
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Blockchain-based, confidentiality-preserving
orchestration of collaborative workflows

Scientific Students’ Association Report

Author:

Balázs Ádám Toldi

Advisor:

dr. Imre Kocsis

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Business process modelling with BPMN . 3

2.2 Blockchain-based process orchestration . 3

2.2.1 Caterpillar . 6

2.2.2 Lorikeet . 6

2.2.3 Chorchain . 6

2.3 Privacy on blockchains, in general . 7

2.3.1 Zero-knowledge proofs . 7

2.3.2 Ring signatures . 7

2.3.3 Mixing . 7

2.4 Zero-Knowledge Proofs . 7

2.4.1 Definition . 7

2.4.2 A simple example . 7

2.4.3 Constructions . 8

2.4.3.1 zk-SNARK . 8

2.4.3.2 zk-STARK . 9

2.5 Zero-knowledge proofs on blockchains . 9

2.5.1 Zcash . 10

2.5.2 Rollup solutions . 10

2.5.3 Baseline protocol . 10

2.6 Zero-knowledge proof development tools . 10

2.6.1 libsnark . 11

2.6.2 ZoKrates . 11

2.6.3 Cairo . 12

2.6.4 zkEVM . 12

2.7 Zero-knowledge proofs for business processes 12

2.8 Takeaway . 12

3 The zkWF approach 14
3.1 High-level overview . 14

3.2 Modeling . 17

3.2.1 BPMN Modeling elements . 18

3.2.2 Extended attributes . 19

3.3 zkWF program design . 20

3.3.1 Model definition . 22

3.3.2 Process state definition . 22

3.3.3 Proving scheme . 23

3.3.4 Encoding the model . 23

3.3.5 ZKP framework . 25

3.3.6 BPMN state change validity check 25

3.3.6.1 Checking the supplied hash 26

3.3.6.2 Proving that a state vector update is valid 26

3.3.6.3 Authorisation . 27

3.4 zkWF protocol design . 29

3.4.1 Security assumptions . 29

3.4.2 Architecture overview . 30

3.4.3 Process manager smart contract design 30

3.5 Security guarantees . 32

3.6 Limitations . 32

3.6.1 Limitations of BPMN models . 33

3.6.2 Limitations of the proving scheme 33

3.7 Deployment and operation . 33

3.7.1 Choosing a distributed ledger . 33

3.7.2 Deploying the smart-contract . 33

3.7.3 Stepping the execution . 34

3.8 Testing . 35

3.8.1 Test cases . 35

3.8.1.1 Simple & corner cases . 35

3.8.1.2 Representative test . 38

3.8.1.3 Testing framework . 38

3.8.2 Future ideas for testing . 38

4 Implementation 41
4.1 Modeller . 41

4.2 zkWF implementation . 41

4.2.1 ZKP framework . 42

4.2.2 Zokrates implementation . 42

4.2.2.1 Files . 42

4.2.2.2 Checking the supplied hash 42

4.2.2.3 Proving that a state update is valid 42

4.2.2.4 Authorisation . 42

4.2.2.5 Verification of an encrypted ciphertext 42

4.3 Code generator . 43

4.4 Zokrates wrapper . 43

4.5 Smart contract implementation . 43

4.5.1 EVM . 43

4.5.2 Hyperledger Fabric . 45

4.6 WFGUI . 45

4.6.1 Modeler tab . 45

4.6.2 Testing tab . 45

4.6.3 Deployment and operation tab . 46

4.6.4 Video presentation . 47

5 Results 48
5.1 Simple & corner cases . 48

5.1.1 Hardware used for testing . 48

5.1.2 Software used for testing . 48

5.1.3 Comparing test cases . 48

5.1.4 Results . 49

5.2 Complex test . 49

5.2.1 Size of the model . 50

5.2.2 Results . 50

5.2.2.1 Model execution . 50

5.2.3 Proving time . 50

5.2.4 Gas usage . 51

5.3 Comparison between existing solutions . 51

6 Conclusion 53

Appendix 58
A.1 State vector checking . 58

A.2 Hasing ZoKrates code template . 60

A.3 The root ZoKrates code . 60

Kivonat

Ez a dolgozat egy új, tudásmentes bizonyítékon alapuló megközelítést mutat be az üzle-
ti folyamatokon alapuló együttműködések okos szerződésen alapuló összehangolására. A
meglévő megközelítésekkel ellentétben az én megoldásom modellalapú, és nem tárol egy-
idejűleg értelmezhető adatokat a blokkláncon. (Vagyis a folyamatban részt nem vevő felek
nem ismerhetik meg a folyamat állapotát).

A független felek közötti együttműködés kihívást jelenthet, különösen akkor, ha nem
bíznak meg teljesen egymásban. Megközelítések születtek az együttműködési tevékenysé-
gek nyomon követésére, valamint az együttműködésben részt vevő felek tevékenységének
kikényszerítésére és engedélyezésére blokkláncban üzemeltetett okosszerződések segítségé-
vel. Léteznek olyan megoldások is, amelyek automatikusan generálják az okos szerződés
logikáját az együttműködés és a folyamatvégrehajtás modelljeiből, amelyeket például a
BPMN-ben (Business Process Model and Notation) rögzítenek. Ezzel egyidejűleg gyorsan
fejlődnek az okosszerződésekben a tudásmentes bizonyításon alapuló technikák alkalma-
zására szolgáló technológiák, amelyek célja a kriptográfiailag nem védett érzékeny adatok
blokkláncon belüli tárolásának szükségességének enyhítése. Az együttműködési adatok vé-
delme a modellalapú okosszerződésekben azonban újszerű felvetés, és ez képezi e munka
témáját.

Munkámban először definiálom az általam választott BPMN modellezési nyelv ele-
meinek egy részhalmazát. Meghatározok továbbá egy kiterjesztést is ehhez a halmazhoz,
hogy megragadjam a tudásmentes környezetben való futtathatósághoz szükséges tulajdon-
ságokat.

Ezen az alapon definiálok egy transzformációs logikát a BPMN-ből a ZoKrates esz-
közkészlet bemeneti nyelvére. A ZoKrates képes tudásmentes bizonyítók és (okos szerződés
alapú) verifikátorok generálására számítások széles körére. A számítási sablonom egy üz-
leti folyamat megengedett állapotátmeneteit és egy nyilvánosan tárolt titkosított állapot
és hash commitment frissítéseit rögzíti. Ismertetem a prototípus implementációmat is.

Bemutatok egy folyamatkezelő okos szerződést is, amely nyomon követi az üzleti fo-
lyamatok végrehajtásának aktuális állapotát. Ezen okos szerződés ellenőrzi a tudásmentes
bizonyítékokat, mielőtt a blokkláncon történő változtatásokat engedélyezné. A ZoKrates
által támogatott EVM-szerződések generálásán túlmenően ezen okos szerződések létreho-
zására szolgáló lehetőségeket implementáltam a Hyperledger Fabric-ra, mint alternatív
blokkláncplatformra.

Ezt a módszert megvalósítottam és teljes mértékben integráltam egy eszközbe. Ez az
eszköz tartalmaz egy modellezőt, egy résztvevői oldali SDK-t, egy pénztárcakezelőt és egy
egyszerű vizuális felületet.

A megközelítésem validálása jelenleg tesztelésen alapul, amelyhez létrehoztam egy
tesztkészletet. A jövőbeni munka lehetséges irányaként megvizsgálom a BPMN működési
szemantikájának való megfelelést más eszközökkel.

i

Abstract

This paper describes a novel, zero-knowledge proof-based approach for the smart-contract-
based orchestration of business process-based collaborations. In contrast to existing ap-
proaches, my solution is model-based and does not simultaneously store meaningful data
on the blockchain. (That is, parties not involved in the process cannot get to know its
state).

Collaboration between independent parties can be challenging, especially if they do not
have complete trust in each other. Approaches have been proposed for tracking collabora-
tion actions and enforcing and authorizing parties in a collaboration to perform activities
via blockchain-hosted smart contracts. Solutions also exist to automatically generate the
orchestrating smart contract logic from models of collaboration and process execution im-
portantly captured, e.g. in BPMN (Business Process Model and Notation). At the same
time, technology for applying zero-knowledge proof-based techniques in smart contracts to
alleviate the need to store cryptographically not protected sensitive data on-chain has been
maturing rapidly. However, protecting collaboration data in model-based smart contracts
is a novel proposition and forms the topic of this work.

In my work, I first define a subset of the BPMN modelling language elements I chose to
use. I also define an extension to this set to capture properties necessary to be executable
in a zero-knowledge environment.

On this basis, I define a transformation logic from BPMN to the input language of the
Zokrates toolkit. ZoKrates can generate zero-knowledge provers and (smart contract-
based) verifiers for a broad family of computations. My computational template captures
permissible state transitions of a business process and updates to a publicly stored en-
crypted state and hash commitments. I also describe my prototype implementation.

I also introduce a process manager smart contract that keeps track of the current state of
business process executions. This smart contract verifies the zero-knowledge proofs before
allowing changes on the blockchain. In addition to the Zokrates-supported EVM contract
generation, I implemented facilities for generating these smart contracts for Hyperledger
Fabric as an alternative blockchain platform.

I implemented this approach and fully integrated it into a tool. This tool includes a
modeller, a participant-side SDK, a wallet manager, and a simple visual interface.

Validation of my approach is currently based on testing for which I created a test suite.
As a potential avenue for future work, I investigate the potential approaches for assuring
conformance to BPMN operational semantics via other means.

ii

Chapter 1

Introduction

In modern business science, process-focused thinking about internal activities and external
collaborations is a very important tool for controlling and improving key performance indi-
cators – through controlling and improving the processes of the business. While by today
Business Process Management (BPM) became a mature and very broad discipline with
many aspects [30], explicitly modelling processes to facilitate analysis and automation,
as well as supporting process execution with purpose-built IT solutions remain central to
BPM.

Automating the execution of business processes (originally, and much more narrowly in this
domain: workflows) has been supported for a long time by a range of Workflow Engines
and Workflow Enactment Services [27]. The leading business process modelling standard,
BPMN 2.0, is certainly amenable to serve as a process definition to such, typically cen-
tralized, tools [7], but BPMN is not tied to the established automation approaches and
tooling – the same way as UML or SysML is not tied to a specific code generator tool,
especially so that formal BPMN model and execution semantics exist (either as a part of
the standard, or in addition to it).

Blockchains have been recognised early as a compelling platform to support the cross-
organisational execution of business processes – even when the organisations can not agree
on a trusted third party as a middleman [25]. Smart contracts can be used to

• enforce, and irrevocably and irrepudiably track the sequences of activities to be
performed and performed by participating organizations in process instances (that
is, process states and state transitions);

• irrevocably and irrepudiably store sent and received messages – or anchor them via
cryptographic (hash) commitments;

• and host data objects worked on by a process, or anchor their changes via crypto-
graphic committments.

Additionally, depending on the flavor of BPMN used, intra-organizational traces can also
be captured on-chain, which can alleviate the need for a range of manual audit obligations
across organizations. In the following, we will refer to these capabilities in general as
blockchain-based process orchestration.

However, these technologies are still largely nascent and the privacy and confidentiality
aspects have not yet been sufficiently addressed.

In my paper, I present the following new results.

1

• A novel construction for encoding state updates of BPMN collaboration instances
as ZoKrates programs, from which zero-knowledge provers and checkers can be con-
structed; regarding the latter, and notably, smart contract based ones.

• A novel protocol for zero-knowledge blockchain-based business process orchestration.

• An end-to-end framework implementation.

• Empirical demonstration of the viability of the presented approach and implemen-
tation.

The source code of my work is available at this link1. In the future, I plan to release it
under a free license as open-source software.

1https://bmeedu-my.sharepoint.com/:u:/g/personal/balazs_toldi_edu_bme_hu/
EW06Rx-GNDBOr9otdeDF0j0Bi51eL2TUg3kawkzgPuVSwQ?e=NBQ0CU

2

https://bmeedu-my.sharepoint.com/:u:/g/personal/balazs_toldi_edu_bme_hu/EW06Rx-GNDBOr9otdeDF0j0Bi51eL2TUg3kawkzgPuVSwQ?e=NBQ0CU
https://bmeedu-my.sharepoint.com/:u:/g/personal/balazs_toldi_edu_bme_hu/EW06Rx-GNDBOr9otdeDF0j0Bi51eL2TUg3kawkzgPuVSwQ?e=NBQ0CU
https://bmeedu-my.sharepoint.com/:u:/g/personal/balazs_toldi_edu_bme_hu/EW06Rx-GNDBOr9otdeDF0j0Bi51eL2TUg3kawkzgPuVSwQ?e=NBQ0CU

Chapter 2

Background

In this chapter, I briefly introduce the background of the key components in my research.
First, I review the state of the art of blockchain-based process orchestration. Then I intro-
duce Zero-Knowledge Proofs (ZKPs), their current applications in the general blockchain
context and I offer a brief overview of current best of breed ZKP tooling. I also discuss the
very limited, openly accessible application of ZKPs towards business orchestration privacy
and confidentiality that I am aware of.

2.1 Business process modelling with BPMN

Business processes can be modelled in a variety of ways. The BPMN (Business Process
Model and Notation) standard is one such method. Its purpose is to specify business
process models graphically. The 2.0 [16] version was released in 2011 by OMG. It defines
the notation of process, collaboration, and choreography diagrams.

Processes describe a set of Activities in a sequence to carry out work. It is visualised as a
graph of Activities, Events, Gateways and Sequence flows.

A choreography is a type of process. Their primary focus is on the interaction between the
participants rather than the orchestration of the work performed. It formalises the way
participants exchange information (Messages).

The BPMN specification states that a collabortion is a set of participants with corre-
sponding pools. Pools may include processes or choreographies. Collaborations may also
include message flows between the pools. They represent communication between the
modelled participants.

The standard also defines the set of elements that can be used to model business processes.
These are organised into separate categories. The five basic categories of elements are
Flow Objects, Data, Connecting Objects, Swimlanes, and Artifacts. The main graphical
elements that describe the behaviour of a business process are the Flow Objects. There
are three types of Flow Objects: Events, Activities, and Gateways. Figure 2.1 showcases
a simple process diagram (a ”one-participant collaboration”).

2.2 Blockchain-based process orchestration

On most public and permissionless blockchains that allow smart contract deployment,
the developer cannot update the contract after it is deployed. This issue has raised the

3

Figure 2.1: example of a BPMN 2.0 model

question of how to make smart contract development more reliable. One approach – and
research-wise, the dominant approach – is using such Model-Driven Engineering (MDE)
techniques, where a model (e.g., BPMN) serves as a specification and smart contract logic
is generated automatically.

The current relevant state of the art has been summarised in a survey [4]. The survey
covers BPMN and UML based approaches for multiple Distributed Ledger systems.

The survey points out the advantages and limitations of each approach with various cri-
teria. It also reveals that the examined approaches do not support data privacy and
confidentiality when dealing with permissionless blockchains. Table 2.1 summarises the
surveyed tools.

Table 2.1: Survey of MDE for blockchain-based process orchestration (source of the ta-
ble: [4])

Name Modeling tech. Contribution Limitation
Rocha et al. [28] UML, BPMN, ERD Explore cur-

rent modeling
languages

Not an exten-
sion of a lan-
guage

Mavridou et al. [24] WebGME SC Modeling,
security exten-
sions, formal
modeling

Limited mod-
eled elements,
no off-chain
modeling

Lopez-Pintado et al., [22] BPMN On-chain
BPMS and
modeled ele-
ments

No access con-
trol, no full sup-
port of oracles

Mercenne et al., [26] BPMN Extension of
caterpillar with
access control

No full support
of oracles

Continued on next page

4

Table 2.1 – continued from previous page
Name Modeling tech. Contribution Limitation

Silva et al., [29] DEMO Meta-model
of DEMO and
HLF concepts

No code gen-
eration, no
off-chain
components
modeling

Hornkov et al., [19] DEMO Highlights
importance of
interaction with
off-chain

No code gen-
eration, no
off-chain
components
modeling

Ladleif et al., [20] BPMN Choreography Extension of
BPMN 2.0
choreography
diagrams

No modeling of
escrow, or ora-
cles

Corradini et al., [10] BPMN Choreography Translation of
BPMN chore-
ography to SC,
dApp lifecycle

No full support
of oracles

Weber et al., [31] BPMN Choreography Triggers as a
communication
method for on-
and off-chain

Triggers not
modeled, no
full support of
oracles

Marchesi et al., [23] UML Extension of
UML, agile
dApp develop-
ment method

No code gener-
ation, no full
support of ora-
cles

Hamdaqa et al., [17] Domain specific lang. Unified refer-
ence model for
SC of multiple
blockchains

No code gen-
eration, no
off-chain
components
modeling

Garamvolgyi et al., [12] UML Statecharts Modeling of SC
as a state ma-
chine

No code gen-
eration, no
off-chain
components
modeling

Lu et al., [21] BPMN SC interfaces
and tokens
model, off-chain
communication

No access con-
trol policies, no
full support of
oracles

Babkin et al., [3] ArchiMate Automatic
translation
between Archi-
mate and HLC

Manual work
before SC
deployment

Continued on next page

5

Table 2.1 – continued from previous page
Name Modeling tech. Contribution Limitation

Boubeta-Puig et al., [6] BPMN and EMF Integration
of CEP with
Ethereum
Platform

No full support
of oracles

In my own review of the state of the art, three tools emerged as the most mature and most
relevant to my research: Caterpillar, Lorikeet and Chorchain. These provide valuable
templates for future research, but in the end, due to the core difference from my own
approach, I could not reuse them.

2.2.1 Caterpillar

Caterpillar [22] is the first open-source BPMN-to-Solidity compiler. Its primary pur-
pose is to execute collaborative business processes between mutually untrusting parties on
blockchains. It supports a large variety of elements of the BPMN 2.0 specifications.

Since its initial release, several forks have emerged. Some of these also come with an
extended feature set, like Blockchain Studio [26], which adds role management, or Amal
et al. [1], which adds time constraints.

2.2.2 Lorikeet

Lorikeet [21] is a model-driven engineering approach which integrates assets into business
processes. For modelling, this method extends the BPMN 2.0 specification to support the
modelling of asset registries (e.g., for fungible/non-fungible asset registration, escrow for
conditional payment, and asset swap). These models are then transformed into a Solidity
smart contract by this tool. It handles the orchestration of the process and the interactions
with the tokens.

2.2.3 Chorchain

Chorchain [10] is a tool that takes a BPMN choreography and generates an Ethereum
smart contract that can be used to execute the model. Chrochain also has a modelling
tool to create models. These models can be used to create instances. Instances can
be configured in different ways (e.g. different participants). Later they can be used to
generate and deploy a smart-contract representation of the instance. After it is deployed,
the execution can be done in the tool or by manually interacting with the smart contract.

The same authors also released two additional studies related to this paper: Multi-chain
[8] and FlexChain [9]. Multi-chain is similar to Chorchain. However, Multi-chain is also
capable of generating chain code for Hyperledger Fabric. FlexChain can only produce
Solidity smart contracts, but the user can also define a ruleset for each choreography. If
a condition in the ruleset is met, then an off-chain processor will perform its underlying
action.

6

2.3 Privacy on blockchains, in general

Due to many blockchains’ public and permissionless nature, data stored on-chain can be
read by any party. To overcome this issue, various solutions have appeared.

2.3.1 Zero-knowledge proofs

One general way to achieve anonymity on public distributed ledgers is to use zero-
knowledge proofs (see section 2.4.1 for more details). They can hide the origin (the
sender), the receiver and contents of transactions.

2.3.2 Ring signatures

Another way to mask the authors behind a transaction is to use Ring signatures. A famous
example is Monero, a blockchain system with privacy-enhancing features, including ring
signatures, zero-knowledge proofs and ”stealth addresses”.

2.3.3 Mixing

Cryptocurrency mixing services obfuscate the origins of transactions, so the sender stays
anonymous. This is usually done by mixing many incoming funds into a large pool and
periodically spitting them to their desired destination.

2.4 Zero-Knowledge Proofs

Zero-Knowledge Proofs are cryptographic methods to prove that various statements are
true – without revealing any additional information about the statement.

2.4.1 Definition

A zero-knowledge proof [32] (ZKP) makes it possible to prove a statement is true while
preserving the confidentiality of secret information. This makes sense when the veracity of
the statement is not obvious on its own, but the prover knows relevant secret information
(or has a skill, like super computation ability) that enables producing a proof. The notion
of secrecy is used here in the sense of prohibited leakage, but a ZKP makes sense even if
the ’secret’ (or any portion of it) is known apriori by the verifier(s).1

2.4.2 A simple example

Suppose Alice and her friend Bob want to play a game of ’Where’s Wally’. Alice claims
that she found Wally on one of the puzzles. She (the prover) wants to prove that what
she claims is true to Bob (the verifier).

There is an obvious way to do this. She can point to Wally’s location on the puzzle. In
this case, Bob will be sure that Alice’s claims are valid. However, Alice would be upset
because Bob now knows where Wally is.

1Source: [32] Section 1.1.1

7

For a zero-knowledge approach, Alice needs a paper at least twice the puzzle size. Then,
she needs to cut a Wally-shaped hole in the middle of it. She then tapes the paper to the
puzzle, only revealing Wally in the small hole cut previously.

This way, Bob will be convinced that Alice knows where Wally is without telling Bob
where he is.

2.4.3 Constructions

Zero-knowledge proofs can be built on top of NP problems. In fact, Goldreich et al. [13]
prove that all languages in NP have zero-knowledge proofs. For the practice, the currently
two most important families of ZKP constructions are zk-SNARKs and zk-STARKs.

2.4.3.1 zk-SNARK

The acronym zk-SNARK stands for Zero-Knowledge Succinct Non-Interactive Argument
of Knowledge. It describes the properties of the protocol.

Zero-Knowledge The protocol is "Zero-Knowledge", as described in section 2.4.1.

Succinct This means that proofs stay relatively small (i.e. a few hundred bytes), even for
extensive programs, and they can be verified in a short amount of time (i.e. milliseconds).

Non-Interactive The proof consists of a single message from the prover to the verifier.
No other messages can be sent to either party.

Argument of Knowledge The proof not only says that the statement is true, but the
prover also knows why it is true.

Problems with zk-SNARK zk-SNARKs require a trusted setup: In this phase, a
party (generator) generates the proving and the verifying key, but in the process, it gen-
erates "toxic waste" as well. With this toxic waste, anyone could generate "fake" proofs.
For this reason, the setup is "trusted" because the prover and the verifier must trust that
the generator keeps the toxic waste secret (or removes it). This shortcoming is usually
addressed by multiparty trusted setup ”ceremonies”.

Figure 2.2 shows how the setup, proving, and verification activities work.

8

Y=C(x,w)
Public

function

Public
input

Secret
inputs

Public
output

Setup: (C,P) → (pk,vk)

Prove: (pk, x, w) → Proof

Verify: (vk,Proof, x, Y) → Bool

Figure 2.2: zk-SNARK setup, proving, and verification activities based on a computation
definition

zk-SNARKs in DLT systems zk-SNARKs are relatively popular in public and per-
missionless blockchain systems since their proofs tend to be small and computationally
inexpensive to check (hence ”succinct”). Ethereum even has native support for verifying
proofs making it cheaper to perform.

Proving schemes There are now many different zero-knowledge proving schemes. One
of the first practical ones was Groth16 [14], developed in 2016 by Jens Groth. It formalised
a proving system that significantly improved performance, making it possible to use for
real-world applications. GM17[15] is an improved version of Groth16. It was developed
by Jens Groth and Mary Maller in 2017. It improved security and efficiency over Groth16.

2.4.3.2 zk-STARK

zk-STARK stands for Zero-Knowledge Scalable Transparent Arguments of Knowledge. It
is an advanced zero-knowledge protocol construction that does not require a trusted setup.
It is a relatively new (released in 2018 [5]) protocol, so there are few tools for it. They are
less popular because their proofs are larger, requiring more computation to verify them.
The latter also means they are less suitable for public blockchains (e.g., on Ethereum,
verifying them consumes more gas).

2.5 Zero-knowledge proofs on blockchains

Zero-knowledge proofs are widely used along with blockchain technologies. These meth-
ods are utilised to increase privacy and confidentiality and to reduce the cost of several
transactions.

9

2.5.1 Zcash

Zcash [18] was the first real use-case for zero-knowledge proofs in blockchains. It allows
the users to stay anonymous and keep their balance private using zero-knowledge proofs.
Originally, ZCash used a zk-SNARK-based Groth16 proving system, but a few years ago,
they transitioned to a more modern proving system they developed called Halo 2. Halo 2
also uses zk-SNARK proofs.

2.5.2 Rollup solutions

The second largest(by market capitalisation) cryptocurrency Ethereum has reached the
network’s current capacity. To overcome this issue, many ”Layer 2” solutions have
emerged. Generally speaking, these solutions handle transactions off Ethereum (”off-
chain”) and submit batches of them periodically to the ”Layer 1” blockchain. This makes
transactions much cheaper and faster at the price of the additional layer.

According to Ethereum’s official website, the roll-up solutions are currently the preferred
layer 2 scaling methods. Rollups bundle hundreds of transactions into one on the mainnet
layer 1. There are two types of roll-up methods: optimistic and zero-knowledge roll-ups.
Optimistic roll-ups assume that every transaction submitted is valid. However, there is
a time frame where people can claim that a transaction is malicious. If it turns out that
the transaction was, in fact, malevolent, the transaction is cancelled, and the person who
reported this act gets a reward.

On the other hand, zk-rollups generate a zero-knowledge proof for a batch of transactions
and submit the proof to the mainnet. This technique ensures that only valid transactions
are uploaded to layer 1, making this approach secure and scalable. Unlike optimistic
roll-ups, zk-rollups are currently "application specific" layer 2 solutions, meaning they do
not provide the full capabilities of Ethereum. That is, these approaches can be used for
payments and token transfers, but they cannot be used for deploying any custom smart
contract.

2.5.3 Baseline protocol

The Baseline protocol2 is a developing open standard that allows enterprises to synchronise
complex, multi-party business processes on distributed ledger technologies. Their business
process workflows are formed as state machines. The standard includes some essential and
optional privacy-related requirements. The protocol has two reference implementations,
but, at the time of this writing, neither of these has the privacy and confidentiality mea-
sures I enabled in my research.

2.6 Zero-knowledge proof development tools

Theoretically, anyone could create zero-knowledge proof systems by hand, but it is a very
complicated and tedious job. It is the equivalent of writing programs in assembly. For
this reason, several development tools were created.

2https://docs.baseline-protocol.org/

10

https://z.cash/
https://ethereum.org/en/
https://docs.baseline-protocol.org/
https://docs.baseline-protocol.org/

2.6.1 libsnark

llibsnark3 is a popular low level library written in C++ for creating zk-SNARK applica-
tions. It is used by other applications, including other ZKP frameworks. In theory, it
could be used directly for blockchain technologies, but creating a verifier smart contract
for it would be difficult.

2.6.2 ZoKrates

ZoKrates [11] is a toolbox for zk-SNARKs on Ethereum. It provides a high-level pro-
gramming language for creating zero-knowledge proofs. These proofs can then be verified
by a command-line application or a verifier smart contract, automatically generated by
ZoKrates. ZoKrates has its own programming language for specifying computations, their
private and public inputs and outputs. Listing 2.1 provides a simple example.

def main(private field a, field b) {
assert(a * a == b);
return;

}

Listing 2.1: Example ZoKrates code to prove knowledge of square root of b

Code Flattened Code
Compile

Witness Setup

Compute witness Trusted setup

Proving key Verification key

Proof

Generate proof

Verification
Smart contract

Export verifier

Figure 2.3: ZoKrates process

Figure 2.3 demonstrates the usage of the ZoKrates toolbox. First, the developer specifies
a ZoKrates program in the high-level language. Then, it can be compiled into flattened
code. With the flattened code, the user performs the trusted setup phase, which generates
the proving and verification keys. When flattened code is executed, ZoKrates generates a
witness of it. The prover generates the zero-knowledge proof using this witness and the

3https://github.com/scipr-lab/libsnark

11

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

proving key. The user can export a Solidity-based Ethereum verification smart contract
with the verification key.

ZoKrates supports multiple proving schemes (including G16 and GM17), pairing-friendly
elliptic curves, and proving backends.

It also comes with a feature-rich standard library, which supports hash functions, elliptic
curve cryptography operations, and other utilities for type conversion.

2.6.3 Cairo

Cairo4 is a high-level-like programming language developed by StarkWare. It can be used
to create smart-contract for StarkWare’s ZK roll-up solution StarkNet. Their concept is
very similar to ZoKrates, but it is highly dependent on their proprietary scaling solution.

2.6.4 zkEVM

The term zkEVM refers to a program that can generate zero-knowledge proofs for execut-
ing EVM opcodes. This is a fast-developing technology, but it is still in its early stages.
Its primary purpose is to make Ethereum more scaleable, but it can also offer a lot more
privacy for the users.

Currently, the two most mature zkEVM solutions are zkSync5 and Polygon Hermez6.
These can provide a much cheaper way of executing smart-contract calls. However, they
are not entirely EVM compatible, and their main focus is scalability. Privacy measures
are currently not implemented.

2.7 Zero-knowledge proofs for business processes

Aivo et al. [2] is the only research paper that describes a technique that allows generating
zero-knowledge proofs for checking the validity of traces in a BPMN model. Its primary
focus is on proving that specific steps were made in a given order in the trace.

Conceptually, this result is similar to my goal, but adapting it for blockchain-based ver-
ification and step-by-step model enforcement on-chain proved to be far too involved in
comparison to the approach I finally formulated and propose here.

2.8 Takeaway

There are several ways to model business processes and workflows. One of them is the
use of the BPMN 2 standard. Many centralized tools use this specification, and several
support the orchestration of these models’ execution.

Much research has been published about how similar workflow engines could be imple-
mented on a blockchain basis. Most approaches involve model-driven smart contract
development, but none focus on privacy and confidentiality.

4https://www.cairo-lang.org/
5https://docs.zksync.io/zkevm/
6https://polygon.technology/solutions/polygon-zkevm

12

https://www.cairo-lang.org/
https://docs.zksync.io/zkevm/
https://polygon.technology/solutions/polygon-zkevm
https://www.cairo-lang.org/
https://docs.zksync.io/zkevm/
https://polygon.technology/solutions/polygon-zkevm

Zero-knowledge proofs provide a reliable way of proving that a given statement is true
while avoiding the need to share more information other than the fact that the statement
was, in fact, true. There are many ways to generate and use these proofs in certain areas.

Zero-knowledge proofs are increasingly widely used in the public and permissionless
blockchain spaces. This technique provides a way to achieve superior privacy and confiden-
tiality and significantly better scalability – at the expense of off-chain proof computation
obligations.

Several tools are capable of generating zero-knowledge proofs. Some give the user a low-
level control of the process, but some provide relatively easy usage.

So far, no blockchain-based methods have been implemented or designed to orchestrate
business processes in a privacy and confidentiality preserving way. This paper aims to fill
this gap.

13

Chapter 3

The zkWF approach

In this chapter, I present the zkWF ("zero knowledge WorkFlow") approach: a framework
for blockchain-based business process orchestration, where zero knowledge proofs render
on-chain stored process state and data information undiscoverable to parties not involved
in the execution of the process instance. The framework consumes a representative subset
of BPMN collaboration diagrams as input.

The zkWF approach relies on two key conceptual components: the zkWF protocol and
zkWF programs.

The zkWF protocol is a hash commitment style protocol that allows the participants to
follow and step the execution of the business process with a smart contract. Meanwhile,
the current state of the workflow execution cannot be determined from the state stored
in the smart contract.

A zkWF program is a ZoKrates [11] (see section 2.6.2) program that, for a given
BPMN model, can decide whether a given actor of a process instance is authorized to
execute a state transition in a given execution state. The ZoKrates program can be used
to generate the zero-knowledge proofs and the proof verification code used by the zkWF
protocol participants and its smart contract.

3.1 High-level overview

This section gives the reader a high-level overview of how the protocol works (see Figure
3.1). The protocol requires to have a smart contract deployed on a blockchain. This smart
contract contains the hash of the current state and an encrypted version of the state.

Since we keep track of a business process collaboration, it likely has more than one par-
ticipant. These parties can send messages to each other by off-chain means. The state
contains the event of sending and receiving these messages and the hash of these messages
to ensure that the receivers can verify them.

For a participant to update the state stored in the smart contract (the hash and the
cyphertext), they have to create a zero-knowledge proof that the state transition they
propose is valid. This new state includes the hash of the message they sent beforehand.

14

When the execution arrives at a point where a participant receives a message in the next
stage of the execution, the receiving party checks the hash and only accepts if the hashes
match.

A #

P
ar

tic
ip

an
t1

#B

P
ar

tic
ip

an
t2

Smart contract
hash(state)

encrypt(state)

Blockchain

Participant 1 Participant 2
#

DB,IPFS
Email,IM,...

1.

update: hash(state)
encrypt(state)

prove: "I’m next"
Commit to hash(M)

2.

Check Message M

3.

Figure 3.1: Basic Overview of the zkWF protocol

The remainder of this chapter is separated into four main parts. Figure 3.2 gives an
overview of my contributions and the implemented toolchain, delineating my contributions,
annotated with the respective.

15

The first part (section 3.2) describes how the business processes are modelled. It details
what modelling language I used, what parts of it I support, and how to approach them. The
second part introduces the BPMN-derived zkWF construction. The third part describes
the zkWF protocol.

The second part describes how a zkWF program works, what it does, and how it is
generated by synthesizing a business process model.

The third part (starting from section 3.4) introduces the details of the zkWF protocol.
First, it describes the architecture of the program. Then it describes the process manager
smart contract design and how participants can interact with it.

This chapter’s fourth and last part presents how I tested this approach. It also describes
the test suit I designed for this tool.

16

BPMN
3.2.2 Extended attributes

I. Modelling

3.3.4 Transformation logic

3.3.3 zkWF program ZoKrates

prover key

verifier key

ZoKrates proof generator
3.4.3 State commitment

&
verifier smart contract

Java Solidity

II. Synthesis

3.7.2 DL specific deployment

SC instance

EVMHL Fabric

Participant side SDK

Web3J wallet

zkWF
protocol

WFGUI

New results*

*Gradients show partially new results

III. Deployment & Operation

Figure 3.2: Overview of this paper

3.2 Modeling

This section describes how the business processes are modelled for the zkWF Program.

17

3.2.1 BPMN Modeling elements

In this paper, my main focus is on BPMN collaboration models. According to the speci-
fication, they could contain processes or choreographies, but I decided to only work with
collaborative processes.

Only a limited set of elements from the BPMN specification are currently supported. Some
of the element types are considered executable. Others are there to control the execution
flow. Executable elements’ (like that of activities) state is tracked by this tool.

I wanted to support at least the Basic Modeling Elements of BPMN 2.01 to prioritize
common components. I have also taken into account making modelling collaborations
more executable. This is why I also included Message flows and Intermediate Message
events. I chose these elements because these are the ones that are necessary and sufficient
to model most of the relevant use cases.

The currently supported elements can be seen in table 3.1.
1See Business Process Model and Notation, v2.0 [16], page 28.

18

Element name Notation Executable

Start event no

End Event no

Activity (executable) Task yes
Sequence flow no
Message flow no

Parallel gateway
+

no

Exclusive gateway
×

no

Message # no

Message Intermediate Catch event (executable)
#

yes

Message Intermediate Throw event (executable)
#

yes

Pool P
ar

ti
ci

pa
nt

1

no

Lane

A
B

P
ar

ti
ci

pa
nt

1

no

Table 3.1: Supported BPMN modelling elements

3.2.2 Extended attributes

In order to capture properties necessary to be executable in a zero-knowledge environment,
I needed to define a way to attach some information to existing BPMN components. To
achieve this, I added extended attributes on top of the existing BPMN specification.

zkp:publicKey This attribute is used to separate the tasks of different participants. As
the name suggests, it must contain the public part of the participant’s EdDSa key pair.
It should be applied to pools, lanes, or any executable task. Applying this attribute to an
event directly or indirectly (e.g. through a pool) is mandatory.

19

zkp:variables This optional parameter only is applied to tasks. It indicates the decla-
ration of a global variable and that the variable may be used in that task (e.g. changing
its value). These variables are later used in expressions for exclusive gateways.

3.3 zkWF program design

The zkWF program construction is a central contribution of this paper. It is generated
for each BPMN model and used to generate zero-knowledge proofs.

In general, it proves that no illegal moves were made in a business process step. It has
public and private inputs and an output. Private inputs are only visible to the prover.
Public inputs are visible to everyone, and it is necessary to verify the proof. Outputs are
similar to public inputs, but the user does not supply these; they result from the executed
program with some private and public inputs.

A participant can use the zkWF program with the following public inputs:

• hcurrent - the hash of the current state and some randomness;

• Snew - the previous states and the current states’ hashes concatenated, signed by
the last acting participant.

and the following private inputs:

• scurrent - the current state of the process;

• rcurrent - the randomness used in the current hash;

• snew - the updated state of the process;

• rnew - randomness different from the current one (used for generating a new hash);

• pk - the public key of the participant;

• sk - the private key of the participant.

Figure 3.3 visualises the design of the zkWF program.

20

3.3.6.1 Checking the hash

3.3.6.2 Checking vector update validity

3.3.6.3 Authorisation

zkWF program

Public inputs Private inputs

hcurrent Snew scurrent rcurrent snew rnew pk sk

hnew = hash(snew||rnew)

Outputs

Figure 3.3: Computation model for the zkWF program

The hash of the current state (hcurrent) should be supplied from the process manager
smart contract to the zkWF program. This ensures the integrity of the current state.

The zkWF program also checks the signature of the last acting participant. This signature
must be the same as the one used as the new signature in the smart contract.

The current and the proposed new state objects (scurrent and snew) and their corresponding
randomnesses (rcurrent and rnew) are used as private inputs in the zkWF program. The
hash of the current state and the supplied randomness must match the hash given as
public input. If the integrity of the current state is correct, the zkWF program can then
check if no illegal moves were made during the proposed step.

The zkWF program also requires the participant’s public and private key pair (pk and sk)
to be supplied as a private input. These are used to check the signature given as public
input, ensure the participant has the correct key pair, and authorize the participant for a
given step.

The program outputs the hash of the new state hnew = hash(scurrent||snew).

The notations used for the parameters of the zkWF program and protocol are summarised
in table 3.2.

21

Notation Meaning
M The business process model
V The vertices of a model
E The edges of a model
T The executable vertices of a model

scurrent The current state
snew The new state

v A states’ state vector part
hcurrent Hash of the current state

hnew Hash of the new state
rcurrent The current states’ randomness

rnew The new states’ randomness
Cenc

curr Encrypted version of the current state
Cenc

new Encrypted version of the new state
pk The public key of the participant
sk The private key of the participant

proof A zero-knowledge proof

Table 3.2: Parameters of the zkWF program and protocol

3.3.1 Model definition

Let the business process M to be a tuple (V, E, T):

• V is the set of vertices and E is the set of edges

• T ⊂ V the set of all executable events in the business process

3.3.2 Process state definition

The state of the process contains the following parameters:

• A vector v with |T | elements. Each task can have three states:

– 0 (Inactive) - The task has not been reached
– 1 (Active) - The task can be executed now
– 2 (Completed) - The task has been completed

• A structure of global variables

• A structure that contains the hashes of each message in the process

This state structure is generated from the model elements, as visualised on figure 3.4.

22

M

V

T E

State vector v

Global variables
Message hashes

State

Figure 3.4: Model-based state representation

3.3.3 Proving scheme

The zkWF program needs to prove that

• hashing the current state and the randomness results in the hash given as public
input,

• the proposed state update is valid in the BPMN process,

• the pubic key provided is authorized for this task

• and the participant own the corresponding private key.

3.3.4 Encoding the model

The zkWF program contains an encoded version of the business process model. This is
done with the generation of the array P described in Aivo et al. [2] (page 25.). However,
after generating this array, it is used in a very different way.

I look at business process executions as a token flow. I create a token for every start
event and pass it to the first executable event connected to it. Each executable event has
one incoming and one outgoing edge. When an executable event has a token, it shall be
marked as "active". After completing the event, the event must be marked as "done" and
pass its token to the next executable event based on the token holder’s outgoing edge.

This approach can be modelled as adding a token (+1) when I mark an executable event
as "active". Then I subtract this token (−1) when we mark the event as "done".

Gateways change the token flow differently. Parallel gateways can split a token on one
end and merge them back together on the other end. Exclusive gateways can have many
outgoing edges, but only one can be taken based on the edge’s arithmetic expression. A
default outgoing edge can also be set as described in the BPMN specification.

End events can have multiple incoming edges but no outgoing edges. They mark the end
of a token flow.

To limit the size of the array P , I decided that an event (or gateway) can only make three
token changes. This change is only necessary to make array P smaller in size. This ensures
that proofs can be generated in a reasonable time frame. This limit also means a parallel

23

gateway start can only have two outgoing and a parallel gateway end can only have two
incoming edges.

Considering these, let W be the amount of possible token changes in model M . Then take
P as an array with the length of W . Each element in P is a triple of the elements of set
N , where

N = ({incr, decr} × T) ∪ {nothing} (3.1)

In general, n ∈ N is a pair of numbers describing a possible token change. The first
component of the pair shows if the token is increased or decreased (+1 or −1). The
second component i marks the token change for the executable event T [i].

Since not every step consists of three token changes, n can also be an "empty" token
change. This is used as a placeholder and is marked as (0,−1).

Then, P [i] shows how the process state can change in step i.

To check if the right path was chosen after an exclusive gateway, the expressions on
the sequence flows after the gateways are also encoded in the program in the form of
assertations. Messages passing and Variable write permissions are also encoded similarly.

Messages can only be sent in the proper intermediate message throw event and Messages
cannot be sent before they were sent. Similarly, variables can only be written when
permission is given to the activity currently performed.

To demonstrate how it works in practice, I chose the model shown in figure 3.5. This
model was also used for testing purposes; the exact file can be found attached to this
document.

Figure 3.5: Example model

It has five executable tasks. So the set T ⊂ V looks like this:

1. Task 4

2. Task 3

3. Task 2

4. Task 1

5. Task 5

24

Note that the exact BPMN file used this ordering. This model generates the array P
shown in table 3.3. The variable write permissions are written as shown in Algorithm 2.
Exclusive gateway validations are demonstrated in Algorithm 1.

-1 3 1 2 0 -1
-1 3 1 1 0 -1
-1 3 1 0 0 -1
-1 1 1 4 0 -1
-1 0 1 4 0 -1
-1 2 0 -1 0 -1
-1 4 0 -1 0 -1

Table 3.3: Example array P

Algorithm 1 Checking exclusive gateway path
procedure CheckExclusiveGateway

snext ← The new state
changes← The changes made between the current and the new state
assert(changes[1]! = 3||changes[0]! = 1||snext.a == 1)
assert(changes[1]! = 3||changes[0]! = 0||snext.a == 2)
assert((changes[0]! = 3||changes[1]! = 4)||!(snext.a == 1)&&!(snext.a == 2))

Algorithm 2 Checking variable write permissions
procedure VariableCheck

scurr ← The current state
snext ← The new state
task ← The last activity marked as done in the new state
assert(task! = 2||scurr.a == snext.a)
assert(task! = 4||scurr.a == snext.a)
assert(task! = 6||scurr.a == snext.a)
assert(task! = 8||scurr.a == snext.a)

3.3.5 ZKP framework

To implement zkWF programs, I chose Zokrates (see 2.6.2) because this seemed like the
most advanced solution at the time of writing. It also makes it easy to generate a verifier
smart contract which would be tedious to write manually. I used ZoKrates version 0.7.13
at the time. It is the latest version at the time of writing.

It is necessary to mention this here because the prover method relies heavily on this toolkit.

3.3.6 BPMN state change validity check

I have introduced the inputs and outputs of the zkWF programs; described the core
approach for encoding BPMN models; and specified the ZKP framework to use.

Now we are in a position to discuss the main steps of zkWF programs, as also identified on
Figure 3.3. Note that as the zkWF programs are synthesized predominantly by templating,

25

the here described logic is essentially supplied in implementation in the ZoKrates templates
in the Appendix.

3.3.6.1 Checking the supplied hash

The hash of the current state and its corresponding randomness must be the hash present
in the smart contract. This step ensures the integrity of the business process execution.
A pseudo-code of this procedure is shown in Algorigth 3.

Algorithm 3 Checking the supplied hash
procedure HashCeck

s← The current state
r ← The randomness
h← The supplied hash
result← hash([s, r])
assert result == h
return false

ZoKrates’s standard library contains many different hash algorithms. I chose to use sha256
because it is one of the most widely used hashing algorithms.

3.3.6.2 Proving that a state vector update is valid

This proving process step ensures that a proposed step is valid in the BPMN model.

The program compares the current and proposed (new) state’s task vectors, vold and vnew.
It constructs a new matrix A in the following way:

1. At first,take matrix A as

0 −1
0 −1
0 −1

 (no changes) and j = 0 as a counter

2. Compare every vold[i] and vnew[i], where i ∈ [0, T [

• If vold[i] = 1 and vnew[i] = 2, replace A[j] with [−1, i]
• If vold[i] = 0 and vnew[i] = 1, replace A[j] with [1, i]
• If vold[i] = 0 and vnew[i] = 2, replace A[j] with [1, i]
• If none of the above are true, but vold[i] ̸= vnew[i] , replace A[j] with [−1,−1]

(invalid change)
• If vold[i] ̸= vnew[i] then increase j by one

After matrix A is constructed, I compare each element in the array P to matrix A. If I
find an element in P that contains every row in matrix A (in any order), the vector change
is considered valid.

Zero changes are also considered valid. This makes it easy to generate "fake" state changes:
the process state in the smart-contract changes, but in reality, the state vector does not.
This can be useful to mask the current state of the process execution. See section 3.4.3
for more details.

Four or more changes in the process state are considered invalid. The reason behind it is
described in section 3.3.4.

26

Problem with parallel gateway ends Before a parallel gateway end, two tasks can
exist with two different participants. Because of this, one task can be marked as "com-
pleted" without marking the task after the parallel gateway as "active". After both tasks
before the parallel gateway is marked as "completed", the executable event on the other
end of the gateway must be marked as "active" to continue the token flow.

Variable write permission The program must ensure that the global variables can
only change in the tasks that have the write permissions for that specific variable. This is
done in my custom BPMN attributes described in section 3.2.2.

Exclusive gateway validation After the state’s task vectors are validated, I need to
ensure that the right path was chosen after the start of an exclusive gateway. This is why
the arithmetic expression on the chosen edge is evaluated.

Message validation This program has a minimal message-handling protocol:

• Each time a participant wants to mark a Message Throw Event as "completed",
a message hash has to be uploaded. The message should be sent directly to the
participant in a secure channel.

• Each time a participant wants to mark a Message Catch Event as "completed", I
need to make sure that the corresponding Message Throw Event is also marked as
completed (likely by another participant). The participant should also check if the
message they received has the same hash value as the one in the current state.

Pseudo code A detailed pseudo-code can be seen in Algorithm 4 and 5.

Example To make this section more understandable, I demonstrate it on an example
based on the model shown in figure 3.5.

Let us say I want to take the step from Task 1 to Task 4. Then, the initial state vector
would be the one shown in table 3.4, and the new state vector is shown in table 3.5.

0 0 0 1 0

Table 3.4: Initial state vector (vold)

1 0 0 2 0

Table 3.5: New state vector (vnew)

Then, I generate the matrix A, as described above. The result is shown in figure 3.6. After
that, I need to find an element in the array P that contains all the rows of matrix A. As
you can see, the fourth element of the array P (see table 3.3) matches that.

3.3.6.3 Authorisation

To authorize a participant, the program proves that the participant has the private key,
which corresponds to the task’s specified public key.

27

Algorithm 4 Proving that a state vector update is valid
procedure StateChange

vcurr ← Currnent state vector
vnext ← New state vector
A← [nothing; 3]
for i in 0..len(T) do

assert vcurr[i] <= 2
assert vnext[i] <= 2

changeCount ← 0
for i in 0..len(T) do

if vnext == vcurr then continue
else if vcurr == 1 and vnext == 2 then

A[changeCount]← [−1, i]
else if vcurr == 0 and vnext == 1 then

A[changeCount]← [1, i]
else

A[changeCount]← [−1,−1]
changeCount← changeCount + 1

assert changeCount ≤ 3
if changeCount == 0 then

return true
result ← false
for i in 0..W do

allPairMatch ← true
for j in 0..3 do

pariFound ← false
for k in 0..3 do

if A[k][0] == P [i][j][0] and A[k][1] == P [i][j][1] then
pariFound ← true

if !pariFound then
allPairMatch ← false
continue

if allPairMatch then
result← true

// Testing for parallel gateway ends
if changeCount == 1 then

ParallelTest(A)
return result −1 3

1 0
0 −1

 (3.2)

Figure 3.6: Matrix A after comparing vold and vnew

The program also proves that the signature supplied as public input can be decrypted with
that public key. The signed message has to be the hash of the previous state (with the
randomness) and the hash of the new, proposed state (with a new random number). This
signature is then stored in the smart contract. An EdDSa implementation is available in

28

Algorithm 5 Testing for parallel gateway ends
procedure ParallelTest

A← From argument
for i in 0..len(T) do

for i in 0..W do
minusCount ← 0
other ← 0
contains ← false
for j in 0..3 do

if P [i][j][0] == −1 then
minusCount ← minusCount + 1

if A[0][0] == P [i][j][0] and A[0][1] == P [i][j][1] then
contains ← true

if A[0][0] == P [i][j][0] and A[0][1] ̸= P [i][j][1] then
other ← P [i][j][1]

if minusCount == 2 and contains and vnext[other] ̸= 2 then
return true

return false

Algorithm 6 Authorization of the participant
procedure ParticipantAuthorisation

keys← The array of keys generated generated for each executable state
step← The id of the step taken
S ← The signature from the participant
sk ← The participants private key
pk ← The participants public key
hc← The hash of the current state
hn← The hash of the new state
assert keys[step] == pk
assert proofOfOwnership(pk, sk)
assert verifySignature(pk, sk, [hc, hn])

the Zokrates standard library. It can verify that a party has a private key with a corre-
sponding public key and verify signatures. A pseudo-code of this procedure is available in
Algorithm 6.

3.4 zkWF protocol design

This section describes how the zkWF protocol works and the smart contract design used for
the protocol. The zkWF protocol certainly largely follows the general "proofs over commit-
ments and proposed commitment updates" pattern customary in blockchain applications
of ZKPs (as can be also readily seen in the accompanying zkWF program construction).

3.4.1 Security assumptions

• The participants can agree on what process model they want to use.

29

• Each participant has to generate an EdDSa key pair independently and share the
public part (only) with the other participants.

• The participants can agree on a shared key, which will be used to encrypt data on
the blockchain.

3.4.2 Architecture overview

Architecturally, my framework takes a BPMN process collaboration model, serializes it
and generates a zkWF program. An encoded version of the model is included in the
program. The full program can prove that specific state changes are valid (or not).

A verifier smart contract can verify these zero-knowledge proofs. A process manager smart
contract uses this verifier smart contract to make sure no illegal moves in the process are
feasible and stores the sequence of state update commitments.

For the participants, I’ve also created a GUI interface, which helps to generate zkWF
programs, deploy smart contracts, and step the execution process with a visual interface.
An overview of the architecture design can be seen on figure 3.7.

Smart Contract

Blockchain

WFGUI (by participant)

Proof,
Updated stateCurrent State

zkWF program (by participant)

Proof
Current State

Updated State

Figure 3.7: Architecture design of the runtime components

3.4.3 Process manager smart contract design

This smart contract contains the logic that is executed on the blockchain. It is responsible
for the integrity of the business process execution. It must not contain the current state in
plain text. It is designed to be relatively simple since most of the computation is off-chain.
Figure 3.8 shows the overall design of this smart contract.

30

Smart-contract

hcurrent Cenc
curr

Scurrent

participant 1 participant 2

hnew,
Snew,
Cenc

new,
proof

Figure 3.8: Architecture design of the smart-contract

The process manager smart contract must store the following data:

• hcurrent = hash(scurrent||rcurrent) - the hash of the current state and some random-
ness

• Cenc
curr = enc(scurrent) - the ciphertext of the current state and the randomness used

in the hashing encrypted with a common, predefined key (each participant should
have this key)

• Scurrent = sig(hprev||hcurrent) - the previous states’ and the current states’ hashes
concatenated, signed by the last acting participant.

The hash of the current state (hcurrent) is stored in the smart contract. The purpose of
this is to ensure that verifying the state’s integrity can be done quickly. It is also necessary
for the verifying process. The randomness part in the hash is vital for various reasons.

First, it can be used to "mask" the current state. If an attacker somehow knows the
particular business process instance, they could guess it by using the brute-force method.
On top of that, the randomness can also be used to generate "fake" state changes, where
the state object stays the same, but the randomness changes. Doing that, the hash also
alters, making it seem like a new step was made to the outside world. This way, an
attacker cannot speculate on the current state based on the number of state changes, even
if they have the interrelated BPMN model. If I did not incorporate the randomness part,
the hashes would be the same, making this defensive method useless.

It is also important to note that any participant can do these "faked" stage modifications
at any point in the business process execution. This randomness should also change when
a party makes a "real" step.

For obvious reasons, I cannot store the present form of the execution on the blockchain as
plain text. However, I also need to ensure that the execution participants know the current
state in (close-to) real-time. This is why an encrypted version of the current state(Cenc

curr)
should be stored in this smart contract. The method of encryption is irrelevant to this
paper. The important thing is that the participant can agree on a particular encryption
key or a method to generate a key for each state change.

Unfortunately, most ZKP frameworks do not provide any way to verify that a specific
message was encrypted to a specified ciphertext with a given key. Implementing this is

31

possible in theory, but it would be challenging to do it properly. Not only because it has to
be secure, but it should also be possible to generate proofs for it reasonably on a standard
computer.

This means a malicious participant can update the current state on the blockchain (with
valid proof) without sharing it with the other participants. This is because this participant
could change the ciphertext stored on the blockchain to some "junk" bytes. The problem
also gets more complicated when any participant can upload empty state changes when
only the randomness used for hashing is changed.

To make these kinds of attacks more difficult, I made sure that a malicious participant like
this is identifiable by the others. This is why I also include a valid participant signature
(Scurrent) as public input. If I did not have it in place, an attacker with participant rights
could anonymously (participants could only guess from the pseudo-anonymous addresses
used on the blockchain), making it impossible to stop the execution again at any time of
the process.

A participant must be able to update these variables with a function. This function must
have the following arguments but may have others:

• hnew = hash(snew||rnew) - the hash of the new state and some randomness

• Cenc
new - the ciphertext of the new state and the randomness used in the hashing

encrypted with a common, predefined key (each participant should have this key)

• Snew - a signature from the last acting participant of the process

• proof - a valid proof generated by the corresponding zkWF program.

The process manager smart contract must check the validity of the given proof p before
accepting the state change. This ensures that only valid state changes can be uploaded to
the blockchain.

3.5 Security guarantees

This protocol ensures the following statements:

• The smart contract does not store the logic of the business process.

• Parties not participating cannot read or guess the current state of the business
process execution based on the data stored in the smart contract. Process simulation
by contract calls can be made infeasible by the above mentioned "junk" steps.

• No party can make an illegal move during the orchestration.

• Messages between the participants can be verified.

3.6 Limitations

This section shows the limitations of this approach and the reason behind them.

32

3.6.1 Limitations of BPMN models

As I described in the previous section, "special" BPMN models are needed for the program
to work.

• The model must be a collaboration: It must have at least one pool.

• It only supports a limited subset of the BPMN specification. See section 3.2.1.

• All tasks should have a public key assigned to them. This should be done at the
pool/lane level, not individually.

• A parallel gateway can only have two outgoing (and one incoming) edges OR two
incoming (and one outgoing) edges. The reason behind it is described in section
3.3.4.

• A gateway must be followed by an executable event.

3.6.2 Limitations of the proving scheme

Unfortunately, ZoKrates cannot verify that a given ciphertext is the encrypted form of a
given message with a given key. The issue that comes with this property is described in
section 3.4.3.

3.7 Deployment and operation

This section demonstrates how the necessary components are deployed and operated.

3.7.1 Choosing a distributed ledger

The state manager smart contract can run on two different distributed ledgers:

1. Ethereum (or other EVM-compatible ledgers)

2. Hyperledger Fabric

The verifier part of the smart contract for Ethereum is exported from ZoKrates. For
Hyperledger Fabric I used the Zokrates fabric verifier I wrote (see implementation details
in section 4.5.2).

Note that currently, only Ethereum is supported in the WFGUI.

3.7.2 Deploying the smart-contract

After generating the zkWF program and choosing a distributed ledger, the state manager
smart contract should be deployed. To deploy it for Ethereum, there is a dedicated button
in the WFGUI, but you can also deploy it manually (e.g., with the Remix IDE). Deploying
the smart contract to Hyperledger Fabric has to be done manually.

When deploying, some variables need to be set in the constructor:

• The hash of the initial state with some randomness

33

https://remix.ethereum.org

• The ciphertext of the initial state encrypted with the common key

The WFGUI automatically sets these.

Note that the WFGUI generates a new random number at every deployment. This means
previously generated proof cannot be used.

3.7.3 Stepping the execution

After deploying the smart contract, the WFGUI should show the user the current state
of the process. It also polls the blockchain for updates so the user can see the execution
process in (near) real-time.

Before stepping the model, the user has to generate the zero-knowledge proofs. This can
be done through the WFGUI or generated manually with the zkWF program.

Behind the scenes, the WFGUI first calculates the hash of the new state. Then, it uses
the participants’ EdDSa private key to sign the current and the new state hashes concate-
nation.

After gathering all the public and private inputs for the zkWF program, the WFGUI
computes the witness of the zkWF program. Using this witness, the Zokrates toolkit
constructs the zero-knowledge proof.

After generating the proof, the user can choose the generated proof in the WFGUI along
with a preferred Ethereum address. These Ethereum addresses are handled by web3j and
must have enough gas to call the process manager smart contract.

This process is illustrated in figure 3.9 in a UML sequence diagram. The protocols events
are demonstrated on a pseudo-code in Algorithm 7.

Figure 3.9: Sequence diagram of the state updating process

34

Algorithm 7 Protocol Events
upon init do

doTrustedSetup()
deploySmartContract()

upon generateProof (publicInputs,privateInputs) do
hash_new← calculateNewStateHash(privateInputs)
generateSignature(hash_current, hash_new)
witness ← computeWitness(publicInputs,privateInputs)
proof ← generateProof(witness)

upon stateUpdate(state, proof) do
if isProofValid(proof) then

saveNewState(state)
Send(NewState, state)

3.8 Testing

To make sure this method of executing business processes is correct, I propose a few ways
of challenging it.

3.8.1 Test cases

My first method of testing my approach is by defining test cases and seeing if they can be
used in my tool.

3.8.1.1 Simple & corner cases

These test cases were designed to ensure that every supported element works. I also
wanted to know how the program reacts to corner cases where the model syntax is correct
but the semantics are questionable.

These test cases can be seen below in figure 3.10, 3.11, 3.12, 3.13 and 3.14.

Test 1

This is the most basic test and could be considered the smoke test. It only tests if the
simplest form of state transitioning works.

35

Figure 3.10: Test case 1

Test 2

This test case tests several small but viral functionalities. The most significant of these is
exclusive gateways. In this case, the exclusive gateway can choose three different paths:
if the global variable "a" is equal to 1, then the state shall transition to task 3 in the next
step. If the value is 2, then it will transition to task 4. In any other case, it will select the
route to task 2. It also tests the expression serialization.

Figure 3.11: Test case 2

Test 3

This simple test case tests the basic functionality of parallel gateways.

36

Figure 3.12: Test case 3

Test 4

This test case checks if malformed parallel gateways do not break the program’s function-
ality.

Figure 3.13: Test case 4

Test 5

This test case has two participants. It test if parallel execution of the business process
is possible. It also has a two-way messaging flow with intermediate message throw/catch
events.

37

Figure 3.14: Test case 5

3.8.1.2 Representative test

As a Representative test, I wanted to use a complex, real-world example BPMN model.
The goal is to see how the program reacts to more oversized state objects (e.g., more
executable events, messages, etc.).

In figure 3.15, we can see the model I used for this purpose. It models the process of
making a leasing contract.

Note: The model captures a leasing process, where payment related tasks are coloured
in blue. These are of no significance at the current stage of my research.

3.8.1.3 Testing framework

To run these tests I designed a testing framework. This framework can run individual test
scenarios (i.g. separate steps) and run them as a batch.

The framework also has a GUI and CLI interface. The GUI can be accessed from WFGUI.
The CLI interface is designed to work without user interaction. This makes it easy to
integrate as a CI/CD pipeline.

3.8.2 Future ideas for testing

An apparent insufficiency of the current approach is that it is not formally proven that
the accepted language of the zkWF program conforms to formal specifications of BPMN
model and execution semantics.

This will be certainly a worthwhile area of future research. In addition to classic ap-
proaches, in this specific context, due to the relative simplicity of the involved components,
it seems to be feasible to create a joint executable model of the smart contract, the prover,

38

F
ig

ur
e

3.
15

:
Le

as
in

g
co

nt
ra

ct
B

PM
N

m
od

el

39

the communication protocol and lastly, an executable specification of BPMN semantics.
This approach may be feasible even in the form of direct bytecode level model check-
ing of an imperative language as Java (using, e.g., Java PathFinder for analysis). Then,
operational semantics conformance can become checkable at least on a model-by-model
basis.

40

Chapter 4

Implementation

4.1 Modeller

The custom attributes we previously defined (See section 3.2.2) cannot be used in a tradi-
tional modeller. It is possible to add them to a model manually, but this method can be
tedious, and it is easy to make mistakes. To make things more convenient, I implemented
a BPMN modeller with built-in support for these attributes.

It is written in javascript, and it makes use of the bpmn-js library’s built-in modeller.

An example screenshot can be seen in figure 4.1

Figure 4.1: Screenshot of the modeller

4.2 zkWF implementation

This section describes how the zkWF program was implemented in ZoKrates.

41

4.2.1 ZKP framework

To implement zkWF programs, I chose Zokrates (see 2.6.2) because this seemed like the
most advanced solution at the time of writing. It also makes it easy to generate a verifier
smart contract which would be tedious to write manually. I used ZoKrates version 0.7.13
at the time. It is the latest version as of writing this.

4.2.2 Zokrates implementation

This section describes the structure and the implementation of a zkWF program in
ZoKrates.

4.2.2.1 Files

The immediate implementation of the zkWF program is split into two template files:
root.zok.template and stateChange.zok.template. These files cannot be used by them-
selves. They are meant to be used with the generator program, which adds constants
and assertions based on the model.

There is also a hash.zok.template file, which is used to generate the hashes of the states.
The template files can be found in the 6 appendix.

4.2.2.2 Checking the supplied hash

Generating proof for hashes is implemented in the Zokrates standard library. This makes
it really easy to check if the supplied is the one that the current state generates.

4.2.2.3 Proving that a state update is valid

The array P is added to stateChange.zok.template as a constant. Since ZoKrates only
has unsigned numbers, I implemented a signed_field struct along with functions for basic
arithmetic operations.

The rest of the implementation follows the method described in section 3.3.6.2.

4.2.2.4 Authorisation

The authorisation process uses EdDSa key pairs. Cryptographic operations for EdDSa,
like proving that a party owns a private key with a specific public key or proving that a
signature is valid, are also implemented in the Zokrates standard library.

To generate these keys, I created a simple python script that loads these keys from a fixed
set. These keys were used for testing and debugging.

4.2.2.5 Verification of an encrypted ciphertext

Unfortunately, ZoKrates does not provide any way to verify that a specific message was
encrypted to a specific ciphertext. Implementing this is possible in theory, but it would
be challenging to do it properly. Not only because it has to be secure, but it should also
be possible to generate proofs for it reasonably on an average home computer.

42

4.3 Code generator

I implemented the code generator part of the tool in Kotlin. To load the BPMN models,
I wrote a BPMN interpreter. This interpreter loads the whole model into the classes I
wrote. These classes a shown in a UML class diagram in figure 4.2.

Each BPMN element (See section 3.2.1) has its class. They are derived from the abstract
class Event.

Elements in the model that are not events (like Messages, Message flows) also have their
classes. The generalisation of these elements and events is the Element abstract class.

The Model class is initialised with a BPMN file. It is responsible for parsing the model to
the correct classes.

After serialising the model, the generateZokratesCode() function generates the zkWK
program from the ZoKrates template files. First, the model is encoded in the way described
in section 3.3.4. Then it generates the code for calculating the state hashes (See section
3.3.6.1), checking the variable write permissions, ensuring exclusive gateway paths, and
verifying message sending(See section 3.3.6.2). Lastly, it saves the freshly generated code
to files.

4.4 Zokrates wrapper

ZoKrates is written in rust. It can be used through a CLI interface or with a javascript
library. Since most of the code I wrote is in Kotlin, I needed to find a way to interact with
ZoKrates.

My approach to this problem is simple: Download the Zokrates CLI tool and execute the
commands with a ProcessBuilder class. With this method, I can compile programs, do
the trusted setup, compute witnesses, generate proofs, export verifier smart contracts, and
verify proofs.

This makes it easy to integrate ZoKrates into a GUI application.

4.5 Smart contract implementation

To make my approach less dependent on one technology, I implemented the process man-
ager smart contract for two distributed ledger systems: Ethereum and Hyperledger Fabric.

4.5.1 EVM

The process manager smart contract (see section 3.4.3) is implemented in Solidity version
0.8.0. It is derived from a Verifier smart contract generated by ZoKrates.

Hash The hash of the current state is stored in the smart contract as a struct. This
struct contains eight uint-type variables, each holding 32 bytes of the hash. This struct is
also used for verifying zero-knowledge proofs.

43

Figure 4.2: Class diagram of the BPMN elements

Signature The signature of the previous and current state hash sign by the last acting
participant is stored as a struct in the smart contract. It has two fields: an array R with
two uint256 members and uint256 S. It represents an EdDSa signature.

Ciphertext The encrypted version of the current state is stored in the smart contract
as a string.

44

4.5.2 Hyperledger Fabric

ZoKrates can only generate smart contract verifiers in Solidity. Fortunately, Hyperledger
Fabric chaincodes run in standard docker containers and are written in traditional pro-
gramming languages like Java. This means I can use the same approach as in section
4.4.

The rest of the smart contract implementation is analogue to the Solidity one.

4.6 WFGUI

I made a GUI application called WFGUI (WorkFlow GUI) to fully integrate my approach
into a tool. I implemented it in Kotlin (as with the rest of the parts) with the TornadoFX
library (Kotlin wrapper for JavaFX).

The GUI itself is separated into three different tabs. One for modelling, one for testing,
and the last for deploying and operating.

4.6.1 Modeler tab

The modeling tab integrates the modeller described in section 4.1. It uses the web view
feature of JavaFX. Figure 4.3 shows the modeller in the GUI application.

Figure 4.3: Modeler in WFGUI

4.6.2 Testing tab

The testing tab serves two purposes. First, it can verify that a model can be used with
my program. It can generate and compile the Zokrates code from a model with a click of
a button. It can also do the trusted setup, and with a form, it can generate proofs (after
the setup). On this page, the user can also load a test case set, which can test different
scenarios in a batch. AA preview of this page is shown in figure 4.4.

45

Figure 4.4: Testing tab in WFGUI

4.6.3 Deployment and operation tab

This is the most critical tab out of all. It is responsible for generating the Zokrates code,
doing the trusted setup, creating, deploying the smart contract, and updating the state
on the blockchain.

The user first needs to open a BPMN model from the Files menu, while the tool auto-
matically generates the ZoKrates code in the background. The user can then decide to
deploy a new smart contract (after the trusted setup), or they can input an address of
a previously deployed smart contract. Either way, the program will monitor the current
state of the process on the blockchain and visualise it for the user.

The user can generate new zero-knowledge proofs in the sidebar, or they can use pre-
generated proofs from a drop-down menu. Before stepping the process execution, the user
can also choose which Ethereum address they want to use for calling the smart contract.
This is useful because participants can use different pseudo-anonymous identities for each
state change. Figure 4.5 shows an example screenshot of this page.

Figure 4.5: Deployment and Operation tab in WFGUI

46

4.6.4 Video presentation

A video demo presentation is available by clicking figure 4.6 or at this link1.

Figure 4.6: Demo presentation video

1https://youtu.be/MH3GrW4Jtwg

47

https://youtu.be/MH3GrW4Jtwg
https://youtu.be/MH3GrW4Jtwg
https://youtu.be/MH3GrW4Jtwg

Chapter 5

Results

In this chapter, I provide quantitative performance figures to demonstrate the feasibility
of the zkWF approach.

5.1 Simple & corner cases

This section reports on the performance figures for the earlier defined simple test cases.

5.1.1 Hardware used for testing

To run the test cases, I used my home desktop PC with the following specs:

• CPU: AMD Ryzen 7 2700 Processor

• RAM: 16 GB DDR4 memory

5.1.2 Software used for testing

To run each test scenario, I used my testing framework (section 3.8.1.3). To measure the
gas required to run on an Ethereum-compatible blockchain, I set up a private test network
using geth version 1.10.25.

5.1.3 Comparing test cases

Table 5.1 compares the test cases based on their sizes. These aspects ruffly measure the
complexity of each model. In the following sections, I want to find how the complexity of
a model is linked to compilation time, setup time(the time it takes to do the trusted setup
phase), proof creation time (the amount of time that is needed to produce a proof), and
gas usage on Ethereum.

48

Test case Vertices Edges Executable Size of P Test Scenarios
Test 1 5 4 3 3 3
Test 2 9 10 5 7 9
Test 3 8 8 4 4 4
Test 4 6 5 2 3 2
Test 5 14 12 10 10 10

Table 5.1: Compression of the test cases based on their sizes

5.1.4 Results

I ran all tests sequentially, and all test cases were successful. Table 5.2 show the timing
costs of the off-chain computations. The compilation and the setup phase are only executed
once. The table also shows the average proof creation time, the sum of computing the
witness and generating the proof. This shows that deploying a smart contract and stepping
the execution can be done in just a few minutes.

Test case Compilation time Setup time Average Proof creation
Test 1 27.22 s 129.58 s 55.0 s
Test 2 48.32 s 182.80 s 88.67 s
Test 3 28.55 s 129.69 s 53.40 s
Test 4 27.14 s 128.82 s 53.21 s
Test 5 30.74 s 133.44 s 54.10 s

Table 5.2: Off-chain computation timing results

Table 5.3 shows how the smart contract performs if deployed on an Ethereum-compatible
blockchain. The table demonstrates how much gas is used to deploy the smart contract
(one-time fee). It also describes how much gas is required to update the current state on
the blockchain.

Test case Deployment costs Average gas cost
Test 1 2,098,786 gas 490,507 gas
Test 2 2,098,990 gas 497,780 gas
Test 3 2,098,498 gas 493,705 gas
Test 4 2,078,071 gas 503,817 gas
Test 5 2,161,039 gas 491,783 gas

Table 5.3: Gas usage on Ethereum

5.2 Complex test

This section presents performance figures for the earlier introduced representative leasing
collaboration model.

49

5.2.1 Size of the model

Table 5.4 shows the size of my representative model. If we compare it to the previous
models (see table 5.1), it is about 5-6 times larger in size.

Test case Vertices Edges Executable Size of P Test Scenarios
Representative 68 69 50 54 52

Table 5.4: size of the representative model

5.2.2 Results

The ZoKrates code was compiled in 81.02 seconds, and the setup time was done in 187.33
seconds.

Table 5.5 demonstrates the sizes of the files resulting after the compilation and setup
phase.

File Size
Flattened code (out) 3.0 GB

Proving key (proving.key) 95 MB
Verification key (verification.key) 4.4 kB

Table 5.5: Resulted file sizes

5.2.2.1 Model execution

All of the tasks successfully prove that the whole model can be executed with this approach.

5.2.3 Proving time

The distribution of the witness computation times can be seen in figure 5.1. Figure 5.2
shows the distribution of proof generation times. Both of these are reasonably close to a
normal distribution. On average, the witness computation took 32.04 seconds, while the
proof generation took 90.43 seconds on average.

These calculation times are not drastically higher than with the smaller models. This
model is 5-6 times larger, but proofs only took 2.29 times more time. This proves that
this tool is still practical even with larger models.

50

Figure 5.1: Distribution of the witness computation time for the complex test

Figure 5.2: Distribution of the proof computation time for the complex test

5.2.4 Gas usage

The cost of deployment was costed 2,408,635 gas. I also measured the gas usage in each
test scenario on an Ethereum test network. The average step costs 548, 898 gas.

It is essential to point out that even though the model is 5-6 times larger than the smaller
models shown in table 5.1, the gas usage is only 11.90 per cent higher than the lowest in
previous steps.

This was expected, since the hashes, the signatures, and the proofs have a fixed length.
This means the only thing that drives gas usage higher in larger models is the encrypted
version of the current state.

5.3 Comparison between existing solutions

It is hard to compare this method to other approaches since this is the first one that uses
zero-knowledge proofs to hide the current state of the execution process. In theory, I could
compare it to Aivo et al. [2], but it uses a vastly different approach and tools, resulting
in an unfair comparison.

However, the Ethereum smart contracts’ gas usage can be compared to existing techniques.
The deployment cost is on par with or less than the existing solutions.

On the other hand, the cost of updating the state is significantly higher compared to
previous approaches like Chorchain [10] or Caterpillar [22]. Chorchain [10] uses about

51

92,905 gas on average for each message, while Caterpillar [22] requires similar amounts of
gas on average.

Unfortunately, this is due to the cost of verifying proof on-chain. Overcoming this issue
would be rather tricky since the verification smart contract ZoKrates generates uses the
pre-compiled smart contract built into Ethereum. In particular, a zkSNARK proof is
verified on-chain with about 500,000 gas units on average1. In theory, this scales with the
number of public inputs used for generating proofs, so reducing them would also decrease
the gas expense.

1See https://ethereum.org/en/zero-knowledge-proofs/#proof-verification-costs

52

https://ethereum.org/en/zero-knowledge-proofs/##proof-verification-costs

Chapter 6

Conclusion

I designed a protocol that allows the users to orchestrate business processes on multiple
blockchain systems without storing the current state and the logic of the execution on-
chain.

The protocol’s main component is a program written in ZoKrates. This program generates
zero-knowledge proofs for making steps the in the business process.

This protocol also contains a process manager smart contract that stores data on the
blockchain that is only meaningful for the participants. To update these, the participant
has to upload a valid zero-knowledge proof generated by my program.

I fully integrated this protocol into a tool. This tool includes a modeller, a participant-side
SDK, a wallet manager, and a simple visual interface.

I tested my approach with several test models and scenarios. These tests seem to show
that this approach is practical but has limitations. I see gas usage as the most significant
flaw this approach has. In the future, I want to work on reducing the limitations of this
approach. I want to remove some of the restrictions mentioned in section 3.6.1. This will
make creating models for this tool more accessible. Some mechanics such as loops are also
planned.

I also want to prove the practical feasibility of this business process orchestration approach
and rigorously prove its correctness. There are different ways to do this; some of these
were mentioned in section 3.8.2.

I also plan to fully integrate Hyperledger Fabric into my current tool to make deployment
and operation more accessible on other distributed ledger systems.

I would also love to reduce the gas usage of this approach on Ethereum to make transactions
cheaper. This would be possible by generating proofs for making several steps in a batch.

53

Bibliography

[1] Abid, Amal ; Cheikhrouhou, Saoussen ; Jmaiel, Mohamed: Modelling and Ex-
ecuting Time-Aware Processes in Trustless Blockchain Environment. In: Kallel,
Slim (Hrsg.) ; Cuppens, Frédéric (Hrsg.) ; Cuppens-Boulahia, Nora (Hrsg.) ;
Hadj Kacem, Ahmed (Hrsg.): Risks and Security of Internet and Systems. Cham :
Springer International Publishing, 2020 (Lecture Notes in Computer Science),
S. 325–341. – ISBN 978-3-030-41568-6

[2] Aivo, Toots ; Peeter, Laud: Zero-Knowledge Proofs for Business Processes.

[3] Babkin, Eduard ; Komleva, Nataliya: Model-Driven Liaison of Organization Model-
ing Approaches and Blockchain Platforms. In: Aveiro, David (Hrsg.) ; Guizzardi,
Giancarlo (Hrsg.) ; Borbinha, José (Hrsg.): Advances in Enterprise Engineering
XIII. Cham : Springer International Publishing, 2020 (Lecture Notes in Business
Information Processing), S. 167–186. – ISBN 978-3-030-37933-9

[4] Ben-Sasson, Eli ; Bentov, Iddo ; Horesh, Yinon ; Riabzev, Michael: Scalable,
transparent, and post-quantum secure computational integrity.

[5] Ben-Sasson, Eli ; Bentov, Iddo ; Horesh, Yinon ; Riabzev, Michael: Scalable,
transparent, and post-quantum secure computational integrity.

[6] Boubeta-Puig, Juan ; Rosa-Bilbao, Jesús ; Mendling, Jan: CEPchain: A graph-
ical model-driven solution for integrating complex event processing and blockchain.
In: Expert Systems with Applications 184 (2021), Dec, S. 115578. – ISSN 0957-4174

[7] Chinosi, Michele ; Trombetta, Alberto: BPMN: An introduction to the standard.
In: Computer Standards Interfaces 34 (2012), Nr. 1, S. 124–134. – URL https:
//www.sciencedirect.com/science/article/pii/S0920548911000766. – ISSN
0920-5489

[8] Corradini, Flavio ; Marcelletti, Alessandro ; Morichetta, Andrea ; Polini,
Andrea ; Re, Barbara ; Scala, Emanuele ; Tiezzi, Francesco: Model-driven engi-
neering for multi-party business processes on multiple blockchains. In: Blockchain:
Research and Applications 2 (2021), Sep, Nr. 3, S. 100018. – ISSN 2096-7209

[9] Corradini, Flavio ; Marcelletti, Alessandro ; Morichetta, Andrea ; Polini,
Andrea ; Re, Barbara ; Tiezzi, Francesco: Flexible Execution of Multi-Party Busi-
ness Processes on Blockchain. In: 2022 IEEE/ACM 5th International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB), May 2022,
S. 25–32

[10] Corradini, Flavio ; Marcelletti, Alessandro ; Morichetta, Andrea ; Re, Bar-
bara ; Tiezzi, Francesco: ChorChain: A Model-Driven Framework for Choreography-
Based Systems Using Blockchain.

54

https://www.sciencedirect.com/science/article/pii/S0920548911000766
https://www.sciencedirect.com/science/article/pii/S0920548911000766

[11] Eberhardt, Jacob ; Tai, Stefan: ZoKrates - Scalable Privacy-Preserving Off-
Chain Computations. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data), Jul 2018, S. 1084–1091

[12] Garamvölgyi, Péter ; Kocsis, Imre ; Gehl, Benjámin ; Klenik, Attila: To-
wards Model-Driven Engineering of Smart Contracts for Cyber-Physical Systems. In:
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), Jun 2018, S. 134–139. – ISSN 2325-6664

[13] Goldreich, Oded ; Micali, Silvio ; Wigderson, Avi: Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. In: Journal
of the ACM 38 (1991), Jul, Nr. 3, S. 690–728. – ISSN 0004-5411, 1557-735X

[14] Groth, Jens: On the Size of Pairing-based Non-interactive Arguments. (2016). –
URL https://eprint.iacr.org/2016/260. – Report Number: 260

[15] Groth, Jens ; Maller, Mary: Snarky Signatures: Minimal Signatures of Knowl-
edge from Simulation-Extractable SNARKs. (2017). – URL https://eprint.iacr.
org/2017/540. – Report Number: 540

[16] Group, Object M.: Business Process Model and Notation (BPMN), Version 2.0.

[17] Hamdaqa, Mohammad ; Metz, Lucas Alberto P. ; Qasse, Ilham: iContractML: A
Domain-Specific Language for Modeling and Deploying Smart Contracts onto Multi-
ple Blockchain Platforms. In: Proceedings of the 12th System Analysis and Modelling
Conference. New York, NY, USA : Association for Computing Machinery, Oct 2020
(SAM ’20), S. 34–43. – URL https://doi.org/10.1145/3419804.3421454. – ISBN
978-1-4503-8140-6

[18] Hopwood, Daira ; Bowe, Sean ; Hornby, Taylor ; Wilcox, Nathan: Zcash
Protocol Specification, Version 2022.3.7 [NU5].

[19] Hornáčková, Barbora ; Skotnica, Marek ; Pergl, Robert: Exploring a Role of
Blockchain Smart Contracts in Enterprise Engineering. In: Aveiro, David (Hrsg.) ;
Guizzardi, Giancarlo (Hrsg.) ; Guerreiro, Sérgio (Hrsg.) ; Guédria, Wided
(Hrsg.): Advances in Enterprise Engineering XII. Cham : Springer International
Publishing, 2019 (Lecture Notes in Business Information Processing), S. 113–127. –
ISBN 978-3-030-06097-8

[20] Ladleif, Jan ; Weske, Mathias ; Weber, Ingo: Modeling and Enforcing
Blockchain-Based Choreographies. In: Hildebrandt, Thomas (Hrsg.) ; Don-
gen, Boudewijn F. van (Hrsg.) ; Röglinger, Maximilian (Hrsg.) ; Mendling, Jan
(Hrsg.): Business Process Management. Cham : Springer International Publishing,
2019 (Lecture Notes in Computer Science), S. 69–85. – ISBN 978-3-030-26619-6

[21] Lu, Qinghua ; Binh Tran, An ; Weber, Ingo ; O’Connor, Hugo ; Rimba, Paul ;
Xu, Xiwei ; Staples, Mark ; Zhu, Liming ; Jeffery, Ross: Integrated model-driven
engineering of blockchain applications for business processes and asset management.
In: Software: Practice and Experience 51 (2021), Nr. 5, S. 1059–1079. – ISSN 1097-
024X

[22] López-Pintado, Orlenys ; García-Bañuelos, Luciano ; Dumas, Marlon ; Weber,
Ingo ; Ponomarev, Alexander: Caterpillar: A business process execution engine on

55

https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2017/540
https://eprint.iacr.org/2017/540
https://doi.org/10.1145/3419804.3421454

the Ethereum blockchain. In: Software: Practice and Experience 49 (2019), Nr. 7,
S. 1162–1193. – ISSN 1097-024X

[23] Marchesi, Michele ; Marchesi, Lodovica ; Tonelli, Roberto: An Agile Soft-
ware Engineering Method to Design Blockchain Applications. In: Proceedings of
the 14th Central and Eastern European Software Engineering Conference Russia on
ZZZ - CEE-SECR ’18. Moscow, Russian Federation : ACM Press, 2018, S. 1–8.
– URL http://dl.acm.org/citation.cfm?doid=3290621.3290627. – ISBN 978-1-
4503-6176-7

[24] Mavridou, Anastasia ; Laszka, Aron: Designing Secure Ethereum Smart Con-
tracts: A Finite State Machine Based Approach. In: Meiklejohn, Sarah (Hrsg.) ;
Sako, Kazue (Hrsg.): Financial Cryptography and Data Security. Berlin, Heidel-
berg : Springer, 2018 (Lecture Notes in Computer Science), S. 523–540. – ISBN
978-3-662-58387-6

[25] Mendling, Jan ; Weber, Ingo ; Aalst, Wil Van D. ; Brocke, Jan V. ; Cabanil-
las, Cristina ; Daniel, Florian ; Debois, Søren ; Ciccio, Claudio D. ; Dumas, Mar-
lon ; Dustdar, Schahram ; Gal, Avigdor ; García-Bañuelos, Luciano ; Gover-
natori, Guido ; Hull, Richard ; Rosa, Marcello L. ; Leopold, Henrik ; Leymann,
Frank ; Recker, Jan ; Reichert, Manfred ; Reijers, Hajo A. ; Rinderle-Ma,
Stefanie ; Solti, Andreas ; Rosemann, Michael ; Schulte, Stefan ; Singh, Munin-
dar P. ; Slaats, Tijs ; Staples, Mark ; Weber, Barbara ; Weidlich, Matthias ;
Weske, Mathias ; Xu, Xiwei ; Zhu, Liming: Blockchains for Business Process Man-
agement - Challenges and Opportunities. In: ACM Trans. Manage. Inf. Syst. 9
(2018), feb, Nr. 1. – URL https://doi.org/10.1145/3183367. – ISSN 2158-656X

[26] Mercenne, Lucie ; Brousmiche, Kei-Leo ; Hamida, Elyes B.: Blockchain Stu-
dio: A Role-Based Business Workflows Management System. In: 2018 IEEE 9th
Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), Nov 2018, S. 1215–1220

[27] Pourmirza, Shaya ; Peters, Sander ; Dijkman, Remco ; Grefen, Paul: A system-
atic literature review on the architecture of business process management systems.
In: Information Systems 66 (2017), S. 43–58. – URL https://www.sciencedirect.
com/science/article/pii/S0306437917300248. – ISSN 0306-4379

[28] Rocha, Henrique ; Ducasse, Stéphane: Preliminary Steps Towards Modeling
Blockchain Oriented Software. In: 2018 IEEE/ACM 1st International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB), May 2018,
S. 52–57

[29] Silva, Diogo ; Guerreiro, Sérgio ; Sousa, Pedro: Decentralized Enforcement of
Business Process Control Using Blockchain. In: Aveiro, David (Hrsg.) ; Guizzardi,
Giancarlo (Hrsg.) ; Guerreiro, Sérgio (Hrsg.) ; Guédria, Wided (Hrsg.): Advances
in Enterprise Engineering XII. Cham : Springer International Publishing, 2019 (Lec-
ture Notes in Business Information Processing), S. 69–87. – ISBN 978-3-030-06097-8

[30] Van Der Aalst, Wil M. ; La Rosa, Marcello ; Santoro, Flávia M.: Business
process management. In: Business & Information Systems Engineering 58 (2016),
Nr. 1, S. 1–6

[31] Weber, Ingo ; Xu, Xiwei ; Riveret, Régis ; Governatori, Guido ; Ponomarev,
Alexander ; Mendling, Jan: Untrusted Business Process Monitoring and Execution

56

http://dl.acm.org/citation.cfm?doid=3290621.3290627
https://doi.org/10.1145/3183367
https://www.sciencedirect.com/science/article/pii/S0306437917300248
https://www.sciencedirect.com/science/article/pii/S0306437917300248

Using Blockchain. In: La Rosa, Marcello (Hrsg.) ; Loos, Peter (Hrsg.) ; Pas-
tor, Oscar (Hrsg.): Business Process Management. Cham : Springer International
Publishing, 2016 (Lecture Notes in Computer Science), S. 329–347. – ISBN 978-3-
319-45348-4

[32] ZKProof: ZKProof Community Reference.

57

ZoKrates template files

A.1 State vector checking

import "hashes/sha256/512bitPacked" as sha256packed
import "hashes/sha256/512bit" as sha256h
from "ecc/babyjubjubParams" import BabyJubJubParams
import "signatures/verifyEddsa.zok" as verifyEddsa
import "ecc/babyjubjubParams.zok" as context
import "utils/casts/u32_to_field.zok" as u32_to_field
import "utils/casts/field_to_u32.zok" as field_to_u32

struct signed_field {
field value
bool positive

}

def signed_field_add(signed_field a,signed_field b) -> signed_field:
field value = if a.positive == b.positive then a.value + b.value else if a.value > b.value then a.

value - b.value else b.value - a.value fi fi
bool positive = if a.positive == b.positive then a.positive else if a.value > b.value && a.positive

|| b.value > a.value && b.positive then true else false fi fi
return signed_field{value: value, positive: positive}

def signed_field_sub(signed_field a,signed_field b) -> signed_field:
signed_field temp = signed_field{value: b.value,positive: !b.positive}
return signed_field_add(a,temp)

def signed_field_graterThan(signed_field a,signed_field b) -> bool:
signed_field temp = signed_field_sub(a,b)
return temp.positive

def signed_field_lessThan(signed_field a,signed_field b) -> bool:
return signed_field_graterThan(b,a)

def signed_field_graterThanZero(signed_field a) -> bool:
return a.value > 0 && a.positive

def signed_field_lessThanZero(signed_field a) -> bool:
return a.value > 0 && !a.positive

def signed_field_equal(signed_field a,signed_field b) -> bool:
return a.value == b.value && b.positive == a.positive

def signed_field_create(field v,bool p) -> signed_field:
return signed_field{value: v,positive: p}

def isNothing(signed_field[2] a) -> bool:
return a[0].value == 0 && a[1].value == 1 && !a[1].positive

def Li_graterThan(signed_field[3] a,signed_field[3] b) -> bool :
return if signed_field_lessThan(a[1],b[1]) && !isNothing(a[0..2]) && !isNothing(b[0..2])||

signed_field_equal(a[1],b[1]) && signed_field_lessThan(a[2],b[2]) && !isNothing(a[0..2]) && !
isNothing(b[0..2]) || isNothing(a[0..2]) && isNothing(b[0..2]) && signed_field_lessThan(a[2],b
[2]) || !isNothing(a[0..2]) && isNothing(b[0..2]) then true else false fi

const signed_field signed_field_zero = signed_field{value: 0, positive:true}
const signed_field signed_field_one = signed_field{value: 1, positive:true}

58

const signed_field signed_field_negative_one = signed_field{value: 1, positive:false}
const signed_field[2] nothing = [signed_field{value: 0, positive:true},signed_field{value: 1,

positive:false}]

[[!!!REPLACE THIS WITH CONSTANTS!!!]]

def main(private u32[len_V] s_curr,private u32[len_V] s_next) -> u32[4]:
signed_field[3][2] changes = [nothing;3]
u32[4] chres = [0;4]
u32 change_count = 0
u32 pos = 0
for u32 i in 0..len_V do

assert(s_curr[i] <= 2 && s_next[i] <= 2)
endfor

for u32 i in 0..len_V do
u32 change_id = if change_count <= 2 then change_count else 0 fi
changes[change_id] = if s_curr[i] == s_next[i] then\
changes[change_id] \
else if s_curr[i] == 1 && s_next[i] == 2 then\
[signed_field{value: 1,positive: false},signed_field{value:u32_to_field(i),positive:true}]\
else if s_curr[i] == 0 && s_next[i] == 1 then \
[signed_field{value: 1,positive: true},signed_field{value: u32_to_field(i),positive:true}] \
else if s_curr[i] == 0 && s_next[i] == 2 then \
[signed_field{value: 1,positive: false},signed_field{value: u32_to_field(i),positive:true}] \
else \
[signed_field{value: 1,positive: false},signed_field{value: 1,positive:false}] \
fi fi fi fi
pos = if s_curr[i] != s_next[i] && !changes[change_id][0].positive then i else pos fi
chres[change_id] = if s_curr[i] != s_next[i] then i else chres[change_id] fi
change_count = if s_curr[i] == s_next[i] then change_count else change_count + 1 fi

endfor
chres[3] = pos

assert(change_count != 1 || pos != 0) // New tokens cannot be created by calling the start event
again...

assert(change_count <= 3)
bool result = if change_count == 0 then true else false fi
for u32 i in 0..len_w do

bool good = true
for u32 j in 0..3 do

bool pair_found = false
for u32 k in 0..3 do

pair_found = if signed_field_equal(p[i][j][0],changes[k][0]) && signed_field_equal(p[i][j
][1],changes[k][1]) then true else pair_found fi

endfor
good = if pair_found then good else false fi

endfor
result = if good then true else result fi

endfor

for u32 i in 0..len_w do
bool good = if change_count == 1 then true else false fi
u32 minusCount = 0
bool contains = false
u32 other = 0
for u32 j in 0..3 do

minusCount = if signed_field_equal(p[i][j][0],signed_field_create(1,false)) then minusCount + 1
else minusCount fi
contains = if signed_field_equal(p[i][j][0],changes[0][0]) && signed_field_equal(p[i][j][1],

changes[0][1]) then true else contains fi
other = if signed_field_equal(p[i][j][0],changes[0][0]) && !signed_field_equal(p[i][j][1],

changes[0][1]) then field_to_u32(p[i][j][1].value) else other fi
endfor
good = if minusCount == 2 && contains && s_next[other] != 2 then good else false fi
result = if good then true else result fi

endfor

assert(result)
return chres

59

Listing A.1: ZoKrate templates code to prove that a state vector change is valid

A.2 Hasing ZoKrates code template

import "hashes/sha256/sha256.zok" as sha256h
import "utils/casts/bool_256_to_u32_8.zok" as bool_to_u32
import "utils/pack/u32/nonStrictUnpack256.zok" as field_to_u32

[[!!!REPLACE THIS WITH CONSTANTS!!!]]

struct variables {
[[!!!REPLACE THIS WITH VARIABLES!!!]]
}

struct message_hashes {
[[!!!REPLACE THIS WITH MESSAGES!!!]]
}

const u32 hash_in_len = 8

def main(u32[len_V] s_n,u32 random,variables v,message_hashes msg) -> u32[hash_in_len]:
u32[8] hash = [[!!! REPLACE THIS WITH HASH FUNCTION !!!]]
return hash

Listing A.2: The ZoKrates template code for hashing

A.3 The root ZoKrates code

import "hashes/sha256/sha256.zok" as sha256h
import "utils/casts/bool_256_to_u32_8.zok" as bool_to_u32
import "utils/pack/u32/nonStrictUnpack256.zok" as field_to_u32
import "ecc/babyjubjubParams.code" as context
from "ecc/babyjubjubParams" import BabyJubJubParams
import "signatures/verifyEddsa.zok" as verifyEddsa
import "ecc/proofOfOwnership.zok" as proofOfOwnership
import "./stateChange.zok" as stateChange

[[!!!REPLACE THIS WITH CONSTANTS!!!]]

struct variables {
[[!!!REPLACE THIS WITH VARIABLES!!!]]

}

struct message_hashes {
[[!!!REPLACE THIS WITH MESSAGES!!!]]

}

const u32 hash_in_len = 8

def sha256State(u32[len_V] s_n,u32 random,variables v,message_hashes msg) -> u32[hash_in_len]:
u32[8] hash = [[!!! REPLACE THIS WITH HASH FUNCTION !!!]]
return hash

def main(public u32[8] h_s_curr,private u32[len_V] s_curr,private u32 r_curr,private variables
v_curr,private message_hashes msg_curr,private u32[len_V] s_next,private u32 r_next,private
variables v_next,private message_hashes msg_next,field[2] R,field S,private field[2] A,private
field sk) -> u32[8]:

assert(r_curr != r_next)
u32[8] h_curr = sha256State(s_curr,r_curr,v_curr,msg_curr)
assert(h_s_curr == h_curr)

60

//bool b = if s_curr == [0, 0, 1] then s_next == [0, 0, 0] || s_next == [0, 0, 1] else if s_curr
== [1, 0, 0] then s_next == [0, 1, 0] || s_next == [1, 0, 0] else if s_curr == [0, 1, 0] then
s_next == [0,0,1] || s_next == [0, 1, 0] else false fi fi fi

u32[4] changes = stateChange(s_curr,s_next)
u32 state = changes[3]
[[!!! REPLACE THIS WITH HASH VARIABLE ASSERTION !!!]]
// Itt a trace már biztosan helyes
BabyJubJubParams context = context()
field[2] pk = keys[state]
assert(pk != [0,0])
assert(A == pk || changes == [0;4])
u32[8] result = sha256State(s_next,r_next,v_next,msg_next)
bool isVerified = proofOfOwnership(A,sk,context) && verifyEddsa(R, S, A, h_curr, result, context)
assert(isVerified)
return result

Listing A.3: The root ZoKrates template code of this paper

61

	Kivonat
	Abstract
	Introduction
	Background
	Business process modelling with BPMN
	Blockchain-based process orchestration
	Caterpillar
	Lorikeet
	Chorchain

	Privacy on blockchains, in general
	Zero-knowledge proofs
	Ring signatures
	Mixing

	Zero-Knowledge Proofs
	Definition
	A simple example
	Constructions
	zk-SNARK
	zk-STARK

	Zero-knowledge proofs on blockchains
	Zcash
	Rollup solutions
	Baseline protocol

	Zero-knowledge proof development tools
	libsnark
	ZoKrates
	Cairo
	zkEVM

	Zero-knowledge proofs for business processes
	Takeaway

	The zkWF approach
	High-level overview
	Modeling
	BPMN Modeling elements
	Extended attributes

	zkWF program design
	Model definition
	Process state definition
	Proving scheme
	Encoding the model
	ZKP framework
	BPMN state change validity check
	Checking the supplied hash
	Proving that a state vector update is valid
	Authorisation

	zkWF protocol design
	Security assumptions
	Architecture overview
	Process manager smart contract design

	Security guarantees
	Limitations
	Limitations of BPMN models
	Limitations of the proving scheme

	Deployment and operation
	Choosing a distributed ledger
	Deploying the smart-contract
	Stepping the execution

	Testing
	Test cases
	Simple & corner cases
	Representative test
	Testing framework

	Future ideas for testing

	Implementation
	Modeller
	zkWF implementation
	ZKP framework
	Zokrates implementation
	Files
	Checking the supplied hash
	Proving that a state update is valid
	Authorisation
	Verification of an encrypted ciphertext

	Code generator
	Zokrates wrapper
	Smart contract implementation
	EVM
	Hyperledger Fabric

	WFGUI
	Modeler tab
	Testing tab
	Deployment and operation tab
	Video presentation

	Results
	Simple & corner cases
	Hardware used for testing
	Software used for testing
	Comparing test cases
	Results

	Complex test
	Size of the model
	Results
	Model execution

	Proving time
	Gas usage

	Comparison between existing solutions

	Conclusion
	Appendix
	State vector checking
	Hasing ZoKrates code template
	The root ZoKrates code

