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Kivonat

A technológia fejlődésével egyre több kritikus területen alkalmaznak szoftver alapú megol-
dásokat, ilyen esetekben azonban a szoftver hibás működése akár katasztrofális következ-
ményekhez is vezethet. Fontos feladat tehát a helyesség ellenőrzése és a hibák megtalálása
lehetőleg már a fejlesztés korai fázisaiban is.

Kritikus rendszerek tervezése során gyakran használnak magas szintű modellezési
nyelveket. A viselkedés leírására elterjedten használt az állapottérkép formalizmus, amely
különösen alkalmas kritikus reaktív rendszerek tervezésének támogatására.

Modellek ellenőrzésére többféle megközelítés is ismert, amelyek közül a formális ve-
rifikáció alkalmas a modellek összes viselkedésének felderítésére és ellenőrzésére. Többféle
formális temporális logikai nyelv is rendelkezésünkre áll a követelmények megfogalmazásá-
ra, azonban kevés eszköz támogatja ezeknek a kifejező – ezáltal mérnökök által is könnyen
használható – temporális logikáknak a használatát. A lineáris idejű temporális logikai
specifikációk ugyan nagyon kifejezők, de ellenőrzésük különösen számításigényes feladat,
emiatt az ellenőrzési módszerek hatékonyságának növelése állandó kihívás. A formális ve-
rifikáció alkalmazásának másik kihívása, hogy alacsony szintű matematikai modelleken
működik, és ez megnehezíti a mérnöki alkalmazást.

Munkám célja, hogy egy olyan formális verifikációs algoritmust adjak, amely támo-
gatja a lineáris idejű temporális logika használatát a verifikáció során. A hatékonyság
érdekében egy absztrakció alapú algoritmust fejlesztettem, amely lehetővé teszi adatvezé-
relt reaktív rendszerek hatékony verifikációját is. Megközelítésemet egy mérnöki tervező
eszközbe is integráltam, ezáltal lehetővé téve az új megközelítés mérnöki alkalmazását.
Az elkészült algoritmust az egyetemen fejlesztett formális verifikációs keretrendszerben
valósítottam meg, így támogatva a keretrendszer összes többi bemeneti formalizmusát is
- többek között szoftverek forráskód alapú verifikációját is.

Az elkészült algoritmus hatékonyságát a szoftverellenőrzés területének egyik szabvá-
nyos benchmarkján vizsgáltam meg.
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Abstract

With the rapid advancements of technology, more and more critical areas see the in-
troduction of software-based solutions, where faulty behavior of the software can have
catastrophic consequences. This means identifying faults and proving correctness are cru-
cial parts of the development of such systems and should be done as early in the process
as possible.

High-level modeling languages are often used when designing critical systems. The stat-
echart formalism is a commonly used way of describing behavior and is suitable for the
modelling of reactive systems. Several approaches exist to verification, from which formal
verification is capable of fully exploring and verifying the behavior of a system. Various
temporal logical languages exist, but not many tools support the use of expressive – and
thus easy-to-use – linear temporal logics. Linear temporal logical specifications, while be-
ing particularly expressive, lead to a computationally demanding verification task, making
the improvement of the performance of such techniques a permanent challenge.

My work aims at creating a formal verification algorithm that supports the use of linear
temporal logic. My algorithm is based on abstraction for efficiency, enabling the verifica-
tion of data-driven reactive systems as well. I integrated my solution into a modelling tool,
creating a way for engineers to utilize my approach in real-world projects. I implemented
my tool using a model verification framework developed at the University, supporting all
input formalisms - for example, source code based analysis - of the framework.

I evaluated the efficiency of the implemented algorithm using a standard software verifi-
cation benchmark.
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Chapter 1

Introduction

With the rapid advancements of technology, more and more critical areas see the in-
troduction of software-based solutions, where faulty behavior of the software can have
catastrophic consequences. This means identifying faults and proving correctness are cru-
cial parts of the development of such systems and should be done as early in the process
as possible.

High-level modeling languages are often used when designing critical systems. The stat-
echart formalism is a commonly used way of describing behaviour and is suitable for the
modeling of reactive systems. Several approaches exist to verification, from which formal
verification is capable of fully exploring and verifying the behavior of a system. It seems
however, that high-level modeling tools that are suited for engineering work and efficient
formal verification tools rarely intersect. Various temporal logical languages exist, but not
many tools support the use of expressive – and thus easy-to-use – linear temporal logics.
Linear temporal logical specifications, while being particularly expressive, lead to a com-
putationally demanding verification task, making the improvement of the performance of
such techniques a permanent challenge.

In this thesis I present my formal verification algorithm that supports the use of linear
temporal logic. My algorithm is based on counterexample-guided abstraction refinement
for efficiency, enabling the verification of data-driven reactive systems as well. I integrated
my solution into a modeling framework, creating a way for engineers to utilize my approach
in real-world projects. I implemented my tool using a formal verification framework devel-
oped at the University, supporting all input formalisms - for example, source code based
analysis - of the framework.

I evaluated the efficiency of the implemented algorithm using a standard software verifi-
cation benchmark and engineering models.

1.1 The structure of this thesis

The structure of this thesis is the following. Chapter 2 presents the theoretical concepts
on which I based my solution. Chapter 3 details the theoretical advancements I made. In
Chapter 4 I provide details about my implementation. Chapter 5 presents benchmarking
results of running various model checking tasks. In Chapter 6 I draw the conclusions of
my work and lay down possible paths to continue.
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Chapter 2

Background

In this chapter I briefly present the theoretical concepts on which I based my solution. In
section 2.1 I introduce model checking.

Section 2.2 is a summary of the formalisms I use to model the systems I intend to verify.
Kripke structures (Section 2.2.1) provide a strong foundation on top of which many of the
model checking methods are built. Statecharts (Section 2.2.2) offer an intutive, but at
the same time strict and well-defined way of representing reactive systems. Control flow
automata (Section 2.2.3) are a commonly used way of representing computer programs in
a formal manner.

In Section 2.3 I present how abstraction can be used to tackle the performance challenges
of model checking. Counterexample-guided abstraction refinement2.3.1 is a commonly used
way of calculating the desired abstraction-level when analyzing a system’s behaviour. Its
two main components , the Abstractor and the Refiner are discussed in Sections 2.3.2 and
2.3.3.

Section 2.4 is a summary of the convential way of linar temporal model checking. Section
2.4.1 introduces linear temporal logic, a formalism for describing correctness requirements.
Section 2.4.2 gives an introduction to automata theory, and shows (Section 2.4.2.2) how
linear temporal logical formulas can be expressed using automata. Section 2.4.3 discusses
how automata theoretic approaches can be used to check linear temporal properties.

2.1 Model checking

Formal verification consists of numerous methods for proving the correctness of systems
with mathematical certainty, one of which is model checking [13]. It aims to exhaus-
tively analyze all possible behaviours of a system to check if it meets a given correctness
specification.

Formally, given a model M and a specification ϕ determine whether or not the behavior
of M meets the specification ϕ. The result of model checking can be either true if the
specification holds, or a counterexample if it doesn’t.

Model checking of temporal logical properties[20] is a specific class of model checking prob-
lems and is the primary focus of this thesis. In case of such problems the correctness
property ϕ is specified using a temporal logical formula.

The biggest challenge of model checking is dealing with the problem of state space explo-
sion[6]. As the number of state variables in a system increases, the size of the system’s

2



Model checker

Formal model Formal
requirement

OK Counter-
example

correct incorrect

Figure 2.1: An illustration of model checking

state space grows exponentially, which makes its exploration impossible in practice. Var-
ious approaches have been developed to tackle this problem, including bounded model
checking[3], symbolic model checking[4] and abstraction[5].

2.2 Modeling formalisms

In order to be able to reason about the correctness of a system using formal verification
techniques the model of the system needs to be defined with mathematical precision [19].
A model can be called formal if it has a well-defined syntax and precise semantics.

Choosing a suitable abstraction-level for the model is a crucial question when designing
a formal verification method. Lower-level models are usually easier to handle mathemat-
ically, but can be harder to comprehend for humans, meaning they are impractical for
direct modeling of a system. A good example of low-level models are Kripke structures
which are often used in model checking. Higher level models on the other hand allow
engineers to model more efficiently by abstracting away less important details. Some ex-
amples of these models are Control flow automata and Statecharts. These higher level
models can be transformed to lower-level ones, enabling efficient lower-level algorithms to
be used when verifying them. This process is called state space generation or exploration
and can easily lead to state space explosion.

2.2.1 Kripke structures

Kripke structures are finite directed graphs whose vertices are labeled with sets of atomic
propositions [7][18]. We call the nodes of these graphs states and the edges transitions.
Paths in these graphs (alternating sequences of states and transitions) represent possible
behaviours of our system.

Definition 1 (Kripke structure). Given a set of atomic propositions AP = {p, q, ...},
a (finite) Kripke structure is a 4-tuple M = 〈S, I,R,L〉, where:

• S = {s1, ..., sn} is the (finite) set of states;

• I ⊆ S is the set of initial states;

• R ⊆ S × S is the transition relation consisting of state pairs (si, sj);

3
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Figure 2.2: A Kripke structure modeling a traffic light.

• L : S → 2AP is the labeling function that maps a set of atomic propositions to each
state. �

For a state s ∈ S, the set L(s) represents the set of atomic propositions that are true when
the system is in state s, and the set AP \ L(s) contains the propositions that are false in
state s. We assume the transition relation R is defined as left-total, meaning for all si ∈ S,
there exists sj ∈ S such that (si, sj) ∈ R, i.e., that all states have non-zero outdegree.
This ensures that all finite paths can be extended to an infinite path. A deadlock state
can be modeled by a state having a single outgoing edge back to itself. We define a path
in M as an infinite sequence ρ ∈ Sω with ρ(0) ∈ I and (ρ(i), ρ(i+ 1)) ∈ R for every i ≥ 0.

2.2.2 Statecharts

The defining characteristic of reactive systems is that they are event-driven, they have to
continuously react to outer and inner events [16]. These systems appear everywhere in
our daily lives, we interact with them without even knowing they belong in this category.
For example operating systems, avionics systems, ATMs or even microwave ovens can be
categorized as reactive systems. As these examples show, reactive systems often appear
in areas, where safety-critical operation is crucial, as even the slightest misbehaviour can
have catastrophic consequences. This makes the verification of these systems an important
part of their design process.

Reactive systems can only be verified using model checking techniques if they are rep-
resented by mathematically precise models. Statecharts[17] provide an intuitive way for
describing the behaviour of reactive systems, and are at the same time formal and rigorous.
Statecharts are an extension of finite state machines, introducing hierarchy, orthogonality
and broadcast communication.

Figure 2.3 shows the statechart representation of a traffic light. There are two states at
the upmost level of the state hierarchy, Off and On. On is a composite state, it contains
3 substates, Red, Green and Yellow. Switch and toggle are outer events. The black dots
represent entry points, their single outgoing edge leads to the initial state of their regions.

This thesis proposes an efficient way of verifying temporal logical properties of mod-
els created in the Gamma Statechart Composition Framework1, and thus models of the
YAKINDU Statechart Tools2 as well. Gamma statecharts can be transformed to Extended
symbolic transition systems (Section 2.2.4), a lower-level formalism.

1http://gamma.inf.mit.bme.hu
2https://www.itemis.com/en/yakindu/state-machine/
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Figure 2.3: The statechart model of a traffic light.

2.2.3 Control flow automata

The main focus of this thesis is the verification of reactive systems, but the constructed
algorithm, while being optimized for this domain, can be used to check the correctness
of program code as well. Programming languages are usually designed to be human-
readable and are easy to use for programmers, but are practically impossible to process
mathematically. To allow program code to be reasoned about using methods of formal
verification, it needs to be transformed to a formal model, in our case a Control flow
automaton (CFA)[2]. This transformation can be carried out automatically, for example
by the verification compiler proposed by Gyula Sallai[21], which is capable of transforming
a subset of the C programming language to Control flow automata.

Definition 2 (Control flow automaton). We define a Control flow automaton as a
4-tuple 〈V,L, l0, lend, E〉, where:

• V = {v0, v1, ...} is the set of variables. ∀vi ∈ V variable has a Dvi domain;

• L = {l0, l1, ...} is the set of control locations, which model the program counter;

• l0 ∈ L is the initial location;

• lend ∈ L is the ending location;

• E ⊆ L×Ops× L is the set of transitions �

A state is a tuple s = (l, d1, d2, ..., dn), where l ∈ L is a control location and di ∈ Dvi is
the value assigned to variable vi ∈ V . A transition is a directed arc between two locations
labeled with statement. A statement can be:

• An assumption statement ([x == 0]). A transition labeled with an assumption
statement can only fire if the condition of the assumption statement evaluates to
true in the source location;

• An assignment statement (x := y + 1). An assignment statement consist of a refer-
ence to a variable and an expression that will be assigned to it;

• A havoc statement (havoc x). A havoc statement is a non-deterministic assignment,
the variable is assigned a random value from its domain.

5



A transition can be labeled with multiple statements, these statements are executed con-
secutively. Ending locations allow for finite paths to exist in our model. However, we
only want to reason about infinite paths, so we extend these finite paths to infinite ones
by adding the ending state infinitely many times to the end of any path that reached the
ending location, i.e., by assuming that an assumption transition with the condition [true]
exists that starts and ends in the ending location and only this transition fires after the
ending location is reached.

CFA can be visualized as directed graphs, whose nodes represent the control locations
and whose edges represent the transitions. The ending location has a dashed border.
The starting location has an incoming edge without a source node. See Figure 5.2 for an
example a CFA.

Control flow automata can be illustrated with directed graphs, whose nodes and edges
correspond to the locations and transitions of the automata. Edges are labeled with
statements. The initial location is denoted with an incoming edge that has no source
node. In graphical representations the ending node has double borders.

2.2.4 Extended symbolic transition systems

The extended symbolic transition system (xSTS) formalism is an extension to symbolic
transition systems [15].

Definition 3 (Extended symbolic transition system). An extended symbolic transi-
tion system is a tuple T = 〈V, Tran, Init〉, where:

• V = v1, v2, ..., vn is the set of variables, with domains Dv1 , Dv2 , ..., Dvn ;

• Tran is the set of transitions;

• Init is the initial transition �

A state is a tuple s = (d1, d2, ..., dn), where di ∈ Dvi is the value assigned to variable
vi ∈ V . A transition is built up of actions. Actions can be defined as follows:

• An assignment action is an atomic action describing the assignment of a value to a
variable;

• An assumption action is an atomic action describing the expectation of a certain
condition. It contains a single expression that has to evaluate to true, otherwise that
certain action branch (see nondeterministic actions for the description of branches)
containing the false assume action cannot be executed;

• A sequential action is a composite action that contains one or more actions that are
executed in order, one after another;

• A parallel action is a composite action that contains one or more branches. Upon
execution one of the branches is selected nondeterministically.

Transitions are atomic in the sense that either all their actions are executed or none.

6



2.3 Abstraction-based model checking

The two most well-known abstraction based methods tackle the problem of state stace
explosion differently:

• Explicit value abstraction[2] reduces the state space by marking a subset of the
variables untracked. For example if our model has the variables x and y, then we
might only track x and mark y as untracked. This means y can take any value from
its domain.

• Predicate abstraction works by only tracking if the predicates defined by the current
abstraction precision evaluate to true of false. These predicates are logical expres-
sions, which can contain variables of the model, for example (x > 0), (x > y) or
(true).

These methods work by analyzing the behaviour of abstract, simpler models, which con-
tain less information than the original ones. One would think that losing information
leads to incorrect analyses. However, both of these methods are over-approximations,
meaning they only add behaviours to the model and do not remove any. When looking for
counterexamples false positives can occur, but no false negatives. If no counterexample
is found in the abstract model, then the original model doesn’t contain one either. On
the other hand, finding a counterexample in the abstract model isn’t enough to be certain
about the existence of one in the original model. The verification algorithm has to check if
the counterexamples obtained through abstraction are concretizable, i.e., if the path they
describe can be traversed in the original model.

Figure 2.4: An illustration of abstraction

When analyzing the abstract model we explore the abstract state space, which is a set
of abstract states and abstract transitions. An abstract state can contain multiple (even
an infinite number) of concrete states. All concrete states belong to at least one abstract
state, and each concrete state can belong to at most one abstract state.

2.3.1 The CEGAR-algorithm

Counterexample-guided abstraction refinement (CEGAR) [5] is an abstraction-based model
checking algorithm. The CEGAR-loop (Figure 2.5) is the heart of this algorithm. The
verification process starts with an initial precision. Depending on the type of abstraction
we use, a precision can either be a list of tracked variables (explicit value abstraction), a
list of tracked predicates (predicate abstraction), or something else in case of a different
abstraction-method. In every iteration of the loop the abstractor component checks if an
abstract counterexample can be found in the abstract model with the current precision.
There are two possibilities after this:

7



• If no counterexamples are found, then the model is deemed correct, as over-
approximation means the original model doesn’t contain one either.

• If a counterexample is found, the refiner component checks if it’s concretizable:

– If it is, then the counterexample is valid in the original model as well, so the
model is deemed incorrect.

– If not, then the refiner returns a refined precision, and the loop starts again.
Ideally, this refined precision adds just enough detail to the abstract model,
that the same false counterexample can’t surface again.

Abstractor Refiner

initial precision

abstract counterexample

refined precision

OK Counter-
example

Figure 2.5: The CEGAR-loop

The loop keeps running until the model is deemed either correct or incorrect. In extreme
cases the abstract state space can become so refined, that each abstract state contains
only one concrete state, i.e., the abstract state space becomes equal to the concrete state
space.

2.3.2 The abstractor

The verification algorithm presented in this thesis uses a predicate abstraction based
CEGAR-algorithm for state space exploration. When using predicate abstraction we only
track if certain expressions that contain the variables of the model evaluate to true of false.
These expressions are called predicates.

Predicates are Boolean formulas over V , for example (x > 0), (x + 2 == y). We call the
set of tracked predicates precision, P = {p0, ..., pn}. The abstract state space is denoted
with Ŝ. An abstract state contains all concrete states in which the associated predicates
evaluate to true:

• In case of an xSTS, an abstract state is an ŝ = (p̂0, ..., p̂k) ∈ Ŝ n-tuple.

• In case of a CFA, an abstract state is an ŝ = (li, p̂0, ..., p̂k) ∈ Ŝ n-tuple, where li ∈ L
is the control location. Abstract states can only contain concrete states of the same
control location.

p̂i = pi if pi evaluates to true in the concrete states, p̂i = ¬pi if pi evaluates to false, and
p̂i = true if pi cannot be evaluated (for example if a variable hasn’t been initialized yet).
Given an abstract state ŝ ∈ Ŝ, let its label be Label(ŝ) =

∧
p∈ŝ p, i.e., the conjunction of

predicates (or their negations) in ŝ. A concrete state s is mapped to ŝ if s| = Label(ŝ).

CEGAR is usually used for safety checking. In case of such problems a set of states are
marked as erroneous, and the model checking task is to determine if any of the erroneous
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states are reachable from the initial state. A counterexample is a path starting in the
initial state and leading up to an erroneous state in this case.

2.3.3 The refiner

The refiner component has two main tasks:

• To determine whether the abstract counterexample is a valid path in the concrete
model;

• To return a new predicate to refine the precision in case the abstract counterexample
is not concretizable.

In my work I used interpolation-based refinement [14][15]. This refinement method uses
Craig interpolation to extend the set of tracked predicates.

Definition 4 (Craig interpolant). Let A and B be first-order logic formulas such that
A ∧ B is unsatisfiable. A formula I is a Craig interpolant (or simply an interpolant) for
(A,B) if the following properties hold [10]:

• A =⇒ I;

• I ∧B is unsatisfiable;

• I refers only to common symbols of A and B (excluding the symbols of the logic). �

In model checking Craig interpolants are usually used as explanations of why a trace can’t
be concretized. They can be used to split abstract states into two parts, if the first set of
concrete states can be described with the formula A and the second set with the formula
B. When an interpolant between A and B is added to our precision, the concrete states
that A and B characterize will be mapped to different abstract states.

Let π̂ = (ŝ1, t1, ŝ2, t2, ŝ3, ..., tn−1, ŝn) be the abstract counterexample, where ŝi ∈ Ŝ is an
abstract state and ti is the transition between ŝi and ŝi+1. In this case the erroneous state
is ŝn.

In order to be able to refine the counterexample trace using interpolation it needs to be
transformed to a list of constraints. This transformation consists of two steps. First, the
states and transitions need to be expressed as logical formulas, denoted with Label(ŝ) in
case of states and Label(t) in case of transitions. In case of states this expression is the
conjunction of the predicates that apply to a state, as defined in Section 2.3.2. In case of
transitions, we need to transform each statement to an expression Label(t) the following
way:

• An assignment statement can be expressed with an expression stating the next value
of the left operand variable is equal to the assigned value. The next value of a variable
can be referenced using the prime operator. For example the assignment x := x+ 1
can be expressed as x′ = x+ 1;

• Assumption statements can be expressed using the conditions (as a formula). For
example, the assumption statement [x > 0] is expressed as a formula x > 0;

• A havoc statement can be expressed as an empty expression.

9



After all states and transitions are expressed as logical formulas, their labels need to be
unfolded to the static single assignment form. In the static single assignment form each
variable is assigned exactly once and every variable is defined before it is used. This can
be achieved by replacing each variable with an indexed form of itself. Each state has its
own indexing. All indices start at 0 and only get incremented after assignment and havoc
statements. A primed variable is substituted using an increment of the current index of
the variable. We denote with Label(t)i the indexing of state ŝi applied to the label of the
transition t. Similarly, Label(ŝ)i denotes Label(ŝ) with the indexing of state ŝi applied to
it. Figure 2.6 illustrates the transformation process using an example.

x := 0
y := 0
[y = x + 2]
x := x + 1
[x > y]

x_0 = 0
y_0 = 0
y_0 = x_0 + 2
x_1 = x_0 + 1
x_1 > y_0

Figure 2.6: An illustration of statement to constraint transforma-
tion.

Next, the refiner determines what is the furthest reachable state in the counterexample
starting from the initial state. Let this state be ŝf . This state is reachable, meaning
Label(ŝ1)1∧Label(t1)1∧Label(ŝ2)2∧...∧Label(tf−1)f−1∧Label(ŝf )f is satisfiable. However,
Label(ŝ1)1 ∧ Label(t1)1 ∧ Label(ŝ2)2 ∧ ... ∧ Label(tf−1)f−1 ∧ Label(ŝf )f ∧ Label(tf )f ∧
Label(ŝf+1)f+1 isn’t as ŝf is the furthest reachable state of the counterexample. In this
case we call the state ŝf a failure state since a concrete path leads there but it cannot be
extended any further. Please note that the erroneous state and the failure state do not
refer to the same thing (even though they can be the same state). The erroneous state
refers to the last state of the counterexample, the state about which we want to decide if
it’s reachable or not, while the failure state refers to the furthest reachable state of the
counterexample. The set of concrete states mapped to the failure state ŝf are partitioned
into the following three groups: states that can be reached from an initial state are dead-
end, states having a transition to ŝf+1 are bad, while other states are irrelevant. It is clear
that a state cannot be dead-end and bad at the same time since then ŝf would not be a
failure state.

� ̂ 1 � ̂ 2
� ̂ 
1

. . .

� ̂ �
� ̂ �

� ̂ �

. . .

Failure state Erroneous stateInitial state

Figure 2.7: Illustration of the refinement. Lighter rectangles de-
note abstract states, while darker circles denote con-
crete states.

The purpose of abstraction refinement is to map dead-end and bad states to different
abstract states so that the spurious counterexample cannot occur in the next iteration.
Predicate abstraction uses predicate refinement to obtain new predicates.
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Dead-end and bad states can be characterized with formulas D and B respectively in the
following way.

D =Label(ŝ1)1 ∧ Label(t1)1 ∧ Label(ŝ2)2 ∧ ... ∧ Label(tf−1)f−1 ∧ Label(ŝf )f

B =Label(tf )f ∧ Label(ŝf+1)f+1

It is clear that D ∧B is unsatisfiable, otherwise a longer prefix could be found or π̂ would
be concretizable. Consequently, Craig interpolation can be applied, yielding an interpolant
I with the following properties.

• D → I, i.e., I is a generalization of dead-end states,

• I ∧B is unsatisfiable, i.e., bad states cannot satisfy I,

• I refers only to common symbols of D and B, which are variables with indexing of
state ŝf .

Therefore, removing the indices from the variables in I yields a new predicate that sepa-
rates dead-end and bad states mapped to ŝf .

We need to remove the indices from the interpolant we got so that it isn’t in static single
assignment form. This means that we have to replace variables in their indexed form with
their unindexed form. We denote with av the index of variable v ∈ V in state ŝf . The fact
that past values of variables can’t be referenced in our expressions (only future using the
prime operator), and the characteristic of Craig interpolation that states the interpolant
can only contain symbols that are present both in D and B, mean that for every variable
v ∈ V , the index with which v appears in the interpolant is equal to or greater than av.
When folding in the interpolant if variable v appears with an index a, then:

• if a = av, then we simply replace it with its unindexed form;

• if a > av, then we apply the prime operator to it av − a times.

For example if we have the variables x and y with corresponding indices ax = 2 and ay = 3
state ŝf , then the interpolant x2 + y4 > x4 is going to be unfolded to x+ y′ > x′′.

2.4 Linear temporal logic model checking

Temporal logics [13] were developed by philosophers and linguists but later found use in
model checking. They describe the ordering of events in time without introducing time
explicitly. A formula can specify for example that a state has to occur some time in the
future, or that it can never occur. Temporal logics describe these relations using temporal
operators, which can be nested in each other or combined with logical operators. Depend-
ing on the structure of time linear and branching time temporal logics are distinguished.
This thesis focuses on linear temporal logic (LTL), which is detailed below.

2.4.1 Linear temporal logic

LTL has a linear time model, meaning that it is interpreted over a single realized future
behavior of a system, i.e., over a linear sequence of states.

In my work I used the following temporal operators [7][11][20]:
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• X ϕ (”neXt”): ϕ holds in the next state

• G ϕ (”Globally”): ϕ holds somewhere on the subsequent path

• F ϕ (”Future”): ϕ holds in all states of the subsequent path

• ϕ U ψ (”Until”): ψ holds at some state in the future, and ϕ holds at all states until
ψ holds

• ϕ R ψ (”Release”): ψ has to be true until ϕ ∧ ψ becomes true (ψ should stay true
if ϕ ∧ ψ never becomes true)

The syntax of LTL expressions is defined as follows [7]:

• All p ∈ AP atomic propositions are LTL-formulas

• If ϕ and ψ are LTL-formulas, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, Xϕ, Gϕ, Fϕ, ϕUψ and ϕRψ
are LTL-formulas

The negation normal form of LTL-formulas is usually used when transforming them to
automata. In negation normal form:

• all negations appear only in front of the atomic propositions;

• only the logical operators true, false, ∧ and ∨ can appear;

• only the temporal operators X, U and R can appear.

X φ
φ

F φ
φ

G φ
φφ φ φ φ

φ	U	ψ
φ

φ	R	ψ

φ	∧	ψ

φ φ ψ

ψ

ψψψψψ

ψ ψ

Figure 2.8: Illustration of temporal operators

2.4.2 Automata theory

Automata are simple mathematical models that model computations over sequences of
input symbols. In formal language theory they are usually used as finite representations
of infinite languages.

Definition 5 (Finite automaton). A finite automaton is a 5-tuple A = (Q,Σ, δ, q0, F ),
where:

• Q is the set of states;

• Σ is the finite alphabet, i.e. the set of possible symbols;

• δ ⊆ Q× Σ×Q is the transition relation, a set of state-symbol-state triples;

• q0 ∈ Q is the initial state;
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• F ∈ Q is the set of accepting states. �

For a given word w = a1a2...an ∈ Σ*, the behaviour of the system if defined as follows:

Definition 6 (Run). A ρw = r0, r1, ...rn (ri ∈ Q) sequence of states is a run reading the
word w = a1a2...an, if r0 = q0 and (ri−1, ai, ri) ∈ δ for all i = 1, ..., n. �

In simpler terms, the automaton starts in the q0 state, and steps according to the transition
function for each symbol of the input word. A word w of length |w| = n is accepted if
the run reading it ends in an accepting state, i.e., if rn ∈ F . If the run doesn’t end in an
accepting state, or the automaton reads a symbol for which no transitions are defined in
the current state, then the word is rejected. The language L(A) ⊆ Σ* is the set of words
that the automaton A accepts.

An automaton can be visualised using an edge-labeled directed graph, whose nodes rep-
resent elements of Q and whose edges represent elements of δ.

Finite automata can only recognize finite words, but the systems we would like to analyze
usually do not stop during their normal operation. The different possible behaviours of
these systems can be modeled using infinite paths in Kripke structures, which can be
considered as infinite words in terms of automata theory.

2.4.2.1 Büchi automata

Büchi automata are finite automata that work on infinite words[7]. They consist of the
same components as the finite automata we discussed above, the difference lies in the
acceptance condition. Büchi automata read w ∈ Σω infinite words. Let inf (ρw) denote
the set of states that appear infinitely often in ρw. A run ρw is considered accepting, if it
visits at least one accepting state infinitely often. Formally, if inf (ρw)∩F 6= ∅. A word w
is accepted by an automaton A if there is an accepting run of A on w.

An extension to Büchi automata are generalized Büchi automata. Such automata can have
multiple acceptance sets. A run is accepted if at least one member of each acceptance set
appears infinitely often in it. Generalized Büchi automata can be transformed to Büchi
automata.

Büchi automata can be used to recognize so called ω-regular languages, just like LTL-
expressions[24]. Nondeterministic Büchi automata can recognize every ω-regular language.
In contrast linear temporal formulae can only recognize so called star-free languages, a
strict subset of ω-regular languages, meaning Büchi automata are more expressive than
LTL-expressions.

2.4.2.2 Transforming LTL-expressions to Büchi Automata

As LTL-expressions can only characterize a strict subset of ω-regular languages, all LTL-
expressions can be transformed to equivalent Büchi automata. The algorithm of Gerth,
Peled, Vardi and Wolper [12] can transform LTL-expressions in negation normal form to
generalized Büchi automata. I do not detail this algorithm here, as I only used it as a
black box in my work.

In my work I used the LTL to Büchi Automata translator implementation of the Spot
framework3 [11]. The translator does not require the LTL-formula to be given in negation

3https://spot.lrde.epita.fr
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normal form. The translator has an input flag (”-B”), with which a Büchi automaton is
marked as the desired output instead of a generalized Büchi automaton. If this is used
the translator degeneralizes the output automaton.

2.4.3 Automata theoretic model checking

Automata theoretic model checking provides a way of making LTL model checking com-
putationally easier by reducing it to a language emptiness problem [19].

Given a Kripke structure M and an LTL-formula ϕ using the same atomic propositions
AP , let L(M) and L(ϕ) denote the language that the Kripke structure can produce and
the language that the LTL-formula specifies. L(M) contains all possible behaviours of our
model and L(ϕ) contains all behaviours that comply with the correctness specification.
The ltl model checking problem can now be restated as follows: is the set of provided
behaviours a subset of the valid behaviours, does L(M) ⊆ L(ϕ) hold?

An equivalent formalization is L(M) ∩ L(ϕ) ?= ∅, where L(ϕ) is the complement of the
language L(ϕ). Complementation is computationally hard, but it can avoided in case of
LTL model checking, by utilizing that the complement of the language of an LTL-formula
is the language of the negated formula: L(ϕ) ≡ L(¬ϕ). This allows the model checking
problem to be reduced to language intersection and language emptiness, both of which
can be efficiently computed on Büchi automata.

2.4.3.1 Algorithms for checking language emptiness

A possible way of checking the language emptiness of a Büchi automaton is checking
whether at least one strongly connected component (SCC) that contains an accepting
state is reachable from the initial state [22]. If such a strongly connected component
is reachable, then the Kripke structure can produce words that contain infinitely many
accepting states, fulfilling the acceptance condition of Büchi automata.

Definition 7 (Strongly connected component). A component of a directed graph is
strongly connected, if a path exists in both directions between each pair of vertices of the
component. �

Robert Tarjan proposed a linear time algorithm for finding SCCs in 1972 [23]. The al-
gorithm is based on depth-first search (DFS) and determines which nodes belong to each
SCC using clever indexing.

Algorithms based on Nested DFS offer a different approach to checking language empti-
ness. These algorithms usually conduct two depth-first searches, the former one to find
and sort accepting states, and the latter one to find cycles around accepting states. The
first Nested DFS algorithm (Algorithm 1) was proposed by Courcoubetis, Vardi, Wolper,
and Yannakakis in 1992 [9]. Two bits per state, a red bit and a blue bit are used to
keep track of which states have been visited by the two depth-first searches. Both bits
start with the value false. The initial state is denoted by q0 and post(q) refers to the
set of possible next-states (i.e. out-neighbours) of the state q. When a cycle is found a
counterexample can be easily obtained from the call stack.
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Algorithm 1 Nested DFS

1: procedure nested_dfs
2: call dfs_blue(q0 );
3: procedure dfs_red(q)
4: q.red := true;
5: for all t ∈ post(q) do
6: if ¬t.red then
7: call dfs_red(t);
8: else
9: if t = seed then

10: report cycle;

11: procedure dfs_blue(q)
12: q.blue := true;
13: for all t ∈ post(q) do
14: if ¬t.blue then
15: call dfs_blue(t);
16: if q ∈ F then
17: seed := q;
18: call dfs_red(q);

2.5 Related work

In this section I briefly present related results in the domain of model checking.

2.5.1 Related theoretical domains

Bounded model checking[3] algorithms look for counterexamples of length equal to or
shorter than k at a time, and encode them as SAT-problems. The process is repeated
with larger and larger values of k until all possible violations are ruled out.

In symbolic model checking[19], states and state transitions are not simply enumerated,
but represented symbolically by functions, encoded in efficient data structures such as
decision diagrams.

Partial order reduction[8] is a state space reduction technique used in model checking of
concurrent processes. It exploits the commutativity of actions, whose order of execution
compared to each other does not matter.

2.5.2 Related model checking frameworks

The SPIN 4 model checker is a formal verification tool for multithreaded applications.
The tool allows for verification of LTL properties on models defined in a language called
Promela. SPIN uses explicit model checking techniques.

NuSMV 5 is a symbolic model checker based on binary decision diagrams that supports the
analysis of specifications expressed as CTL and LTL formulae. NuSMV uses a different
approach for LTL model checking, based on decision diagrams.

PertiDotNet6 is a framework for the editing, simulation and analysis of Petri nets. It
supports saturation-based techniques for LTL and CTL model checking and CEGAR-based
reachability analysis on Petri nets. However, CEGAR-based analysis is not integrated with
LTL model checking.

CEGAR-based approaches are used for software and also or high-level models. However,
they are usually not capable of verifying more complex properties, such as LTL.

4http://spinroot.com
5http://nusmv.fbk.eu/
6https://inf.mit.bme.hu/research/tools/petridotnet
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Chapter 3

LTL model checking of critical
systems

LTL-formula LTL-formula
preprocessor

CEGAR-based
LTL model

checker

LTL to Büchi
translator

Büchi automaton
parser

xSTS

CFA

OK Counter-
example

Büchi automatonAtomic
propositions

Figure 3.1: Overview of the approach

3.1 Overview of the approach

In my work, I developed a solution to support engineers in the verification of high-level
engineering models. My work focused on two main aspects:

• Integration of the verification engine into high-level modeling tools using an inter-
mediate formal representation and providing the algorithms for this representation.
I also provide verification support for simple programs in the C programming lan-
guage.

• I developed a new algorithm that exploits the efficiency of abstraction in LTL model
checking.
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During my work, several challenges had to be solved. First, theoretical and algorithmic
developments were needed to support Linear Temporal Logic in CEGAR-based model
checking. As LTL model checking is reduced to finding strongly connected components
(cycles) in the state space, I had to develop new search and refinement strategies. Secondly,
I had to adapt my algorithm to work on the intermediate models that the high-level
engineering models can be transformed to. A result of this is that my novel algorithm can
not only be used to verify low-level formal models, but also supports the verification of
statecharts and C source code. In the following sections I detail my work.

3.2 Integration into the engineering workflow

Engineers use high-level engineering languages in system design, so my approach was
designed to support the engineers to use the concept of hidden formal methods. The
goal was to hide formal methods from the engineers in a way that they only have to
be familiar with high-level modeling languages and they do not need knowledge about
formal models/methods and verification. To achieve this high-level goal, I integrated my
model checker into the Gamma Statechart Composition Framework1. The models of this
framework are based on statecharts. The users can define components, which are the
basic building blocks of Gamma models. Composite components can contain instances of
other components and define channels between them for communication, enabling users
to model highly complex systems using a standardised formalism. The framework already
supports model checking, but only of CTL properties using the UPPAAL2 model checker.
The drawback of UPPAAL is that it does not use abstraction and it supports only a
very limited subset of CTL. Despite the fact that LTL model checking is a more complex
problem than CTL model checking, LTL can be used more efficiently by the engineers. [8]

Engineering model Formal model Model checking

✓

x

Figure 3.2: Integration into the engineering workflow

These composite statechart models are too complex to be checked efficiently using math-
ematical methods. However, Gamma models can be transformed to xSTS models, a for-
malism which is more suited for model checking. This is why I decided to fit my algorithm
to xSTS models as well and enable engineers to check their complex models using my tool.

3.3 LTL-formula preprocessor

My goal was to provide the engineers using my tool with an intuitive interface, so that
they can easily integrate model checking techniques into their development workflow. In

1http://gamma.inf.mit.bme.hu
2http://www.uppaal.org
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order to achieve this I extended linear temporal logics in such a way that enables engineers
to formulate relevant requirements about their systems.

Per definition linear temporal logics only allow us to reason about atomic propositions.
In contrast, in my approach linear temporal logical formulas can be used to formulate
requirements about any logical formula over V (the set of variables in our model). An
example of such a formula is G(x > 5), which states that the value of the variable x is
always greater than 5. The task of the LTL-formula preprocessor is to transform these
extended formulas to reqular LTL-formulas to allow the use of existing LTL-modification
methods on them. In our previous example this would mean transforming G(x > 5) to
G(p), where p is an atomic proposition that applies to a state if and only if in that state
the logical formula x > 5 evaluates to true.

This extended formalism can be described with the following context-free grammar, where
n ∈ Z is an integer and v ∈ V is a variable:

ϕ ::=>| ⊥ |v|n|¬ϕ|[ϕ ∧ ϕ]|[ϕ ∨ ϕ]|Gϕ|Fϕ|Xϕ|[ϕUϕ]|[ϕRϕ]|
[ϕ⇒ ϕ]|[ϕ > ϕ]|[ϕ < ϕ]|[ϕ ≥ ϕ]|[ϕ ≤ ϕ]|[ϕ = ϕ]|
[ϕ+ ϕ]|[ϕ− ϕ]||[ϕ ∗ ϕ]|[ϕ/ϕ]|[ϕ%ϕ]|(ϕ)

Operator precedence can be seen in Table 3.1 (with increasing priority from top to bottom).

Lower Operatorsy

⇒
∨
∧
¬

U,R
F,G,X

=
>,<,≤,≥

+,−
∗, /,%
v, n,>,⊥

()
Higher

Table 3.1: Operator precedence

A semantic analysis is required to detect invalid formulas, as not all words that can
be generated using this grammar are valid. For example the word G(true) > 5 can be
generated using this grammar, but is invalid, as an LTL-operator cannot be the operand of
a relational operator. During this semantic analysis nodes of the syntax tree are assigned
one of the three following types:

• int-type nodes can only have int-type children. The following nodes are always int-
type: n ∈ Z integers, +,−, ∗, /,% operators. Variables v ∈ V can be int-type
depending on their declaration.

• bool-type nodes can belong to two subcategories:

– relational operators can only have int-type children. These operators are the
following: >,<,=,≤,≥, 6=.
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– boolean operators are bool-type if they only have bool-type children. These
operators are the following: ∧,∨,⇒,¬,>,⊥. Variables v ∈ V can be bool-type
depending on their declaration.

• LTL-type nodes can only have bool-type or LTL-type children.

– The following operators are always LTL-type: F,G,X,U,R.
– The boolean operators listed above (∧,∨,⇒,¬) are LTL-type if they have at

least one LTL-type operand.

The parentheses operator can be of any type, it inherits the type of its child. Figure 3.5
shows an example of the types that get assigned to the nodes on the syntax tree of the
formula FG(x+ 2 > 5) ∧ ⊥.

In order to be able to transform our extended formulas to LTL-formulas we need identify
maximal bool-type subtrees (i.e. look for bool-type nodes, whose parent nodes are ltl-type)
in our syntax tree, store them as logical formulas and replace them with different atomic
propositions. Our previous example, G(x > 5) would be transformed to the LTL-formula
G(p) this way, see Figure 3.3 for an illustration. Our other example, FG(x+ 2 > 5) ∧ ⊥
would be transformed to FG(p1) ∧ p2.

G

G x>5 G p>

x 5

G

p

Figure 3.3: Illustration of the transformation process

The replaced logical formulas need to be stored and then evaluated in each state to deter-
mine if the corresponding atomic propositions are valid in them.

G

>

+ 5

x 2

F

Λ

⊥

Int-type

Bool-type

Bool-type

Ltl-type

Figure 3.4: Illustration of the type system in action
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3.4 CEGAR-based LTL model checking

In this section, I introduce the novel, CEGAR-based LTL model checking algorithm. This
algorithm I developed is based on the combination of two model checking techniques
that weren’t used for this purpose together before, counterexample-guided abstraction re-
finement and automata theoretic LTL model checking. LTL model checkers have always
struggled with performance. I propose that introducing counterexample-guided abstrac-
tion refinement can significantly increase performance in most cases of LTL model check-
ing. The algorithm allows for ”on the fly” model checking, meaning that usually only a
portion of the state space has to be explored, further improving performance.

LTL to BA
¬φ

Abstractor

S × M

M

S

concrete model

L(S × M) ?= ∅

Refiner

OKtrue

abstract
counterexample

Counter-
example

valid

initial precision

invalid
refined precision

Figure 3.5: Overview of the algorithm

The algorithm has the following steps:

1. The requirement specification is given in the form of an LTL-formula ϕ. Negate this
formula and transform it to an equivalent Büchi automaton S;

2. Apply abstraction to the concrete model with a given initial precision, calculate the
abstract state space and represent it with an automaton M ;

3. Calculate the product of the two automata S×M . In this product the specification
automaton steps based on the target state of the model automaton;

4. Check the language emptiness of the product automaton S ×M ;

• If the language of the automaton is empty, then the model meets the correctness
specification as no counterexamples were found;
• If a counterexample is found in the abstract state space, then verify whether it
is valid in concrete state space as well;
– If it is, then the model does not meet the correctness specification;
– If it isn’t, then then refine the abstract model with a new precision, calcu-

late the abstract state space again, and jump to the 3rd step.
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The basic challenges that had to be solved when constructing this algorithm are the
following:

• Generation of the synchronous product: I needed to determine how the synchronous
product of the abstract model and the Büchi automaton are to be calculated.

• Language emptiness checking in the abstract state space: I had to devise a way to
search for accepting runs in the abstract state space.

• New refinement strategy: I also needed to construct a way to refine the abstraction
if the abstract counterexample isn’t concretizable.

Some steps of this algorithm can be executed simultaneously. For example, state space
generation, calculation of the product automaton and language emptiness checking can
be conducted together, which can result in a significant increase in performance. If these
three tasks are carried out at the same time, then the model checking is said to happen
”on-the-fly”.

I’m going to demonstrate the steps of the algorithm using a CFA, which can be seen in
Figure 3.6, and the LTL expression F (x = 1). The preprocessor transforms this LTL
expression to F (p0), and returns (x = 1) as the atomic proposition p0. This LTL expres-
sion can be transformed to the Büchi automaton in Figure 3.7. When illustrating Büchi
automata I replace the atomic propositions with the corresponding logical formulas, so for
example x = 1 appears instead of p0 in figures.

L0

L1 L3

L2

x:=0

[x<5]

x:=x+1

![x<5]

Figure 3.6: The example CFA

B0B0 B1
True[x=1]

![x=1]

Figure 3.7: The Büchi automaton generated from F (x = 1)

3.4.1 The abstract state space

The main task of the abstractor component is the generation of the abstract state space.
This state space is an over-approximation of the concrete state space, compared to the
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concrete state space it can contain additional behaviour, but has to contain all behaviours
of the concrete model. Abstract states can contain multiple concrete states. Each concrete
state belongs to exactly one abstract state.

L0

L1

L3

L2

L1

x:=0

[x<5]

x:=x+1

![x<5]

T

x<=0

x:=x+1

x<=0

!(x<=0) !(x<=0)

L2

!(x<=0)

x:=x+1[x<5]

Figure 3.8: The abstract state space of the CFA presented in Fig-
ure 3.6 using predicate abstraction with the precision
[(x <= 0)].

The algorithm can work with multiple abstraction methods, such as explicit value abstrac-
tion, predicate abstraction, or a mix of the two. The appropriate abstraction method can
only be selected based on the desired application domain. I chose to build my implemen-
tation on predicate abstraction, because it is more suited for reactive systems as variables
in such systems usually only get assigned a few different values, not their whole domain.

Figure 3.8 shows the abstract state space of the CFA in 3.6 when applying predicate
abstraction to it with the precision [(x <= 0)]. The set of active predicates is displayed in
a white rectangle next to each state. Please note that this figure illustrates the abstract
state space, not a CFA, thus nodes of this graph represent abstract states of the abstract
model and not locations. This means that a location can appear multiple times in this
graph, whereas in a CFA it can only appear once. Each node is labeled with the set of
predicates that apply to the corresponding abstract state.

3.4.2 The product state space

The algorithm then generates the state space of the product of the abstract model and
the Büchi automaton. A state in this product state space is an 〈s, q〉 pair, where q ∈ Q is
a state of the Büchi automaton, and:

• if the model is an xSTS, then s = (p̂0, ..., p̂k) is a state of the the abstract model;

• if the model is a CFA, then s = (li, p̂0, ..., p̂k) is a state of the the abstract model.

The initial state of the product consists of the initial state of the abstract model and the
initial state of the Büchi automaton. A product state is called accepting if the correspond-
ing Büchi state is accepting. At each step of the product the abstract model steps first.
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After this the atomic propositions are evaluated based on the target state of the abstract
model, and lastly the Büchi automaton steps based on the atomic propositions.

The product of the abstract model from Figure 3.8 and the Büchi automaton from Figure
3.7 can be seen in Figure 3.9.

L0, B0

L0, B0

L0, B0

x:=0

[x<5]

x:=x+1

T

x<=0

x:=x+1

x<=0

L0, B0

L1, B0

L2, B0

L0, B0L1, B0 L1, B1

x:=x+1

L0, B0L2, B0 L2, B1

[x<5]

[x<5]

x:=x+1 x:=x+1

[x<5]

x:=x+1

L0, B0L3, B0 L3, B1 ![x<5]![x<5]

![x<5]

!(x<=0)!(x<=0)!(x<=0)!(x<=0)

!(x<=0) !(x<=0)

Figure 3.9: The product state space. A possible counterexample
is denoted with red colour.

3.4.3 Counterexamples

In case of language emptiness checking of Büchi automata our counterexamples have a
”lasso”-like form. The first half of the counterexample is a path leading up to an accepting
state and the second half is a cycle which starts and ends in said accepting state. If
such a counterexample is found, then an accepting run is possible, because by repeatedly
traversing the cycle an accepting state can be entered infinitely many times. In extreme
cases it is possible that either the cycle, the path leading up to it, or both only contain
one state.

An abstract counterexample can be seen in Figure 3.9 with red colour. In this example
〈(l0,>), b0〉, x := 0, 〈(l1, x <= 0), b0〉, [x < 5], 〈(l2, x <= 0), b0〉, x := x + 1, 〈(l1, !(x <=
0)), b0〉 is the path leading up the the accepting state 〈(l1, !(x <= 0)), b0〉, and 〈(l1, !(x <=
0)), b0〉, [x < 5], 〈(l2, !(x <= 0)), b0〉, x := x + 1, 〈(l1, !(x <= 0)), b0〉 is the cycle. If we
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traverse this cycle infinitely many times, then the accepting state 〈(l1, !(x <= 0)), b0〉 is
entered infinitely many times, fulfilling the acceptance condition of the Büchi automaton.

One of the challenges I had to face when constructing this algorithm is checking the
feasibility of abstract counterexamples. Counterexample-guided abstraction refinement
is usually used for safety checking, i.e. checking if any error states are reachable from
the initial state. The counterexamples in these cases are alternating sequences of states
and transitions, the only thing that has to be verified about them is whether they are
traversable or not. However, when checking the feasibility of our ”lasso”-like counterex-
amples traversability is required but not enough to prove that the counterexample is valid
in the concrete model. A ”lasso”-like counterexample has to be traversable in the concrete
model in a way that the starting state of the cycle is the same concrete state as the ending
state. This is required because as abstract states can contain multiple concrete states it
is possible that an alternating sequence of states and transitions appears as a cycle in the
abstract model, however -while being traversable- isn’t a cycle in the concrete model.

Figure 3.10 shows this problem on the cycle of the counterexample from Figure 3.9. Ab-
stract states are denoted with rectangles, while concrete states are denoted with circles.
As can be seen in the figure, abstract states can contain multiple concrete states, for ex-
ample 〈(l1, !(x <= 0)), b0〉 contains all states, where the CFA is in location l1, the Büchi
automaton is in state b0, and where x is assigned such a value, that !(x <= 0) holds.
In our case the counterexample is traversable, however, what appeared as a cycle in the
abstract model is not a cycle in the concrete model. This is easy to see, as the value of x
gets increased in every iteration, making it impossible to return to the same state. The
abstract state 〈(l1, !(x <= 0)), b0〉 has to be split in two in order to separate the cycle’s
starting and ending state from each other. This is the task of the refiner component.

x=1 x=2 x=3

!(x<=0)
L1, B0

x=1 x=2 x=3

!(x<=0)

L2, B0

. . .

. . .

[x<5]

x:=x+1

Figure 3.10: Illustration of the cycle validity problem. The cycle
is denoted with red colour.
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3.4.4 Refinement

The refinement algorithm discussed in 2.3.3 has to be extended to be able to handle
”lasso”-shaped counterexamples. The refiner first checks the traversability of the coun-
terexample the same way the original algorithm does. If the counterexample is found to be
untraversable, i.e. there is at least one state in the counterexample that can’t be reached
using the given path, then the precision is refined as discussed in 2.3.3.

The refiner receives an alternating sequence of states and transitions π̂ =
(ŝ1, t1, ŝ2, t2, ŝ3, ..., tn−1, ŝn) and an index 1 <= c <= n indicating the start of the cy-
cle in this sequence as input.

The next step is checking whether the abstract cycle is a valid cycle in the concrete model
as well. We already verified traversability, so we know that all constraints can be satisfied
together, formally: Label(ŝ1)1∧Label(t1)1∧Label(ŝ2)2∧ ...∧Label(tn−1)n−1∧Label(ŝn)n

is satisfiable (we can reach from an initial state to a final, goal state). Please note that
in this case the last state of the counterexample, namely ŝn is not an erroneous state,
simply the end of our cycle. In order to define a ”lasso”, we have to define identical
states: two product states are identical if both their states in the abstract model and their
Büchi states are identical. In an xSTS, two concrete states are identical if the variable
assignments are the same. In case of CFA, the locations have to be the same as well
(locations are also stored in a variable, so the definition is practically the same). Büchi
states and CFA locations are tracked explicitly, meaning a state of the product state space
can only contain concrete states that have the same Büchi state and the same location.
This means that we only have to consider the values of the variables to determine if two
concrete states inside an abstract state are the same.

� ̂ 1 � ̂ 2
� ̂ 
1

. . .

� ̂ 
�

. . .

Starting	and	ending
state	of	the	cycle

Initial	state

Figure 3.11: Illustration of the cycle refinement.

They key point in symbolic lasso detection is the symbolic encoding. To check this we
are going to add a new constraint to the already checked ones and see if it is satisfiable
together with them. This constraint is going to express that each variable has the same
value assigned to it in the starting state and the final (recurrent) state of the cycle. If we
have n variables and denote the index of variable v ∈ V in the starting state with av,s

and in the ending state with av,e, then our constraint is
∧

v∈V
(vav,s = vav,e). For example

if variables x and y had the indices 2 and 1 in the starting, and the indices 3 and 1 in
the ending state of the cycle, then our constraint would be x2 = x3 ∧ y1 = y1. If this
new constraint is consistent with the earlier constraints, then our cycle is realizable in
the concrete model as well, meaning the counterexample is valid and the model does not
satisfy the requirements.
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However, if it isn’t consistent with the earlier ones, then we need to refine our precision. In
the previous steps we constructed logical formulas that express that the counterexample
has to be traversable such that the starting and ending state of the cycle is the same state,
but it seems that such a concrete path is not realizable. By feeding our constraints to an
interpolating SMT-solver, we can obtain an interpolant that clarifies why our path couldn’t
be concretized. If we create a new predicate by folding this interpolant and extend our
list of tracked predicates with the newly gained predicate, then we eliminate the spurious
counterexample and the algorithm continues the search.

How we can fold this interpolant is also different from the foldin procedure discussed in
2.3.3. This interpolant can only contain indexed variables from either the starting or
the ending state of the cycle. One of the options would be to replace the starting ones
with the variables themselves and the ending ones with primed versions of the variables.
However, predicates that contain variables that have multiple prime operators applied to
them (for example (x > x′′′)) are very inefficient to process during state space generation,
because they require determining what can be the value of a variable multiple states from
now. I chose a different option, replacing the ending ones with the unprimed variable and
replacing the starting ones with a value that they can have in the starting state. If a set
of constraints is satisfiable, then we only need to select one of the possible valuations that
satisfy it and extract the value it assigns to our variable from it. In the example from 3.10
a possible value for the variable x in the starting state of the cycle is 1, so assuming the
variable x had the index 1 in the starting and the index 2 in the ending state of the cycle,
the interpolant x1 >= x2 would be folded in as 1 >= x. We add this new predicate to
our precision and start a new iteration of the CEGAR-loop.

Trace

T

x<=0

x<=0

!(x<=0)
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[x<5]

x:=x+1

[x<5]

x:=x+1C
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!(x1<=0)
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x1
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Unsatisfiable
together

Interpolant
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1	>=	x

Constraint	for
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Figure 3.12: Illustration of the refinement process of the coun-
terexample from Figure 3.9
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Chapter 4

Implementation

4.1 External frameworks

I used the services of some frameworks when implementing my solution, in this section I
present them briefly.

4.1.1 Theta model checking framework

The Theta model checking framework1 [15] is a modular, configurable model checking
framework developed at the Fault Tolerant Systems Research Group of Budapest Univer-
sity of Technology and Economics, which aims to support the development of abstraction-
refinement based model checking solutions. It provides a set of building blocks for formal
verification, various formalisms, analysis tools and SMT solvers.

I used the following components of this framework:

• Core: these classes provide general building blocks for any checking algorithm, for
example classes representing expressions, statements, traces.

• CEGAR-tools: these classes provide basic building blocks for CEGAR-based model
checking, for example classes that help when using predicate abstraction.

• Solvers: the Theta framework provides an interface to the Z3 SMT-solver, I used
this when implementing my refinement algorithm.

4.1.2 Spot LTL manipulation framework

The Spot LTL and ω-automata manipulation framework2 [11] provides various LTL and
w-automaton manipulation algorithms, accessible through C++ or Python libraries, or
command line tools. I used the framework’s command line LTL to Büchi automata trans-
lator in my work.

1https://github.com/FTSRG/theta
2https://spot.lrde.epita.fr/
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4.1.3 Antlr

Antlr3 is a powerful tool for text processing. It can generate lexers, parsers and other
useful classes from grammars.

4.2 Input formalisms

In this section I present the supported input formalisms and their implementations.

Yakindu
statecharts

Gamma statecharts

xSTS models CFA models Büchi automata

LTL expressions

Input models Requirement specifications

C programs

Figure 4.1: An overview of the supported input formalisms

4.2.1 Control flow automata

I used the CFA implementation of the Theta framework to represent control flow automata.
This implementation allows the user to define error locations to define reachability checking
tasks, but I didn’t use this feature as I was only interested in LTL model checking. The
framework provides a parser using which textually represented control flow automata can
be imported.

4.2.2 Extended symbolic transition systems

I created my own implementation of extended transition systems and integrated it into
the Theta framework. A pleasant side effect of this integration is that not only my tool
can be used to check these models, but all analysis tools of the Theta framework.

4.2.3 C programs

I used the C to CFA compiler implementation of Gyula Sallai [21] to transform C programs
to control flow automata. This compiler also uses the CFA implementation of the Theta
framework, meaning no further transformations are required to process these models. The
compiler only supports a subset of the C language at the moment:

• Only the following control structures are supported: if-then-else, do-while, switch,
while-do, break, continue, goto and non-recursive functions;

3https://www.antlr.org/
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• Variable types are restricted to integers and booleans;

• Arrays and pointers are not supported.

4.2.4 Yakindu statecharts

Yakindu statechart tools4 is a tool for the specification and development of reactive, event-
driven systems using the statechart formalism invented by David Harel [17]. The Gamma
framework can transform Yakindu statecharts to Gamma statecharts, which can then be
transformed to xSTS models, and be verified using my tool.

4.2.5 Gamma statecharts

The Gamma framework can transform Gamma models to xSTS models. At the moment
Gamma only supports this for single component systems, sadly composite models can’t
be verified yet.

4.2.6 LTL formulas

I extended the LTL formalism to be able to reason about the variables of the verified
models (see Section 3.3). I created a parser using Antlr to build a syntax tree of these
extended formulas. After the systax tree is built I process the tree as detailed in Section
3.3, then negate the resulting LTL formula.

I use the ltl2tgba command line tool of the Spot framework to transform these preprocessed
LTL-formulas to Büchi automata. This command line tool doesn’t require the formula
to be given in negation normal form. By default the tool outputs a generalized Büchi
automaton, but using the ”-B” flag it will degeneralize it for us. The tool supports multiple
automaton output formats, I chose the Hanoi Omega-Automata Format (HOA) [1], which
is a a flexible and robust mechanism for exchanging ω-automata between different tools.

4.2.7 Büchi automata

When implementing Büchi automata I strived to achieve the best integration into Theta
that I could to later be able to use the predicate abstraction related classes of the Theta
framework when exploring the product state space. This was achieved by using multiple
core building blocks of Theta when constructing the classes representing Büchi automata.

I implemented a parser component as well using the Java-based Hanoi Omega-Automata
Format parsing tool called jhoafparser5 to be able to parse Büchi automata generated by
the LTL to Büchi automata translator.

4.3 The model checker

I implemented my model checker in a modular way so that it can be used to verify any
formalism that is implemented using the building blocks provided by Theta and conforms
to the interface I defined.

4https://www.itemis.com/en/yakindu/state-machine/
5https://automata.tools/hoa/jhoafparser/
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I defined an interface called Model. Product states of this model have to implement
the ProductState interface. Any model that correctly implements this interface can be
verified using my model checker. The Model interface has two methods:

• getInitialStates has to return the set of initial product states;

• getEnabledActionsFor gets a product state as input and returns the set of enabled
actions in that state. These actions have to implement the ExprAction interface
of Theta. This interface has two methods that have to be implemented:

– toExpr returns the action in form of a logical expression. For example in case
of an assignment action x := x+ 1 this method should return x′ = x+ 1;

– nextIndexing returns how the index of the variables should change after this
action is executed. The index of a variable should only increase if it’s assigned
a new value. For example in case of x := y + 1 the index of x should be
incremented with 1 and the index of y should stay the same.

The interface TransFunc also has to be implemented. This interface has a method called
getSuccStates, which returns the possible successor states if a given action is executed
in a given state at a given precision.

4.3.1 The abstractor

I chose to implement my model checking algorithm in an on-the-fly manner, meaning
model checking can happen simultaneously with state space generation. In my case this
means that the calculation of the abstraction, the generation of the product state space
and the search for accepting cycles happens at the same time.

I use the NDFS algorithm discussed in Section 2.4.3.1 to find accepting states and then
search for cycles around them. When the NDFS algorithm calls the post method with a
state q, I first determine where the model could step with the current precision. After this
I evaluate the atomic propositions and calculate where the Büchi automaton could step
in each possible successor state of the model.

If my algorithm finds an accepting cycle, then it passes the current call stack as a trace
and a number indicating where the cycle starts in said state to the refiner.

4.3.2 The refiner

The refiner gets a trace (an alternating sequence of states and transitions) and a number
indicating the start of the cycle in the trace as input. It checks if the abstract counterex-
ample is realizable and returns a refined precision in case it isn’t.
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Chapter 5

Benchmarks

In this section I present the results of the verification tasks I ran to evaluate the perfor-
mance of my model checker. In Section 5.1 I present the results of checking C programs
using my tool. Section 5.2 and 5.3 list the results I had when verifying statecharts and
control flow automata. In Section 5.4 I present cases for which my solution isn’t optimal.
The following values were measured in during each benchmark:

• Time: the time it took to verify the model. The measured values also include the
time required to parse the models and initialize the required data structures.

• Memory: the amount of memory that was required to perfome the verification task.

• ref : the number of refinements that were needed to reach the final abstraction level.

• blue: the amount of product states visited by the blue DFS with the last precision.

• red: the amount of product states visited by the red DFS with the last precision.

All benchmarks were run on a laptop with the following configuration:

• Intel Core i5-3337U 4x2.7GHz

• 8 GB RAM

• Manjaro with Linux 4.14.141-1-MANJARO kernel

• Java 8

5.1 SV-Comp verification tasks

The following tasks are from the 2019 Competition on Software Verification(SV-Comp)1

task set. All of these tasks are reachability tasks, they are described with the LTL-formula
G(!(error)), where error is a boolean variable that is true in all erroneous states and false
in all other states. These tasks don’t utilize the full potential of LTL model checking as
they only ask whether a certain set of states is reachable from the initial state or not.
Reachability checkers perform better in these tasks than complete LTL checkers, but I
chose to include them as the SV-Comp tasks are a commonly used way of checking the
efficiency of model checking algorithms.

1https://sv-comp.sosy-lab.org/2019/
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These tasks are given in the form of C programs. I used the verification compiler of Gyula
Sallai[21] to transform them to control flow automata. The measured verification times do
not include the time required to transform C programs to CFA. The verification process
returned the expected output in all cases.

Task Time(s) Memory(MB) ref blue red
cggmp2005 1.263 7.88 10 6 0
afnp2014 0.846 26.76 4 2 0
bhmr2007 1.233 15.02 8 5 0
sum03-2 0.74 26.15 2 2 0
sum04-1 1.227 6.69 3 4 0

5.2 Statechart models

In this section I present the benchmarking results of checking various LTL expressions on
Yakindu statecharts.

5.2.1 sc1

This is a simple statechart containing a composite state with 2 orthogonal regions in it.

region1

A

B

step

region2

step

C

D

step step

Figure 5.1: The sc1 model

Model LTL-expression Time(s) Mem(MB) ref blue red
sc1 G(!(region1=A ∧ region2=D)) 2.586 8.95 3 4 0
sc1 F(region1=B) 1.181 6.40 1 4 3
sc1 GF(region1=A) 1.281 10.29 2 6 3
sc1 G(region1=A ⇒ region2=C) 1.309 10.92 4 4 0
sc1 GF(region1=A) ⇒ GF(region2=C) 1.278 14.70 3 3 0
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5.3 Control flow automata

In this section I present the benchmarking results of checking control flow automata with
different LTL expressions.

5.3.1 counter5

This model is a simple control flow automaton which starts counting at 0 and counts up
to 5. As no stuttering is allowed the counter will always reach 5.

L0

L1 L3

L2

x:=0

[x<5]

x:=x+1

![x<5]

Figure 5.2: The counter5 model

Model LTL-expression Time(s) Memory(MB) ref blue red
counter5 FG(x=5) 0.903 10.72 6 14 14
counter5 F(x=1) 0.981 29.37 4 11 11
counter5 G(x=0) 0.768 28.72 3 7 0
counter5 (x<=2) U (x=3) 0.909 5.57 3 14 14
counter5 G(!(x=6)) 0.997 4.97 6 15 0
counter5 G(!(x=-1)) 0.668 27.62 2 6 0

5.3.2 gcd

This simple control flow automaton describes Euclid’s algorithm for the calculation of the
greatest common divisor of two natural numbers that are greater than 0, a and b. The
error state is reached if the greatest common divisor of a and b is found to be 0.

Model LTL-expression Time(s) Memory(MB) ref blue red
gcd G(!(error)) 0.762 27.44 2 4 0

5.4 Drawbacks of predicate abstraction

Predicate abstraction can be really efficient in control-flow dominated domains, but can
have serious disadvantages compared to explicit model checking solutions in case of loops
that require a constant and relatively big number of iterations. I demonstrate this on
a modified version of the counter5 model, where I replaced the conditions [x < 5] and
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error:=false
[a>0]
[b>0]

[a=b]

[a>b]
a:=a-b

[b>a]
b:=b-a

[a=0]
error:=true

[a!=0]

Figure 5.3: The gcd model

![x < 5] with [x < 100] and ![x < 100]. I refer to this model as counter100 in the
followings.

Model LTL-expression Time(s) Memory(MB) ref blue red
counter100 GF(x=100) 126.984 619.64 101 407 203
counter100 FG(x=100) 130.341 270.27 101 204 204
counter100 F(x=100) 131.125 552.54 101 204 204
counter100 (x < 50) U (G x >=50)) 22.144 365.95 50 106 106

When checking this model all 100 iterations of the loop had to be unfolded to predicates,
causing the CEGAR-loop to run 101 times. State space exploration slows down signifi-
cantly with the introduction of more and more predicates. In cases like this explicit value
abstraction or a mix of predicate abstraction and explicit value abstraction would likely
perform better than a purely predicate based solution. The model checking raised the
correct result in all of these cases as well.
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Chapter 6

Conclusion

In this chapter I draw the conclusions of my work and lay down possible paths to continue.

6.1 Results

I started my work with two main goals in mind:

• To present an approach to LTL model checking that combines the advantages of mul-
tiple different model checking solutions. As LTL model checking is a computationally
difficult task, my primary focus during development was efficiency.

• To integrate my model checker into a high-level modeling framework and thus enable
engineers to use efficient and reliable model checking methods in their workflow.

6.1.1 Theoretical results

I constructed a novel LTL model checking algorithm, which combines the advantages of
counterexample-guided abstraction refinement and automata theoretic model checking. I
overcame multiple theoretic challenges:

• Generation of the synchronous product: I defined how the synchronous product of
the abstract model and the Büchi automaton are to be calculated.

• Language emptiness checking in the abstract state space: I devised a searching
strategy to find accepting runs in the abstract state space.

• New refinement strategy: I presented a way to check abstract counterexamples and
refine the abstraction for lasso-shaped abstract counterexamples.

The benchmarks showed promising results about performance and suggest further exam-
ination of the topic.

6.1.2 Practical results

My approach is not only unique in its algorithmic contributions, but also in the sense that
it bridges the gap between engineering models and formal verification:
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• I integrated my model checker into the Gamma modeling framework and thus my
work supports the engineers to verify LTL properties on their models. Currently my
tool is the only one which supports LTL model checking of statechart models.

• I integrated my model checker into the Theta framework as well, extending the frame-
work’s already rich capabilities with LTL model checking. My tool already supports
the verification of C programs, CFA and xSTS, but thanks to this integration and
my simple interface this list can easily be extended.

• I created an intuitive engineering-centric extension of LTL to allow engineers to
formulate relevant LTL expressions about their models.

6.2 Future work

Possible paths for the future:

• I plan to extend Gamma integration to support composite models as well. As Gamma
has multiple composition semantics and even allows for asynchronous composition
this seems quite challenging, but could mean a significant step forward in the model
checking of distributed systems.

• I plan to introduce parallel actions into xSTS models. Model checking of parallel
components can easily result in state space explosion, I intend to overcome this
challenge by using partial order reduction when reasoning about parallel paths.

• I also plan to visualize the counterexamples in the high level models to make them
easier to evaluate.
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