
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Towards tensor-based extra-functional analysis of
complex distributed systems

Scientific Students’ Association Report

Author:

Dániel Szekeres

Advisor:

Kristóf Marussy

2020

Contents

Kivonat i

Abstract iii

1 Introduction 1

2 Background 3

2.1 Continuous-Time Markov Chains . 3

2.2 Phase-type Distributions . 6

2.3 Stochastic Petri-Nets . 7

2.4 Decision Diagrams . 9

2.4.1 Multi-valued decision diagrams . 10

2.4.1.1 Interval Decision Diagrams 10

2.5 Kronecker product and multi-index notation 11

2.5.1 Kronecker Product as a Linear Operator 12

2.6 The Tensor Train Format . 12

3 Related works 17

4 Computing GSPN metrics using Tensor Trains 19

4.1 Reducing GSPN metric computations to PSPN metric computations 19

4.2 Representing the Rate Matrix in the TT Format 21

4.2.1 Reachable state space computation 21

4.2.2 Contributions of individual transitions 22

4.2.3 Contributions of priority levels . 22

4.2.4 Summation . 24

5 Solving the linear systems using Tensor Trains 25

5.1 Overview of the TT-based Computation . 25

5.2 The Alternating Minimal Energy (AMEn) solver 26

5.2.1 Alternating Least Squares for Tensor Trains 26

5.2.2 Rank-adaptive ALS using local enrichments 26

5.2.3 Using AMEn for steady-state . 28

5.3 Improvement ideas . 28

5.3.1 TT-SVD with iterative solvers . 28

5.3.2 Sparse AMEn-ALS . 29

5.3.3 Local Kronecker constraints . 30

6 Evaluation 33

6.1 The long Kanban model . 33

6.2 Evaluation results . 33

7 Conclusions and future work 37

7.1 Future work . 37

Acknowledgements 39

Bibliography 40

Kivonat

Napjainkban egyre több, egyre komplexebb elosztott kiberfizikai rendszer jelenik meg kö-
rülöttünk: egymással kommunikáló járművek, szenzorhálózatok, okos otthonok stb. Ezen
rendszerek tervezésekor fontos figyelembe venni a funkcionális követelményeken felül kü-
lönböző extrafunkcionális követelményeket is, ilyenek például a teljesítmény, az energia-
fogyasztás és a rendelkezésre állás. Biztonságkritikus felhasználási területeken fontos a
megbízhatósági követelmények teljesítése is. Ezen követelmények alapvetően kvantitatí-
vak, azaz különböző mérőszámokra határoznak meg elérendő célértékeket. Teljesülésük
biztosításával már a rendszertervezés fázisában is foglalkozni kell, amikor még nem áll
rendelkezésre a működő rendszer, csak annak modellje.

A különböző extrafunkcionális metrikák meghatározásához a rendszer viselkedésére
jellemző véletlenszerűséget tartalmazó, sztochasztikus modelleket használunk. A munkám-
ban egy elterjedt sztochasztikus modellezési formalizmust, az általánosított sztochasztikus
Petri-hálókat vizsgálom. Ez a formalizmus alkalmas az aszinkron elosztott rendszerekre
jellemző sztochasztikus működés leírására.

A modellből a szükséges extrafunkcionális mutatók számításához egy alacsonyabb
szintű, matematikailag kezelhető analízis modellt kell származtatni. Az analízis modell
elkészítésekor és elemzésekor felvetődő probléma az állapottérrobbanás: bár a magas szintű
mérnöki modell még kezelhető méretű lehet, a hozzá tartozó analízis modell mérete ennek
exponenciális függvénye. Így az elterjedt explicit elemzési módszerek csak korlátozottan
skálázhatóak.

A probléma egy lehetséges megoldása, hogy az elemzés során megoldandó lineáris
egyenletrendszert tenzorreprezentációs módszerek segítségével, tömör közelítő formában
tároljuk, és a megoldást is ebben a formában keressük. Munkám során a Tensor Train (TT)
formátumú reprezentáció alkalmazhatóságát vizsgáltam az általánosított sztochasztikus
Petri-hálók elemzésére, melyet a szimbolikus modellellenőrzésben elterjedt döntési diagram
állapottér reprezentáció segítségével állítok elő.

A számítások elvégzéséhez egy a szakirodalomból vett TT-alapú lineáris egyenletrend-
szer megoldó algoritmust adaptálok ezen formalizmusra, mely más területeken, mint pél-
dául nagy méretű fizikai szimulációk, már jól teljesített. Sztochasztikus Petri-háló analízis
területén felmerülnek olyan kihívások, amik a szakirodalomban ismert TT-alapú megol-
dóknál még nem lettek megvizsgálva, így az algoritmusok közvetlenül nem használhatóak
fel. A javasolt algoritmust benchmark modellek segítségével értékelem ki.

i

ii

Abstract

Increasingly complex distributed cyber-physical systems are becoming more and more
widespread these days: vehicles communicating with each other, sensor networks, smart
homes, etc. Throughout the design of such systems, various extra-functional requirements
must be taken into account, such as performance, energy consumption, and availability.
In the case of safety critical application areas, satisfying reliability requirements is also of
utmost importance. These kinds of requirements are mostly quantitative, meaning that
they give target values for some metrics of the system that must be achieved. Achieving
these values must be assured already in the design phase, when no usable instance of
the system under development is available for measurement, only a model describing its
behavior.

The extra-functional metrics are derived using a stochastic model explicitly describing the
randomness inherent in the behavior of the system. In my work, I focus on a widely used
stochastic modeling formalism called generalized stochastic Petri-nets. This formalism is
well suited to describe the stochastic behavior of asynchronous distributed system.

To calculate the necessary metrics from the model, a lower level analysis model must
be derived from it, that can be handled mathematically. When creating and analyzing
this low-level model, the problem of state-space explosion arises: even though the high-
level engineering model is of tractable size, the size of the corresponding analysis model is
exponential in the original one’s size. Because of this, the scalability of widespread explicit
analysis methods is limited.

A possible solution to this problem is storing the linear equation system that needs to
be solved during the analysis in a concise approximate form using tensor representation
methods, and seeking the solution in the same format. We examine the applicability
of Tensor Train (TT) methods for generalized stochastic Petri-nets in this work. The
proposed method uses decision diagram-based state space representation for the derivation
of the compressed form, which is widely used in symbolic model checking.

We adapt a TT-based linear equation system solver, which has been successfully used in
other areas, such as large-scale physics simulations, to compute extra-functional metrics of
generalized stochastic Petri nets. There are challenges that arise when using the TT format
for the analysis of stochastic Petri-nets that are yet unexplored in the literature for TT-
based solvers, hindering the direct application of these algorithms without modification.
In this work, our aim is to overcome these challenges, and to verify the proposed algorithm
using benchmark models.

iii

Chapter 1

Introduction

Increasingly complex distributed cyber-physical systems are becoming more and more
widespread these days: vehicles communicating with each other, sensor networks, smart
homes, etc. Throughout the design of such systems, various extra-functional requirements
must be taken into account, such as performance, energy consumption, and availability.
In the case of safety critical application areas, satisfying reliability requirements is also of
utmost importance. These kinds of requirements are mostly quantitative, meaning that
they give target values for some metrics of the system that must be achieved. Achieving
these values must be assured already in the design phase, when no usable instance of
the system under development is available for measurement, only a model describing its
behavior.

The extra-functional metrics are derived using a stochastic model explicitly describing the
randomness inherent in the behavior of the system. In my work, I focus on a widely used
stochastic modeling formalism called generalized stochastic Petri-nets (GSPNs) [1]. This
formalism is well suited to describe the stochastic behavior of asynchronous distributed
system.

To calculate the necessary metrics from the model, a lower level analysis model must be
derived from it, that can be handled mathematically. For GSPNs without proper non-
determinism, this analysis model is continuous-time Markov chain. When creating and
analyzing this low-level model, the problem of state-space explosion arises: even though
the high-level engineering model is of tractable size, the size of the corresponding analysis
model is exponential in the original one’s size. Because of this, the scalability of widespread
explicit analysis methods is limited.

A possible solution to this problem is storing the linear equation system that needs to
be solved during the analysis in a concise approximate form using tensor representation
methods, and seeking the solution in the same format. We examine the applicability of
Tensor Train (TT) [22] methods for generalized stochastic Petri-nets in this work. The
proposed method uses decision diagram-based state space representation for the derivation
of the compressed form, which is widely used in symbolic model checking.

We adapt a TT-based linear equation system solver, which has been successfully used in
other areas, such as large-scale physics simulations, to compute extra-functional metrics of
generalized stochastic Petri nets. There are challenges that arise when using the TT format
for the analysis of stochastic Petri-nets that are yet unexplored in the literature for TT-
based solvers, hindering the direct application of these algorithms without modification.
In this work, our aim is to overcome these challenges, and to verify the proposed algorithm
using benchmark models.

1

Our aim is to provide a method which scales well with the number of state variables,
which is the number of places in the case of GSPNs. The motivation for scaling on this
dimension is that to take advantage of the model’s structure, it must be decomposable into
components with small state spaces. In the extreme case when there is only a single state
variable, the Tensor Train representation is equivalent to the dense explicit representation.

Our previous results The work presented in this report is based on our previous work
presented in [27], which proposed a Tensor-train based method for the analysis of static
fault trees. GSPNs are a much more expressive formalism, thus the current work aims to
generalize the method proposed previously.

[27] focused on the computation of the mean time until first failure metric. The theorems
used for that method are general enough to be also usable in the case of mean time until
absorption (MTTA) computations in any structured CTMC whose rate matrix can be
efficiently represented in the TT format.

In contrast to static fault trees, the computation of the steady-state distribution is ex-
tremely complicated for large GSPNs, so we also consider its TT-based computation here.

Generalizing the previous method needs answers to the following questions:

• How can the TT representation of a GSPN’s rate matrix be efficiently computed
from the model?

• Which TT-based linear systems solvers can handle the TT ranks of the resulting
representation, if any? What modifications can help, if no appropriate solver exists
in the literature?

The answer to the first question is presented in Chapter 4. Regarding the second question,
however, this is a work-in-progress report. We present some modification possibilities in
Section 5.3 which we implemented, but they were not enough to solve the problem yet.

Contributions The main contribution of this report is an answer to the first and a
partial answer to the second question above:

• A method is given for the computation of GSPN metrics using Tensor Trains.

• Some potential modifications are proposed for the state-of-the-art TT-based linear
equation system solver AMEn in order to make it able to solve the linear system
arising in the previously mentioned method. This work is still in progress.

The source code for our prototype implementation can be found on github 1.

Structure of the report Chapter 2 reviews the necessary background in stochastics
and extra-functional modeling, and introduces the Tensor Train (TT) format. Chapter 3
gives a short survey of the related literature. Chapters 4 and 5 describe the main contri-
butions of the paper: a method for using Tensor Trains for computation of GSPN metrics.
Chapter 6 describes a scalable benchmark model we used in our measurements and the re-
sults of our numerical experiments. Chapter 7 concludes the work and provides a summary
of some potential areas of future research in the topic.

1https://github.com/szdan97/tensortrain

2

https://github.com/szdan97/tensortrain

Chapter 2

Background

This chapter reviews the necessary mathematical and modeling background.

2.1 Continuous-Time Markov Chains

Markov Chains (MCs) form an important mathematical formalism used in stochastic mod-
eling. Intuitively, a Markov Chain models a stateful system, where state transitions happen
randomly, but with the Markov property: the future depends on the past only through
the present. Markov Chains can have either a continuous or a discrete state space (al-
though some authors refer only to those with discrete state space as Markov chains, and
call continuous ones simply Markovian continuous stochastic processes), and can evolve
in continuous or discrete time, leading to different types of MCs.

In reliability and performance modeling, MCs usually have a discrete state space, which
can be either finite or countably infinite. For example, when dealing with queuing systems,
the size of a queue can be modelled as a Markov chain with a countably infinite number
of states, if the queue has infinite capacity. Most models in reliability analysis, like fault
trees or Petri-nets (with a finite maximum number of tokens) yield MCs with a finite state
space. The infinite case needs a very different approach to analyze than the finite case, so
we focused only on MCs with a finite state space in this work.

On the time dimension, both discrete and continuous-time modeling can be a reason-
able choice when dealing with extra-functional requirement verification, depending on the
problem. For now, we considered only a continuous-time treatment of GSPNs for the
computation of relevant metrics (see section 2.3). In a Continuous-Time Markov Chain,
state transitions can happen at any point in time, but the probability of taking a given
transition in a give time period depends only on the current state of the system, inde-
pendent of the previous states and the time spent in the current state before the interval.
The formal definition of a CTMC is as follows (from [26]):

Definition 1. A stochastic process {X(t), t ≥ 0} is a Continuous-Time Markov Chain
(CTMC) if for all integers n and for any sequence t0, t1, . . . , tn, tn+1 such that t0 < t1 <
· · · < tn−1 < tn, the following equation holds:

Prob{X(tn+1) = xn+1|X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0} =
= Prob{X(tn+1) = xn+1|X(tn) = xn}. �

3

s1

s2

s3

s4

λ1

λ2

λ5

λ3

λ4
λ6

−(λ1 + λ2) λ1 λ2 0

0 −λ5 λ5 0
0 0 −λ3 λ3
λ6 λ4 0 −(λ6 + λ4)

Figure 2.1: CTMC example represented by its state graph and
the corresponding infinitesimal generator matrix

This definition uses the Markov property in continuous time to define a Markov chain,
but inspecting CTMCs only through this property is hardly useful. A more useful char-
acterization of CTMCs comes from 2.1, which is described in the following.

For the sake of correctly identifying the scope of the work and the theorems used, a small
aside is needed about time-homogeneity.

Definition 2. [26] A CTMC is called time-homogeneous if Prob{X(tn+1) = xn+1|X(tn) =
xn} depends only on xn+1, xn and the difference tn+1− tn. It is called time-inhomogenous
otherwise. �

Analyzing time-inhomogenous CTMCs is a challenging task, they are rarely used. The
CTMCs derived from GSPNs are always time-homogeneous unless the transition rates are
time dependent, which is a generalization that is out of scope for this work, so we consid-
ered only time-homogeneous models. From now on, all CTMCs are implicitly assumed to
be time-homogeneous.

We can assemble the state probability vector π(t), the ith element of which is the prob-
ability of being in the ith state at time t. As this is a vector made of all elements of a
discrete probability distribution, |π(t)|1 = 1, and its elements are non-negative.

With this notation in place, it can be shown (see any textbook on the topic, like [26]), that
the time of taking a transition follows an exponential distribution, and the evolution of
the probabilities of being in each state can be described by the following linear differential
equation, called the Kolmogorov forward equation:

dπ(t)
dt

= π(t)Q (2.1)

where π(t) is the state probability vector at time t, and Q is called the CTMC’s infinites-
imal generator matrix. It can be computed from the rate matrix of the CTMC, in which
the diagonal is zero, and the off-diagonal element (i, j) is the rate (parameter) of the ex-
ponential distribution describing the amount of time after which the system transitions
from state i to state j (0, if transitioning from state i to state j is not allowed). From this
matrix, Q = R−diag{R ·1}. Each row of the infinitesimal generator sums to zero, so it is
always singular. An example of a CTMC with its state graph and infinitesimal generator
matrix can be seen on figure 2.1.

A CTMC has three kinds of special distributions for the state probabilities, defined as
follows [26]:

Definition 3. The elements of a state probability vector πst define a stationary distribu-
tion of the CTMC, if dπst

dt = 0. �

4

Definition 4. Given an initial state distribution with state probability vector π(0), the
distribution defined by the elements of πlimit = limt→∞ π(t) is called a limiting distribution
of the CTMC, if the limit exists and defines a proper probability distribution. Limiting
distributions are always stationary distributions. �

Definition 5. If the limiting distribution of a CTMC is independent of the initial distri-
bution, than this distribution is called the steady state distribution of the Markov Chain.�

Intuitively, the steady state distribution tells us about the probability of finding the
Markov Chain in a given state after leaving it on its own to evolve for an infinite amount
of time, independent of the state we left it in. This can often be a close enough approxima-
tion to the behavior of a system after an initial, not so long transient period. Because of
this, computing the steady state distribution is an important task in stochastic modeling.
As the steady state distribution is stationary, we know from equation 2.1, that

πsteadyQ = 0, (2.2)

meaning that the state probability vector of the steady state distribution lies in the left
null space of Q. This leads to two methods for finding the steady state distribution, if it
exists:

a. calculate a non-zero vector in left the null space of Q, and normalize it so that the
elements sum to 1.

b. replace one of the columns of Q and the corresponding element on of the right hand
side with the normalizing equation πsteady1 = 1 (where 1 is a vector of ones with
the appropriate size).

In the first case, we need to solve a homogeneous linear equation system, and a non-
homogeneous one in the second case. Both can be solved using either direct or iterative
solvers, but for structured matrix and vector representations like the Tensor Train format
(see Section 2.6), only the first one is usable with most solvers.

Markov Chains are widely used in reliability and performance analysis, as several metrics
and characteristics of the system can be derived by analysing them. Some examples are:

• Transient analysis, which describes the time evolution of the system, answering ques-
tions like what is the probability that the system fails throughout its lifetime, or how
long the system can be operated without maintenance if a given maximum failure
probability is prescribed

• Mean time to absorption, which will be described in more detail in Section 2.2, is
used when calculating the mean time to failure, mean time to repair, or mean time
between failures metrics for reliability analysis, or mean service time for performance
analysis.

• Steady-state analysis tells us how the system approximately behaves after it is left
on its own for a long amount of time

• Reward-based analysis can be used to compute metrics like expected energy con-
sumption of a system

5

2.2 Phase-type Distributions

Phase-type distributions is a family of continuous probability distributions related to
Markov chains. They are useful when modeling a random variable representing the amount
of time passed until some event happens.

Definition 6. A state of a CTMC is called absorbing, if it has no outgoing transitions.
This is equivalent for the all the elements of corresponding row in the infinitesimal gener-
ator to be zero. �

Definition 7. A phase-type distribution is the distribution of a random variable repre-
senting the time until absorption in a Markov chain with a single absorbing state. �

A phase-type distribution can be represented by the infinitesimal generator matrix and
initial probability vector of the associated Markov chain. If the states of the CTMC are
ordered such that the absorbing state is the last one, the infinitesimal generator and the
initial probability vector can be written in the following block form:

Q =
[
S sabsorb
0T 0

]
, π(0) = [σ | σabsorb]

With this notation, any moment of the phase-type distributed random variable X can be
computed as:

E[Xj] = (−1)jj!σS−j1 (2.3)

Setting j=1 in this formula, we get the formula for the expectation of the random variable:

E[X] = −σS−11

Computing this formula directly involves taking the inverse of S, which is often compu-
tationally infeasible if the associated Markov chain has a large number of states. Alter-
natively, we can decompose this formula into solving the linear system Sx = 1, and then
computing −σx, or doing the same in the other direction. Thus, the task of finding the
expected value of a phase-type distributed random variable can be reduced to solving a
linear system.

Although the original definition of a phase-type distribution involves a Markov chain with
a single absorbing state, it can be easily shown that the time until absorption in a CTMC
with more than one absorbing state is also a Phase-type distribution.

To see this, we only need to substitute all the absorbing states with a single, abstract
absorbing state, and redirect all the transitions originally leading to one of the absorbing
states to this state. As there are (by definition) no outgoing transitions from any of the
absorbing states, merging them into a single state does not change the behaviour of the
Markov chain. The time until absorption in the Markov chain with the merged absorbing
state is thus the same as in the original one.

When dealing with a Markov chain with an explicitly represented state space, the ab-
sorbing states can easily be abstracted into a single state. In the case of structured
representation, such as those we deal with in this work, however, this is not possible, so
the extension to multiple failure states is needed. Calculation methods can also be easily
extended: instead of eliminating the rows and columns of the single absorbing state, all
the rows and columns corresponding to an absorbing state must be eliminated.

6

2.3 Stochastic Petri-Nets

Definition 8 (Stochastic Petri Net). A Stochastic Petri Net (SPN) N =
〈P, T , A,R,M0〉 is a tuple where:

• P is the set of places

• T is the set of transitions

• A = 〈A−, A+, A◦〉 is a triplet of arc weight functions

– A− : P × T −→ N are the input arc weights
– A+ : P × T −→ N are the output arc weights
– A◦ : P × T −→ N are the inhibitor arc weights

• R : T ×M −→ R+ is the marking-dependent rate function, whereM = {F | F : P −→
N} is the set of possible markings (a marking assigns a current number of tokens to
each place)

• M0 : P −→ N is the initial marking of the Petri net �

Definition 9 (SPN Semantics). The evolution of the SPN can be given in continuous
time by specifying its current marking M(t) at each time instant t ∈ R+. The net starts
in the initial marking, so M(0) = M0.

In each marking, a transition r ∈ T is enabled, if ∀p ∈ P : M(t)(p) ≥ A−(p, r) ∧ M(t)(p) <
A◦(p, r). The set of enabled transitions in markingm will be denoted by TEn(m). At t = 0,
and each time the marking of the net changes, a delay δk ∈ R is sampled for each enabled
transition k from an exponential distribution with parameter R(k,M(t)).

In the marking-independent case (when ∀m ∈M : R(k,m) = R(k), the rate depends only
on the transition), resampling the firing time on each marking-change is statistically equiv-
alent to sampling it only when the transition becomes enabled because of the memoryless
property of the exponential distribution. The same is true in the marking-dependent case
for those transitions whose rate is not changed by the marking change. For those whose
rate does change, however, the resampling semantics is needed to account for the changed
firing time distribution.

The enabled transitions “race” against each other:

kmin = arg min
k∈TEn(M(t))

{δk}

will be the transition that actually fires, as its firing changes the marking, which may
enable new transitions and disable others in the net, and even for those that stay enabled
the firing time is resampled. At time tfire = t + δkmin

, the marking of the net changes
such that ∀p ∈ P : M(tfire)(p) = M(t)(p) − A−(kmin, p) + A+(kmin, p). Between firings,
the marking stays the same. �

Definition 10 (Prioritized Stochastic Petri Net). A Prioritized Stochastic Petri
Net (PSPN) is a stochastic Petri net with an additional priority function Π : T −→ N.
The semantics are similar to SPNs, except that an enabled transition is considered for
firing if and only if no transition with higher priority is enabled. �

7

Definition 11 (Generalized Stochastic Petri Net). A Generalized Stochastic Petri
Net (GSPN) has the same components as a PSPN, but the transition set T = Tt t Ti
is partitioned into two sets, the set of timed transitions Tt and the set of immediate
transitions Ti. The priority function must obey the constraints ∀k ∈ Tt : Π(k) = 0 and
∀k ∈ Ti : Π(k) ≥ 1.

A Generalized Petri net marking M where no transition t with Π(t) ≥ 1 is enabled (so
only timed transitions are enabled) is called tangible, while markings with at least one
enabled transition with Π(t) ≥ 1 (so at least one immediate transition is enabled) are called
vanishing. We write M ∈ T if M ∈ Sr is a reachable tangible marking and M ∈ V if M
is a reachable vanishing marking. In tangible markings, the timed semantics of Stochastic
Petri nets apply to GSPNs. In contrast, immediate transitions are fired in vanishing
markings while no time is elapsed. For immediate transitions, the function R gives their
weight instead of rate: if more than one immediate transition can fire at the same time,
one of them is chosen randomly according to a distribution where the probability of each
transition is proportional to its weight.

Similarly to the transitions of PSPNs, an enabled transition in a GSPN is considered for
firing exactly if no transition with higher priority is enabled.

Generally, GSPN definitions allow leaving weights for some immediate transitions unspeci-
fied. In this case, the transition is chosen non-deterministically, instead of probabilistically,
from the firable ones [8]. This leads to proper non-deterministic behavior, making GSPNs
a more expressive formalism than Markov chains. Generalizing the TT-based method for
metric computation from Markov chains to formalisms with proper non-determinism (e.g.
Markov Automata [7]) is out of this work’s scope. Therefore, we consider only GSPNs
with fully defined R here, so that no non-determinism can arise.

Graphical notation The standard graphical notation of GSPNs consists of the follow-
ing elements:

• Circles denote places

• Empty rectangles denote timed transitions

• Filled thin rectangles (or lines) denote immediate transitions

• An arrow from a place’s circle to a transition’s rectangle denotes an input arc between
them

• An arrow from a transition’s rectangle to a place’s circle denotes an output arc
between them

• A line between a place’s circle and a transition’s rectangle with a small circle on the
transition’s end denotes an inhibitor arc between them

• An integer label on an arc’s line denotes the arc’s weight; an implicit weight 1 is
assumed if not explicitly given

• The initial marking is notated by writing the number of tokens inside the circle
of each place; 1-3 tokens might be notated using 1-3 filled circles inside the place
instead of writing the number; leaving a place’s circle empty means 0 tokens on the
place

8

place_1

3
place_2

place_3
2

timed_transition_1
R=2.0

4
immediate_transition_1

R=1
Π=1

Figure 2.2: An example generalized stochastic Petri-net

• Rates, weights, and priorities of transitions, names of places and transitions can be
stated by using labels next to the notational elements

A small example can be seen on Figure 2.2.

2.4 Decision Diagrams

Definition 12. A Binary Decision Diagram is a rooted DAG with one or two terminal
nodes of out-degree zero labeled 0 or 1 and a set of non-terminal nodes of out-degree two.
Non-terminal nodes are labeled with a corresponding variable (more than one node can
be labeled with the same variable), and the edges of a non-terminal node correspond to
choosing the value of the node’s variable. A path from the root to a terminal node thus
means choosing the values of the variables the way the edges on the path specify them.

A BDD is ordered if on all paths through the graph, the variables respect a given linear
order. In this case, the nodes of the graph are organised into levels, each of the levels
corresponding to a variable, except for the last one, which consists of the terminal nodes.

An ordered BDD is reduced, if it satisfies the following properties (where u[0] and u[1]
means the node at the end of the outgoing edge of u labeled 0 and 1, respectively):

• Uniqueness: (u[0] = v[0] ∧ u[1] = v[1]) =⇒ u = v

• Non-redundant tests: u[0] 6= u[1] �

BDDs were originally created to represent Boolean functions in a compact format. The
variables of the BDD are the inputs of the function, the edges are the values of the inputs,
and the terminal node reached by choosing the appropriate edges for each node is the
output of the function. A reduced ordered BDD is a canonical representation of a Boolean
function this way.

Another canonical form can be given if the non-redundant tests constraint is dropped, and
instead all paths leading from the root to the terminal level are required to go through
exactly one node in each level. Such BDDs are called quasi-reduced. This practically

9

a

b

c

0

c

b b

1
(a) BDD with no con-

straints

a

01

b

c

b

c c

(b) ordered BDD

a

01

b

c

b

c

(c) quasi-reduced or-
dered BDD

a

01

b

c

(d) reduced ordered
BDD

Figure 2.3: BDDs representing the function f(a, b, c) = (a∧b)∨c,
with solid lines signifying 1 edges and dashed lines
signifying 0 edges.

means that all the input variables are considered in each path, even if their value does
not matter. Although this means storing redundant nodes, this form is needed for the
structured representations used in this work. The computations can be implemented
in such a way that while building the BDD, the more efficient fully-reduced format is
used internally. Throughout the report, “BDD” refers to a quasi-reduced ordered binary
decision diagram.

An example for different BDD types is given in Figure 2.3.

A subset of a state space can be represented similarly if the states can be decomposed
into binary state variables: in this case, a Boolean function can be given which takes
the state variables as inputs, and returns 1, if the state is included in the set, and 0
otherwise. Efficient algorithms exist for performing set operations, like union, intersection
or difference, on sets represented by BDDs this way.

The set of failure states in a fault tree can be represented as a BDD using the state space
decomposition described above, by using the state of the basic events as binary state
variables (0 - operational, 1 - failed), and representing the Boolean function encoded by
the tree’s gates as a BDD.

2.4.1 Multi-valued decision diagrams

Multi-valued decision diagrams (MDDs) are an extension of BDDs, which allows specifying
an arbitrary finite number of labels for each variable, and using this number of different
labeled edges for the corresponding nodes instead of only the original two (zero and one)
labels. This makes it possible to represent functions whose output is still Boolean, but
the input variables can come from any finite domain.

MDDs can be used when the state space of the atomic components isn’t binary. Generally,
the places of a GSPN may contain more than a single token at a time, so MDDs are needed
to represent state sets when the state variables are the number of tokens in each place.

2.4.1.1 Interval Decision Diagrams

Interval Decision Diagrams (IDDs) are a more compact form of multi-valued decision
diagrams. Instead of single values, the edges are labeled with intervals such that the

10

intervals on the edges leaving a node are disjoint and their union equals the domain of the
variable corresponding to the node. Other than being more compact than regular MDDs,
they are also able to handle infinite domains using unbounded intervals.

IDDs are very suitable for the analysis of GSPNs, as enabledness of transitions depends on
whether the number of tokens on a place is contained in the interval between the weight
of the input arc (or 0 if it does not exist) and the inhibitor arc (or +∞ if it does not exist)
between the transition and the place.

Edge-valued Interval Decision Diagrams (EVIDDs) are used in [17] for computing the
reachable state-space of a GSPN. Unlike regular decision diagrams which assign an output
value to a valuation of the variables solely based on the terminal node at the end of the
path corresponding to the valuation, edge-valued decision diagrams have values assigned
to their edges, and the output value is the sum of the values corresponding to the edges
on the path.

2.5 Kronecker product and multi-index notation

The Kronecker product of matrices, denoted by A⊗B is defined as follows:

(A⊗B)[i1rB + i2, j1cB + j2)] = A[i1, j1] ·B[i2, j2]

where rB and cB denote the number of rows and columns of B, respectively. The Kro-
necker product is essentially an every-element-by-every-element product. When selecting
an element of the result, it must be specified which element of each input matrix is taken.
Because of this, the result has rArB rows and cAcB columns.

Example 1 (Kronecker product).

M =
[
1 2
3 4

]
⊗
[
1 0
0 2

]
=

1 0 2 0
0 2 0 4
3 0 4 0
0 6 0 8

A more natural indexing convention for the result is the multi-index notation: instead of
a single row index and a single column index, two indices are used for each, specifying the
element indices in the input matrices separately. With this a convention, an element of a
matrix resulting from a Kronecker product is denoted as follows:

C[(i1, i2), (j1, j2)] = C[i1r2 + i2, j1c2 + j2)]

This notation can be also be used with more than two indices when the indexed matrix is
the Kronecker product of more than two matrices:

C =
N⊗
k=1

Ak

C[(i1, i2, . . . , iN), (j1, j2, . . . , jN)] =
N∏
k=1

Ak[ik, jk]

11

Example 2 (Multi-index notation). With M from the previous example:

M [(2, 2), (2, 2)] = 4 · 2 = 8
M [(2, 1), (1, 1)] = 3 · 1 = 3

Treating n long vectors as n×1 matrices extends the operations naturally to vectors. The
multi-index notation can be used in this case as well with only one index group:

v =
N⊗
k=1

uk

w[(i1, . . . , iN)] =
N∏
k=1

uk[ik]

Multi-index notation is also used when a vector or a matrix is not the result of a Kronecker
operation, but its elements can be indexed by an index group (two index groups, in case of
matrices) more naturally instead of a single index. This is the case for most of the vectors
and matrices in this work. For example, the state probability vector of the underlying
Markov chain of a stochastic Petri-net can be indexed by specifying the current number
of token on each place, instead of specifying the index of the state directly in the product
state space.

Kronecker algebra is used in two ways in this work. First, some linear algebra operations
for tensor trains are implemented using Kronecker products. Second, one of the ideas for
the modification of TT-based linear equation solvers examined in this work is constraining
the TT-cores to be Kronecker products of an unknown matrix and a matrix derived from
the structure of the model’s reachable state space.

2.5.1 Kronecker Product as a Linear Operator

Let vec(X) denote the row-major vectorization of the matrix X, meaning that vec(X)
consists of the elements of X in the order of reading the rows after each other. There
exists a matrix Kr,c

A for any matrix A and positive integers r and c, such that

Kr,c
A · vec(X) = vec(A⊗X)

for every X ∈ Rr×c. This means that computing the Kronecker product with a fixed
matrix can be represented as a linear operator for vectorized matrices. Kr,c

A can be easily
constructed from the elements of A.

2.6 The Tensor Train Format

The tensor train (TT) format has been defined by Oseledets in [22]. The format itself
had already been used in the quantum physics community under the name Matrix Product
State before. The decomposition is formally defined originally for tensors, which in this
area are essentially multi-way arrays. It can also be used to represent vectors and matrices,
when indexing the vector or matrix can be done using index groups, like the ones in Section
2.5 used to index the result of Kronecker operations. The vector or matrix does not have
to be Kronecker structured, but the closer it is to such a structure, the more compact the
tensor train representation is. The places in the index group are called modes.

12

A vector v or a matrix M represented as a tensor train is given in the following form
using the multi-index notation:

v[(i1, i2, . . . , in)] = V1(i1) · V2(i2) · · · · · Vn(in)
M [(i1, i2, . . . , in), (j1, j2, . . . , jn)] = M1(i1, j1) ·M2(i2, j2) · · · · ·Mn(in, jn)

The components Vk and Mk are called core tensors or cores (they are also called tensor
carriages, hence the name “tensor train”, but core is more common). These are three way
tensors, but they can be simply considered as arrays of matrices, and a matrix is chosen
from each array by the corresponding index. Some TT articles define the cores as matrix
functions with domain N, as they take as input a natural number (two, in the case of
matrices), and return a matrix. In others they are referred to as parameter-dependent
matrices. Each core corresponds to a mode. The kth core consists of rk−1 × rk matrices,
with r0 = rn = 1, so that the result of the multiplications is a scalar. The integeres rk
are called the ranks or TT-ranks (to distinguish it from the rank commonly used in linear
algebra) of the tensor train.

The format comes with efficient algorithms for basic linear algebra operations. The follow-
ing list presents these. Most of these operations are applicable in the same way to vectors
and matrices, so they are not presented separately. The matrix case can be reduced to
the vector case by considering the kth row and column index as a single kth index (for
example, a pair of a row index and a column index both with range 1 to 4 is treated as a
single index with range 1 to 16).

• Product with a scalar: computing αA can be simply done by multiplying each matrix
in the first core of A by α

• Addition: given two vectors a and b with the same dimensions in the TT
format as a[(i1, i2, . . . , in)] = A1(i1)A2(i2) . . .Am(im) and b[(i1, i2, . . . , in)] =
B1(i1)B2(i2) . . .Bm(im), their sum c = a + b can be computed in the TT format
by setting its cores to:

C1(i1) =
[
A1(i1) B1(i1)

]
Ck(ik) =

[
Ak(ik) 0

0 Bk(ik)

]
for k = 2, . . . ,m− 1

Cm(im) =
[
Am(im)
Bm(im)

]

• Hadamard (element-wise) product: given two vectors of the same dimensions
a and b in the TT format as a[(i1, i2, . . . , in)] = A1(i1)A2(i2) . . .Am(im) and
b[(i1, i2, . . . , in)] = B1(i1)B2(i2) . . .Bm(im), their Hadamard product c = a ◦ b,
the cores of c in the TT format are

Ck(ik) = Ak(ik)⊗Bk(ik),

where ⊗ is the Kronecker product.

• The scalar product of two vectors of the same size, defined as

〈a, b〉 =
∑

i1,i2,...,im

a[(i1, i2, . . . , im)]b[(i1, i2, . . . , im)]

13

can be efficiently computed in the TT format by using the following computations:

Γk =
∑
ik

Ak(ik)Bk(ik)

vk = vk−1Γk with v1 = Γ1

then vm is a scalar, and 〈a, b〉 = vm.

• The Euclidean norm of a vector – which generalizes to the Frobenius norm in the
matrix case – can be computed using the previously mentioned method for the scalar
product:

||a||F =
√
〈a,a〉

• Matrix-vector product: Given a matrix M [(i1, i2, . . . , in)] =
M1(i1)M2(i2) . . .Mm(im), and a vector x[(i1, i2, . . . , in)] =
X1(i1)X2(i2) . . .Xm(im) in the same tensor structure, their product y = Mx can
be computed in the TT format by computing its cores as

Yk(ik) =
∑
jk

(Mk(ik, jk)⊗Xk(ik))

• Transposition: transposition can be done by simply rearranging the matrices in a
core, so that the originally (ik · columns + jk)th matrix of the core tensor becomes
the (jk · rows + ik)th one.

• Outer product of vectors: the outer product X = vwT of two vectors represented
using the above format can be computed in the TT matrix format described above
using the following cores:

Xk(i · columns+ j) = Vk(i)⊗Wk(j)

• Matrix-matrix product: this operation should only be used when it is really necessary
and unavoidable, as the cores of the resulting tensor train will be very large if used
in an iteration step. The cores for the resulting matrix C = AB are:

Ck(i, j) =
∑
p

(Ak(i, p)⊗Bk(p, j))

Apart from being able to represent structured matrices and vectors compactly, another
advantage of the tensor train format is that the size of the representation can be auto-
matically reduced even further if the representation does not need to be exact. This is
done through the tensor train rounding algorithm. This algorithm takes as input a tensor
train and a rounding tolerance, and returns a tensor train that has TT-ranks less than or
equal to those of the original, and which represents a matrix/vector not further from the
original one in Frobenius norm than the specified tolerance.

Given a vector a in the TT format a compressed version ã with ε relative tolerance in
Frobenius norm, meaning that ||a−ã||F||a||F ≤ ε can be computed using the following steps:

1. compute truncation parameter δ = ε√
m−1 where m denotes the number of cores in

a

2. orthogonalize the tensor using QR decomposition of the cores

14

3. compute truncated SVD of the unfolding matrix of each core by dropping singular
vector with corresponding singular value σk < δ. For each core from left to right,
with the truncated SVD decomposition denoted as ŨΣ̃Ṽ , keep Ũ folded back as
the new core, and merge Σ̃Ṽ into the matrices in the next core before computing
the next SVD.

For details and pseudo code of the algorithm, see [22].

Most iterative algorithms for solving systems of linear equations can be implemented using
only these operations. The rounding operation is needed because the size of the cores of
the solution vector grows in each iteration (see the formula for addition and matrix-vector
product), so the iteration vector needs to be compressed using the rounding algorithm
described above.

The tensor train decomposition can be considered an extension of decomposing a vector
or matrix into a Kronecker product of smaller components, as a Kronecker product can
be represented as a tensor train with all ranks 1. To convert the Kronecker product into a
tensor train, the components of the product must be simply flattened into cores consisting
of 1 × 1 matrices. If the Kronecker product of the matrices Ck is computed, then the
(i, j)th matrix in the kth core is just Ck[i, j].

15

16

Chapter 3

Related works

Calculating reliability and performance metrics of complex system by exploiting the inher-
ent structure has been an area of ongoing research for a long time. A well-studied method
of this principle is using Kronecker algebra for decomposing the infinitesimal generator
matrix of a Markov chain into smaller matrices, and using iterative linear equation system
solution methods without assembling the full matrix [5, 16].

The main disadvantages of such methods are that they are not applicable generally, only
for system having exactly the necessary structure, they cannot be used when the state
space is so large that vectors used in the analysis must also be compressed, and they
can store the system only exactly, no memory reduction can be made even when only an
approximate solution is sought.

Tensor representation methods, like the Hierarchical Tucker decomposition (HTD) [9, 10]
or the Tensor Train decomposition (TT) [22] can overcome these problems. These methods
exploit that state probabilities and rate matrices/infinitesimal generator matrices of a
CTMC can be treated as a high-dimensional tensor (essentially, a multi-dimensional array)
by decomposing the state space into domains of state variables. These tensors can then
be represented using structured formats (HTD or TT), which can represent any matrix or
vector exactly, although if it is not well structured, the decomposition might have a large
size. There are approximation and rounding algorithm which can reduce the size of these
representations, if exact representation is not required, making a trade-off between size
and accuracy possible.

In [2], the authors propose an algorithm for the analysis of structured Markov-chains using
compact tensor representations. The proposed algorithm uses block-Kronecker decompo-
sition for the infinitesimal generator matrix of the system, along with a balanced HTD
representation for the vector. Using HTD is similar to our case using TT, however, their
method uses a separate subvector represented by its own HTD for each Descartes-product-
structured partition of the reachable state-space. This can mean an exponential number
of subvectors in the number of variables, which we aim to avoid. This representation also
makes it impossible to “share information” between the elements of the solution vector
when these elements are not in the same partition of the reachable state-space. In contrast,
we aim to represent the whole solution vector by a single tensor train.

The algorithm is applicable to GSPNs, as one of the presented case studies is a GSPN
model. However, the places are manually grouped into subsystems, such that each state
variable corresponds to multiple places, leading to potentially very large domains for the
state variables, and the representation cannot take advantage of the system’s structure.

17

These groupings are chosen in a way such that the transition priorities do not have to be
taken into account when creating the representation of the system matrix (as the block-
Kronecker decomposition cannot handle this well), leading to large groups. In contrast, we
keep the number of tokens in each place as its separate variable, and use the capabilities
of the Tensor Train representation with the help of decision diagrams to take priorities
into account in the structured representation of the infinitesimal generator.

[18] presents a method based on Tensor Trains for the mean time to absorption analy-
sis of Superposed GSPNs, which means composing multiple GSPNs using synchronizing
transitions. They consider a whole GSPN as a subsystem corresponding to a state vari-
able, and as such, each TT core has to contain the whole transition matrix of one of the
composed GSPNs, making this useful only when a large system is composed of a lot of
small independent GSPNs. As priorities are handled in the rate matrix of each GSPN,
the structured representation need not take them into account in their case either. Our
method is aimed at the analysis of a single GSPN with a large number of places.

Moreover, their presented case study uses GSPNs where there is always exactly one token
in the whole net, meaning that this model does not use one of greatest powers of GPSNs
that they are very well suited for the modeling of distributed systems. The model uses
GSPNs like state machines with each place corresponding to a state of the system.

Another limitation is that the method works only for the MTTA computation with a
single absorbing state, while we aim for any set of absorbing states that can be compactly
represented by a decision diagram.

[14] presents a TT-based method for the steady-state computation of communicating
Markov processes, among them Stochastic Petri-nets. These are only regular SPNs,
though, without immediate transitions and transition priorities.

To our best knowledge, ours is the first work addressing the solution of Generalized
Stochastic Petri Nets without the aforementioned limitations using structured tensor rep-
resentations.

18

Chapter 4

Computing GSPN metrics using
Tensor Trains

4.1 Reducing GSPN metric computations to PSPN metric
computations

In this report, we consider two types of reliability metrics: mean time to absorption and
steady-state distribution.

Analyzing non-confused GSPNs is most commonly done by constructing its underlying
CTMC and computing the desired metrics on it. This involves dropping the vanishing
states from the state space [19, 1], which is not possible when using structured represen-
tations, like Tensor Trains.

Another possibility is treating the system’s dynamics as a semi-Markov process with ex-
ponential and constant zero holding times [4], and performing the analysis through its
embedded DTMC. We propose using a third approach, which is similar to this, but results
in a Tensor Train with smaller TT-ranks for the coefficient matrix of the linear systems
that are solved in the analysis.

Our approach consists of deriving a PSPN from the GSPN by turning the immediate
transitions into timed ones, analyzing the PSPN, and correcting for the time spent in
vanishing states in the metric computation formulae. The rates assigned in the PSPN to
originally immediate transitions is a globally chosen arbitrary “immediate rate” constant
multiplied by the weight of the immediate transitions. This constant should be chosen
in a way that avoids making the Markov chain stiff (which means having transition rates
orders of magnitude apart), if possible. One such way is using the average of the rates of
the original timed transitions. The original transition priorities and the rates of originally
timed transitions are kept from the GSPN. Multiplying a global constant by the weight
ensures that the transition to fire is chosen from the fireable transitions according to the
same distribution as in the original GSPN. This is because of the fact that for two random
variables x ∼ Exp(λ) and y ∼ Exp(µ), P (min{x, y} = x) = λ

λ+µ .

One metric of interest is the mean time until first visitation of a set of markings in the
GSPN, which is equivalent to the mean time until absorption in a modified version of the
GSPN’s underlying Markov chain, where the states corresponding to the given markings
are made absorbing.

19

This metric of the GSPN can be computed from the infinitesimal generator Q of the
derived PSPN using the following formula:

E(Tabsorb) = π0Q̂
−11T

where 1T denotes the indicator vector of the tangible states of the GSPN and Q̂ is the
infinitesimal generator of the PSPN’s underlying Markov chain with the rows and columns
corresponding to absorbing states omitted. As the ith element of π0Q̂

−1 is the expected
time spent in the ith state before absorption, multiplying by 1T instead of 1 corrects for
pretending that time also passes in vanishing states.

This is still not usable with the TT representation, though, as we cannot drop rows and
columns of the infinitesimal generator if it is represented using a TT. In [27], we presented
a formula which can be used to compute the mean time until absorption of a Markov chain
using structured representations. The formula is stated in Theorem 1.

Theorem 1. Let Q be the infinitesimal generator of a Markov chain M, A be a set of
M’s states, O be the set of absorbing states in M, and M′ be a Markov chain that
is identical to M except that the states contained in A are also absorbing. Define the
modified generator as:

Q̄ = Q−Q · diag{1A} − diag{1A} ·Q+ γ · diag{1O}

where γ is some non-zero constant. If πT0 1A = 0, then the time until absorption in M′
with initial distribution π0 can be calculated as:

E{tabsorb} = π0Q̄
−11 �

Proof. See [27]. �

This means that we can compute the expected time until a state (which means a given
marking in the GSPN) in a given set is visited by deriving a PSPN from the GPSN, creating
a TT representation of the infinitesimal generator of the PSPN’s underlying Markov chain,
and than computing π0Q̄

−11T , where A in Q̂’s formula is the set of states whose first
visitation time we are interested in.

In the special case when the GPSN has deadlocks, the underlying Markov chain already
has absorbing states (the deadlock states), which constitute the set O in the formula. By
setting A = O, we can compute the mean time until the Petri-net deadlocks.

Another important property of a GSPN in extra-functional analysis is its steady-state
distribution. A lot of metrics can be computed by computing the scalar product of the
steady-state distribution vector and a reward vector which assigns rewards to each state.
For example, the steady-state availability of the system can be computed by using the
indicator vector of the operational states as reward vector, or the steady-state mean energy
consumption can be computed by using the energy consumption for a unit of time spent
in each state as rewards.

These reward vectors can often be easily represented as Tensor Trains, and the scalar
product can be efficiently computed for two vectors in the TT representation.

20

The steady-state distribution πss of the GPSN can be computed using the infinitesimal
generator Q of the PSPN in the following way:

π̂ssQ = 0

πss = π̂ss ◦ 1T
||π̂ss ◦ 1T ||1

The probability of finding the GSPN in a vanishing state at a given time must be zero,
as it spends 0 time in a vanishing state. In the PSPN, however, the holding time of
vanishing states is non-zero, so the steady-state distribution of the PSPN assigns non-
zero probability to these states. This is corrected by first setting all the vanishing state
probabilities to zero by computing the Hadamard-product with the indicator vector of the
tangible state, and renormalizing the result so that the probabilities sum to 1.

As the time spent in a given tangible marking is the same in the PSPN as in the GSPN,
and the next state is chosen according to the same distribution in them when a change
occurs, the proportions of the steady-state probabilities between tangible states are the
same in the GSPN and the PSPN.

The TT representation of the PSPN’s rate matrix can be derived as described in Sec-
tion 4.2. The computation of the desired metric can then be performed using TT-based
linear system solvers and basic linear algebra operations that are available in the TT
format.

4.2 Representing the Rate Matrix in the TT Format

The proposed approach for creating the Tensor Train representation of the rate matrix of
a PSPN consists of the following steps:

1. Compute the reachable statespace of the PSPN.

2. Derive a Tensor Train representation of each individual transition’s contribution to
the rate matrix without taking other transitions into account.

3. For each priority level, sum the contributions of the transitions that have the given
priority, and constrain the result to those starting states where exactly the given
priority transitions fire.

4. Sum the contributions of the priority levels.

The following subsections detail these steps.

4.2.1 Reachable state space computation

The reachable state space is mainly needed to know the effective capacity of each place,
meaning the highest reachable number of tokens in the given place. This is needed so that
the mode lengths of the TT can be specified even if capacities are not explicitly given
on the model. We use prioritized saturation with edge-valued interval decision diagrams
(EVIDDs) [17] as an efficient way of this computation. The EVIDDs used in this step can
be reused in step 3.

21

4.2.2 Contributions of individual transitions

If the marking-dependent rate expression of a transition k is a multilinear function of
functions of a single place, the contribution of the transition can be represented in the TT
format the following way:

We assume that the rate expression is in the following sum-of-products form:

R(k,m) =
∑
i

∏
j

fi,j(m(pi,j)).

First, a rate vector rk is computed in the TT format, which specifies the rate of the
transition for each potential marking. This is done by creating a TT vector for each fi,j
whose cores all consist simply of 1×1 matrices with a single 1 element, except for the core
corresponding to pi,j , whose nth matrix has fi,j(n) as its single element, for each n between
0 and pi,j ’s effective capacity. From these vectors, the rate vector can be computed using
Hadamard products and vector addition, both of which can be done in the TT format
efficiently. Although the Hadamard product could make the TT-ranks grow (the cores of
the Hadamard product are the Kronecker products of cores of the operands), this is not
the case here, as the TT ranks of the Hadamard product’s operands are all 1. This means
that the rate vector can be represented using a TT with TT-ranks not greater than the
number of terms in the sum. In the marking-independent case, this means a TT with
TT-ranks 1.

If the rate expression is not a function of this form, then the TT representation of the rate
vector is not so simple. However, it can be calculated using any general TT decomposition
technique, like TT-SVD [22] or TT-Cross [21]. TT-SVD can give an exact representation,
but needs the full rate vector to be available in explicit form, which might not be possible
if there are too many places. In practice, a transition’s rate depends only on some places,
so the explicit rate vector can be created as if only these places existed, and the TT
decomposition for the relevant subset of places can be performed on this much smaller
vector. The resulting TT can then be extended with cores containing appropriately sized
identity matrices for the remaining places.

The contribution Rk of the transition k to the rate matrix is represented by a TT with
the following cores:

Rlk[i, j] =

rlk[i], if j = i−A−(k, p) +A+(k, p)

∧ i ≥ A−(k, p) ∧ i < A◦(k, p)
0, otherwise

where rlk is the lth core of the rate vector and Rlk is the lth core of the transition’s
contribution.

4.2.3 Contributions of priority levels

After computing the contribution of each individual transition, those that belong to the
same priority level can be summed. The result must be constrained to be non-zero only
on those rows, which correspond to markings where transitions with the given priority
can fire. This is done by “masking” the matrix through multiplying it from the left by

22

[] [] [] = 11 0
1

1

0

0

1

1

[] [] [] = 00 1
1

0

0

1

1

0

a

b

c

b

c

[]1 0[]0 1

[]
0

0

1

1 []
1

0

0

1

Core[1]Core[0]

[]
1

0 []
1

1

1 0

Figure 4.1: Example of the conversion between an MDD with bi-
nary variables and tensor train with two paths in the
MDD and the corresponding element computation in
the tensor train highlighted.

Diag(1Sn), where 1Sn is the indicator vector of priority n states (markings), defined by:

1Sn [i] =

1, if in the ith marking, the highest priority

enabled transition has priority n
0, otherwise.

The product can be computed in the Tensor Train format if the indicator vector is also
given as a Tensor Train. An efficient way to compute its TT representation is to use an
MDD representing the set Sn with the same variable order as used for the individual rate
matrix contributions. The TT representation can be derived from the MDD using the
following method:

The tensor train for the indicator vector of the set described by an MDD can be assembled
from the MDD by using the adjacency matrices between two levels as the matrices in the
tensor cores. The matrix with index i in the core is the adjacency matrix of the i-edges
between corresponding levels. The last core corresponds to the edges between the last
variable’s nodes and the terminal node 1.

Lemma 1. The tensor train whose cores are the adjacency matrices of the MDD repre-
senting the set S as described above represent the vector 1S . �

Proof. The computation of an element of the represented vector specified using the multi-
index convention is done by going through the cores from left to right, choosing the matrix
from the ith core according to the ith index in the index group, and multiplying these
matrices. Going from left to right, the result of each multiplication before the last one has
exactly one 1 in it, and the other elements are zero, because each node has exactly one
i-edge.

The place of the 1 in each result specifies the index of the node chosen at that level. As
the last core specifies which nodes of the last non-terminal level are connected to the 1
terminal node, the result of the last multiplication is 1 if the chosen path ends at the 1
terminal node and 0 otherwise. Figure 4.1 shows an example of this conversion. �

The MDD representation of a given priority state set can be efficiently obtained, for exam-
ple, from the EVIDD used for representing the highest priority enabled transition in each
marking in step 1 [17]. In our implementation, the priority MDDs are constructed from

23

the EVIDDs in such a way that they represent only reachable markings. This means that
none of the contributions has non-zero elements on either the rows or the columns of un-
reachable markings. The rows are directly masked, and the columns would have non-zero
elements only in those rows which are masked, as else the corresponding marking would be
reachable from a reachable marking, making it also reachable. In explicit representations,
the rate matrix is created only for the reachable states, but the TT representation can
work only with product state spaces, so a lot of unreachable states are also contained in
the represented matrix.

4.2.4 Summation

The result is then computed by summing the contributions of each priority level:

R =
∑
n

Diag(1Sn)
∑
k∈T

Π(k)=n

Rk

where n ranges through the priorities.

In the marking-independent case, this results in a Tensor Train with TT-ranks equal∑
p ([size of Sp’s MDD] · [# priority p transitions]).

24

Chapter 5

Solving the linear systems using
Tensor Trains

5.1 Overview of the TT-based Computation

The previous chapter presented a way to use a PSPN’s rate matrix to compute metrics for a
GSPN it was derived from, and an algorithm that constructs a Tensor Train representation
of this rate matrix from the PSPN model. The formulae of the computations involve the
solution of a linear system whose coefficient matrix is either the infinitesimal generator,
computed from the rate matrix as Q = R − Diag(R · 1), or another modified matrix
computed using the formula from Theorem 1, both of which can be computed while staying
in the Tensor Train representation.

The construction of the TT representation makes the rows and columns of the rate matrix
corresponding to the unreachable states zero. There are two options regarding these:

• They can remain full zero, which means that the solution vector can take any value
on the non-reachable states. The advantage of this is that the TT-ranks of the
solution can be smaller. On the other hand, this introduces a lot of new dimensions
to the null-space, which can make the solution algorithm unstable.

• The diagonal of these states can be filled with a dummy value. This constrains the
exact solution to be zero on the unreachable states, removes the null-space directions
introduced by the reducibility of the potential state-space. However, this means that
the solution technically has to contain the information of what the reachable state
space is, making the TT-ranks needed to accurately represent it much larger.

Tensor Train rounding using TT-SVD (see Section 2.6) may be applied after this to make
the cores smaller, speeding up the subsequent computations. Unfortunately, in the case
of large cores, this operation itself can become the bottleneck of the process, which we
observed in our experiments.

The resulting matrix must be given to a TT-based linear equation solver as input along
with the right-hand side of the system, which provides a Tensor Train representation of
the system’s solution as output. This chapter discusses one such a solver that can be
considered state-of-the-art and the best scaling among its kind, and some modifications
to it that we implemented in order to improve its performance.

25

5.2 The Alternating Minimal Energy (AMEn) solver

5.2.1 Alternating Least Squares for Tensor Trains

State-of-the art iterative linear equation solvers for Tensor Trains are based on the Alter-
nating Least Squares approach proposed in [23] and [12]. The main idea of this method
is optimizing each core tensor individually, while fixing the others. Although the global
optimization problem is highly non-linear, the local problem involving the optimization
of only a single core can be reduced to the solution of a small (compared to the global
system) linear system of equations.

The ALS scheme consists of sweeps, and each sweep consists of optimizing each core in
sequence. The stopping criterion can be checked after each update, but as its computation
might be expensive, it may be a better choice to check it only after each sweep.

The vectors which can be represented by Tensor Trains with all but the kth core equal the
cores of the current solution x constitute a subspace. The local system for the optimization
of the kth core is mathematically derived from the global system using the kth frame matrix
X6=k of the current solution, whose columns generate this subspace.

Let vec
(
C(k)

)
for a core tensor C(k) denote its row-major vectorization, meaning that it

is a vector constructed by stacking the row-major vectorizations of the matrices in the
core below each other in increasing order of their index. The frame matrix is constructed
such that X 6=kvec

(
X(k)

)
= x, so the frame matrix can be used to translate between

vectorizations of the kth core and the vector represented by the full Tensor Train.

The frame matrix is very large for large systems, as its number of rows equals the size of the
global system (which the size of the potential state space in our application), so explicit
computations with the frame matrix are intractable. However, its number of columns
is small (equal to the number of elements in the kth core), and matrix-vector products
involving the transpose of the frame-matrix can be efficiently implemented if the vector is
also in the Tensor Train format using the cores of the Tensor Trains (see [23] for details
of the formula and efficient implementation with reshapings and matrix products).

The local systems might be small compared to the global system, but they can still be quite
large if the solution is sought with high TT-ranks for the sake of accuracy. In practice,
when the local systems become large, they are solved using iterative linear equation system
solvers instead of direct solvers, like GMRES or BiCGStab [24]. Our implementation uses
BiCGStab for the local systems.

5.2.2 Rank-adaptive ALS using local enrichments

Simple ALS has the disadvantage of being fixed-rank, so the ranks of the solution have
to be estimated a priori. There is no general technique to do that, so a better approach
is making ALS able to adapt the rank of the solution. [23] and [12] proposed equivalent
algorithms, called DMRG in one and MALS in the other for rank adaptation: instead
of optimizing a single core in one ALS step, the core to optimize and the next core are
merged into a “supercore”, this supercore is optimized, and then decomposed again into
two cores using a rank-revealing dyadic decomposition, like SVD.

Dolgov et al. proposed an algorithm in [6] called Alternating Minimal Energy (AMEn),
which has better scaling properties, as it does not need the optimization of potentially
large supercores, and is less prone to stagnation.

26

The main idea of AMEn is applying an enrichment to the cores after optimization, so
that the optimization of the next core can work with a larger subspace. This enrichment
could be random, but a much better way is using a steepest descent scheme, which means
adding the direction of the residual to the subspace. The enrichment is applied such that
the current solution approximation does not change, so when kth core is extended with
the enrichment columns, the next core is extended with full zero rows. This way the next
ALS step can use these directions as well by filling the previously zero rows with optimized
values.

There are different variants of AMEn based on how the enrichment is computed from the
residual, and the best-scaling version is AMEn-ALS. In this version, a low-rank approx-
imation to the residual with fixed TT-ranks equal to the enrichment size is maintained
and updated through an auxiliary ALS iteration after each ALS step on the solution.

The auxiliary ALS iteration is an ALS approximation for Ax−y, so unlike ALS approxi-
mation for the solution of a linear system, it involves only projections to update the current
core, no solution of a local linear system is needed. The kth core of the approximate resid-
ual is updated after the optimization of the kth core. The enrichment is computed by
projecting the approximate residual to the subspace of vectors that can be represented
with Tensor Trains whose first k − 1 cores are the same as the already optimized one.
This means that we use a frame matrix in this computation for which the first k− 1 cores
come from the current solution’s TT, and the remaining cores come from the residual
approximation. This projection gives the enrichment columns which are appended to the
optimized core.

Algorithm 1: Alternating Minimal Energy (AMEn)
Data: A (coefficient matrix), y (right-hand side) and x0 (initial guess) in the TT

format, ε ∈ R+, r ∈ N
Result: x in the TT format, such that ||Ax− y|| < ε
x← x0;
d← #cores in x;
z ← random TT vector with all TT-ranks k;
while ||Ax− y|| > ε do

make the TTs of x and z right-orthogonal through QR factorizations;
for k = 1 to do

update X(k): solve X T6=kAX 6=kvec(X(k)) = X T6=ky;
use SVD to remove redundant ranks of X(k) ;
update Z(k): vec(Z(k)) = ZT6=ky −ZT6=kAX6=kvec(X(k));
if k < d then
W6=k ← kth frame matrix of a tensor train having the k− 1 left cores of
x at the beginning and the d− k right cores of z at the end;
compute enrichment core W (k):
vec(Z(k)) =WT

6=ky −WT
6=kAX6=kvec(X(k));

add the columns of W (k) to X(k);
add r full zero rows to X(k+1);

end
end

end

27

5.2.3 Using AMEn for steady-state

When computing the steady-state of a continuous-time Markov chain, a non-zero vector
of the left null-space of the infinitesimal generator. When using simple explicit repre-
sentations, this is mostly done by substituting one row in the equation system with a
normalization constraint that the elements of the solution sum to one.

In the case of structured representations, this is not possible, as a single row cannot be
replaced by the normalization constraint. However, in the case of the ALS scheme, the
normalization can be included in the local systems, as was done in [14]. A normalizer
vector can be computed for the local system, whose scalar product with the local solution
vector gives the sum of the elements in the global solution vector. This is added as a
new row to the local system’s coefficient matrix, and a 1 is appended to the right-hand
side of the local system. In order to make the local system square, the normalizer vector
extended with a 0 is also added as a new column.

In our case, a modification is needed for the normalization if the solution is kept uncon-
strained on the unreachable states. In this case, it may be better to make the solution
on the reachable state-space sum to one, instead of the whole vector, as the reachable
state-space can be orders of magnitude smaller than the potential, so renormalization af-
ter computing the solution can make the remaining error very large. This can be done
by changing the normalizer vector: when computing the normalizer, instead of using the
currently not optimized cores of the solution, we use their Kronecker products with the
cores of the reachable state indicator vector 1R, and then multiply the result from the
right with the linear operator representation of 1R’s core corresponding to the currently
optimized core.

This modification is not needed when using the Constrained AMEn algorithm presented
in Section 5.3.3, as in that case the solution is constrained to have non-zeroes only on the
reachable states.

5.3 Improvement ideas

5.3.1 TT-SVD with iterative solvers

Based on some measurements, the main bottleneck of the computation process seemed
to be the TT-SVD-based rounding of the infinitesimal generator applied before giving
the matrix to the linear solver, as the cores created using the algorithm presented in
Section 4.2 are too large, making full SVD computation very slow. [21] proposes another
method for TT rounding called TT-cross in place of TT-SVD, but this method is not
applicable in our case: the TT-ranks must be specified beforehand, instead of adaptively
choosing them based on a threshold, and it can easily get stuck in local optima, which
might not approximate the original matrix well. This is not so much of a problem in
the area it was originally proposed for, where TTs represent discretizations of continuous
functions and operators, but our case involves adjacency matrices of graphs corresponding
to the reachable state space, so cross approximation could lead to dropping important
states from the reachable set.

The cores appear to be well compressible, but full SVD computation is still slow, as it
computes all the singular values and vectors at the same time, even if only some of them are
needed. For this reason, our first idea was to compute only the largest singular values and
the corresponding singular vectors using an iterative eigenpair computation algorithm, like

28

the power method or the Lanczos algorithm (see for example [25] for a detailed discussion
of these and other iterative algorithms for eigenpair computation).

Such algorithms can be used by computing the dominant eigenpair of a matrix, and than
applying deflation techniques to derive a new matrix whose dominant eigenpair is the
dominant among the remaining eigenpairs of the original. These steps are iterated until
enough pairs are computed so that the truncated decomposition approximates the original
matrix within a given threshold.

The trace of a matrix equals the sum of its eigenvalues, and it can be easily and quickly
computed. This makes it possible to know the sum of the remaining eigenvalues without
computing all of them. Thus, we can use it to decide when to stop the computation, by
subtracting each computed eigenvalue from the trace, and comparing the result to the
rounding threshold.

Computing the truncated SVD of a matrix A with rounding error threshold ε involves
computing the truncated eigendecompositions of ATA and AAT where the eigenvalues
under ε2 can be dropped.

Unfortunately, as truncated SVD computation with ε threshold needs eigenpair computa-
tion with ε2 threshold, the eigenpair computation can fail to converge to the eigenvalues
precisely enough, which we observed for both the power method and the Lanczos algo-
rithm. If the error of the large eigenvalues exceeds any of the smaller eigenvalues that is
still needed, than deflation fails to make that eigenvalue dominant when that eigenvalue
comes next. As the large eigenvalues can be orders of magnitude away from the smaller,
but still needed ones, the iterative algorithms are often not able to reduce the error enough.

5.3.2 Sparse AMEn-ALS

Another possibility to do away with the rounding bottleneck is to omit rounding the
system matrix altogether. This solves another problem as well: when rounding is applied,
the threshold must be specified somehow such that the solution of the rounded system is
close enough to the solution of the original one, which is far from trivial.

The AMEn-ALS variant of AMEn, which uses an auxiliary ALS iteration for approximat-
ing the residual with low TT ranks does not need the cores of the system matrix to be
given explicitly, only as abstract linear maps. This means that the sparsity of the TT
cores can be utilized to make the computation faster, and our approach for deriving the
TT representation results in very sparse cores. By implementing every operation with the
cores this way, we can also avoid ever explicitly storing matrices with as many rows and
columns as the ranks of the system matrix.

One problem here is that even though the iterations themselves might be fast, the residual
norm computation after each sweep, which is used for stopping becomes the new bottle-
neck. As norm computation of Tensor Trains involves computing the Kronecker products
of cores with themselves, even if this is also implemented using abstract linear maps, the
resulting vector can easily become so large that even computing matrix-vector products
with them becomes slow.

For systems with a small reachable state space, this can be solved by explicitly iterating
through the reachable states, computing the corresponding elements of the residual from
the tensor trains, and summing their squares. However, this scales linearly with the size
of the reachable state space, which is often exponential in the number of state variables

29

(number of places, in the case of GSPNs), and this is exactly what we want to avoid by
using structured representations.

Another possibility to make the residual computation faster is using ALS-based matrix-
vector products [20]. The problem with this is that this algorithm is prone to get stuck in
local optima, and it is hard to decide when to stop the iteration computing the approximate
matrix-vector product.

A seemingly obvious solution would be to use the ALS-based low-rank residual approx-
imation used for the enrichments to approximate the norm of the exact residual. Un-
fortunately, we observed the norm of the approximation to be sometimes even orders of
magnitude smaller than the real residual, especially in later sweeps.

Another problem is that the AMEn iteration was observed to diverge or stagnate. Often,
the local iterative solvers were not able to converge to a local solution, and even by using
direct solvers even for large local systems, the global iteration was observed to stagnate
or diverge.

5.3.3 Local Kronecker constraints

To solve the convergence issue, we created a variant of AMEn-ALS which is constrained
to provide a solution that is non-zero only on the reachable states. This is achieved by
representing the solution cores as the Kronecker product of an unknown core and the
constraint cores, which is the corresponding core of the indicator vector of the reachable
state space. The motivation for this is the following:

• If the linear system is already constructed in such a way that it forces the solution
to have zeros on the non-reachable states, than the constrained optimisation can be
viewed as providing a priori information to the solver. As we represent the solution
cores as Kronecker products of an unknown vector and a constraint core, and we
know that the exact solution can be represented this way, the solver does not have
to fit this information in the optimized variables, and can achieve a better solution
in less iterations.

• If the linear system is constructed without restricting the solution on the non-
reachable states, and the global system is singular (in our case often with a high-
dimensional null space), than the local systems. are also singular. This can heavily
degrade the performance the local iterative solvers. Krylov-subspace methods, for
example, tend to oscillate between two solution directions with ever increasing so-
lution norm if the nullspace of the system matrix is multi-dimensional. By using
Kronecker constraints, we give a smaller system to the local solvers, which includes
less redundant variables.

The modified version of AMEn-ALS computes the solution x of the linear system in the
form of a Hadamard product c ◦ xl of the constraint vector and a low-TT-rank represen-
tation, which is equivalent to having each core have the form of a Kronecker product.

When optimizing the ith core of the solution, the local system to solve becomes
AiKC(i)x

(i)
l = yi, where Ai and yi are the same local matrix and local right-hand side

as in regular ALS, KC(i) is the linear operator representation of the Kronecker product
with the ith constraint cores (see Section 2.5), and xl is the vectorization of the locally
optimal core of the solution’s unknown part. When computing the projected matrix and
right-hand side, the cores of the full solution, not just the unknown part must be used.

30

As this system is rectangular, the local iterative solvers must use its normal equation as
they work only with square systems.

The enrichments are applied to the low-rank unknown part. The ALS-based residual
approximation is also kept in the same representation as the solution, so that its low-rank
part can be used to compute the enrichment for the low-rank part of the solution.

In contrast to the regular AMEn-ALS, the full solution and residual cannot be kept TT-
orthogonal here, only the low-rank parts, so the columns of the frame matrices are not
orthogonal. This means that in the computation of the approximate residual’s update and
the enrichment, the pseudo-inverse of the frame matrix must be used instead of simply its
inverse. If the frame matrix has full column rank, computing the product of its pseudo-
inverse with a vector presents no computational problem, as both X T6=iX6=i and X T6=iy can
be efficiently computed using the TT cores if X6=i is a frame matrix. The formula for this
is the following:

L0 = 1
Rd+1 = 1
Li = Li−1(

∑
j

X(i)[j]⊗X(i)[j]) for all 0 < i < k

Ri = (
∑
j

X(i)[j]⊗X(i)[j])Ri+1 for all k < i < d+ 1

X T6=kX 6=k = Imk
⊗ (reshape(L, rk−1, rk−1)⊗ reshape(R, rk, rk)),

where d is the number of cores, rk−1 and rk are the k − 1th and kth ranks of the Tensor
Train respectively (equivalent to the number of rows and columns of the kth core), and
mk is the length of the kth mode.

The frame matrices may not always have linearly independent columns, as masking the
unreachable states might make some ranks redundant. However, as the frame matrices
are as large as the potential state space, which is too large to explicitly store in the
memory for large models, general pseudo-inverse formulas that use rank factorization or
QR factorization are not applicable. Because of this, we resort to a heuristic approach in
this case by using the same formula, but substituting the pseudo-inverse for the inverse.
As X T6=iX 6=i is small, its pseudo-inverse can be computed using standard techniques. The
ALS-based residual approximation is already a heuristic approach in itself, and using this
is still better than using random enrichments.

Unfortunately, the Constrained AMEn algorithm was still observed to stagnate when used
with small enrichment ranks (1 or 2) or diverge when used with larger enrichment ranks
(3 or 4) on our basic benchmark problem.

31

Algorithm 2: Constrained Alternating Minimal Energy (CAMEn)
Data: A (coefficient matrix), y (right-hand side), c (constraint vector) and x0

(initial guess) in the TT format, ε ∈ R+, r ∈ N
Result: x = c ◦ xl in the TT format, such that ||Ax− y|| < ε
xl ← x0;
d← #cores in x;
zl ← random TT vector with all TT-ranks k;
/* if A has zero columns where c is zero, the Hadamard product

computation can be dropped */
while ||A(c ◦ xl)− y|| > ε do

make the TTs of xl and zl right-orthogonal through QR factorizations;
for k = 1 to do

update X(k)
l : solve X T6=kAX6=kKCivec(X(k)

l) = X T6=ky;
use SVD to remove redundant ranks of X(k)

l ;
Z+ ← (KT

CiZT6=kZ 6=kKCi)†;
update Z(k)

l : vec(Z(k)) = Z+(KT
CiZT6=ky −KT

CiZT6=kAX6=kKCivec(X(k)));
if k < d then
W6=k ← kth frame matrix of a tensor train having the k− 1 left cores of
x = c ◦ xl at the beginning and the d− k right cores of z = c ◦ zl at
the end;
W+ ← (KT

CiWT
6=kW6=kKCi)†;

compute enrichment core W (k):
vec(Z(k)) = W+(KT

CiWT
6=ky −KT

CiWT
6=kAX6=kvec(X(k)));

add the columns of W (k) to X(k);
add r full zero rows to X(k+1);

end
end

end

32

Chapter 6

Evaluation

6.1 The long Kanban model

Our main benchmark model is a modified version of the commonly used Kanban model
[3]. The original model is the GSPN model of a Kanban system with four phases, where
the two middle phases can run in parallel. It has 16 places, 14 timed transitions and 2
immediate transitions.

The scaling of the original model is done by scaling the number of initial tokens on the
“kanban” places, which model the number of available resources for each phase. This
means scaling the effective capacity of the places, thereby expanding the domain of the
state variables.

Our approach, however, is meant to scale on a different dimension: our aim is to efficiently
analyse systems with a large number of variables, not a few variables having large domains.
For this reason, we use a “long Kanban model”, which means putting multiple copies of
the original four-phase model (we call one copy a block) after each other. Figure 6.1 shows
the resulting model.

We will use Kanban(M , N) to denote the long Kanban model withM blocks and N initial
tokens on the kanban places.

To benchmark the MTTA computation, we compute the mean time until the first token
is placed on the output place of the last block.

6.2 Evaluation results

Here, we discuss the results of our numerical experiments.

Regular AMEn with regular TT rounding The algorithm started to struggle with
the rounding of the TT matrix for Kanban(2,2) and larger models. The rounding took
some minutes for Kanban(2,2), and then AMEn seemed to converge for the steady-state
computation in a single sweep. The rounding timed out for Kanban(3,1).

When the steady-state computation was performed with normalizing the whole solution
and leaving the solution on the unreachable state space unconstrained, the algorithm
seemed to converge in one sweep, which was very suspicious. The size of the reachable
state space is orders of magnitude smaller, than the potential state space, but all of the

33

pkanban1

pm1 pback1

pout1

pkanban2

pkanban3

pm2 pback2

pout2

pm3 pback3

pout3
pkanban4

pm4 pback4

pout4

pkanban1

pm1

pback1

pout1

pkanban2

pkanban3

pm2 pback2

pout2

pm3 pback3

pout3
pkanban4

pm4 pback4

pout4

Fi
rs

t b
lo

ck
Se

co
nd

 b
lo

ck

...

pkanban1

pm1

pback1

pout1

pkanban2

pkanban3

pm2 pback2

pout2

pm3 pback3

pout3
pkanban4

pm4 pback4

pout4

La
st

 b
lo

ck

N

N

N

Figure 6.1: The long Kanban model

34

error is concentrated on it as all the other elements are multiplied only by 0. This means
that renormalizing would make the error unacceptably large.

Increasing the non-reachable elements does not increase the residual norm. Therefore, the
solver can make the residual arbitrarily small by making the reachable elements arbitrar-
ily small, while increasing the non-reachable elements to account for the normalization
constraint. This leads to a false solution.

As rounding was already a huge bottleneck, and we could not speed it up enough to
make regular AMEn usable (see the next paragraph), we did not perform regular AMEn
experiments with the false solution problem taken care of.

TT rounding with iterative eigensolvers Neither the power method nor the Lanc-
zos algorithm was able to converge to a threshold small enough that the global relative
rounding error is kept below 10−10. We chose this threshold so that the rounding error
can be near the same order as the errors of floating-point representation. Higher threshold
would need to be justified by some kind of perturbation analysis which we were not able
to do without knowing the condition number of the matrix.

The main problem seems to be that the dominant eigenvalues are orders of magnitude
larger than the smaller, but still just needed ones, making it hard for the solver to ap-
proximate the large ones accurately enough for their error not to dominate the small
ones.

Sparse AMEn We tried two ways to avoid the false solution:

• Filling the diagonal elements corresponding to the unreachable states with 1s to
constrain the elements corresponding to unreachable states to be 0.

• Taking only the elements corresponding to reachable states into account for the
normalization.

Even though these solved the problem of converging to a false solution, the sparse AMEn
solver was not able to solve them even for Kanban(1,1). The first version was not able
to converge in enough sweeps and timed out, as the computations in later sweeps become
very demanding when the TT-ranks of the solution grow too large. In the second version,
the elements of the cores started to diverge and grow towards infinity, most likely because
of the null-space of the system matrix having too many dimensions.

Apart from these problems, the computation of the residual became a bottleneck from the
third sweep on because of the large ranks of the system matrix, which is multiplied by the
solution rank when computing the exact residual.

Constrained AMEn Unfortunately, the constrained AMEn algorithm was able to solve
the system for neither the steady-state nor the MTTA computation for even Kanban(1,
1). The solver started to stagnate after some sweeps when setting the enrichment rank
to 1 or 2, meaning that it was not able to take advantage of the newly introduced ranks
well enough, and they were dropped after the local optimization. The residual norm even
started to oscillate when using 3 or 4-rank enrichments and the solution was not able to
converge. Seeking deeper understanding of this behavior is part of our further research
plans.

35

36

Chapter 7

Conclusions and future work

This work proposed a method for overcoming the problem of state space explosion when
computing quantitative metrics for generalized stochastic Petri-net models, which are used
in practice for the modeling of extra-functional properties of distributed systems.

The work consisted of two parts:

• In Chapter 4, we presented a method for deriving a Tensor Train from a GSPN
model, that can be used to compute steady-state and mean time metrics for the
model, and provided a mathematical description of how to compute them using the
Tensor Train.

• The proposed method involves solving a linear equation system using the Tensor
Train representation, which can be challenging in the case of large and complex
models. In Chapter 5, we presented some possible modifications for a state-of-the-
art TT-based linear equation solver algorithm to make it work in our computation
algorithm. This part of the work is still in progress, as our currently implemented
modifications were not able to solve the problems arising in the computation yet.

Chapter 6 discussed the evaluation of the proposed algorithm on a scalable benchmark
model.

Apart from the theoretical contribution, our open-source prototype implementation1 is
also available to use for further research.

7.1 Future work

As the question of how to solve the large linear system in the proposed algorithm is still
open, this is the most important direction for further research.

One possibility we plan to investigate is using “don’t care”-based compaction [13] for
MDDs in the derivation of the TT representation, making the TT-ranks smaller, hopefully
small enough to make the TT-rounding procedure tractable.

The performance of ALS-based methods is strongly dependent on the capabilities of the
local linear equation system solver. For this reason, it might be worthwhile to try other
solvers e.g. GCROT [11].

1https://github.com/szdan97/tensortrain

37

https://github.com/szdan97/tensortrain

Iterative solvers are often used with preconditioners in the explicit case [24]. We in-
vestigated some possibilities for preconditioning the global system using TT-structured
preconditioners in [27], but the techniques we experimented with did not seem to im-
prove performance. A potential research direction is finding techniques for TT-structured
preconditioning which improve the performance of ALS-based solvers.

If a method for reliably solving the equation is found, there are several potential directions
in the area. The TT-based computation could be adapted to transient metrics, like fixed
mission-time reliability, for example using the numerical integration algorithm developed
for tensor trains in [15]. Generalizing the method for GSPNs with proper non-determinism
is another direction useful for areas where worst-case scenarios must be analyzed, like
reliability analysis of safety-critical systems.

38

Acknowledgements

The results presented in this work were established in the framework of the professional
community of Balatonfüred Student Research Group of BME-VIK to promote the eco-
nomic development of the region. During the development of the achievements, we took
into consideration the goals set by the Balatonfüred System Science Innovation Cluster
and the plans of the ”BME Balatonfüred Knowledge Center”, supported by EFOP 4.2.1-
16-2017-00021.

I want to say an ehuge2 thank you to my advisor, Kristóf Marussy, for all the help he
provided. I am also grateful to everyone in the Fault Tolerant Systems Research Group
who aided my work in any way. I would like to thank Katalin Friedl and László Kabódi for
their insights on the topic. I want to express my gratitude to Péter Lantos for providing
me the opportunity of an internship at Prolan Co., where I could see the practical side of
reliability analysis through a real-world project.

I also want to thank God for giving me the opportunity for this research, leading me to
the people I had to meet to make this happen, and making me capable of this work.

39

40

Bibliography

[1] Falko Bause and Pieter S Kritzinger. Stochastic petri nets: An introduction to the
theory. ACM SIGMETRICS Performance Evaluation Review, 26(2):2–3, 1998.

[2] Peter Buchholz, Tugrul Dayar, Jan Kriege, and M Can Orhan. On compact solution
vectors in kronecker-based markovian analysis. Performance Evaluation, 115:132–149,
2017.

[3] Gianfranco Ciardo and Andrew S Miner. Storage alternatives for large structured
state spaces. In International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 44–57. Springer, 1997.

[4] Gianfranco Ciardo, Jogesh Muppala, and Kishor S Trivedi. On the solution of gspn
reward models. Performance evaluation, 12(4):237–253, 1991.

[5] Tugrul Dayar. Analyzing markov chains based on kronecker products. MAM, pages
279–300, 2006.

[6] Sergey V Dolgov and Dmitry V Savostyanov. Alternating minimal energy methods
for linear systems in higher dimensions. SIAM Journal on Scientific Computing, 36
(5):A2248–A2271, 2014.

[7] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic automata
in continuous time. In 2010 25th Annual IEEE Symposium on Logic in Computer
Science, pages 342–351. IEEE, 2010.

[8] Christian Eisentraut, Holger Hermanns, Joost-Pieter Katoen, and Lijun Zhang. A
semantics for every gspn. In International Conference on Applications and Theory of
Petri Nets and Concurrency, pages 90–109. Springer, 2013.

[9] Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal
on Matrix Analysis and Applications, 31(4):2029–2054, 2010.

[10] Wolfgang Hackbusch and Stefan Kühn. A new scheme for the tensor representation.
Journal of Fourier analysis and applications, 15(5):706–722, 2009.

[11] Jason E Hicken and David W Zingg. A simplified and flexible variant of gcrot for
solving nonsymmetric linear systems. SIAM Journal on Scientific Computing, 32(3):
1672–1694, 2010.

[12] Sebastian Holtz, THORSTEN Rohwedder, and Reinhold Schneider. The alternating
linear scheme for tensor optimisation in the tt format. Preprint, 71, 2011.

[13] Youpyo Hong, Peter A Beerel, Jerry R Burch, and Kenneth L McMillan. Sibling-
substitution-based bdd minimization using don’t cares. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(1):44–55, 2000.

41

[14] Daniel Kressner and Francisco Macedo. Low-rank tensor methods for communicating
markov processes. In International Conference on Quantitative Evaluation of Systems,
pages 25–40. Springer, 2014.

[15] Christian Lubich, Ivan V Oseledets, and Bart Vandereycken. Time integration of
tensor trains. SIAM Journal on Numerical Analysis, 53(2):917–941, 2015.

[16] Kristóf Marussy, Attila Klenik, Vince Molnár, András Vörös, István Majzik, and
Miklós Telek. Efficient decomposition algorithm for stationary analysis of complex
stochastic petri net models. In International Conference on Application and Theory
of Petri Nets and Concurrency, pages 281–300. Springer, 2016.

[17] Kristóf Marussy, Vince Molnár, András Vörös, and István Majzik. Getting the pri-
orities right: saturation for prioritised petri nets. In International Conference on
Application and Theory of Petri Nets and Concurrency, pages 223–242. Springer,
2017.

[18] Giulio Masetti, Leonardo Robol, Silvano Chiaradonna, and Felicita Di Giandomenico.
Stochastic evaluation of large interdependent composed models through kronecker al-
gebra and exponential sums. In International Conference on Applications and Theory
of Petri Nets and Concurrency, pages 47–66. Springer, 2019.

[19] Andrew S Miner. Implicit gspn reachability set generation using decision diagrams.
Performance Evaluation, 56(1-4):145–165, 2004.

[20] Ivan Oseledets. Dmrg approach to fast linear algebra in the tt-format. Computational
Methods in Applied Mathematics Comput. Methods Appl. Math., 11(3):382–393, 2011.

[21] Ivan Oseledets and Eugene Tyrtyshnikov. Tt-cross approximation for multidimen-
sional arrays. Linear Algebra and its Applications, 432(1):70–88, 2010.

[22] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Comput-
ing, 33(5):2295–2317, 2011.

[23] Ivan V Oseledets and SV Dolgov. Solution of linear systems and matrix inversion in
the tt-format. SIAM Journal on Scientific Computing, 34(5):A2718–A2739, 2012.

[24] Yousef Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

[25] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM,
2011.

[26] William J Stewart. Probability, Markov chains, queues, and simulation: the mathe-
matical basis of performance modeling. Princeton university press, 2009.

[27] Dániel Szekeres. Towards tensor-based reliability analysis of complex safety-critical
systems. Technical report, 2019. URL https://tdk.bme.hu/VIK/ViewPaper/
Tenzorreprezentacios-modszerek-a-komplex.

42

https://tdk.bme.hu/VIK/ViewPaper/Tenzorreprezentacios-modszerek-a-komplex
https://tdk.bme.hu/VIK/ViewPaper/Tenzorreprezentacios-modszerek-a-komplex

	Kivonat
	Abstract
	Introduction
	Background
	Continuous-Time Markov Chains
	Phase-type Distributions
	Stochastic Petri-Nets
	Decision Diagrams
	Multi-valued decision diagrams
	Interval Decision Diagrams

	Kronecker product and multi-index notation
	Kronecker Product as a Linear Operator

	The Tensor Train Format

	Related works
	Computing GSPN metrics using Tensor Trains
	Reducing GSPN metric computations to PSPN metric computations
	Representing the Rate Matrix in the TT Format
	Reachable state space computation
	Contributions of individual transitions
	Contributions of priority levels
	Summation

	Solving the linear systems using Tensor Trains
	Overview of the TT-based Computation
	The Alternating Minimal Energy (AMEn) solver
	Alternating Least Squares for Tensor Trains
	Rank-adaptive ALS using local enrichments
	Using AMEn for steady-state

	Improvement ideas
	TT-SVD with iterative solvers
	Sparse AMEn-ALS
	Local Kronecker constraints

	Evaluation
	The long Kanban model
	Evaluation results

	Conclusions and future work
	Future work

	Acknowledgements
	Bibliography

