F−1 is the inverse Fourier transform. In momentum space, the k wave number is trivially
given as it can be thought of as the very coordinate the functions are parameterized with. Having
that said, it is essential to distinguish between ν frequency, λ wavelength, k wave number, and even
ω angular velocity. These relate as follows

k =
2π

λ
=

2πν

vgroup
=

ω

vgroup
(22)

where vgroup denotes the group velocity of the wave packet.
Actually, in equation 18, the K̂ kinetic energy operator is in the exponent multiplied by − i

h̄δt/2.
Using the knowledge gathered from equation 21, we can now write

e−
i
h̄
K̂δt/2Ψ = F−1

[
e
− i

h̄

(
− h̄2

2m

)
(−k2)δt/2F [Ψ]

]
= F−1

[
e−

ik2h̄δt
4m F [Ψ]

]
(23)

Before writing the pseudo-code, let us write the wave function as a function of discrete ij ∈
{0, 1, . . . , Nj − 1} coordinates where j ∈ {x, y, z, t} and Nj are the number of discrete grid points
along each axis.

Now r⃗x = ixδx, r⃗y = iyδy, r⃗z = izδz and t = itδt are the original spatial and time coordinates and
δj is the resolution of the different dimensions respectively. With the new discretized coordinates,
the Schrödinger equation 15 can be written in the following form

ih̄
d

dt
Ψ(ix, iy, iz, it) = −

h̄2

2m
∆Ψ(ix, iy, iz, it) + V (r⃗)Ψ(ix, iy, iz, it) (24)

Having a discrete data set, Discrete Fourier transform (DFT) can be efficiently implemented using
the Fast Fourier Transform (FFT) algorithm. The output of the simulation is the wave function.
The probability density can be obtained by calculating the square of the absolute value of the wave
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function for each grid cell which is the same as calculating the standard scalar product between ⟨Ψ|
and |Ψ⟩ vectors where ⟨Ψ| is the transposed complex conjugate of |Ψ⟩ as seen in equation 25.

p(r⃗, t) = |Ψ(r⃗, t)|2 = ⟨Ψ(r⃗, t)|Ψ(r⃗, t)⟩ (25)

Making use of formulas 18, 19 and 23 and plugging them into the formal solution of the Schrödinger
equation we can create an algorithm for the time development of the wave function. We will use
the Ψ to represent a complex-valued tensor where the elements of this tensor can be obtained by
using the ij discrete indices. The algorithm can be written in the form of the following pseudo code

Algorithm 1 Time advance algorithm

Ψ← initial state of the wave function
V ← localized potential
δt← time resolution
Nt ← number of time steps
for i ∈ [0, Nt) do

Ψ(1) ← FFT−1 [PK FFT [Ψ]]
Ψ(2) ← PV Ψ(1)

Ψ← FFT−1
[
PK FFT

[
Ψ(2)

]]
Visualize |Ψ|2

end for

Here PK(ix, iy, iz) ∼ e−
ih̄δt
4m [(2πix/Nx/δx)2+(2πiy/Ny/δy)2+(2πiz/Nz/δz)2] is the kinetic energy propa-

gator in momentum space and PV (ix, iy, iz) = e−
i
h̄
V (ix,iy ,iz)δt is the potential energy propagator in

real space. We used the discretized coordinates to express the same operations as in 19 and 23.
Please note that in the kinetic propagator’s case, it is important to follow the convention used by
the specific FFT implementation. The formula written here is not entirely correct. The FFT used
in our implementation puts the amplitude associated with the largest representable frequency of
1
2N in the middle of the tensor. In the second half of the tensor for each axis, the amplitudes are
for the negative frequencies in ascending absolute value so that the largest index represents the − 1

N
frequency. This means that we had to modify the definition of PK accordingly. One way to make
the correction is to check whether ij/Nj >

1
2 is true. If it is, then modify it like ij := N − ij .

3.3 Defining Gaussian wave packets

In the algorithm, first, we have to specify an initial state for the wave function. Erwin Schrödinger
introduced the concept of the Wave Packet (WP). A WP is a wavefront that propagates and reflects
as a classical particle would do and also exhibits all the wave-like behavior described by QM. It
bridges the gap between classical and quantum physics. The term Wave Packet Dynamics (WPD)
refers to the process of modeling QM systems by initializing WPs and observing the propagation,
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reflection scattering, and interference of the WP. In our work, we use Gaussian WPs. This proba-
bility density of this WP has Gaussian distribution [26], hence the name. The definition of such a
packet can be written in the following form

ψ(r⃗; a, r⃗0, k⃗0) =

(
2

πa2

)D
4

· exp
(
ik⃗0 · r⃗

)
· exp

(
−|r⃗ − r⃗0|

2

a2

)
(26)

where r⃗0 is the initial position (with the highest probability density), k⃗0 is the initial wave vector,
and D is the dimension, which is D := 3 in our simulation. We can obtain the width of the Gaussian
WP as ∆r = a

2 .

3.4 A simple trick to optimize the algorithm

If we do not want to visualize the probability density in each iteration, we can further optimize the
calculation by merging the first step of the nth iteration and the last step of the (n−1)th iteration.
If we omit the visualization step, we can do one forward FFT then perform a multiplication between
the moment space wave tensor and the P 2

K kinetic propagator calculated for a whole δt interval –
instead of the one used in Algorithm 1 calculated for δt/2 interval– then do the backward FFT.
The pseudo-code of this optimized algorithm is written below

Algorithm 2 Optimized time advance algorithm without visualization

Ψ← initial state of the wave function
V ← localized potential
δt← time resolution
Nt ← number of time steps
for i ∈ [0, Nt) do

Ψ(1) ← FFT−1
[
P 2
K FFT [Ψ]

]
Ψ(2) ← PV Ψ(1)

end for

3.5 Free space boundary condition

When working with DFT it is vital to take into account the boundary conditions of the transformed
region. The DFT implies a periodic boundary condition in which value at ij = 0 connects smoothly
to values at ij = 0 for each of the respective j ∈ {x, y, z} dimensions. If the data transform does
not satisfy this condition, unrealistic artifacts arise. One technique to battle this requirement is
to define a high potential wall on all the edges of the simulated volume so that the wave packet
bounces back and never reaches the problematic edge. This, however, limits the possible simulation
cases since we can not simulate scenarios where the wave packet would leave the volume. The wave
packet reflected by the boundary potential interferes with itself, thus potentially disturbing the
observation of the object of simulation. In our implementation, we used another approach called
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free space boundary condition. This fixes the issues arising from the periodic boundary condition
and the potential box. We extend the simulated volume beyond the observed part and outside the
visible box, and we create a draining potential. This draining potential gradually increases towards
the edge of the simulated volume. As the name suggests, its effect on the wave packet is that it
diminishes its amplitude. By initializing a high enough draining potential, the unrealistic artifacts
on the edge of the simulated volume are practically negligible. In equation 19, we have seen that the
potential propagator is a multiplication by a unit length complex number with phase proportional
to V (r⃗) localized potential. This normally only introduces a rotation on the complex plane. We can,
however incorporate the desired draining effect by introducing complex potential. Let us examine
what happens if a complex number has a complex phase!

ei|z|e
iγ

= ei|z|[cos(γ)+isin(γ)] = ei|z|cos(γ)−|z|sin(γ) = ei|z|cos(γ)e−|z|sin(γ) (27)

In equation 27, we showed that by defining an imaginary potential, we can reduce the magnitude
of the wave function if we then apply the potential propagator. In our simulation, we initialized
the draining potential to be zero in the observed region, and right from the corners of this box, it
begins to increase as a quadratic function of distance from the center of the simulated volume. It
reaches its maximum in the four corners of the simulated volume.

Figure 2: Calculation scheme used for the simulation of a Scanning Tunneling Microscope (STM)
investigation of a carbon nanotube [hivatkozás az 1998-as PRB cikkre]. The upper black ellipse is
the STM tip, the middle black ring is the cross-section of the nanotube, and the lower black region
is the support electrode. The red concentric circles show the imaginary potential with increasing
magnitude.
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4 Our implementation

4.1 Short summary of the functionality of our simulator

Using the Fourier method, we created a Python application simulating the time development of
the quantum mechanical wave function. We use ray tracing to visualize the resulting volumetric
probability density. The visualization requires the sampling of a 3D data set on a discretized grid.
This makes it impossible to fully reconstruct the wave function that we simulated using only a
finite resolution to begin with. In order to fight sampling artifacts, we deploy a state-of-the-art
triquadratic reconstruction filter recently proposed by Balázs Csébfalvi [4].

4.2 Technologies in use

We choose Python [27] as our programming language because there is a vast amount of helpful
tools implemented to use with it that specifically aim towards leveraging the difficulty of writing
mathematical and physics-related simulations. The majority of these tools are written in hardware-
friendly languages such as Fortran, C, or C++. However, they come with an easy-to-use Application
Programming Interface (API) that can be accessed from high-level programming languages. In these
modern languages, such as Python, one works on a higher abstraction level, usually not dealing with
memory management or pointer arithmetic. Out implementation heavily depends on the Numpy
library [28]. NumPy is a library that can be utilized to work efficiently with large arrays and tensors
performing computationally intensive operations. A similar library is SciPy [29], also used in our
program. For 3D visualization, we choose to use VisPy [30]. This library provides an excellent basic
set of features to handle virtual cameras and create scenes but also enables us to go deeper and
write our own GPU shader code. We made use of this to modify the default volume visualization
code to fit our needs.

4.3 GPU parallelization and Just In Time compilation

The Fourier method described in section 3 opens up the possibility to implement the simulation on
the GPU. Using GPU acceleration is one of our contributions to the already existing implementation
used by Géza István Márk and Péter Vancsó. The Compute Unified Device Architecture (CUDA)
toolkit is often used for parallel computational tasks implemented on the GPU [31]. It comes with
a powerful GPU based FFT implementation. To use CUDA with Python, we selected the CuPy
wrapping library [32] that provides abstraction over CUDA. We have used Numba to access Just In
Time compilation (JIT) features. JIT means that for some parts of the otherwise interpreted source
code, the compiler performs a runtime translation to native code. This code then runs efficiently
on the CPU. This feature is especially useful when iterating over large arrays. We utilize JIT
when initializing the WP, localized potential and propagators. For other purposes, we use multiple
other libraries such as Imageio, Matplotlib, toml, Pillow, Keyboard, Colorama, Tqdm, PyQt5, and
PyOpenGL. The sources for these libraries can be found on the Internet. We have listed the required
versions in a requirements.txt file in the project’s GitHub repository.
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4.4 About the program’s user interface

In its current state, our application has only a console interface, and it saves the resulting images
and videos into files. The reason that we have not prioritized the development of a graphical user
interface is that we think that terminal interfaces can still have their benefits even in 2023. An
application that only requires a terminal to function is more straightforward; thus, more effort can
be made to improve the core functionality. The audience of this software is scientists and engineers
in the first place. This is especially true in the early stage of development that we are currently
in. It already has, however a snapshot system that makes it possible to interrupt a more extended
simulation and later resume from the exact state where it was previously halted. This turned out
to be a very convenient feature, although since we use GPU acceleration, the simulation times are
generally much shorter. Our design philosophy dictated communicating as much information about
the simulated wave function to the user as possible. This direction can be thought of as controversial
since too much data can obfuscate the critical details, especially in a plain console print. We try to
battle this effect by using colorful prints and by saving the text into a log file so that the parameters
can be found even after the simulation has finished.

To specify the parameters of a simulation, we use a configuration file in Tom’s Obvious Minimal
Language (TOML) format [33]. The flexibility and universality of this data format made it an
overall good choice. We can use a single TOML file to set the resolution and dimensions of the
simulated volume, specify the parameters of the wave packet, and add an arbitrary number of
various potential barriers. In this file, we have parameters to configure the 3D visualization and
others.

4.5 Generated output

As we have mentioned earlier, the output of the program gets saved in files. The program creates
images, videos, and text files. The images can be thought of as higher-resolution snapshots from
the videos, but we also create images that do not correspond to any of the videos. Currently, we
generate five types of different images. We call these Canvas probability, Canvas dwell time, Per
axis probability density, Probability density 3D, and finally, Probability evolution. In each of these
categories, a sequence of images is generated for each run of the simulation. The interval at which
the state of the simulation is captured can be specified in the above-described configuration file.
Canvas probability is the ρ(r⃗, t) probability density in a specified plane intersecting the volume. τ(r⃗)
canvas dwell time is the integral of the ρ(r⃗, t) probability density over t elapsed time in a specified
plane intersecting the simulated volume. This can be formalized as

τ(r⃗, t) =

∫ t

0
ρ(r⃗, δ) dδ (28)

For now, the measurement plane used in the above-described methods has to be perpendicular to
one of the three principal axes to simplify the calculation. Both dwell time and probability density
can be used to visualize interference patterns after a wave packet passes through some kind of a
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potential barrier such as a double-slit or a diffraction grating, as we will show in Section 5. Per axis
probability density plots integrated probability densities for each axis. To obtain the plot of ρX(x, t)
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Figure 3: Calculation method of the Per axis probability density for a given x coordinate

per axis probability density, we integrate the ρ(r⃗, t) where rx = x and the other two coordinates
run across their domain. Equation 29 gives the formula for calculating this measurable for the X
axis.

ρX(x, t) =

∫
Y

∫
Z
ρ(r⃗, t) dydz (29)

Figure 3 attempts to provide further intuition. We also overlap the plot of the potential barriers
on the same graph to understand the changes in the propagation of the wave packet caused by the
localized potential. This type of plot can provide helpful information for most simulation cases. It
is beneficial when we want to simulate the behavior of three one-dimensional particles in a three-
dimensional configuration space. In this case, the projected probability density along each axis
represents the wave packet of a different 1D particle. It is possible to initialize a potential that
models the collision between these three particles. This creates the effect that the particles interact.
In the configuration file, there is a possibility to set whether a potential barrier should appear in
the visualization. By disabling the visualization of the interaction potential, we can get rid of any
hardly conceptualizable elements of the resulting potential and maybe focus on a wall or a harmonic
oscillator instead. Probability density 3D is the most self-explanatory output of the system. Here,
we take the probability density as a 3D volumetric data set and visualize it using ray tracing. Ray
tracing is the method where we conceptually shoot rays of light from the virtual camera through
the visualized volume. Figure 4 explains the concept of ray tracing. For each pixel of the image,
there is exactly one ray. We progress along the ray in discrete steps, and at each step, we sample
the data set. The data read from the volume usually has a single intensity value. We interpret the
data using a transfer function that determines the color and opacity that should be associated with
the intensity. The color and opacity are then combined along the ray, resulting in the final color and
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Figure 4: Visual explanation of the ray tracing method: we sample the 3D data set along rays shot
from the virtual camera

opacity value for the image’s pixel. The operator that recursively combines the color and opacity
values is called under operator. For recursive calculation of the An opacity in nth step along the
ray, it can be written in the form of

An = An−1 + αn(1−An−1) (30)

where An−1 is the opacity calculated at the previous step and αn is the local opacity at the nth
step. A similar equation could be written for red, green, and blue (RGB) color channels. If we
would only use the colors obtained by simply stepping through the sample points, the look of the
probability density would be rather dull. We also utilize approximated gradient vectors. One can
calculate these vectors by taking the central difference using six additional samples around the
currently sampled point. (We, however, deployed a better method described later.) The gradient
vector points towards the direction in which the probability density increases the fastest. If we
make the analogy that a solid body object also has gradient vectors right on the edge of its surface
so that these vectors point towards the inside of the object perpendicular to the surface, we can
make the connection between gradient vectors and surface normals. Normal vectors of a surface are
unit-length vectors pointing towards the outside world from the surface and are also perpendicular
to the surface. Normal vectors can be expressed as negated and normalized gradients. Normal
vectors are often used in various surface shading models since they give a good description of how
surfaces reflect light. Even though our probability density has a much less clearly defined gradient,
this technique can still be used to obtain an approximated normal vector. If this vector is sufficiently
defined (the magnitude of the gradient is not too close to zero), then we can use a simple shading
model such as the Blinn-Phong reflection model [34] to enhance our visuals. We even use the
length information of the gradient to fade between the shaded and unshaded look. We would like to
mention that in our previous works, we have experimented with more physically plausible shading
techniques, such as applying the Cook-Torrance Bidirectional Reflectance Distribution Function
(BRDF) [35]. This, however, has not yielded good results for volumetric visualization since surface
imperfections are calculated into the model; thus, the generally fussy nature of volumetric data
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sets results in an overall dark look. The simple Blinn-Phong model, however, is cheap to compute
and provides sufficiently strong specular highlights while it’s still easy to parameterize. For most
of our simulations, we use a total simulated volume of 512 × 512 × 512 data points. We leave the
outer half of the total volume to accommodate the draining potential described in the last part of
section 3. This means that so far, we only visualize 50% of the stored data set: 256 × 256 × 256.
In the future, we may experiment with reducing the space used up by the draining potential.
Until then, we rely heavily on good reconstruction filters to get rid of the aliasing effects visible
by sampling the data set of relatively low resolution. We utilize Balázs Csébfalvi’s reconstruction
filter [4]. This method provides consistent gradient estimation, that is, the analytic gradient of
the reconstructed function. It has an approximation order of three, and it is also C1 continuous.
This method evaluates eight trilinear samples to calculate the intensity and the gradient for a given
point. In the current generation of GPUs trilinear filtering can be efficiently evaluated using the
built-in sampling routines. The eight is only one more sample compared to the seven used in the
less advanced intensity plus central difference technique, and we also get better results, as shown
in the referred paper.

The last type of the five different image outputs of our program we call Probability evolution. To
create this output, we divided the visible region of the simulated volume into separate partitions.
On these images of this type, we display a plot where we integrate the probability density over these
regions following equation 31.

IP(t) =

∫
V
ρ(r⃗, t)d3r (31)

Conceptually, this gives us the probability of the event of the particle being found in these spatial
regions. It is also allowed to specify overlapping regions. By doing so, we only get the probability
of non-excluding events. We prefer to create a measurement region for the entirety of the visible
volume. This is very informative when the particle leaves the visible parts. Hence, the probability
of the particle being found somewhere inside the visible part drops below one. Note that modeling
such scenarios is made possible by using the draining potential.

Besides the sequence of images, our program also renders two animations in MP4 format. One
is created from a sequence of images rendered as in the Probability density 3D sequence. The other
is the animated version of the Per axis probability density sequence. The rate at which the state of
the simulation is captured as an animation frame and the playback frame rate can be configured
separately.

4.6 Performance test

We measured the performance of our application. We used a personal laptop to run and test the
program. The system specification of our computer is summarized in figure 5. First, we tried a
CPU-only version of our simulator to compare the results with the GPU accelerated implementation.
The results of the comparison can be found in figure 6. Here, we tested three different configurations
with varying resolutions. We measured the average iteration count per second. The test shows that
by using GPU acceleration, we obtained significant speed up over the CPU-only implementation.
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CPU AMD Ryzen 5 6600H with Radeon Graphics 3.30 GHz

GPU NVIDIA GeForce RTX 3050 Ti Laptop GPU

RAM 16 GB

OS MS Windows 11 64-bit

Figure 5: System specification of the used test hardware

Input size
CPU-only Avg.
[iter/s]

GPU accelerated
Avg. [iter/s]

Avg.
speed up

128× 128× 128 1.1 11.5 ×10.45
256× 256× 256 0.09 6.5 ×72.22
512× 512× 512 0.01 0.5 ×50.00

Figure 6: Results of a performance test using a CPU-only and a GPU accelerated version of the
application averaged

5 Results

5.1 General approach and the system of units

We used our software to perform various WPD simulations. In this section, we present the results
of some of these simulations. We will shortly introduce the simulated scenarios. We also want
to provide some formulas to validate the correctness of some of the simpler scenarios analytically.
Our simulator uses the Hartree atomic units [36]. Every quantity in the upcoming part should
be interpreted as such. This unit system makes it convenient to deal with quantities at atomic
scale. You can find animations showing the time evolution of WPs simulated by our software on
https://zoltansimon.info/src/content/research/wavepacketsim.html. From this web page, you can
also navigate to the GitHub repository of our project, where all our source code is available for
download.

5.2 Double-slit experiment

First, we would like to present the simulation results of an electron scattering experiment. Scattering
of a particle happens when the WP of the particle passes through some kind of a barrier with holes
in it. In our simulation, we can model the barrier as a localized potential. The WP arrives from
one side of the barrier. While passing through this barrier, it scatters, and some of the WP gets
reflected back. The portion of the WP that passed through –suffering scattering– continues forward
and consequently arrives at a measuring device3. In our simulation, our measuring device is a virtual

3In scattering and diffraction experiments we can make the distinction between a near field and far field solution.
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canvas where we measure the probability density. A simple scattering scenario is the double-slit
experiment. Here the barrier is a potential wall with two narrow parallel slits. The WP passes
through these slits. According to the Huygens–Fresnel principle in scattering experiments, we can
approximate the wave function after the barrier as concentric waves emitted from the slits or holes
of the barrier. This gives a simple enough model to predict the shape of the interference pattern
forming on the canvas. We would like to validate the distance between the stripes in the interference
pattern. To calculate the distance between the probability density peaks, first, we have to get a
formula for the intensity on the canvas.

I(r⃗) = I0
sin2

(
πN dy

λL

)
sin2

(
π dy
λL

) (32)

where N is the number of holes on the barrier (in double-slit experiment 2), d is the distance
between the center of the holes, L is the distance between the canvas and the barrier λ is the
wavelength of the wave and y is the location on the canvas. We performed the simulation using
L = 30 Bohr radii, d = 4.0 Bohr radii, λ = 2π

3 ≃ 2.1 Bohr radii with two slits. The width of
each slit was a small enough value of 1.0 Bohr radii. Different stages of double-slit simulation can
be seen in figure 7, where we have used ray tracing to visualize the probability density and the
potential. The interference pattern is visualized in figure 8 on a canvas of size 60× 60 Bohr radius.
We compared the simulated pattern and the pattern predicted by the Huygens–Fresnel principle.
It can be seen that the two patterns are very similar. The animation of this simulation can be
accessed on https://www.youtube.com/watch?v=16M21MPFea0.
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Figure 7: Stages of the double-slit experiment: before, during, and after passing through the double-
slit
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Figure 8: Comparison of the simulated (above) and the analytically predicted (below) interference
pattern during double-slit experiment
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5.3 Diffraction by optical grating-like potential

Many different forms of diffraction can be explained using QM. The scale at which diffraction
happens ranges from the scale of subatomic particles to larger molecules. Measuring diffraction
patterns is a handy tool in the hands of scientists. It provides information about the object that
caused the diffraction. At this point, it is essential to emphasize that the diffraction of light is a
different phenomenon from the diffraction of matter waves since light is an electromagnetic wave.
With that said, the fact that particles are not electromagnetic waves but still exhibit wave-like
behavior, as discussed in Section 2 makes this experiment even more interesting. Note that in
equation 32, the y is a one-dimensional coordinate. Indeed, the double-slit experiment can be fully
described using only two spatial dimensions, and the diffraction pattern forms in a single dimension
perpendicular to the propagation direction of the wave. This is because the localized potential in
this scenario is independent of the z coordinate. To make use of all three simulated dimensions,
we also modeled diffraction on diffraction gratings. In optics, a diffraction grating is a periodic 2D
structure that diffracts light [37]. In QM, such gratings can also be utilized to diffract wave packets.
The holes between the potential nodes behave like the holes in the double-slit experiment. We
put 11 nodes in each direction, forming a rectangular grid. We experimented with various lattice
constants (distance between adjacent grid points). Here, we present two simulations. In the first
simulation, each node has a Gaussian potential distribution and a maximal potential of Vmax = 8
hartree. The distance between adjacent grid points is d = 4 Bohr radii. In the second simulation,
each node has a Gaussian potential distribution and a maximal potential of Vmax = 25 hartree.
The distance between adjacent grid points is d = 8 Bohr radii. The canvas distance is L = 30 Bohr
radii, and the wavelength of the WP is λ ≃ 2.1 Bohr radii for both simulations. Note in both cases

the kinetic energy of the WP E = p2

2m = h2

2λ2 ≃ 4.5 hartree is less than Vmax. Otherwise, the grating
would not impact the propagation of the WP sufficiently. In figure 9, we visualized different stages
of the time development of the first simulation, and 10 showcases stages of the second simulation.
Both sequences of rendered images make use of the ray tracing visualization method.

During the simulation, many interesting interference patterns arise. We showcase some of these
for the 4 Bohr radius lattice constant case in figure 11 and for the 8 Bohr radius lattice constant
case in figure 12. The animations showing the results in motion can be found on https://youtu.be/
KCE5xqm-diQ?si=-kzjWvaw8zOcAz4C and https://youtu.be/YCadOpsx9y8.
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Figure 9: Stages of the diffraction grating experiment using a grating with lattice constants of 4
Bohr radii: during, right after, and later after passing through the grating
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Figure 10: Stages of the diffraction grating experiment using a grating with lattice constants of 8
Bohr radii: during, right after, and later after passing through the grating
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Figure 11: Two stages of interference patterns forming on the measurement canvas during diffraction
grating simulation using lattice constant of 4 Bohr radii

Figure 12: Two stages of interference patterns forming on the measurement canvas during diffraction
grating simulation using lattice constant of 8 Bohr radii
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5.4 Many-body interactions

One interesting use case of a higher dimensional WPD simulator is that the higher dimensional space
can be used to model the interactions between multiple lower-dimensional particles. For example,
our 3D simulation is capable of the simulation of three 1D particles. To do this, we have to define
special interaction potential. To create such potential, we have to think about the coordinates in the
higher dimensional configuration space as the coordinates of the lower dimensional space describing
the location of the lower dimensional particle. If the potential energy affecting all particles can
be expressed as a V (xa, xb, xc) function of the location of particle A and B and C, then we can
reinterpret this function as the V (r⃗) localized potential function used in the potential propagator
in equation 19. Note that here r⃗ becomes (xa, xb, xc). To model the interaction between the three
1D particles, we initialized a linear combination of two types of interaction potentials. One is
proportional to 1

|xi−xj | where i, j ∈ {a, b, c} and i ̸= j and the other is a hard interaction that

takes its maximum if the particles approach each other inside an ϵ radius otherwise it is zero. To
prevent blotting of the Gaussian WP we also initialized a harmonic oscillator potential. This helps
because the Gaussian WP is the eigenstate of the harmonic oscillator. The potential for a harmonic
oscillator is given in the following form

V (x) =
mω2

2
x2 (33)

where m is the oscillating mass and ω is the angular frequency of the oscillation. Our first sim-
ulation of 1D particles is somewhat similar to the classical Newton’s cradle [38] in the sense that
it demonstrates momentum transfer between multiple particles. We created a scenario where par-
ticle A starts at 25 Bohr radii away from the center of the oscillator where the potential energy
is maximal; thus, it accelerates towards the other two particles (B and C), consequently transfer-
ring the momentum to particle C on the far right. For this experiment, the interaction potential
consists only of the hard interaction. The angular frequency of the oscillator was selected to be
ω = 2π

40 ≃ 0.1571 rad·hartree
h̄ . After the momentum transfer, particle C propagates towards the

maximal potential of the oscillator on the far right. Particle B stays in place since it serves only
as a medium in the momentum transfer. The momentum gained from particle A was immediately
given to particle C. When all the kinetic energy of the moving particle is transferred to potential
energy, then it turns back. The oscillation with the momentum transfer between the particles con-
tinues. Different phases of this simulation can be observed on the per-axis visualization in figure 13.
The corresponding animation can be found on https://youtu.be/zOiYACVOssU. Please note that
particle C converts all of its kinetic energy to potential energy right at the half of the first period
of the oscillation t = 40/2 h̄

hartree = 20 h̄
hartree . This means that the harmonic oscillator functions

correctly.
Now, let us repeat this experiment, but now we place a finite potential barrier in the middle

of the oscillator. In Tamás Geszti’s book [5], we can find that the probability of a particle with E
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Figure 13: Stages of the interactions between 1D particles in harmonic oscillator: initial state,
particle A giving momentum to particle C, particle C reaching maximal potential and turning back

energy tunneling through a d thick barrier of V0 potential can be expressed in the following form

IPtunnel =
1

1 +
V 2
0

4E(V0−E)sinh
2(κd)

(34)

where κ =
√
2m(V0 − E) /h̄ is determined by the energy of the incoming WP. Energy is conserved,

so E = V (xA). We solve for IPtunnel =
1
2 . One possible solution is V0 ≃ 9.8 hartree and d ≃ 0.3

Bohr radius. Particle A gives its momentum to B as before. With these parameters, approximately
half of the probability density of particle B tunnels through the barrier, giving its momentum to
particle B on the next side of the wall. This causes the C to start moving with a probability of
approximately 1

2 . What we just described is called the entanglement of the states of particles A, B,
and C. Let’s perform a measurement to determine the location of particles A, B, and C shortly after
the first momentum transfer could have happened. If we would measure particle A to be located in

28



the middle of the harmonic oscillator, that means that it gave its momentum to particle B and B
has tunneled through the finite potential barrier. If B tunneled, that also means that beyond the
barrier, it collided with particle C, consequently transferring all its kinetic energy to C. On the
contrary, if the result of the measurement determining the location of particle A would have shown
that particle A bounced back from B, that means that B did not tunnel through the barrier. This
also means that particle C did not receive any kinetic energy and stayed stationary right beyond
the barrier. The measurement of the state of one entangled particle determines the outcome of the
measurement of the other entangled particles. Real-life experiments are sound with this thought
experiment [39]. The probability density plot can be observed in figure 14. The animation of this
simulation can be found on https://youtu.be/IVb mpzmuYA.

Figure 14: Stages of the interactions between 1D particles in harmonic oscillator with finite potential
barrier: initial state, particle A giving momentum to particle C with approximately 0.5 probability,
particle C reaching maximal potential and turning back with approximately 0.5 probability
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5.5 Modeling a flash memory cell

Our last group of simulations tries to model the working of a flash memory cell. Flash memory is
used extensively in many modern electronic devices such as smartphones, laptops, or tablets. The
general structure of a cell is visualized in figure 15. The structure of a flash memory cell resembles
a Metal–oxide–semiconductor field-effect transistor (MOSFET) [40]. The difference is that the
memory cell has two gates: the control gate, which is connected to a control line similarly to regular
transistors, and the floating gate, which is insulated from all sides by oxide layers. Both the control
gate and the floating gate are made out of conducting material (metal or polysilicon). In figure 15, it
can be seen that between the control gate and the floating gate, there is a thicker potential barrier.
This prevents the flow of electrons between these two parts. Only the Coulomb potential induced
by the electrons on the control gate must be felt by the electrons on the floating gate. A flash
memory cell stores information by trapping electrons on a floating gate. The reading of a memory
cell is done by inducing a current through the channel between the source and drain. If there are
electrons trapped on the floating gate, they create an electric field affecting the substrate. The
substrate is made out of semiconducting material. (Generally silicon.) A semiconductor changes
conductivity based on the electromagnetic field. If there are electrons on the floating gate, the
channel between the source and drain has higher resistance. By measuring the current through
this channel, the information about the state of the floating gate can be retrieved. This is used
to store bits of information. In our model, we simulate one single cell, and this cell only stores a
single bit of information. We only model one single electron that can be trapped on the floating
gate. The writing and flushing of the flash cell are performed by applying voltage on the control
gate, inducing a strong enough electric field that the electron can tunnel through the potential
barrier between the floating gate and the channel. For the writing and flushing to be possible,

Source Drain
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Thin potential barrier

Thick potential barrier

Figure 15: Schematic structure of a flash memory cell

the thickness and height of the oxide layer –consequently, the potential wall– between the floating
gate and the substrate must be chosen carefully. This barrier must be thick enough to prevent
unwanted tunneling when no voltage is applied to the control gate. After the control gate fills with
electrons, the Coulomb potential created by those electrons makes an overall slope in the potential
barrier created by the oxide layer. The potential level inside the floating gate does not acquire a
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slope since it is made out of conducting material, hence its equipotential. This slope is added to
the potential barrier, thus changing its shape. The previously rectangular barrier now acquired a
triangular outline. More importantly, the d width of the barrier gets reduced. This increases the
probability of the electron in the floating gate tunneling out from the gate through the thin oxide
layer into the substrate. This phenomenon is called Fowler–Nordheim tunneling [41]. Figure 16
visualizes the principle of this effect. In our flash memory cell simulation, we initialized a potential
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Figure 16: Fowler-Nordheim tunneling: on the upper image there is no Coulomb potential; on the
image below Coulomb potential changes the shape of potential barrier causing tunneling

wall representing the barrier between the floating gate and the substrate. Our simulation deals with
only one electron. To simulate the flushing of the gate, we initialize the location of this electron to
be inside the floating gate. We add a Coulomb potential that decreases inside the thin oxide layer
towards the substrate. We initialized the barrier with a height of V0 = 10 hartree and width of
d = 4.0 Bohr radius. We surrounded the floating gate area with thick potential barriers from the
remaining five sides to prevent tunneling in unwanted directions. However, we excluded these from
the visualization to make the electron’s probability density visible from the outside. We model the
charge on the control gate as a uniformly charged infinite sheet. This way, the Coulomb potential
induced by a negatively charged control gate acting on an electron inside the oxide can be described
by the following formula

VC =
σ

2rϵ
(35)

where ϵ is the dielectric permittivity of the oxide, σ is the surface charge density at the control
gate, and r is the distance from the control gate. Inside the floating gate, the potential stays zero.
On the thin oxide layer between the floating gate and the substrate, the slope of the potential has
to be significant enough so that the probability of tunneling increases. We initialized the Coulomb
potential to create a steep enough slope at the start of the oxide. For this, we set the charge density
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to 600 elementarycharge
(Bohrradius)2

and the thickness of the oxide between the control gate and the floating gate

to 10 Bohr radius. This is significant because although the gate is on equipotential, right after
the gate, the Coulomb potential continues to decrease. For simplicity, we choose ϵ to be equal
to one. With this setup the derivative of potential at the start of the oxide is V ′ = d

dr
σ
2rϵ =

− σ
2r2ϵ

= − 600
2·102·1 = 3 hartree

Bohr radius . The potential barrier between the floating gate and the substrate
was chosen to be 1 Bohr radius thick and 8 hartree high. An electron inside the floating gate
would have some kinetic energy, so we gave it an initial momentum of 3 h̄

Bohr radius . We ran the
simulation with the Coulomb potential turned on and off and compared the probability evolution
plots. Figure 17 shows the flushing of the floating gate with the Coulomb potential enabled. The
probability of the electron being found on the floating gate is decreasing. The step-like nature
of the plot is caused by the bouncing of the wave packet inside the gate. Also, note that the
probability of the particle being found inside full volume is decreasing. This is because we left
the underside of the substrate open to prevent unwanted reflections from that barrier. In that
direction, the tunneling particle can leave the substrate freely. In our simulation, the parts of
the WP leaving the visualized area get absorbed by the draining potential. At first glance, the
rate at which the particle leaves the gate seems slow. Bear in mind that we are working with
atomic units. Figure 17 shows that after 40 h̄

hartree ≃ 0.96femtoseconds the probability of the
particle located on the gate decreased by 10%. In figure 18, however, the electron stays on the gate

Figure 17: Flushing of the floating gate: the probability of the particle being found on the floating
gate is gradually decreasing

since we disabled the Coulomb potential. For the flushing of the gate, we also provide ray-traced
visualization of the flash memory cell simulation. This can be observed in figure 19 and in animated
form on https://youtu.be/0-FTkSJgPPs?si=sl5k4ubo8XstPJ1b. In these images, we only visualize
the potential barrier between the control gate and floating gate (top green layer), the single electron
trapped inside the floating gate (with red), and the potential barrier between the floating gate and
substrate (lower green layer). The simulation also incorporates the remaining walls around the
floating gate and the Coulomb potential.
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Figure 18: Storing the electron on the floating gate: there is no Fowler-Nordheim tunneling

Figure 19: Flushing a trapped electron from the floating gate of a flash memory cell: initial state;
first tunneling; after multiple bounces inside the gate
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6 Discussion

In our work, we wrote about simulating the time development of the quantum mechanical wave
function in 3D space. Our accomplishments are the following

� We adopted a simulation method that uses the Fourier transform as a subroutine to efficiently
calculate the solution of the time-dependent Schrödinger equation.

� As an improvement over Géza István Márk’s implementation, we ported the Fast Fourier
Transform to the Graphical Programming Unit, thus reaching a major speed-up of a factor of
50 for some cases.

� We implemented the draining potential technique to allow longer simulation scenarios without
the forming of unrealistic reflections and interference patterns.

� We combined state-of-the-art volume visualization techniques to enhance the visual quality of
the resulting probability density images.

� We used multiple alternatives to visualize the probability densities, including canvas prob-
ability density, good for visualizing diffraction, the per axis approach that is handy when
we do configuration space simulations or the probability evolution used in the flash memory
simulation.

� We used our simulator software to run various Wave Packet Dynamical simulations ranging
from basic diffraction scenarios through simulation of lower dimensional particles in configu-
ration space up to a more advanced case of simulating the writing and flushing sequence of
a flash memory cell. For some of these scenarios, we provided analytical validation methods
such as the one for the interference pattern of the double-slit experiment, the easily testable
periodic time of the harmonic oscillator, or even the probability of the wave packet tunneling
through barriers.

We see our work as a successful entry into the world of quantum mechanical wave packet dynamics
and a definitely good starting point for further research. We believe that the vast amount of
application of quantum mechanics speaks for itself when the question is whether this research is
important or not. Another motivation to do wave packet dynamical simulations is the Nobel prize
winning research of Dr. Ferenc Krausz. Attosecond physics opens a new frontier in understanding
our universe. Doing computer simulations and comparing the results with laboratory experiments
can be a powerful strategy to make new discoveries. We already have multiple ideas on how to
improve and append the current method. One obvious direction for development is to improve the
user interface and to create a graphical interface besides the current terminal-based interface. In the
future, we want to make it possible to calculate the eigenstates of the localized potential. This would
require the calculation of the Fourier transform in the time domain to obtain the energy state of the
system. Then, iteratively converge towards the eigenstate. There is also a possibility to incorporate
electromagnetism into the Hamiltonian operator. Making this work would also be a very exciting
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project. We have simulated 1D particles in configuration space. To expand on this idea, we could
use higher dimensional simulations to model the interaction between multiple multidimensional
particles. To simulate two 2D particles, a 4D configuration space would be required. Similarly, to
simulate two 3D particles, a 6D configuration space is needed. If we would like to simulate such
higher dimensional spaces, more tricks are necessary since the data sets would be too large to fit
into the GPU’s memory. From a visualization point of view, there are also many possibilities to
improve. As seen in this work, there is room for even better reconstruction filters and clever ways
to use the limited resolution. We are very hopeful about the future research potential of this topic
and are very eager to continue the fruitful work.

7 Acknowledgement

I would like to thank my advisor, Dr. Balázs Csébfalvi, who has always been very supportive and
open to my silly ideas. One such idea of mine was to begin to work on wave packet simulation. I am
immensely grateful for the work of Dr. Géza István Márk and Dr. Péter Vancsó as my supervisors
and as first-hand sources about wave packet dynamics. Without their help, this work wouldn’t
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