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Összefoglaló

Dolgozatunk célja ipari iránýıtási és szabályozó rendszerek területén alka-
lmazott PLC eszközök ellen irányuló támadások detektálása és elemzése.
Ennek érdekében alaposan megvizsgáltunk egy konkrét eszközt, valamint
több már létező honeypotot. Az ı́gy megszerzett tapasztalatok felhasználásá-
val tudtunk egy a publikusan elérhetőknél jobb honeypotot tervezni és meg-
valóśıtani. Megvizsgáltuk, hogy a létrehozott honeypot és a valós eszköz
mennyire megkülönböztethetetlen egy külső támadó szemszögéből, és kieléǵı-
tő eredményeket kaptunk. Továbbá célunk volt a konkrét eszközök biz-
tonságos-ságának növelése azáltal, hogy feltérképeztük a gyenge pontjaikat
és ezen ismeretek birtokában tűzfalszabályokat álĺıtottunk fel a veszélyes
támadások kivédésére.

Abstract

The aim of our paper is to improve the security of PLCs which are funda-
mental building blocks of critical infrastructures by detecting and analysing
attacks. Therefore we analysed a physical device and several already ex-
isting honeypots. Based on our observations we were able to design and
implement a new honeypot which is better in several aspects compared to
publicly existing solutions. We analysed the indistinguishability of our hon-
eypot and the real device from the perspective of an outsider attacker, and
we received satisfying results. Furthermore we improved the security of the
real device by finding its vulnerabilities and defining firewall rules to protect
it from malicious attacks.
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1 Introduction

In recent decades, the development of computers and the range of prob-
lems they solve gradually increased. Supporting industrial processes with
computers make the process cheaper, faster and improve the quality of the
product.

Computers can be harnessed to perform various tasks, from design to
production to the sale (including transport, advertising management too).
The rest of our paper will focus on the electronic devices which are part of
industrial process control systems. For example computers control pumps,
boilers, turbines and many kind of industrial equipment.

The structure of industrial process control equipment (PLC) is very dif-
ferent from the traditional design of computers, since their function is com-
pletely different. The most obvious difference is that the PLCs have guar-
anteed response time. This property makes them usable in safety-critical
systems. PLCs have different network interfaces to communicate with each
other, controlled or regulated devices and other network devices. If a system
has more than one PLC device then they can directly be linked to each other
(similar to other networks the topology of these networks can be various).

The management and maintenance of the PLCs are mostly done over the
network. Manufacturers strongly suggest that users should connect these
devices only to trusted networks. For example, only a network that is not
connected to the Internet. In the beginning the number of attacks against
PLCs was very low. Unfortunately applying these PLC devices directly to
unprotected network become a common practice. This can be useful during
the maintenance (it can be done from anywhere even from other countries
or continents). The same logic led some users to disable the PLC’s built-in
basic security mechanisms (for example, use a well-known default password).

Because the PLCs are unprotected they become popular targets for at-
tackers. As explained sometimes it is not even a challenge to take over the
control of a PLC[27]. As these devices control industrial processes the failure
of these can mean that human lives are in danger. It can cause significant
environmental and financial damage as well.

To protect against possible attacks we need to know that which tech-
niques are useful against the PLCs. (Remember, often time-critical systems
are concerned, even a short pause of control can make serious consequences.)

Honeypot is a system which seems to be a PLC based on network be-
havior, but actually it is a trap for attackers. One of the honeypot’s aim
is maintaining the attacker’s interest and thus observe the methods against
real PLCs. Thus, previously unknown attack methods can be revealed and
it will allow the actual PLC’s safety improvement.

From the point of interaction there are three kind of honeypots. Low-
interaction honeypots simulate only basic network services (or only a base
part of the basic network services). High-interaction honeypots simulate
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different complex network services. Hybrid honeypots usually simulate dif-
ferent services on different interaction levels. The advantage of the low-
interaction ones is that they are easier to design and maintain. They can be
more stable but they are easier to discover. The high-interaction honeypots
are able to keep the attacker’s attention longer. But they are much harder
to implement because they have to implement the already known bugs and
incorrect activities as well. Hybrid honeypots try to combine low and high
interaction parts to get the advantages of both.

Of course it is impossible to emulate incorrect activities which are not
yet known (they are also called 0-day vulnerabilities). But it is possible
to connect real PLC devices which do not control any real actuators (but
they seem to be) to the Internet and observe the generated traffic. In this
way it is possible to learn real techniques from a real attacker and there is
almost no chance to be discovered (because the attacker communicates with
a real PLC and the controlled processes are emulated). Unfortunately this
solution is very expensive, that is why we looked for alternative solutions.

In the present study we examine the honeypots available today with a
special focus on industrial control systems. In addition, a specific PLC de-
vice also will be tested in order to detect possible weak points and implement
a high-interaction honeypot. We are going to handle the different services
completely separated in order to find the best way to implement them. And
then we are going to integrate the service simulators to one honeypot sys-
tem. We will develop a system which is complex but easy to configurate so
it will be able to simulate different (but similar) PLC types.

In chapter 2 we examine the related work. In chapter 3 we discuss the
complex method of developing our honeypot service-by-service. In chapter
4 we show the results of the tests which are comparing our honeypot to the
specific device. Finally in chapter 5 we conclude our paper, and give a brief
overview of some possible future work.
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2 State of the art

In this chapter, we want to present the current state of the art of honeypots.
Honeypots are widely used in many cases, where standard network intrusion
detection systems could not provide the proper information to ensure the
security of a device connected to the network. There are several books and
papers discussing various honeypots, their advantages and disadvantages.
We would like to give a short description about their results.

2.1 Virtual Honeypots From Botnet Tracking to Intrusion
Detection

The book Virtual Honeypots: From Botnet Tracking to Intrusion Detection[34]
by Niels Provos and Thorsten Holz provides a comprehensive description
about the basics of the honeypots, as well as case studies where real hon-
eypots were compromised by attackers. The book starts with the basic
definition of honeypots: ”an information system resource whose value lies
in unauthorized or illicit use of that resource”. Network intrusion detection
systems are less efficient than honeypots, because the new encryption sys-
tems are providing more protection to the attackers. They are also suffering
from high false positive rates, so a new system is required to detect and ex-
amine the methods of the adversaries. As stated in the book, honeypots are
able to provide these services. For example, we can log keystrokes (which
we could not have done by monitoring encrypted network traffic), or even
detect new vulnerabilities, new methods of the attackers.

The book contains a detailed description of the two main types of hon-
eypots: low- and high interaction. High interaction honeypots provide full
access to a complete system. Thus, an adversary can take total control over
the honeypot, and we can examine its tools and techniques. So the main
advantages of these honeypots are that we can follow the attackers steps,
how he takes control over the honeypot, and what is he doing after that. A
considerable disadvantage of these honeypots is that the attacker can ini-
tiate malicious activity from our honeypot to other devices, but this is the
price for detecting the adversarys behavior. High interaction honeypots can
be real physical systems, like a computer or a router, but there are virtual
honeypots. Virtual honeypots are easy to set up, and many of them can be
used on one host machine, but they also have disadvantages, for example
the attacker can detect that it is not a real machine, and try to mislead the
observer. Virutal honeypots can be set up based on VMWare or User-Mode
Linux. We can read also about Argos: this high interaction honeypot was
developed by researchers from Vrije Universiteit Amsterdam, and is able to
detect zero-day attacks (attacks for which no patch yet exists). The detec-
tion process is called dynamic taint analysis, where the malicious input from
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the attacker gets marked as tainted. As we saw earlier, high-interaction hon-
eypots bear the risk that the attacker takes full control over the device, so
we must ensure that they are not used for further attacks by the adversaries.
One of the easisest ways of safeguarding our honeypots is the Honeywall by
the Honeynet Project. The book also presents this software, how it is in-
stalled and configured in order to manage and protect our honeypots.

We can read also about low interaction honeypots in the book. As men-
tioned also in the introduction, these honeypots do not provide complete
access to the operating system. This is an advantage and a disadvantage
at the same time. It is good, because the attacker will never have complete
control over the honeypot, but this makes the system less desirable to at-
tack. The book also contains instructions about how to install and setup
various low-interaction honeypots, for example Tiny Honeypot, Google Hack
Honeypot or PHP.HoP. Safeguarding low-interaction honeypots is also im-
portant despite the fact that there are less threats to worry about in this
situation, since its harder to abuse these systems. But if there is a vulnera-
bility in the honeypot itself, it could turn into a high-interaction honeypot,
and attackers can use it to malicious activities. The authors also provide
solutions for enhancing the protection of the low-interaction honeypots.

We can find information in this book about a framework called Honeyd,
which helps the setup of networking preferences of the honeypots. More
information about this service will be provided later in this chapter, based
on another paper[33]. The authors present their results about detecting
honeypots, this topic is also related to our poject. Here the authors provide
methods to detect low- and high-interaction honeypots using simple tools
on Linux. There are also several instructive case studies in the book, where
high-interaction honeypots were compromised, such as a Red Hat 8.0 or a
Windows 2000 honeypot. In conclusion, this book gives an extensive de-
scription of the basics of the honeypots, and it is a good starting place to
learn the subject of honeypots.

2.2 Anti-honeypot technology

The paper Anti-honeypot technology[29] by Neal Krawetz is discussing the
topic from the adversarys side. As the title suggests, he writes about the
detection of honeypots using the software called Honeypot Hunter by Send
Safe. Since spammers continually scan the Internet for proxy relays, honey-
pots are a direct threat to them, because they can reveal the spammers true
identity. As stated in this paper, spam developers are generally reactive, not
proactive: they only change their methods when it is really needed. The
development of this project indicates, that spammers are aware of the threat
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that honeypots mean to them. Honeypot Hunter uses simple methods to
detect these honeypots. It tests an open proxy connection, and based on
the response, classifies it as safe (good), bad (failed), or trap (honeypot).
The Hunter opens a fail mail server, then it attempts to proxy back to itself
through the server. If the server responds that it connected successfully, but
the false mail server does not receive a connection, then it is likely a hon-
eypot. As the author states, honeypots can be prepared for these systems,
and they can be supported with anti-detection methods. This project is a
good demonstration that it is important to create better and better honey-
pots, because anti-honeypot systems are evolving and they can suppress the
positive effects of the honeypots.

2.3 Honeyd: A Virtual Honeypot Daemon

As previously mentioned, there is a paper by Niels Provos about a frame-
work called Honeyd, which helps the setup of virtual honeypots[33]. Cre-
ating physical honeypots can be often time-consuming and expensive, but
virtual honeypots are generally easy to setup and maintain, however, they
also have disadvantages as we saw it earlier. Honeyd is a tool for creat-
ing proper network environment for honeypots. It is basically a daemon,
which simulates the TCP/IP stacks of operating systems, thus fools finger-
printing tools like Nmap. Honeyd supports TCP, UDP and ICMP, and is
capable of creating complex virtual network topologies. The paper explains
how the incoming and outgoing packets are processed. Incoming requests
are processed by a central packet dispatcher. The dispatcher calls the pro-
tocol specific handler of the corresponding honeypot configuration (or the
default one if there is not any). The daemon can also establish connections
to arbitrary services over TCP and UDP, or it can forward the connection
request to a service running on a honeypot, to a web server for example.
For outgoing requests, there is a personality engine which contains the net-
working behaviour of the simulated honeypots. This information is based
on the Nmap fingerprint scan. Before sending a packet, it passes through
the personality engine. The author explains the configuration of a real sys-
tem using templates: how to setup a network and assign configurations to
virtual network devices. In conclusion, Honeyd is an effective tool to setup
and operate virtual networks for honeypots, it successfully mimics the net-
work stack behaviour of several operating systems, thus fools fingerprinting
devices.
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2.4 HoneyC - The Low-Interaction Client Honeypot

This paper by Christian Seifert, Ian Welch and Peter Komisarczuk is about
client honeypots[46]. So far we referred to honeypots as server honeypots,
which attracts the attackers by providing different services, so we can gather
information about their activities. Client honeypots are designed to interact
with servers, in order to detect malicious behaviour. For example, if a client
connects to a web server, the response of the server might contain code that
is targeted at exploiting a vulnerability of the browser on the client. Like
the server honeypots, there are also low- and high-interaction client honey-
pots. High-interaction client honeypots are traditionally run a web browser,
so they focus on malicious web servers. They usually monitor the changes
made in the system after a request has been made, and detect the hostile
activity by this way. Honeyclient or Honeymonkey are such high-interaction
client honeypots. As the authors stated, these high-interaction honeypots
can be expensive and complex, since they are running a real operating sys-
tem and monitor the changes in the whole system. Thus, they often suffer
from performance issues, which make the low-interaction honeypots more
desirable. These client honeypots are usually virtual honeypots instead of
using a real system. This makes them cheaper and they are less vulnerable
to the attacks. But they have also disadvantages, for example they might
not be able to detect some unknown exploits that would be identified by a
high-interaction honeypot. So the relationship between the low- and high-
interaction honeypots is similar to the interaction level of server honeypots.
As the authors stated, a low-interaction client honeypot should have three
main tasks: create a queue of server requests, create these requests with
several algorithms (like crawling or search engine integration), and analyze
the system and the server response after the interaction with the server.
HoneyC is a platform independent framework and completes these require-
ments. Its three main parts are the Queuer, the Visitor and the Analysis
Engine. HoneyC focuses on the HTTP 1.1 protocol, so it creates HTTP
requests, and analyzes the corresponding responses. The article contains
also the results of querying 2000 websites, and analyzing the responses. It
is not surprising, that the low-interaction honeypots have a better perfor-
mance than the high-interaction ones, and the authors were able to detect
malicious web servers as well. In conclusion, like server honeypots, client
honeypots are really important to protect our systems. They provide an
effective and safe method to detect hostile services, thus we can expect the
advancement of these systems.

9



2.5 Honeytokens: The Other Honeypot

So far we mainly discussed honeypots that are some sort of computers, but
this paper by Lance Spitzner changes this concept[47]. Since honeypots by
definition are information system resources, they do not have to be a com-
puter. A honeytoken is exactly this: a honeypot, which is not a computer,
instead it is some type of digital entity. A honeytoken can be a credit card
or an Excel spreadsheet, they can come in many forms, but their concept is
the same as the honeypots: their value lies in the unauthorized use of the
resource. Because of this, as the author states, they have the same power
and advantages as traditional honeypots, since no one should be using or
accessing them. For example, a hospital could use these honeytokens for
preventing legal issues. Only authorized people should have access to medi-
cal records, and if a hospital wants to know if one of their workers is looking
into files where they should not, honeytokens are a good way to find this
out. Another good example is a database with credit card entries. Mixing
honeytokens into valid credit card numbers can help to detect malicious ac-
tivity in the system, since no one should access the false credit card records.
As we can see, the honeytokens are really flexible and provide an easy way
to protect systems with sensitive data. Compared to honeypots, they are
much simpler than even the low-interaction virtual honeypots, even a short
string or file can be a honeytoken, and if they are accessed, we would know
that immediately. The cost of the honeytokens is also minimal: there is no
technology to deploy, no vendors to contact, no licenses to update. As the
author states, combining honeytokens with other solutions can make them
even more efficient. For example, a honeytoken can inform us about a po-
tential unauthorized behaviour, but with other devices, we can make sure
that it is really an attacker with malicious intent, or just a worker looking
where he or she should not. In conclusion, honeytokens are really cost ef-
fective, simple and efficient way of creating honeypots, we expect to see a
great progression in the future.

2.6 Trend Micro articles about attacks against ICS/SCADA
systems

Who’s really attacking your ICS equipment?[51] is an article wrote by Kyle
Wilhoit, member of the Trend Micro Forward-Looking Threat Research
Team. This paper discusses the security of ICS systems, and presents re-
sults of attacks against a honeypot system. As the author states, when these
systems were first brought into service, security was not a concern. SCADA
systems were not even able to connect to the Internet, the physical sepa-
ration addressed the need for security. However, nowadays many of these
systems are exposed to the Internet (one can easily find embedded systems
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on the web with performing Google-dorks searches), which proves the insecu-
rity of these systems. The research team developed a honeypot architecture
that emulates several ICS/SCADA devices. The objective was to find out
who and for what purpose is attacking these ICS systems. The honeypot
architecture contains a high-interaction honeypot (a PLC system running
on a virtual machine), a pure-production honeypot (a server which mimicks
the human machine interface of a PLC), and also a real PLC, which can be
considered as a pure-production honeypot. In addition to these honeypots,
low-interaction honeypots were also set up. After setting up the honeypot
system, the devices were seeded on Google, named for SCADA-1, SCADA-2
etc. so they would draw the adversaries attention. In 28 days, 39 attacks
were reported from 14 different countries. It is important to note that port
scans or automated attack attempts (like SQL injection) are not reported,
only the attacks which would be a real threat against ICS/SCADA systems.
The author recommends several safety instructions to protect these SCADA
systems.

The SCADA That Didn’t Cry Wolf[50] is the continuation of the previ-
ous paper. As the author states in the beginning of this article, the secu-
rity of SCADA systems is still a concern everywhere in the world. While
technological advancements have been made in the deployment of the these
systems, their security does not improved. One of the biggest advance-
ments is the cloud-based deployment. Several security concerns related to
the cloud-based SCADA deployment have been reported worldwide. Since
SCADA systems are widely used, especially in the USA, in China and in
Japan, many countries started to implement standards to secure these sys-
tems. But, as the author states, risks and threats are becoming common
to SCADA systems. For example, human machine interfaces which provide
access to SCADA devices are a huge threat to these systems. An attacker
can use traditional web application vulnerabilities (like SQL injection), or
even unpatched operating system exploits. In addition to these risk, data
historian informations can be also a threat to SCADA systems. A data
historian is basically a centralized database for logging process information,
and it is important to protect this information from unauthorized access.

As we saw in the previous article, the research team has set up a hon-
eypot architecture to examine attacks against SCADA systems. While that
honeypot deployment was successful, the team wanted a bigger data sam-
ple to better represent global perspective. They improved the architecture
with several already-existing and also newly-created tools and scripts. The
main goal was to make the system a believable, fully mimicked version of
an ICS/SCADA system. The team also improved the identification of the
attacks with special tools. In order to create global attack detection, the
team created a honeynet from multiple honeypots. A total of 12 honey-
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pots were deployed, and they worked separately in different countries like
the USA, Russia or China. The attackers used the website ShodanHQ for
reconnaissance and performed several port scans on the honeypots. Some
of the attackers even expanded their port scanning selection, and they did
not even use slow scanning to reduce getting noticed. Over three months,
the research team observed 74 attacks from 16 different countries. Out of
these 74 attacks, 11 were considered critical, which means it can cause a
catastrophic failure of an ICS device’s operation. Like in the first honeypot
architecture, only targeted attack were considered real attacks. The author
also presents the attack origin and type breakdowns in the paper.

In conclusion, these two papers are a good presentation that ICS sys-
tems are constantly threatened. ICS systems possess a great responsibility,
they are used in many countries in automation or manufacturing systems. It
is important to examine the methods of the attackers and develop security
solutions based on the examination.

2.7 SCADA HoneyNet Project by Cisco

The Scada HoneyNet Project[49] was started in 2004 by Cisco Critical In-
frastructure Assurance Group (CIAG) and was discontinued in 2005. It
consists of a set of python scripts, each of them implementing a service of
the simulated PLC. The project heavily utilises Honeyd[31], which is a small
daemon that creates virtual hosts on a network. The hosts can be config-
ured to run arbitrary services, and their personality can be adapted so that
they appear to be running certain operating systems. The Honeyd daemon
can be set to simulate a computer that has the OS fingerprint of a PLC and
runs the given Cisco scripts on the appropriate ports. With the help of these
scripts the Honeyd PLC realises a Telnet, FTP, HTTP and Modbus services.

The Telnet service responds only to ls and cd commands, but their im-
plementation is rather bugous, their effect is not the same as the original
commands’. The user initially has the ’Hostname#’ prompt, and using the
’cd param’ command just concatenates a white space and the param to this
console prompt. Even with the ’.’ and ’..’ parameters the effect is the
same. Meanwhile ls returns a constant string saying the user is in the root
directory, whether he ”changed” the directory with cd or not. There’s also a
’help’ command implemented that lists all the usual Telnet commands, but
none of them actually works.

The FTP service has more commands realised than the Telnet but in
most cases these commands lack the correct functionality and their effect
is not the desired one. The help command lists roughly 30 commands, but
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only user, pass, cwd, list, quit, port and syst are implemented. The ’user’
prints the ”331 Guest login ok, send your complete e-mail address as a pass-
word.” predefined string, while the ’pass’ command prints the ”230 User
Logged in” string, typing any parameter after the user and pass commands
has no effect, the returned value is always the same. The cwd command
changes the directory almost the same way that the Telnet script’s cd com-
mand does, the ’cwd param’ returns the ”250 Changed directory to param”
message. The list, port and syst commands also print a static string, and
there is a quit command, which closes the session. Both the Telnet and FTP
scripts have a logging function that logs the entered command (without the
parameters) and the current time in a file.

The Modbus script can accept Modbus packets, than returns them to
the sender without any modification or interpretation. It has the same log-
ging functionality as the Telnet and FTP services. Last, there is an HTTP
script which returns a static HTML page which contains three dead links.

In summary these scripts seem unfinished, the services are only partially
implemented and the realised functionality is nor realistic neither interactive.
Also, it is worth to mention that bugs and mistakes are present in the code,
for example, if the log file does not exist, the script doesn’t create it, instead
it throws an unhandled exception. Even an inexperienced attacker would
notice in seconds that the simulated PLC is not real, and the information
provided by the logs can not be used to uncover the identity or the methods
of the attacker, therefore the SCADA HoneyNet Project clearly fails to reach
its goals.

2.8 SCADA Honeynet by Digital Bond

The SCADA Honeynet[9] is maintained by Digital Bond and is freely avail-
able from their website. It utilises two virtual machines one of which is
a Generation III honeywall (by The HoneyNet Project[14]) extended with
Digital Bonds Quickdraw IDS signatures[9]. The purpose of this unit is to
monitor all network activity to identify and log every malicious attack that
may occur against the simulated PLC. The other virtual machine simulates
a popular PLC that runs five services (FTP, Telnet, HTTP, SNMP, Modbus
TCP), the FTP, HTTP and Modbus services are implemented by different
Java applications while the Telnet and SNMP services are realised by python
scripts. The core of the VM is Honeyd that routes the created virtual host’s
network traffic (the data streams and datagrams) from the appropriate ports
to these applications and scripts.

The telnet script presents a VxWorks[13] telnet banner which is typi-
cal for the simulated PLC, and also prompts the user for login information,
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however no username-password combination is considered valid, so the script
always returns an authentication error and logs the login attempt in a text
file. The SNMP service is implemented by the SNMP script that is shipped
with Honeyd and configured to not accept any community string.

The Java application (called iFTPd.jar) that implements the FTP server
is a tinkered version of Independent FTP Daemon[4]. This is an open source
FTP server, according to the manifest file the simulator is based on the
iftpd 1.5 version. Just like the telnet script the FTP service is configured to
present a VxWorks ftp banner. It also does not authenticate any username-
password combination, but logs them in a text file. The modbus service
is implemented by ModSim.jar which is just a frame for jamod.jar which
contains the net.winpi.modbus package. The jamod[52] (Java Modbus Li-
brary) is a free and open-source JAVA Modbus project, that is available from
sourceforge.net. Jamod.jar is a Java modbus implementation that creates
XML based logs. The HTTP service is provided by FizmezWebServer[22],
which is a simple JAVA based web server. It was a GNU licensed project
by David Bond. The web service presents a simple html page identical to a
Schneider Electric PLC web-page.

The Digital Bond’s SCADA Honeynet is a huge improvement over the
Cisco Honeynet Project. With the returned service banners and OS finger-
print it can make scanning and information gathering tools (such as nmap
or nessus) believe that it is a real PLC, thus it can be effective against auto-
mated attacks and tools. However, the simulated services provide very little
interaction, and they might not be able to keep an attacker attracted for
long enough to uncover new targeted PLC attacks.

2.9 Conpot by The Honeynet Project

The Conpot project[1] by The Honeynet Project[5] was released in May 2013,
and it is available for everyone from their website. Conpot is an ICS honey-
pot with the goal to collect intelligence about the motives and methods of
adversaries targeting industrial control systems. The honeypot realizes two
major ICS protocols: Modbus and SNMP. There is also an HTTP service,
and a logging system in the honeypot. These services are implemented with
Python scripts. The honeypot emulates a Siemens S7-200 CPU type PLC
by default, but it can be easily reconfigured through various profiles.

The SNMP module of the default profile contains common variables such
as system uptime or system description. When using SNMPv1, these vari-
ables can be accessed with a predefined community string, and SNMPv3 is
also supported, where the user can access these with the proper authenti-
cation (user name and authentication key). There are less variables in the
honeypot than in a real, working PLC, but the SNMP module can be con-

14



figured easily: the management information base (MIB) can be modified, so
even more variables can be accessed through SNMP. The community strings
for SNMPv1 and the authentication for SNMPv3 can also be customized.

The Modbus service of the honeypot can be configured with various slave
devices. In the definition of the slaves, there are input and output blocks.
Both type have starting address and size. The input can be analog input
(measurement for example), or binary input (power on/off for example), and
these values can be randomized. The default profile contains two slaves, but
it is easily customizable to have more or less slave devices.

There is also a web server in the honeypot, but when trying to access
the website, it gets into a redirect chain. The website contains the sys-
tem description and the system uptime, and these are queried by SNMP
requests. After these requests, an HTTP 303 (See Other) error occurs, but
the location in the error description stays the current site, so the process
starts over again. Beside the main page, there are also html files for various
HTTP errors like 403 (Forbidden) or 404 (Not Found), but they don’t seem
to work either.

Conpot has also a logging service. This service logs the events of the
HTTP, SNMP and Modbus services. Every logged event begins with the
system time with millisecond accuracy. HTTP logging is pretty simple:
when a request occurs, the source address, the request type, and the re-
quested resource will be saved in the log. According to the source files, the
same occurs when a response is sent (except for the type), but there is no
response yet because of the redirect chain explained before. Logging SNMP
requests is quite similar, the version, the source address, the source port,
and the requested object is logged. When the honeypot sends an SNMP
response, then the destination address and port, the requested variable and
its value will be saved in the log. Logging Modbus activity is even more de-
tailed. When a Modbus client connects to the Conpot, the client’s address,
the port, and the session ID is stored. After that, when Modbus traffic
occurs, the logger saves the source address, the session ID, the slave device
ID, the request and the response to this request. There’s also a log entry
with the session ID when a Modbus client disconnects from the server.

The base concept of the Conpot by The Honeynet Project is well, but
it still have some defects which really need fixing. The honeypot is easy to
install and use, but to reach it’s full potential, it needs a lot of customiza-
tion. The HTTP server is not working yet, but it’s an important part of a
honeypot, because it is a major attack surface where we can examine the
behaviour of an attacker. Because of the little interaction the honeypot
provides, it’s possible that the attacker moves on before it’s methods and
behavior can be discovered.
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3 Implementation

In this chapter we discuss the method of developing our honeypot. The real
PLC device is a Siemens Simatic 300(1) type and have an IM151-8 PN/DP
CPU. It uses firmware version 3.2.6. Our goal is to develop a high-interaction
honeypot which appears identical to the real device from an attacker’s point
of view. We will develop a system which is complex but easy to configure
so it will be able to simulate different (but similar) PLC types.

Before, the implementation phase began a lab environment was set up.
The PLC was installed in the same subnet as a virtual machine that run
Backtrack R5[15]. This machine was used to further discover and analyse the
PLC. The initial nessus[16] and nmap[17] scans showed that the PLC runs
four services these are the http, https, isotsap and snmp. The Siemens’ port
forwarding guide[19] for the PLC, also confirmed that the PLC is capable of
running these services. The latter sections will discuss the exploration and
implementation of these protocols in details.

When the PLC does not have an IP address configured, it looks for
a master on the LAN. This is done bye broadcasting different Ethernet
frames. The protocol of these is part of the PROFINET[18] standard,
which is a closed commercial standard. It defines protocols for real time
and isochronous real time communication over TCP/IP and Ethernet. In
order to simulate this behaviour, large amount of broadcast traffic was cap-
tured and analysed. It was found out, that the capture only contains three
different type of frames, in which the only changing field is a sequence num-
ber and a CRC checksum. After this, a python script was written that
creates and broadcasts these packets. It increments the sequence fields and
uses the CRC values from the original packets. The length of the cycle is
nine. Later it was discovered that the PLC stops sending these frames after
it receives an IP address, so this script is not part of the assembled honey-
pot. Still, it can be used to simulate a PLC on LAN that is looking for a
host.

After each of the services, mentioned above, were implemented, they
were integrated onto a virtual machine to create the honeypot (the abstract
model of the honeypot is presented on 1). The VM runs a minimal version
of Ubuntu Linux, that only has the necessary services and libraries installed.
There is also a bash script written, that can start, restart or stop the honey-
pot. It is run by (initd) on every start up. Every simulator has its own way
to fine tune it, however there is a main configuration file of the honeypot.
In this file global settings can be set, such as the IP and network interface
that the honeypot is being run on. The startup-script reads these values and
configures each service simulator before it launches them. The script also
sets iptables rules to block all incoming connection that are not destined to
one of the simulators. The TCP connections are refused by a TCP reset,
just like on the real PLC. The UDP datagrams that are not sent to the
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SNMP service are simply dropped. The script starts tcpdump to capture
the network traffic on the honeypots interface. The final step is to change
the behaviour of the TCP/IP stack. The files in /proc/sys/ipv4/ provide
an interface for this on Linux. These files contain values, that can be read
or written and control the operation of TCP and IP. The IP ttl is set to 30,
and the MTU is 1518, also the PLC has a fixed TCP window size, which
unfortunately can not be exactly set, because of the limitations of the /proc
file system. Some of the TCP related values are compiled into the kernel, so
they cannot be changed through these files. Currently this is a limitation of
the honeypot. In the future this issue needs to be addressed.

Figure 1: The model of the integrated honeypot
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3.1 HyperText Transfer Protocol

HTTP is one of the most common Internet protocols. As we can read
in the introduction of RFC 2616[26] HTTP is application-level protocol
for hypermedia information systems. The first version of HTTP, referred
as HTTP/0.9 was a simple protocol for raw data transfer. HTTP/1.0 is
defined in RFC 1945[21] improved the capabilities of the protocol by al-
lowing messages to be in MIME-like format containing meta-information
about the data transferred and modifiers on the request/response seman-
tics. HTTP/1.0 does not sufficiently take into consideration the effects of
hierarchical proxies, caching, the need for persistent connections, or virtual
hosts. HTTP/1.1 is designed to improve the capabilities of the protocol by
including more specific information about this form of communication.

Usually HTTP communication runs over TCP/IP connection. By de-
fault it uses TCP port 80 but it can use other ports as well. HTTP in-
teraction is always initiated by the client. It creates a new connection to
the server and posts a request message. It is not necessary to request data;
the request can query the methods that the server supports. The client
can send meta-information about itself (for example client program name,
version, etc.).

After getting a request the server posts a respond with the requested
information. It also can send meta information about itself (server program
name, version, location of server, etc.). And then the connection closes.
If there is no respond to a request for a while then the connection closes
itself and it posts the client a request timeout (status code 408) message.
HTTP/1.1 allows to keep alive the connection so multiple requests and re-
sponses can be sent over one connection.

The communication can be listened and played back by a third party. Of
course in many cases the captured information is useless (for example visiting
public websites). But in many situations it is not acceptable to allow any
third party to record the communication (for example while making bank
transfers or handling kind of secure information). Therefore it is necessary
to improve the security of the protocol.

HTTP Secured (HTTPS) is an extension of HTTP service. It is not an
independent protocol it is layering HTTP over SSL/TLS protocol. It is a
simple way of improving the security of HTTP protocol. Mostly it uses port
TCP 443 and usually the HTTP clients and servers also able to communicate
over HTTPS. Using SSL protocol only guarantee that the communication
between the client and a server cannot be observed by a third party. But it
does not necessarily guarantee that the client reached the server it wanted
to reach.

Every server have to generate a certificate which can be self-signed (which
is only use for testing a server application during development) or signed by
a public certificate authorities (for example Thawte). Only these authorities
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can create trusted certifications. With a trusted certification the server can
guarantee the client that it is the server it wanted to reach.

As it was mentioned before in many cases there is no benefit by using
HTTPS instead of HTTP. Maybe this is the reason why only the quarter
of the most popular websites implemented HTTPS in the first half of 2013
according to SSL Pulse of Trustworthy Internet Movement[11]. The research
included over 160,000 web sites and it clearly shows the increasing percent
of the secure web sites. Over 11 months from 2012-10-04 to 2013-09-02
the percent of secures web sites increased from 13.6% to 24.6%. It is a
very surprising fact that over one month (to 2013-10-02) it increased to
49.4%. Summary the increscent over one year the number of secured web
sites become nearly four times greater.

There are a lot of new standards and features of using HTTP which
is not in the official protocol definition. The different implementations of
actors (both servers and clients) usually implement different parts of the
protocol and its features. Therefore to make the honeypot’s HTTP service
similar to the PLC’s HTTP service first we have to observe the behavior
of the PLC device, mapping its capabilities and examine the exact way of
communication it uses.

3.1.1 Observation of the PLC

We found that TCP port 80 is open for HTTP service. First we used a
simple HTTP client (Firefox 14.0.1) to examine the served pages. The first
page redirects the client to a welcome page. On the welcome page there
are a few links to the manufacturer’s website, we can select the preferred
language and we can navigate to the rest of the pages. From the welcome
page we can get to the start-page where there are several information about
the PLC. We can check it’s module name, module type and it’s status. Also
there is a graphical representation of the PLC. We can see the graphics of
the front panel and we can check the status of the LEDs and the mode
switch.

This page also informs us about the time set on the PLC and we can
print the contents. There is a login field where we can log in with the user
name and password combination which was set by the configuration of the
PLC. After login we can reach some other pages which provide some specific
information about the device (firmware version, serial number, etc.) and we
can also find some statistics about network activity.

A very conspicuous fact about the site is the request which can be read
in the navigation bar of the browser. Loading any page (except the welcome
page) request the same file with different parameters. For example the
request for the start page is the following:

10.105.0.47/Portal/Portal.mwsl?PriNav=Start
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Because the responded page depends on the parameters of the requested
URL we can say that there is a server-side processing. Thus we can say
the web server of the PLC generates the content dynamically. Another
noticeable fact is the extension of the requested file, because .mwsl is not a
common extension.

After some searching we found that .mwsl probably stands for Mini Web
Server Language. It shows that the server uses the MiniWeb project[6]. This
project is owned by Stanley Huang. His aim was to develop a small HTTP
server with high efficiency and high portability written in C language. It
is free and open source. It serves static pages so we can say that the PLC
probably use an improved application which is based on this project.

Because HTTP is a text based protocol it is easy to observe the headers
of the communication. To examine the header content we send requests
manually using telnet. First we should find out the capabilities of the server
with sending it an options command:

OPTIONS * HTTP/1.1

The response contains status code 405 (method not allowed) but it also
tells us that the server will response to only GET and POST methods:

HTTP/1.1 405 Method Not Allowed

Content-Length: 0

Connection: close

Allow: GET, POST

Content-Type: text/html

It is not necessary to implement the HEAD method because the only
difference of GET is that the response must not contain the message-body
just the header and the meta-information. Despite it is not listed in the
allowed method list we found that it is working correctly. Our request was:

HEAD * HTTP/1.1

And the response was:

HTTP/1.1 200 OK (65519)

Content-Type:text/html

Content-Length: 15

Connection: close

200 OK (65519)

It is important to notice that there is no information in the headers
about the server or the device. It contains just the necessary fields but no
optional.
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Figure 2: Details of the PLC’s certificate

We found that port TCP 443 was also opened. So the device implements
HTTPS service as well. There is no difference of the served data and pages.
The device uses a self-signed (not trusted) certificate as it is shown on Figure
2. The certificate is issued to Siemens AG organization issued by the same
organization with MiniWebCA common name. The signature algorithm
is SHA-1 with RSA Encryption and it uses an 1024 bits long public key.
Observing different PLC devices we found that each device use a unique
certificate (instead of using the same certificate on every device).

During the test we found that sometimes the PLC is not responding. The
connection between HTTP traffic and not responding become clear when we
found that requesting Portal.mwsl without parameters causes a complete
crash of the system. After receiving the specificated request the PLC device
hangs: it does not react to any network activity and it has to be manually
reseted.

We guessed that this phenomenon is caused by a memory leak. We
observed the miniweb server (the version which is available on internet,
not the version which is running on the real device) with valgrind[12] to
find if there is any memory leak. According the valgrind’s result there is
no memory-leak during normal running mode (with receiving any right or
wrong requests). We have to note that the real device uses a modified version
of miniweb. It contains the methods which are necessary to generate the
pages dynamically. These methods have to process the parameters of the
requests so we can say that probably the extension methods cause some
memory-leak or null pointer dereference which leads to the crash.

To improve the safety of a PLC it is strongly suggested to use a firewall to
filter HTTP requests and drop the ones which contain Portal.mwsl without
parameters. This function can be implemented by iptables as well using
-m string option.

We found this phenomenon by ourselves and later we found that others
also noticed the problem a few months earlier.[2]
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3.1.2 Simulating the HTTP service

As it was mentioned before the device uses a server based on the MiniWeb
Server Project. Therefore we also use a server based on MiniWeb. The
first change we had to implement is the form of the HTTP responses. The
default header of the response mentions several information that the real
device does not (e.g. the name of the server, the default cache-control rule)
in the following way:

HTTP/1.1 200 OK

Server: MiniWeb

Cache-control: no-cache

Pragma: no-cache

Connection: keep-alive

Accept-Ranges: bytes

Last-Modified: Tue, 23 Jul 2013 08:45:49 GMT

Content-Type: text/html

Content-Length: 268

We changed the source to get the expected header containment. The wel-
come page is contained in Intro.mwsl and the start-page is generated from
Portal.mwsl. Without logging in only the welcome page and the start-page
can be requested. So we had to copy the two reachable pages. We used the
wget[3] tool to copy the page content.

We had to manage some changes in the copied files to remove all links
to the real device. And we rewrote the login mechanism (there is no name
and password check) to simulate that there is a password but the attacker
failed to guess it. After the changes we were able to simulate the HTTP
service with static pages.

The pages also contain timestamps. We wrote a bash script to replace
time and date data in the used file. It copies the file to a template file and
during the copy it changes the time-stamp. Then it replaces the original
file with the copied file and during it changes the date-stamp. It only works
once per second (to reduce the used CPU time):

#!/bin/bash

while:

do

time="$(date +"%r" | tr ’[A-Z]’ ’[a-z]’)"

date="$(date + "%m/%d/%Y")"

sed "s/[0-9][0-9]:[0-9][0-9]:[0-9][0-9] [a-p]m/$time/"

<Portal.mwsl >temp

sed "s:[0-9][0-9]/[0-9][0-9]/[0-9][0-9][0-9][0-9]:$date:"

<temp >Portal.mwsl

sleep 1
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We also simulate HTTPS service. We used OpenSSL[8] and generated
an 1024 bit long key and a self signed certificate. We added the same meta-
information (e.g. location, common name, organization) to the certificate
that the device adds to it’s self signed certificate. To simulate HTTPS we
used nginx[7]. With suitable configuration it tunnels HTTPS traffic to the
miniweb server over HTTP.

Figure 3: The HTTP/HTTPS service environment

An another advantage of using nginx is that we can separate the HTTP
traffic into two parts: traffic between the honeypot and the outside network
and the traffic inside the honeypot (between nginx and miniweb). Thus
the system becomes more configurable. Figure 3 illustrates the complete
developed structure.

3.1.3 Comparing the simulated and the real behavior

We have no intention to hide the already known differences between the
real device and our honeypot. In the following section we will mention the
differences which are able to vanish by future work. Visually there is no
difference between the websites. But on the honeypot’s site it is impossible
to log in because we pretend that there is a valid username and password
combination but the attacker’s guess was wrong.

On the honeypot’s page there is no effect of selecting other languages (it
only uses English language). We have to note that on the real device’s site
it is also impossible to reach any other offered languages because it does not
have enough memory to contain the language files.

We do not simulate any changes of the visual presentation of the PLC on
the site (e.g. the LEDs state never change). We can say that we pretend that
the environment of the simulated device never changes. It can be believable
that a device’s environment does not have changes which change the PLC’s
running state. We do not simulate the already known bug by requesting
Portal.mwsl without any parameters however a script can be easily added
to stop all communication for a while after visiting the page.
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3.2 SNMP

3.2.1 Introduction to SNMP

The Simple Network Management Protocol (SNMP) is an internet protocol
which was created to manage and monitor devices on an IP network. SNMP
is part of the Internet Protocol Suite, its different versions are defined in
RFCs, and it is maintained by the Internet Engineering Task Force (IETF).
SNMP is used to obtain administratively important information from net-
work devices, including, but not limited to, routers, servers, switches, hosts
and printers. In a typical SNMP conversation there are two participants,
a manager, that queries the requests and a managed device, that replies
to these. The managed device runs an SNMP software that is called the
Agent. The Agent interprets the queries and returns the requested data to
the manager.

Figure 4: The structure of the OIDs

The SNMP standard doesn’t define which information an Agent should
offer, instead a hierarchic, highly customisable data structure is used. The
data is divided into variables, and these variables are organised into a tree
structure. Each variable is referenced by a globally unique identifier, called
object identifier (OID). Just like the data, the OID itself is hierarchical, it
is represented by a series of numbers divided by dots (e.g. 1.3.6.1.2.1.1.1.0)
in which each segment represent a node on the appropriate level of the
tree structure, as seen on Figure 4. The first segment selects the root of
the data structure, the value of this can be 0, 1 and 2. OIDs beginning
with 0 represent records defined by ITU-T, ISO defined OIDs begin with
1 and there is a so called joint-iso-itu-t database, these OIDs begin with
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2. The whole hierarchy and the metadata (variable names, permissions and
types) are described in Management Information Databases (MIBs) which
use ASN.1 notation. During an SNMP request the manager queries an OID
and if the Agent’s MIB contains it, the Agent replies with the type and
value of the requested variable.

The protocol also allows the modification of data through set requests.
Each variable in a MIB has a permission flag, that can be set to read-only
or read and write access. If an Agent receives a set request for read-only
variable it replies with an error message. The SNMP protocol also permits
the Agent to send information asynchronously to the manager, without the
manager initiating the conversation. This is done with special messages
called SNMP traps, the Agent can be configured to trigger these traps on
special events such as reboot, interface down, etc.

Currently there are three major versions of SNMP respectively SNMPv1,
SNMPv2 and SNMPv3. In SNMPv1 and v2 the messages are encoded
by ASN.1 BER notation, defined by the International Telecommunication
Union (ITU) in the x.680-683[37][38][36][35] and x.690[39] recommendations.
This notation requires each field of the message to be preceded with bytes
that reveal the type and length of the field. These versions use a community
string for authentication, and it is included in the request and reply mes-
sage in plain text. While SNMPv2 is backward compatible with v1 the v3
standard proposes a new message format and no longer compatible with the
previous versions. Also the SNMPv3 defines additional security features in-
cluding reliable authentication and encryption of messages, yet the previous
versions are still more common because of their simplicity and compatibil-
ity. All of the SNMP versions operate over UDP and use the port 161 for
communication and the port 162 for traps.

The SNMP standard defines five core message types GetRequest, Get-
NextRequest, SetRequest, GetResponse and Trap. These are called Protocol
Data Units (PDUs). The GetRequests are sent by the manager to the Agent
and they query a specific OID, the Agent sends a GetResponse that contains
the requested variable if it is present in the Agent’s MIB, else the GetRe-
sponse’s error field is set to NoSuchName error. The SetRequest contains
the OID and the new value of the variable, if the chosen variable is read-
only the SNMP Agent may send a ReadOnly error, otherwise no reply is
sent back. The GetNextRequest operates the same way as the GetRequest
but the response contains the next OID and value from the hierarchy if there
is one, else the Agent replies with a NoSuchName error.

25



Figure 5: SNMP message structure

All these messages share five common fields, the SNMP version field,
the community string field, the sequence field, which is used to link the
GetResponse to the appropriate Get or GetNext request, an OID field and
an error field. The error field should only be set other than zero in Ge-
tResponses. The most common error messages are the value/response is
too big (tooBig), there is no such object (NoSuchName), bad value for the
SNMP object (BadValue), the object is read only (ReadOnly) and general
SNMP error (GenErr). There is also an error index field that can be used
to further specify the error that occurred. The SNMPv2 and v3 introduce
new message and error types, the discussion of these is not in the scope of
this paper. The Figure 5 show the typical format of an SNMP message.

For those who are interested, William Stallings’ book, the ”SNMP, SN-
MPV2, Snmpv3, and RMON 1 and 2” [48] provides further information on
the subject. The following RFCs are used to define the SNMP standard and
the data structures that it uses:

• SNMPv1 RFC 1157[24]: defines the SNMPv1 protocol.

• SMIv1 RFCs:

– RFC 1155[42]: Structure and Identification of Management In-
formation for TCP/IP-based internets

– RFC 1212[41]: Concise MIB Definitions

– RFC 1215[40]: Convention for Defining Traps for use with the
SNMP

• MIB-II RFCs:

– RFC 1213[30]: Management Information Base for Network Man-
agement of TCP/IP-based internets: MIB-II

– RFC 2863[28]: The Interfaces Group MIB (IF)

– RFC 3418[32]: Management Information Base (MIB) for the Sim-
ple Network Management Protocol (SNMP)

– RFC 4001[25]: Textual Conventions for Internet Network Ad-
dresses

– RFC 4022[44]: Textual Conventions for Internet Network Ad-
dresses (TCP)
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– RFC 4113[20]: Management Information Base for the User Data-
gram Protocol (UDP)

– RFC 4293[45]: Management Information Base for the Internet
Protocol (IP)

3.2.2 Observation of PLC

The SNMP service is commonly installed on intermediary and end network
devices, because it provides a simple and easy way to monitor and manage
the device. SNMP is often implemented on different PLCs as well, for the
same reason. The SIEMENS S7 support page[19] provides a list of ports that
may be open on the S7 family PLCs. The port 161 being listed there suggests
that the observed device might run an SNMP Agent. An initial Nessus[16]
scan of the PLC proved that it has SNMP service running. It also provided
two community string that allows access to the stored records. These strings
were public and private which are the two most common default community
strings for SNMP.

The next step in uncovering the PLC’s SNMP Agent was to query all
the records that the Agent offers and identify which MIBs are installed on
it. To achieve this the snmpwalk program was used which is part of the
Net-Snmp[23] suit. The Net-Snmp suit contains multiple programs that
can generate Set, Get or GetNext requests, snmpd is also part of the bun-
dle which is the most commonly used SNMP Agent. The snmpwalk keeps
sending GetNextRequests, always with the OID that was returned by the
previous GetResponse, until a NoSuchName error is encountered, which
means that the end of the MIB is reached. The snmpwalk takes an OID
or a partial OID as an argument which identifies a node in hierarchy and
returns all the variables that are under the chosen node in the tree struc-
ture. If the snmpwalk’s argument is the root of the hierarchy than all the
records are returned that the Agent holds. The PLC’s Agent was parsed
this way both with public and private community strings and the results
were identical. All the three possible roots of the hierarchy were scanned,
but only the 1.3.6.1.2 node held data, which contains ISO defined internet
related management information.

The output of the snmpwalk was further analysed and the MIBs used by
the PLC were determined. The first seven records that the Agent provides
contains general information about the PLC such as system description and
uptime.

SNMPv2-MIB::sysDescr.0 = STRING: Siemens, SIMATIC S7, IM151-8,

6ES7 151-8AB01-0AB0 , HW: 3, FW: V3.2.6, S C-C1TR95142012

SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::zeroDotZero

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks:

(285968480) 33 days, 2:21:24.80
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SNMPv2-MIB::sysServices.0 = INTEGER: 78

The next 88 variables are from the IF-MIB. The PLC has four network
interfaces, the first one is a serial port that uses PROFIBUS protocol to
control the devices attached to it in a real production environment, the
second interface is a Fast Ethernet port that is used to manage the PLC,
it should be connected to the management network. The third and fourth
interface can be used to form a ring topology of the PLCs. The IF-MIB
provides information about the connections state and speed, the interfaces’
state and physical address, the amount of different types of data received
and sent, the number of discarded packets and the length of the outgoing
packet queue.

IF-MIB::ifDescr.1 = STRING: Siemens SIMATIC S7, internal, Rack 0,

Slot 2

IF-MIB::ifDescr.2 = STRING: Siemens SIMATIC S7, Ethernet Port 1,

link, 100 Mbit, full duplex, autonegotiation

IF-MIB::ifDescr.3 = STRING: Siemens SIMATIC S7, Ethernet Port 2,-

IF-MIB::ifDescr.4 = STRING: Siemens SIMATIC S7, Ethernet Port 3,-

The following 68 records are from the IP-MIB extended with the RFC1213-
MIB. The IP-MIB consists of information about and obtained by the IP
stack, such as the number of received and sent IP packets, fragments, header
errors, discards, etc., the IP address of the interface, the next hop and the
default gateway. It also provides the number of different types of ICMP
messages sent and received. The RFC1213-MIB keeps records about routing
(e.g the routing protocol, route type, the age of the route being used to
communicate with the manager, routing mask).

IP-MIB::ipForwarding.0 = INTEGER: notForwarding(2)

IP-MIB::ipDefaultTTL.0 = INTEGER: 30

IP-MIB::ipInReceives.0 = Counter32: 329598

IP-MIB::ipInHdrErrors.0 = Counter32: 2

IP-MIB::ipInAddrErrors.0 = Counter32: 125821

RFC1213-MIB::ipRouteNextHop.10.105.0.0 = IpAddress:

255.255.255.255

RFC1213-MIB::ipRouteType.10.105.0.0 = INTEGER: direct(3)

RFC1213-MIB::ipRouteProto.10.105.0.0 = INTEGER: local(2)

The IP-MIB is followed by the TCP-MIB and UDP-MIB which contains
29 and 10 records respectively. Both of these hold information about the
open sockets, their port numbers, the sent and received packets and the
TCP-MIB keeps track of the active and passive TCP connections.

TCP-MIB::tcpCurrEstab.0 = Gauge32: 0

TCP-MIB::tcpInSegs.0 = Counter32: 1636
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TCP-MIB::tcpOutSegs.0 = Counter32: 1828

TCP-MIB::tcpRetransSegs.0 = Counter32: 0

TCP-MIB::tcpConnState.0.0.0.0.443 = INTEGER: listen(2)

TCP-MIB::tcpConnState.0.0.0.0.80 = INTEGER: listen(2)

TCP-MIB::tcpConnState.0.0.0.0.102 = INTEGER: listen(2)

The last 28 variables come from the SNMP-MIB. These records provide in-
formation about the SNMP protocol itself, including the number of received
request and errors, the number of parse errors, and the amount of different
type of error messages sent out.

SNMPv2-MIB::snmpInPkts.0 = Counter32: 793

SNMPv2-MIB::snmpOutPkts.0 = Counter32: 791

SNMPv2-MIB::snmpInBadVersions.0 = Counter32: 0

SNMPv2-MIB::snmpInBadCommunityNames.0 = Counter32: 0

SNMPv2-MIB::snmpInBadCommunityUses.0 = Counter32: 0

SNMPv2-MIB::snmpInASNParseErrs.0 = Counter32: 0

SNMPv2-MIB::snmpInTooBigs.0 = Counter32: 0

SNMPv2-MIB::snmpInNoSuchNames.0 = Counter32: 0

SNMPv2-MIB::snmpInBadValues.0 = Counter32: 0

SNMPv2-MIB::snmpInReadOnlys.0 = Counter32: 0

SNMPv2-MIB::snmpInGenErrs.0 = Counter32: 0

SNMPv2-MIB::snmpInTotalReqVars.0 = Counter32: 802

SNMPv2-MIB::snmpInTotalSetVars.0 = Counter32: 0

SNMPv2-MIB::snmpInGetRequests.0 = Counter32: 1

SNMPv2-MIB::snmpInGetNexts.0 = Counter32: 806

SNMPv2-MIB::snmpInSetRequests.0 = Counter32: 0

SNMPv2-MIB::snmpInGetResponses.0 = Counter32: 0

SNMPv2-MIB::snmpInTraps.0 = Counter32: 0

SNMPv2-MIB::snmpOutTooBigs.0 = Counter32: 0

SNMPv2-MIB::snmpOutNoSuchNames.0 = Counter32: 2

SNMPv2-MIB::snmpOutBadValues.0 = Counter32: 0

SNMPv2-MIB::snmpOutGenErrs.0 = Counter32: 0

SNMPv2-MIB::snmpOutGetRequests.0 = Counter32: 0

SNMPv2-MIB::snmpOutGetNexts.0 = Counter32: 0

SNMPv2-MIB::snmpOutSetRequests.0 = Counter32: 0

SNMPv2-MIB::snmpOutGetResponses.0 = Counter32: 815

SNMPv2-MIB::snmpOutTraps.0 = Counter32: 0

SNMPv2-MIB::snmpEnableAuthenTraps.0 = INTEGER: disabled(2)

End of MIB

These records were proven invaluable in the process of further uncovering
the behaviour of the SNMP Agent of the PLC. This step was necessary
because the SNMP standard doesn’t define these behaviours and different
vendors’ application may operate differently. To further analyse the PLC,
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a python script was created, that could forge valid SNMP packets with
adjustable version, community string, SNMP packet type, error status, error
index, OID and data fields. The packet capture of the replied messages and
the PLC’s SNMP-MIB provided feedback about the effects of the crafted
messages. This way, the following observations were made; the Agent stops
parsing the message if the SNMP version field is not set to SNMPv1, or the
community name is not public or private, or a parsing error occurres such as
wrong message length or wrong ASN.1 variable type, than the appropriate
records are incremented. The SNMP Agent silently ignores any type of
message other than Set, Get or GetNext request. This means that the
Agent doesn’t count the incoming forged GetResponses or Traps. Although,
the inbound SetRequests increment the snmpInSetRequests variable, they
neither modify the selected record as expected nor cause a ReadOnly error
message. They have no effect on any variable. It was also discovered, that
the Get and GetNext requests error fields are not parsed, which means
the different inbound error records always remain zero. Finally, the PLC
was bombarded with various malformed packets, that had wrong length, or
invalid variable types, or extremely long OID, data, community name fields,
or they used wrong encoding. All these packets triggered parse error on the
PLC, however no error message was sent by the Agent. After all these tests,
it was assumed that the Agent on the PLC only replies to Get and GetNext
requests and it is restricted to generate GetResponses and NoSuchName
messages only.

After all the records held by the PLC were carefully mapped (the full-
length output of the snmpwalk can be found in Appendix A) and the exact
behaviour of the Agent was noted, the next task was to create an Agent
that appears to be identical to the one running on the PLC.

3.2.3 Simulating the SNMP service

After the thorough exploration of the PLC came the implementation phase,
before the actual realization multiple approaches were considered. The first
idea was to utilize an already existing open source SNMP Agent and mod-
ify it to our needs. The Net-Snmp suit’s snmpd application was chosen
because it is the most commonly used open source Agent and most impor-
tantly it provides an interface to modify the way it accesses the requested
data through so called sub-agents. These sub-agents can be used to rede-
fine how the information held by a record is queried, which was mandatory
for us, since some of the data a real Agent would provide needed to be al-
tered in order to simulate the PLC. After some experimenting this approach
was dropped, because in order to make snmpd behave the same way as the
PLC’s Agent we would have to make significant changes in it, and the cre-
ation of sub agent for each MIB required extensive work. Also the logging
functionality of snmpd was not sufficient for our needs.
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The experiment with snmpd showed that the amount of work needed to
patch up an existing Agent is close to be the same as writing a new Agent
requires, meanwhile creating a new Agent provides obvious benefits, such
as being able to customise it and implement extended logging functionality.
The conclusion was to create our own Agent. The first step was to chose a
programming language. The python became our choice, because it has an
excessive amount of libraries available, it offers an easy way to control and
use sockets and data processing and manipulation is very simple and efficient
in it, which was a main concern for us. Before writing an Agent from scratch,
the already existing python SNMP library, PySNMP was examined. The
PySNMP is a cross-platform, pure python SNMP engine that capable to act
as manager, agent or proxy, it is a complex library that consists more than
15000 lines of code. Because of the complexity and size of the PySNMP
it was ruled out. This decision was reinforced by the fact that the only
feature of the library that we could utilise was the message handling and
processing. Thus, the decision was made to write our own python SNMP
Agent implementation. The rest of this section describes the functions and
operation of the created python script in details.

The realised Agent, just like the original, listens on the UDP port 161,
and accepts SNMP requests and replies to them. Instead of using real MIBs
it parses an XML file that contains the list of records that are present on the
real PLC. All these records have an OID and a type attribute. They either
contain the static data (e.g. the system descriptor, or interface description)
that they represent or they contain a special mark and string that tells the
interpreter how the dynamic data (e.g. the system uptime, or the number
of received IP packets) should be created or retrieved.

<oid id="1.3.6.1.2.1.1.1.0" type="string">Siemens, SIMATIC S7,

IM151-8, 6ES7 151-8AB01-0AB0 , HW: 3, FW: V3.2.6,

S C-C1TR95142012</oid>

<oid id="1.3.6.1.2.1.2.2.1.2.1" type="string">Siemens SIMATIC S7,

internal, Rack 0, Slot 2</oid><!--ifdescr-->

<oid id="1.3.6.1.2.1.1.3.0" type="timetick">!sysUpTime</oid>

<oid id="1.3.6.1.2.1.4.2.0" type="integer">30</oid><!--ipDefaultTTL-->

<oid id="1.3.6.1.2.1.4.3.0" type="counter">!ipInReceives</oid>

The parser reads these variables and organises them into a tree structure,
where each segment of the OID represents a node on the appropriate level
of the tree and the leafs hold the data (or the special string) and the meta
data of the record. This structure is implemented in python with nested lists.
When a Get or GetNext request arrives, the script searches this hierarchy
with the queried OID, if there is a match a GetResponse is sent back with the
retrieved data, else a NoSuchName error is generated. The following code
snippet is the recursive method that is used when a GetRequest arrives.
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#f i n d s an oid in the database
de f f ind match ( root , oid , index ) :
f o r e lements in root :

i f e lements [ ’ indexVal ’]== oid [ index ] :
i f e lements [ ’ i sLea f ’]==True :

re turn OID OK, elements
e l i f index<l en ( o id )−1:

re turn f ind match ( e lements [ ’ ch i l d s ’ ] ,
oid , i n t ( index +1))
re turn OID NOT PRESENT, None

The program accepts incoming datagrams in an infinite loop and tries
to parse them as SNMP packets. If an error occurres during this process
the snmpASNParseErr record is incremented, and the error and the current
time is logged. Otherwise, the parser extracts the version, community name,
request type, request ID and OID values and with the current time and the
sender’s IP address these values are logged as well. Also, the script keeps
track of the SNMP related records in the database, so after each request it
increments the ones that need to be changed.

After, a Get or GetNext request is successfully parsed and the version
and community string are checked and if the requested OID is present in
the hierarchy, the next step is to acquire the data that the OID represents.
If the data is static it is contained in the database so no further steps are
needed, otherwise it needs to be read or generated. One of the dynamically
generated records is system uptime. When it is queried the time in seconds
since the script has been started is returned. Other example of generated
data is the traffic of the serial interface. The virtual machine that simulates
the PLC has no real serial bus so these values must be created. It is safe to
do so, because a possible attacker has no direct access to this interface on a
real PLC, hence the attacker has no way to verify the actual number. The
returned records’ values (e.g. serial in/out packets, in/out unicast packets,
etc.) are different pseudo randomly incremented counters.

There are variables that an attacker could directly or indirectly alter.
Such variables are for example the number of received packets on the con-
nected interface or the number of received ICMP echo requests. The value
of these records can not be simply generated because an attacker can try to
modify these and check if the returned numbers vary accordingly. To avoid
the detection of the honeypot, these values are read from the /proc file sys-
tem which contains information gathered by the OS on Unix systems. The
script receives the name of the interface and this name is used when read-
ing device related information from the /proc/net/dev file. The IP, TCP,
UDP and ICMP related data is acquired form the /proc/net/snmp. The
purpose of this file is to provide information about these protocols for differ-
ent SNMP Agents. The TCP current establishments value is read from the
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/proc/net/sockstat file. As it was mentioned before, the script keeps track
of the SNMP related events. It uses the data gathered this way to serve
requests for SNMP records. The code snippet shows how the ipInReceives
record’s value is accessed.

#IP Data
e l i f va lue [0:2]==” ip ” :

data=open (”/ proc / net /snmp” , ” r ”)
l i n e s=data . r e a d l i n e s ( )
words =[ ]
i=0
f o r i , ln in enumerate ( l i n e s ) :

temp=ln . s t r i p ( ) . s p l i t (” ”)
i f temp[0]==” Ip : ” :

words=l i n e s [ i +1] . s t r i p ( ) . s p l i t (” ”)
words= f i l t e r ( lambda a : a != ’ ’ , words )
break

i f va lue==”ip InRece ive s ” :
r e t=words [ 3 ]

After, the data is obtained, the script creates a valid SNMP GetResponse
and replies to the manager. The message format of the GetResponse is the
same as the GetRequest’s, but instead of a Null field at the end, the response
has a valid data field, and the different length fields are also modified to
conform to the ASN.1 standard. When GetRequest arrives with an invalid
OID, a NoSuchName error is sent back. This message is generated the same
way as the GetResponse, the only difference is that it contains no data and
has its error field set. After the appropriate answer is sent back, the SNMP
communication is over the Agent has no further tasks to do.

3.2.4 SNMP evaluation

The implemented SNMP Agent was tested with snmpwalk. The entire out-
put of the command can be found in Appendix B. The result of the test
corresponded to the expectations. Later, the Agent was tested against dif-
ferent Get and GetNext requests, the response format was always identical
to the original PLC’s responses. Finally, a variety of malformed SNMP
packets were sent to the Agent and to the PLC, and it was observed that
the changed records in the SNMP-MIBs were the same and the value of
these records were equal.

It is important to note, that there is a known limitation of the SNMP
Agent. If a specific group of records are queried from the local network, the
returned data is not valid. The following OIDs are affected:

IP-MIB::ipNetToMediaIfIndex.1.10.105.1.216 = INTEGER: 1

IP-MIB::ipNetToMediaPhysAddress.1.10.105.1.216 = STRING:
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0:c:29:76:44:ce

IP-MIB::ipNetToMediaNetAddress.1.10.105.1.216 = IpAddress:

10.105.1.216

IP-MIB::ipNetToMediaType.1.10.105.1.216 = INTEGER: dynamic(3)

These records hold information about the address of the next hop to-
ward the manager that requested the OID. If the manager is located on a
remote network, the default gateway’s address is returned, however if the
manager and the Agent are on the same LAN, the response contains the
manager’s address. The main problem is that the OID used to query this
record contains the IP address. In a real Agent these records are dynami-
cally created (so called read-create type), but the underlying data structure
of the simulator does not allow this. In our SNMP Agent the data hierarchy
is initialised from an XML file, when the script is started, later the dynamic
modification of this structure is not possible. In the future, this hierarchy
needs to be redesigned to support the read-create functionality. As of now, if
the honeypot is configured with a public IP address, it is safe to assume that
the attacker is not on the local network, thus the honeypot can successfully
fulfil its task.
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3.3 Communication with Siemens SIMATIC STEP 7

3.3.1 Siemens SIMATIC STEP 7

Siemens SIMATIC STEP7[10] is an engineering software for configuring and
programming Siemens type controllers. We can setup and program several
automation systems, for example SIMATIC HMI panels, or Siemens PLCs.
STEP 7 contains various components which extend the functions of the ba-
sic software, for example S7 Graph for describing procedures in a quick and
easily understandable way, or the S7 PLCSIM, for simulating programmable
logic controllers. However, we are going to discuss only the basic software,
because it is enough for our project.

When we want to configure or program our PLC, we have to ”build” it
in STEP 7 first. STEP 7 contains a hardware configuration module, where
we can do this easily. STEP 7 supports many Siemens PLC modules, for
example there are several CPUs and I/O modules, with different version
numbers, so we can create our PLC with ease based on the real one. After
that, we can start to configure the device. We can setup general parameters
and basic functions like name of the PLC, password protection for access, or
enabling the web server. There is also a configuration panel for setting up
the network, so we can set the IP address of the modules (if it is connected
through Industrial Ethernet), and we can define the connections between the
modules too. STEP 7 supports three programming languages for creating
the software of our automation system: Ladder, Function Block Diagram
and Instruction List. This means that we can also develop the proper soft-
ware for our PLC with the help of STEP 7.

After configuring the system, we can download the software to the PLC.
This is the most important part of our project. The programming can be
done through Industrial Ethernet, and STEP 7 is capable to create a re-
mote connection to the device via Internet. Through this connection we can
program the PLC from an external network. Thus, if the PLC is accessible
from the Internet, a potential attacker could see that it is accepting these
types of connections. It is important to simulate this behaviour of the PLC,
so our honeypot could be even more realistic.

The communication is going through TCP port 102 of the PLC. The
traits of connections on this port are defined in the RFC 1006[43]. As we
can read in the introduction of the RFC, this service helps the ”porting”
of ISO-standardized applications to TCP/IP environment. This is done by
the Transport Service Access Point which takes advantage of the layered
structure of both TCP/IP and the ISO protocol. This Access Point appears
identical to the services and interfaces offered by the ISO-TSAP, but it is
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implemented on top of the TCP/IP protocol. This way, higher level ISO lay-
ers can operate fully without knowing that they are running over a TCP/IP
network. The ISO protocol exchanges data between peers in transport pro-
tocol data units (TPDUs). These units are encapsulated into discrete TCP
packets, TPKTs. TCP manages a continuous stream of data, but the ISO
protocol requires single discrete data objects. This conversion is done by
the TPKTs: they contain both the information required by TCP to manage
the stream as well as the TPDU data segments. There are several service
primitives which are required by the ISO protocols in order to work properly.
These are primitives for establishing, maintaining and closing connections
or sending data. As we saw, these primitives travel in specific TPKTs. In
our project, the initiation of the connection is always one sided: the STEP
7 requests the connection from the PLC. Because of this behaviour, only
three primitive is important for our project, these are the connection re-
quest (CR), connection confirm (CC), and data transfer (DT). We are going
to take a closer look on these objects in the following subsections.

3.3.2 Observation of the PLC

After scanning the PLC for open ports, we found that TCP port 102 is open.
This means that we can perform the configuration and programming of the
PLC with the help of STEP 7. Since the port is open, and it is common
that these systems can be accessed through a remote connection from the
Internet via STEP 7, it was obvious that we should simulate this service
in some form. We started to examine STEP 7 and this connection, and we
found out, that there is a setting in the PLC which protects it from unau-
thorized access. This means that we can not download the program to the
PLC until we entered the correct password. We decided that we are going
to simulate this behaviour on the PLC, but without a correct password. So
whenever someone tries to access the PLC, the response always will be that
the entered password is incorrect. On one hand, this is a fairly simple solu-
tion, but it is also believable: a system which has such a great responsibility
in controlling facilities or power plants should not be accessible to anyone.
On the other hand, if we would like to simulate the programmability, the
response to various inputs could be problematic.

We examined the concrete communication between the PLC and STEP
7 with the help of Wireshark. We can see a part of this communication
on Figure 6. As specified in the ISO standards, the connection between the
communicating halves should be established with a two-way handshake. Be-
cause of this, at first STEP 7 sends a connection request TPDU to the PLC.
This packet contains a source identifier, so the other half can reference to
the source through this. The PLC responds with a connection confirmation,
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Figure 6: Wireshark capture of the communication with the real PLC

it also sends back the STEP 7’s source reference for verification. After this,
the communication is done purely by DT TPDUs, so only data transfer is
done between the PLC and the STEP 7. The process of programming the
PLC is done in two phases. In the first phase, STEP 7 queries the PLC
for its parameters. These are the following: station name, module name,
module type, order number and serial number. We can see by examining the
contents of the TPDUs that all of these attributes are queried by the STEP
7, but actually only three of them are used. STEP 7 prints the module
type, module name and station name for the user, so if there is more than
one module on the same IP address, the user can select to which module
the STEP 7 should upload the program. It is important to note that even
if there is only one module on the specified address, this phase is always
executed. After selecting the module, the second phase begins. Since we
are building a new connection, connection request and connection cofnirma-
tion TPDUs are sent again. If the PLC is not protected with a password,
the STEP 7 performs the programming in this phase. Otherwise, the PLC
prompts for a password, and if the user enters a wrong password, the PLC
prompts again until a correct password is entered or the connection is closed
by the user.

As we can see, the communication is very simple. Both phases are rel-
atively short, and there are few changing parameters from the PLC’s side.
These variables are the source identifier from the connection request TPDU,
and a sequence number for every entered incorrect password. We have to
provide also the parameters of the PLC for the first phase, but those are
constant values, so it should be fairly easy to insert them into the data
units. In the tests, we used our PLC’s parameters, but by changing these
parameters, it is easy to mimic a different PLC. Thanks to the Wireshark
capture, the structure and order of the packets are given, and we are able
to realize the communication based on this information.
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3.3.3 Implementation

After examining the communication between the STEP 7 and a real PLC,
we started to implement the simulation of this service. We decided that the
service should be a simple script written in Python, because every tool is
available in Python to simulate such a communication. Basically the only
thing we need is the socket module in Python, since we can easily create
a TCP stream with this module, and we only have to read and write the
correct bytes in order to realize the communication.

At the beginning, the script starts to listen on TCP port 102. As we saw
in the observation phase, the communication begins with a two-way hand-
shake, a connection request TPDU followed by a connection confirmation
TPDU. We have to receive the connection request, which contains the source
reference, which identifies the STEP 7 as the initiator of this communica-
tion. We have to include this information in the connection confirmation
packet as the destination reference. Reading the source identifier from the
first packet is easy, since these TPDUs have a specified format, which of
course the TCP still keeps for the compatibility with ISO systems.

As we saw in the observation phase, the first phase is about gathering
information. STEP 7 queries the PLC for specific parameters. We have to
include these parameters in our packets, so the attacker could believe that
this is a real PLC. As we stated, STEP 7 queries several parameters from
the PLC. These parameters can be found out from the data sheet of the
device, or usually they are also shown on the website of the PLC. As we
saw, only three of the parameters are presented to the user of STEP 7, the
module name, the module type and station name, so we could think that
the other parameters does not matter, they could be any dummy values,
but this is not exactly true. It is important to note that the module type is
determined by the serial number, not the module type parameter sent in the
packets. Thus, the serial number must be valid so the STEP 7 can identify
the module type of the device. By analyzing the packets, we can locate the
proper position of the parameters in the TPDUs. The first phase contains
only these variable attributes, so we can easily create and send the packets
based on the Wireshark capture.

When the first phase is completed, the user can select the module he
wants to program, and the second phase begins. Since this is a new connec-
tion, we have to establish it with connection request and connection confirm
messages. This is done the same way as in the first phase. However, there
is a slight difference between the connection request TPDUs. Namely, these
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Figure 7: Wireshark capture of the communication with the honeypot

requests contain that it is a connection initiation for the first or the second
phase. This way, we can identify which phase should begin after the connec-
tion is established, so we can avoid code duplication, and more importantly,
if the user cancels the module selection at the end of the first phase and
begins a new connection, we can detect that it is not a download request
(which it should be after the first phase), and we can send the attributes of
the PLC again. After the connection is established, we query for the pass-
word of the PLC. But it does not matter what the user sends, we always
send back the incorrect password message. This packet contains a variable
number which increases by one on every attempt, so we have to form the
message this way. Again, using the packet contents from the Wireshark
capture, this phase is not hard to implement.

We tested the simulation with STEP 7. We can see a part of this com-
munication on Figure 7. When we are trying to connect to the script, the
first phase begins, and STEP 7 prints the correct attributes. After selecting
the module, the script prompts for a password. There is no correct pass-
word, so when the user enters one, the script prompts for a password again
and again, until the user closes the connection by clicking Cancel. If the
user decides to not select a module, then tries to connect again, the script
sends the attributes in the first phase properly. Analyzing the network traf-
fic between the script and STEP 7 also proves that the simulation is working
properly. We also added a small logging function to the script, which logs
every incoming connection with the exact time and IP address into a log file.
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4 Testing

We performed the needed tests for the single services, and presented the
results in the related sections. After the integration, it was important to
test the system as a whole. We tested first the operation of the services in
the integrated environment. After making sure that the communication with
the modules of the honeypot is proper, we checked the difference between
the honeypot and the real PLC.

We asked an independent team which made success in several ”capture
the flag” competitions to examine the devices for this purpose. They were
able to successfully distinguish the honeypot from the real PLC. Although
we tried to mimic the PLCs networking stack, due to operating system
limitations, we were not able to emulate the full TCP/IP stack. Thus,
based on the nmap O operating system scan, one can distinguish between
the two devices. In the nmaps operating system guess report there is an
entry for Linux when scanning the honeypot (with several other guesses),
but Linux is not guessed when the PLC is scanned. There is also a difference
in the MAC addresses. Nmap is able to guess the origin of the ethernet card
based on the prefix of the MAC address. So in the PLCs scan this value
is ”Siemens”, but in the honeypots scan it is ”VMware” (we are using a
VMware ESXi based virtual machine).

We fixed the problem with the MAC address, since on Linux it is easy to
change the MAC address to one originated from Siemens. However, fooling
nmap with the proper TCP/IP parameters is harder. One solution can be
writing a TCP proxy, which re-frames the outgoing packets, so it would seem
it is coming from a real PLC. This is one of our future goals. Otherwise the
team could not spot any differences between the two systems.
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5 Summary

The aim of this study was to create a high interaction honeypot, that appears
to be a Siemens PLC form an attackers point of view. It needs to be able
to log all the action an attacker takes, while trying to exploit the PLC. So
that later by analysing these log files new targeted attacks can be uncovered,
possibly before they reach the real equipments. In order to achieve this all
the existing PLC honeypots were examined, and a real PLC was thoroughly
audited.

After the exploration of the device, all the discovered services (HTTP,
HTTPS, ISOTSAP and SNMP) were further inspected. Than the simula-
tors of these were implemented and integrated into a Linux based virtual
machine. The resulting VM is the honeypot. Although, currently the hon-
eypot has a few limitations which needs to be addressed in the future, still
it preforms its task better than any of its predecessors.

The most important current issue is the incorrect TCP window size,
which cannot be set to the exact required value because of the Linux kernels
limitations. In the future a kernel patch or TCP proxy (that re-frames
all the outgoing TCP PDUs and sends them with raw sockets) needs to
be written to overcome this problem. The other known issue is related to
the SNMP routing records (it is expressed in details in the 3.2.4 SNMP
evaluation section), this is a less significant problem, because it only exists
if the attacker is on the same LAN as the honeypot. The honeypot was
tested by independent professionals and no other issue was discovered.

Our plans for the close future is to configure the honeypot with a public
IP address and gather information. Later, by analysing the logs we will try
to identify new threats that target industrial control systems.
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A
PLC snmpwalk output

SNMPv2-MIB::sysDescr.0 = STRING: Siemens, SIMATIC S7, IM151-8,
6ES7 151-8AB01-0AB0 , HW: 3, FW: V3.2.6, S C-C1TR95142012
SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::zeroDotZero
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (285968480) 33
days, 2:21:24.80
SNMPv2-MIB::sysContact.0 = STRING:
SNMPv2-MIB::sysName.0 = STRING:
SNMPv2-MIB::sysLocation.0 = STRING:
SNMPv2-MIB::sysServices.0 = INTEGER: 78
IF-MIB::ifNumber.0 = INTEGER: 4
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifIndex.4 = INTEGER: 4
IF-MIB::ifDescr.1 = STRING: Siemens SIMATIC S7, internal, Rack 0, Slot
2
IF-MIB::ifDescr.2 = STRING: Siemens SIMATIC S7, Ethernet Port 1, link,
100 Mbit, full duplex, autonegotiation
IF-MIB::ifDescr.3 = STRING: Siemens SIMATIC S7, Ethernet Port 2,-
IF-MIB::ifDescr.4 = STRING: Siemens SIMATIC S7, Ethernet Port 3,-
IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.2 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.3 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.4 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifMtu.1 = INTEGER: 1518
IF-MIB::ifMtu.2 = INTEGER: 1518
IF-MIB::ifMtu.3 = INTEGER: 1518
IF-MIB::ifMtu.4 = INTEGER: 1518
IF-MIB::ifSpeed.1 = Gauge32: 100000000
IF-MIB::ifSpeed.2 = Gauge32: 100000000
IF-MIB::ifSpeed.3 = Gauge32: 100000000
IF-MIB::ifSpeed.4 = Gauge32: 100000000
IF-MIB::ifPhysAddress.1 = STRING: 0:1b:1b:1a:d6:e0
IF-MIB::ifPhysAddress.2 = STRING: 0:1b:1b:1a:d6:e1
IF-MIB::ifPhysAddress.3 = STRING: 0:1b:1b:1a:d6:e2
IF-MIB::ifPhysAddress.4 = STRING: 0:1b:1b:1a:d6:e3
IF-MIB::ifAdminStatus.1 = INTEGER: up(1)
IF-MIB::ifAdminStatus.2 = INTEGER: up(1)
IF-MIB::ifAdminStatus.3 = INTEGER: down(2)
IF-MIB::ifAdminStatus.4 = INTEGER: down(2)
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IF-MIB::ifOperStatus.1 = INTEGER: up(1)
IF-MIB::ifOperStatus.2 = INTEGER: up(1)
IF-MIB::ifOperStatus.3 = INTEGER: down(2)
IF-MIB::ifOperStatus.4 = INTEGER: down(2)
IF-MIB::ifLastChange.1 = Timeticks: (650) 0:00:06.50
IF-MIB::ifLastChange.2 = Timeticks: (650) 0:00:06.50
IF-MIB::ifLastChange.3 = Timeticks: (650) 0:00:06.50
IF-MIB::ifLastChange.4 = Timeticks: (650) 0:00:06.50
IF-MIB::ifInOctets.1 = Counter32: 0
IF-MIB::ifInOctets.2 = Counter32: 991100834
IF-MIB::ifInOctets.3 = Counter32: 0
IF-MIB::ifInOctets.4 = Counter32: 0
IF-MIB::ifInUcastPkts.1 = Counter32: 330090
IF-MIB::ifInUcastPkts.2 = Counter32: 5361
IF-MIB::ifInUcastPkts.3 = Counter32: 0
IF-MIB::ifInUcastPkts.4 = Counter32: 0
IF-MIB::ifInNUcastPkts.1 = Counter32: 0
IF-MIB::ifInNUcastPkts.2 = Counter32: 10279825
IF-MIB::ifInNUcastPkts.3 = Counter32: 0
IF-MIB::ifInNUcastPkts.4 = Counter32: 0
IF-MIB::ifInDiscards.1 = Counter32: 0
IF-MIB::ifInDiscards.2 = Counter32: 0
IF-MIB::ifInDiscards.3 = Counter32: 0
IF-MIB::ifInDiscards.4 = Counter32: 0
IF-MIB::ifInErrors.1 = Counter32: 0
IF-MIB::ifInErrors.2 = Counter32: 0
IF-MIB::ifInErrors.3 = Counter32: 0
IF-MIB::ifInErrors.4 = Counter32: 0
IF-MIB::ifInUnknownProtos.1 = Counter32: 0
IF-MIB::ifInUnknownProtos.2 = Counter32: 2170273
IF-MIB::ifInUnknownProtos.3 = Counter32: 0
IF-MIB::ifInUnknownProtos.4 = Counter32: 0
IF-MIB::ifOutOctets.1 = Counter32: 0
IF-MIB::ifOutOctets.2 = Counter32: 225384205
IF-MIB::ifOutOctets.3 = Counter32: 0
IF-MIB::ifOutOctets.4 = Counter32: 0
IF-MIB::ifOutUcastPkts.1 = Counter32: 2957552
IF-MIB::ifOutUcastPkts.2 = Counter32: 2527
IF-MIB::ifOutUcastPkts.3 = Counter32: 0
IF-MIB::ifOutUcastPkts.4 = Counter32: 0
IF-MIB::ifOutNUcastPkts.1 = Counter32: 0
IF-MIB::ifOutNUcastPkts.2 = Counter32: 2955026
IF-MIB::ifOutNUcastPkts.3 = Counter32: 0
IF-MIB::ifOutNUcastPkts.4 = Counter32: 0
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IF-MIB::ifOutDiscards.1 = Counter32: 0
IF-MIB::ifOutDiscards.2 = Counter32: 0
IF-MIB::ifOutDiscards.3 = Counter32: 0
IF-MIB::ifOutDiscards.4 = Counter32: 0
IF-MIB::ifOutErrors.1 = Counter32: 0
IF-MIB::ifOutErrors.2 = Counter32: 0
IF-MIB::ifOutErrors.3 = Counter32: 0
IF-MIB::ifOutErrors.4 = Counter32: 0
IF-MIB::ifOutQLen.1 = Gauge32: 0
IF-MIB::ifOutQLen.2 = Gauge32: 0
IF-MIB::ifOutQLen.3 = Gauge32: 0
IF-MIB::ifOutQLen.4 = Gauge32: 0
IF-MIB::ifSpecific.1 = OID: SNMPv2-SMI::zeroDotZero
IF-MIB::ifSpecific.2 = OID: SNMPv2-SMI::zeroDotZero
IF-MIB::ifSpecific.3 = OID: SNMPv2-SMI::zeroDotZero
IF-MIB::ifSpecific.4 = OID: SNMPv2-SMI::zeroDotZero
IP-MIB::ipForwarding.0 = INTEGER: notForwarding(2)
IP-MIB::ipDefaultTTL.0 = INTEGER: 30
IP-MIB::ipInReceives.0 = Counter32: 329598
IP-MIB::ipInHdrErrors.0 = Counter32: 2
IP-MIB::ipInAddrErrors.0 = Counter32: 125821
IP-MIB::ipForwDatagrams.0 = Counter32: 0
IP-MIB::ipInUnknownProtos.0 = Counter32: 0
IP-MIB::ipInDiscards.0 = Counter32: 0
IP-MIB::ipInDelivers.0 = Counter32: 203781
IP-MIB::ipOutRequests.0 = Counter32: 2535
IP-MIB::ipOutDiscards.0 = Counter32: 0
IP-MIB::ipOutNoRoutes.0 = Counter32: 0
IP-MIB::ipReasmTimeout.0 = INTEGER: 120 seconds
IP-MIB::ipReasmReqds.0 = Counter32: 0
IP-MIB::ipReasmOKs.0 = Counter32: 0
IP-MIB::ipReasmFails.0 = Counter32: 0
IP-MIB::ipFragOKs.0 = Counter32: 0
IP-MIB::ipFragFails.0 = Counter32: 0
IP-MIB::ipFragCreates.0 = Counter32: 0
IP-MIB::ipAdEntAddr.10.105.0.47 = IpAddress: 10.105.0.47
IP-MIB::ipAdEntIfIndex.10.105.0.47 = INTEGER: 1
IP-MIB::ipAdEntNetMask.10.105.0.47 = IpAddress: 255.255.254.0
IP-MIB::ipAdEntBcastAddr.10.105.0.47 = INTEGER: 1
IP-MIB::ipAdEntReasmMaxSize.10.105.0.47 = INTEGER: 1534
RFC1213-MIB::ipRouteDest.10.105.0.0 = IpAddress: 10.105.0.0
RFC1213-MIB::ipRouteIfIndex.10.105.0.0 = INTEGER: 1
RFC1213-MIB::ipRouteMetric1.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteMetric2.10.105.0.0 = INTEGER: -1
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RFC1213-MIB::ipRouteMetric3.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteMetric4.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteNextHop.10.105.0.0 = IpAddress: 255.255.255.255
RFC1213-MIB::ipRouteType.10.105.0.0 = INTEGER: direct(3)
RFC1213-MIB::ipRouteProto.10.105.0.0 = INTEGER: local(2)
RFC1213-MIB::ipRouteAge.10.105.0.0 = INTEGER: 2859685
RFC1213-MIB::ipRouteMask.10.105.0.0 = IpAddress: 255.255.254.0
RFC1213-MIB::ipRouteMetric5.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteInfo.10.105.0.0 = OID: SNMPv2-SMI::zeroDotZero
IP-MIB::ipNetToMediaIfIndex.1.10.105.1.216 = INTEGER: 1
IP-MIB::ipNetToMediaPhysAddress.1.10.105.1.216 = STRING: 0:c:29:76:44:ce
IP-MIB::ipNetToMediaNetAddress.1.10.105.1.216 = IpAddress: 10.105.1.216
IP-MIB::ipNetToMediaType.1.10.105.1.216 = INTEGER: dynamic(3)
IP-MIB::ipRoutingDiscards.0 = Counter32: 0
IP-MIB::icmpInMsgs.0 = Counter32: 11
IP-MIB::icmpInErrors.0 = Counter32: 0
IP-MIB::icmpInDestUnreachs.0 = Counter32: 0
IP-MIB::icmpInTimeExcds.0 = Counter32: 0
IP-MIB::icmpInParmProbs.0 = Counter32: 0
IP-MIB::icmpInSrcQuenchs.0 = Counter32: 0
IP-MIB::icmpInRedirects.0 = Counter32: 0
IP-MIB::icmpInEchos.0 = Counter32: 11
IP-MIB::icmpInEchoReps.0 = Counter32: 0
IP-MIB::icmpInTimestamps.0 = Counter32: 0
IP-MIB::icmpInTimestampReps.0 = Counter32: 0
IP-MIB::icmpInAddrMasks.0 = Counter32: 0
IP-MIB::icmpInAddrMaskReps.0 = Counter32: 0
IP-MIB::icmpOutMsgs.0 = Counter32: 11
IP-MIB::icmpOutErrors.0 = Counter32: 0
IP-MIB::icmpOutDestUnreachs.0 = Counter32: 0
IP-MIB::icmpOutTimeExcds.0 = Counter32: 0
IP-MIB::icmpOutParmProbs.0 = Counter32: 0
IP-MIB::icmpOutSrcQuenchs.0 = Counter32: 0
IP-MIB::icmpOutRedirects.0 = Counter32: 0
IP-MIB::icmpOutEchos.0 = Counter32: 0
IP-MIB::icmpOutEchoReps.0 = Counter32: 11
IP-MIB::icmpOutTimestamps.0 = Counter32: 0
IP-MIB::icmpOutTimestampReps.0 = Counter32: 0
IP-MIB::icmpOutAddrMasks.0 = Counter32: 0
IP-MIB::icmpOutAddrMaskReps.0 = Counter32: 0
TCP-MIB::tcpRtoAlgorithm.0 = INTEGER: constant(2)
TCP-MIB::tcpRtoMin.0 = INTEGER: 2000 milliseconds
TCP-MIB::tcpRtoMax.0 = INTEGER: 128000 milliseconds
TCP-MIB::tcpMaxConn.0 = INTEGER: 0
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TCP-MIB::tcpActiveOpens.0 = Counter32: 0
TCP-MIB::tcpPassiveOpens.0 = Counter32: 44
TCP-MIB::tcpAttemptFails.0 = Counter32: 0
TCP-MIB::tcpEstabResets.0 = Counter32: 0
TCP-MIB::tcpCurrEstab.0 = Gauge32: 0
TCP-MIB::tcpInSegs.0 = Counter32: 1636
TCP-MIB::tcpOutSegs.0 = Counter32: 1828
TCP-MIB::tcpRetransSegs.0 = Counter32: 0
TCP-MIB::tcpConnState.0.0.0.0.443 = INTEGER: listen(2)
TCP-MIB::tcpConnState.0.0.0.0.80 = INTEGER: listen(2)
TCP-MIB::tcpConnState.0.0.0.0.102 = INTEGER: listen(2)
TCP-MIB::tcpConnLocalAddress.0.0.0.0.443 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnLocalAddress.0.0.0.0.80 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnLocalAddress.0.0.0.0.102 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnLocalPort.0.0.0.0.443 = INTEGER: 443
TCP-MIB::tcpConnLocalPort.0.0.0.0.80 = INTEGER: 80
TCP-MIB::tcpConnLocalPort.0.0.0.0.102 = INTEGER: 102
TCP-MIB::tcpConnRemAddress.0.0.0.0.443 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnRemAddress.0.0.0.0.80 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnRemAddress.0.0.0.0.102 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnRemPort.0.0.0.0.443 = INTEGER: 0
TCP-MIB::tcpConnRemPort.0.0.0.0.80 = INTEGER: 0
TCP-MIB::tcpConnRemPort.0.0.0.0.102 = INTEGER: 0
TCP-MIB::tcpInErrs.0 = Counter32: 0
TCP-MIB::tcpOutRsts.0 = Counter32: 2
UDP-MIB::udpInDatagrams.0 = Counter32: 783
UDP-MIB::udpNoPorts.0 = Counter32: 0
UDP-MIB::udpInErrors.0 = Counter32: 201442
UDP-MIB::udpOutDatagrams.0 = Counter32: 785
UDP-MIB::udpLocalAddress.0.0.0.0.49484 = IpAddress: 0.0.0.0
UDP-MIB::udpLocalAddress.0.0.0.0.34964 = IpAddress: 0.0.0.0
UDP-MIB::udpLocalAddress.0.0.0.0.161 = IpAddress: 0.0.0.0
UDP-MIB::udpLocalPort.0.0.0.0.49484 = INTEGER: 49484
UDP-MIB::udpLocalPort.0.0.0.0.34964 = INTEGER: 34964
UDP-MIB::udpLocalPort.0.0.0.0.161 = INTEGER: 161
SNMPv2-MIB::snmpInPkts.0 = Counter32: 793
SNMPv2-MIB::snmpOutPkts.0 = Counter32: 791
SNMPv2-MIB::snmpInBadVersions.0 = Counter32: 0
SNMPv2-MIB::snmpInBadCommunityNames.0 = Counter32: 0
SNMPv2-MIB::snmpInBadCommunityUses.0 = Counter32: 0
SNMPv2-MIB::snmpInASNParseErrs.0 = Counter32: 0
SNMPv2-MIB::snmpInTooBigs.0 = Counter32: 0
SNMPv2-MIB::snmpInNoSuchNames.0 = Counter32: 0
SNMPv2-MIB::snmpInBadValues.0 = Counter32: 0
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SNMPv2-MIB::snmpInReadOnlys.0 = Counter32: 0
SNMPv2-MIB::snmpInGenErrs.0 = Counter32: 0
SNMPv2-MIB::snmpInTotalReqVars.0 = Counter32: 802
SNMPv2-MIB::snmpInTotalSetVars.0 = Counter32: 0
SNMPv2-MIB::snmpInGetRequests.0 = Counter32: 1
SNMPv2-MIB::snmpInGetNexts.0 = Counter32: 806
SNMPv2-MIB::snmpInSetRequests.0 = Counter32: 0
SNMPv2-MIB::snmpInGetResponses.0 = Counter32: 0
SNMPv2-MIB::snmpInTraps.0 = Counter32: 0
SNMPv2-MIB::snmpOutTooBigs.0 = Counter32: 0
SNMPv2-MIB::snmpOutNoSuchNames.0 = Counter32: 2
SNMPv2-MIB::snmpOutBadValues.0 = Counter32: 0
SNMPv2-MIB::snmpOutGenErrs.0 = Counter32: 0
SNMPv2-MIB::snmpOutGetRequests.0 = Counter32: 0
SNMPv2-MIB::snmpOutGetNexts.0 = Counter32: 0
SNMPv2-MIB::snmpOutSetRequests.0 = Counter32: 0
SNMPv2-MIB::snmpOutGetResponses.0 = Counter32: 815
SNMPv2-MIB::snmpOutTraps.0 = Counter32: 0
SNMPv2-MIB::snmpEnableAuthenTraps.0 = INTEGER: disabled(2)
End of MIB
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B
Simulated snmpwalk output

SNMPv2-MIB::sysDescr.0 = STRING: Siemens, SIMATIC S7, IM151-8,
6ES7 151-8AB01-0AB0 , HW: 3, FW: V3.2.6, S C-C1TR95142012
SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::zeroDotZero
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (6937) 0:01:09.37
SNMPv2-MIB::sysContact.0 = STRING:
SNMPv2-MIB::sysName.0 = STRING:
SNMPv2-MIB::sysLocation.0 = STRING:
SNMPv2-MIB::sysServices.0 = INTEGER: 78
IF-MIB::ifNumber.0 = INTEGER: 4
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifIndex.4 = INTEGER: 4
IF-MIB::ifDescr.1 = STRING: Siemens SIMATIC S7, internal, Rack 0, Slot
2
IF-MIB::ifDescr.2 = STRING: Siemens SIMATIC S7, Ethernet Port 1, link,
100 Mbit, full duplex, autonegotiation
IF-MIB::ifDescr.3 = STRING: Siemens SIMATIC S7, Ethernet Port 2,-
IF-MIB::ifDescr.4 = STRING: Siemens SIMATIC S7, Ethernet Port 3,-
IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.2 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.3 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifType.4 = INTEGER: ethernetCsmacd(6)
IF-MIB::ifMtu.1 = INTEGER: 1518
IF-MIB::ifMtu.2 = INTEGER: 1518
IF-MIB::ifMtu.3 = INTEGER: 1518
IF-MIB::ifMtu.4 = INTEGER: 1518
IF-MIB::ifSpeed.1 = Gauge32: 100000000
IF-MIB::ifSpeed.2 = Gauge32: 100000000
IF-MIB::ifSpeed.3 = Gauge32: 100000000
IF-MIB::ifSpeed.4 = Gauge32: 100000000
IF-MIB::ifPhysAddress.1 = STRING: 0:1b:1b:1a:d6:e0
IF-MIB::ifPhysAddress.2 = STRING: 0:1b:1b:1a:d6:e1
IF-MIB::ifPhysAddress.3 = STRING: 0:1b:1b:1a:d6:e2
IF-MIB::ifPhysAddress.4 = STRING: 0:1b:1b:1a:d6:e3
IF-MIB::ifAdminStatus.1 = INTEGER: up(1)
IF-MIB::ifAdminStatus.2 = INTEGER: up(1)
IF-MIB::ifAdminStatus.3 = INTEGER: down(2)
IF-MIB::ifAdminStatus.4 = INTEGER: down(2)
IF-MIB::ifOperStatus.1 = INTEGER: up(1)
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IF-MIB::ifOperStatus.2 = INTEGER: up(1)
IF-MIB::ifOperStatus.3 = INTEGER: down(2)
IF-MIB::ifOperStatus.4 = INTEGER: down(2)
IF-MIB::ifLastChange.1 = Timeticks: (650) 0:00:06.50
IF-MIB::ifLastChange.2 = Timeticks: (650) 0:00:06.50
IF-MIB::ifLastChange.3 = Timeticks: (650) 0:00:06.50
IF-MIB::ifLastChange.4 = Timeticks: (650) 0:00:06.50
IF-MIB::ifInOctets.1 = Counter32: 0
IF-MIB::ifInOctets.2 = Counter32: 120
IF-MIB::ifInOctets.3 = Counter32: 0
IF-MIB::ifInOctets.4 = Counter32: 0
IF-MIB::ifInUcastPkts.1 = Counter32: 7
IF-MIB::ifInUcastPkts.2 = Counter32: 2
IF-MIB::ifInUcastPkts.3 = Counter32: 0
IF-MIB::ifInUcastPkts.4 = Counter32: 0
IF-MIB::ifInNUcastPkts.1 = Counter32: 0
IF-MIB::ifInNUcastPkts.2 = Counter32: 0
IF-MIB::ifInNUcastPkts.3 = Counter32: 0
IF-MIB::ifInNUcastPkts.4 = Counter32: 0
IF-MIB::ifInDiscards.1 = Counter32: 0
IF-MIB::ifInDiscards.2 = Counter32: 0
IF-MIB::ifInDiscards.3 = Counter32: 0
IF-MIB::ifInDiscards.4 = Counter32: 0
IF-MIB::ifInErrors.1 = Counter32: 0
IF-MIB::ifInErrors.2 = Counter32: 0
IF-MIB::ifInErrors.3 = Counter32: 0
IF-MIB::ifInErrors.4 = Counter32: 0
IF-MIB::ifInUnknownProtos.1 = Counter32: 0
IF-MIB::ifInUnknownProtos.2 = Counter32: 0
IF-MIB::ifInUnknownProtos.3 = Counter32: 0
IF-MIB::ifInUnknownProtos.4 = Counter32: 0
IF-MIB::ifOutOctets.1 = Counter32: 0
IF-MIB::ifOutOctets.2 = Counter32: 8817
IF-MIB::ifOutOctets.3 = Counter32: 0
IF-MIB::ifOutOctets.4 = Counter32: 0
IF-MIB::ifOutUcastPkts.1 = Counter32: 100
IF-MIB::ifOutUcastPkts.2 = Counter32: 61
IF-MIB::ifOutUcastPkts.3 = Counter32: 0
IF-MIB::ifOutUcastPkts.4 = Counter32: 0
IF-MIB::ifOutNUcastPkts.1 = Counter32: 0
IF-MIB::ifOutNUcastPkts.2 = Counter32: 0
IF-MIB::ifOutNUcastPkts.3 = Counter32: 0
IF-MIB::ifOutNUcastPkts.4 = Counter32: 0
IF-MIB::ifOutDiscards.1 = Counter32: 0
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IF-MIB::ifOutDiscards.2 = Counter32: 0
IF-MIB::ifOutDiscards.3 = Counter32: 0
IF-MIB::ifOutDiscards.4 = Counter32: 0
IF-MIB::ifOutErrors.1 = Counter32: 0
IF-MIB::ifOutErrors.2 = Counter32: 0
IF-MIB::ifOutErrors.3 = Counter32: 0
IF-MIB::ifOutErrors.4 = Counter32: 0
IF-MIB::ifOutQLen.1 = Gauge32: 0
IF-MIB::ifOutQLen.2 = Gauge32: 0
IF-MIB::ifOutQLen.3 = Gauge32: 0
IF-MIB::ifOutQLen.4 = Gauge32: 0
IF-MIB::ifSpecific.1 = OID: SNMPv2-SMI::zeroDotZero
IF-MIB::ifSpecific.2 = OID: SNMPv2-SMI::zeroDotZero
IF-MIB::ifSpecific.3 = OID: SNMPv2-SMI::zeroDotZero
IF-MIB::ifSpecific.4 = OID: SNMPv2-SMI::zeroDotZero
IP-MIB::ipForwarding.0 = INTEGER: notForwarding(2)
IP-MIB::ipDefaultTTL.0 = INTEGER: 30
IP-MIB::ipInReceives.0 = Counter32: 978
IP-MIB::ipInHdrErrors.0 = Counter32: 0
IP-MIB::ipInAddrErrors.0 = Counter32: 0
IP-MIB::ipForwDatagrams.0 = Counter32: 0
IP-MIB::ipInUnknownProtos.0 = Counter32: 0
IP-MIB::ipInDiscards.0 = Counter32: 0
IP-MIB::ipInDelivers.0 = Counter32: 988
IP-MIB::ipOutRequests.0 = Counter32: 994
IP-MIB::ipOutDiscards.0 = Counter32: 0
IP-MIB::ipOutNoRoutes.0 = Counter32: 10
IP-MIB::ipReasmTimeout.0 = INTEGER: 120 seconds
IP-MIB::ipReasmReqds.0 = Counter32: 0
IP-MIB::ipReasmOKs.0 = Counter32: 0
IP-MIB::ipReasmFails.0 = Counter32: 0
IP-MIB::ipFragOKs.0 = Counter32: 0
IP-MIB::ipFragFails.0 = Counter32: 0
IP-MIB::ipFragCreates.0 = Counter32: 0
IP-MIB::ipAdEntAddr.10.105.0.97 = IpAddress: 10.105.0.97
IP-MIB::ipAdEntIfIndex.10.105.0.97 = INTEGER: 1
IP-MIB::ipAdEntNetMask.10.105.0.97 = IpAddress: 255.255.254.0
IP-MIB::ipAdEntBcastAddr.10.105.0.97 = INTEGER: 1
IP-MIB::ipAdEntReasmMaxSize.10.105.0.97 = INTEGER: 1534
RFC1213-MIB::ipRouteDest.10.105.0.0 = IpAddress: 10.105.0.0
RFC1213-MIB::ipRouteIfIndex.10.105.0.0 = INTEGER: 1
RFC1213-MIB::ipRouteMetric1.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteMetric2.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteMetric3.10.105.0.0 = INTEGER: -1
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RFC1213-MIB::ipRouteMetric4.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteNextHop.10.105.0.0 = IpAddress: 255.255.255.255
RFC1213-MIB::ipRouteType.10.105.0.0 = INTEGER: direct(3)
RFC1213-MIB::ipRouteProto.10.105.0.0 = INTEGER: local(2)
RFC1213-MIB::ipRouteAge.10.105.0.0 = INTEGER: 731
RFC1213-MIB::ipRouteMask.10.105.0.0 = IpAddress: 255.255.254.0
RFC1213-MIB::ipRouteMetric5.10.105.0.0 = INTEGER: -1
RFC1213-MIB::ipRouteInfo.10.105.0.0 = OID: SNMPv2-SMI::zeroDotZero
IP-MIB::ipNetToMediaIfIndex.1.10.105.0.1 = INTEGER: 1
IP-MIB::ipNetToMediaPhysAddress.1.10.105.0.1 = STRING: 0:b0:64:12:af:4
IP-MIB::ipNetToMediaNetAddress.1.10.105.0.1 = IpAddress: 10.105.0.1
IP-MIB::ipNetToMediaType.1.10.105.0.1 = INTEGER: dynamic(3)
IP-MIB::ipRoutingDiscards.0 = Counter32: 0
IP-MIB::icmpInMsgs.0 = Counter32: 22
IP-MIB::icmpInErrors.0 = Counter32: 0
IP-MIB::icmpInDestUnreachs.0 = Counter32: 8
IP-MIB::icmpInTimeExcds.0 = Counter32: 0
IP-MIB::icmpInParmProbs.0 = Counter32: 0
IP-MIB::icmpInSrcQuenchs.0 = Counter32: 0
IP-MIB::icmpInRedirects.0 = Counter32: 0
IP-MIB::icmpInEchos.0 = Counter32: 7
IP-MIB::icmpInEchoReps.0 = Counter32: 7
IP-MIB::icmpInTimestamps.0 = Counter32: 0
IP-MIB::icmpInTimestampReps.0 = Counter32: 0
IP-MIB::icmpInAddrMasks.0 = Counter32: 0
IP-MIB::icmpInAddrMaskReps.0 = Counter32: 0
IP-MIB::icmpOutMsgs.0 = Counter32: 22
IP-MIB::icmpOutErrors.0 = Counter32: 0
IP-MIB::icmpOutDestUnreachs.0 = Counter32: 8
IP-MIB::icmpOutTimeExcds.0 = Counter32: 0
IP-MIB::icmpOutParmProbs.0 = Counter32: 0
IP-MIB::icmpOutSrcQuenchs.0 = Counter32: 0
IP-MIB::icmpOutRedirects.0 = Counter32: 0
IP-MIB::icmpOutEchos.0 = Counter32: 7
IP-MIB::icmpOutEchoReps.0 = Counter32: 7
IP-MIB::icmpOutTimestamps.0 = Counter32: 0
IP-MIB::icmpOutTimestampReps.0 = Counter32: 0
IP-MIB::icmpOutAddrMasks.0 = Counter32: 0
IP-MIB::icmpOutAddrMaskReps.0 = Counter32: 0
TCP-MIB::tcpRtoAlgorithm.0 = INTEGER: constant(2)
TCP-MIB::tcpRtoMin.0 = INTEGER: 2000 milliseconds
TCP-MIB::tcpRtoMax.0 = INTEGER: 128000 milliseconds
TCP-MIB::tcpMaxConn.0 = INTEGER: 0
TCP-MIB::tcpActiveOpens.0 = Counter32: 0
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TCP-MIB::tcpPassiveOpens.0 = Counter32: 0
TCP-MIB::tcpAttemptFails.0 = Counter32: 0
TCP-MIB::tcpEstabResets.0 = Counter32: 0
TCP-MIB::tcpCurrEstab.0 = Gauge32: 1
TCP-MIB::tcpInSegs.0 = Counter32: 0
TCP-MIB::tcpOutSegs.0 = Counter32: 0
TCP-MIB::tcpRetransSegs.0 = Counter32: 0
TCP-MIB::tcpConnState.0.0.0.0.443 = INTEGER: listen(2)
TCP-MIB::tcpConnState.0.0.0.0.80 = INTEGER: listen(2)
TCP-MIB::tcpConnState.0.0.0.0.102 = INTEGER: listen(2)
TCP-MIB::tcpConnLocalAddress.0.0.0.0.443 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnLocalAddress.0.0.0.0.80 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnLocalAddress.0.0.0.0.102 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnLocalPort.0.0.0.0.443 = INTEGER: 443
TCP-MIB::tcpConnLocalPort.0.0.0.0.80 = INTEGER: 80
TCP-MIB::tcpConnLocalPort.0.0.0.0.102 = INTEGER: 102
TCP-MIB::tcpConnRemAddress.0.0.0.0.443 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnRemAddress.0.0.0.0.80 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnRemAddress.0.0.0.0.102 = IpAddress: 0.0.0.0
TCP-MIB::tcpConnRemPort.0.0.0.0.443 = INTEGER: 0
TCP-MIB::tcpConnRemPort.0.0.0.0.80 = INTEGER: 0
TCP-MIB::tcpConnRemPort.0.0.0.0.102 = INTEGER: 0
TCP-MIB::tcpInErrs.0 = Counter32: 0
TCP-MIB::tcpOutRsts.0 = Counter32: 0
UDP-MIB::udpInDatagrams.0 = Counter32: 1
UDP-MIB::udpNoPorts.0 = Counter32: 4294
UDP-MIB::udpInErrors.0 = Counter32: 120
UDP-MIB::udpOutDatagrams.0 = Counter32: 0
UDP-MIB::udpLocalAddress.0.0.0.0.49484 = IpAddress: 0.0.0.0
UDP-MIB::udpLocalAddress.0.0.0.0.34694 = IpAddress: 0.0.0.0
UDP-MIB::udpLocalAddress.0.0.0.0.161 = IpAddress: 0.0.0.0
UDP-MIB::udpLocalPort.0.0.0.0.49484 = INTEGER: 0
UDP-MIB::udpLocalPort.0.0.0.0.34964 = INTEGER: 0
UDP-MIB::udpLocalPort.0.0.0.0.161 = INTEGER: 0
SNMPv2-MIB::snmpInPkts.0 = Counter32: 436
SNMPv2-MIB::snmpOutPkts.0 = Counter32: 437
SNMPv2-MIB::snmpInBadVersions.0 = Counter32: 0
SNMPv2-MIB::snmpInBadCommunityNames.0 = Counter32: 0
SNMPv2-MIB::snmpInBadCommunityUses.0 = Counter32: 0
SNMPv2-MIB::snmpInASNParseErrs.0 = Counter32: 0
SNMPv2-MIB::snmpInTooBigs.0 = Counter32: 0
SNMPv2-MIB::snmpInNoSuchNames.0 = Counter32: 0
SNMPv2-MIB::snmpInBadValues.0 = Counter32: 0
SNMPv2-MIB::snmpInReadOnlys.0 = Counter32: 0
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SNMPv2-MIB::snmpInGenErrs.0 = Counter32: 0
SNMPv2-MIB::snmpInTotalReqVars.0 = Counter32: 435
SNMPv2-MIB::snmpInTotalSetVars.0 = Counter32: 0
SNMPv2-MIB::snmpInGetRequests.0 = Counter32: 0
SNMPv2-MIB::snmpInGetNexts.0 = Counter32: 436
SNMPv2-MIB::snmpInSetRequests.0 = Counter32: 0
SNMPv2-MIB::snmpInGetResponses.0 = Counter32: 0
SNMPv2-MIB::snmpInTraps.0 = Counter32: 0
SNMPv2-MIB::snmpOutTooBigs.0 = Counter32: 0
SNMPv2-MIB::snmpOutNoSuchNames.0 = Counter32: 1
SNMPv2-MIB::snmpOutBadValues.0 = Counter32: 0
SNMPv2-MIB::snmpOutGenErrs.0 = Counter32: 0
SNMPv2-MIB::snmpOutGetRequests.0 = Counter32: 0
SNMPv2-MIB::snmpOutGetNexts.0 = Counter32: 0
SNMPv2-MIB::snmpOutSetRequests.0 = Counter32: 0
SNMPv2-MIB::snmpOutGetResponses.0 = Counter32: 435
SNMPv2-MIB::snmpOutTraps.0 = Counter32: 0
SNMPv2-MIB::snmpEnableAuthenTraps.0 = INTEGER: disabled(2)
End of MIB
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