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Kivonat

A modellvezérelt fejlesztési folyamatban a formális verifikáció korai visszacsatolást tud
adni a fejlesztés alatt álló rendszer helyességéről. A formális módszerek gyakorlati al-
kalmazását azonban számos akadály hátráltatja. Egyrészt a mérnöki modellek általában
magasabb szintű modellezési nyelveken vannak megfogalmazva, míg a formális módszerek
alacsony szintű matematikai formalizmusokon képesek működni. Másrészt a verifikációs al-
goritmusok komoly erőforrásigénnyel rendelkeznek, főleg a komplexebb mérnöki modellek
esetében. A Theta egy általános, konfigurálható verifikációs keretrendszer, ami ezeket a ki-
hívásokat különböző alacsony szintű formalizmusok és hatékony, absztrakcióalapú algorit-
musok segítségével igyekszik leküzdeni. A létező formalizmusok azonban általánosságban
vagy túlságosan alacsony szintűek vagy túlságosan domén specifikusak a modellvezérelt
fejlesztéshez.

Ebben a dolgozatban bemutatok egy új köztes formalizmust, a kiterjesztett szimbo-
likus tranzíciós rendszereket (eXtended Symbolic Transition System, XSTS). Az XSTS
formalizmus magasabb szintű nyelvi elemeket, illetve egy szöveges reprezentációt kínál a
mérnöki modellek könnyebb transzformációja érdekében. Ezek mellett tiszta és jól definiált
szemantikával rendelkezik különböző absztrakt domének felett és alkalmazkodik a létező
verifikációs algoritmusok interfészéhez. Továbbá XSTS specifikus algoritmikus kiegészíté-
seket és stratégiákat is megalkottam a teljesítmény javítása érdekében.

A munkám integrálásra került a Gamma modellező keretrendszerbe, lehetővé téve,
hogy megközelítésemet ipari partnerek által biztosított valós példákon szisztematikusan ki-
értékeljem. Az eredmények rávilágítanak a különböző algoritmuskonfigurációk erősségeire
és gyengeségeire, és igazolják az XSTS formalizmus alkalmazhatóságát és hatékonyságát.
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Abstract

In a model-driven development workflow, formal verification can give early feedback on
the correctness of the system under development. However, formal methods face various
challenges in practice. First, engineering models are typically developed in higher-level
modeling languages, whereas formal methods usually operate on low-level mathemati-
cal formalisms. Second, verification algorithms are resource-intensive, especially on com-
plex engineering models. Theta is a generic and configurable verification framework that
aims to tackle these challenges by providing different low-level formalisms and efficient,
abstraction-based algorithms. However, existing formalisms are either too low-level or
domain-specific for model-driven development in general.

In this work I propose a novel intermediate representation, the eXtended Symbolic Tran-
sition System (XSTS) formalism. The XSTS formalism offers higher-level constructs and
a textual domain-specific language for easier translation from engineering models. In the
meantime, it also has clear and well-defined semantics under different abstract domains,
and adapts a standard interpreter interface towards existing verification algorithms. Fur-
thermore, I developed XSTS-specific extensions and strategies that can improve the per-
formance.

My work was integrated into the Gamma Statechart Composition Framework, allowing
me to perform an experimental evaluation on use cases provided by industrial partners. I
evaluated the strengths and weaknesses of the different algorithm configurations and the
results confirmed that the XSTS formalism is both effective and efficient.
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Chapter 1

Introduction

Model-driven development allows early evaluation and feedback about different properties
of the system under development. This is especially important for critical domains (e.g.,
transportation, industrial controllers) as an error can lead to serious damages. Formal
verification can detect errors or rigorously prove correctness with respect to interesting
properties, typically described by assertions or the reachability of an erroneous state.
When applied in early phases of development, this can lead to increased confidence in
the system as well as reduced implementation costs. Engineering models are typically
developed in higher level modeling languages, such as hierarchical statecharts. In contrast,
formal methods are available on low-level mathematical formalisms with clear semantics,
e.g., logical formulas or automata. Bridging this gap is a key to applying verification for
real-world engineering problems.

Formal verification tasks are computationally hard and usually come with heavy time and
memory consumption. The systematic exploration of all possible states often makes the
verification of even simple models impossible in practice (often termed “state space explo-
sion”). Abstraction-based methods, such as CEGAR (counterexample-guided abstraction
refinement) [14] tackle state space explosion by performing the verification task on sim-
pler, abstract models, which are constructed by leaving out unnecessary details about the
behavior of the system. The appropriate precision of abstraction is automatically reached
with iterative refinements. Theta [42] is a generic and configurable model checking frame-
work, which supports different low-level models using CEGAR-based algorithms. However,
the existing formalisms are not sufficient for high-level engineering application. Symbolic
transition systems (STS) [23] are too low-level and control-flow automata (CFA) [22] are
too software specific.

In this work I propose the novel XSTS - eXtended Symbolic Transition System - formalism
for the Theta framework. The new XSTS formalism serves as an intermediate language
between low-level logic solvers and high-level engineering models. I define their formal
semantics to bridge the semantic gap between efficient symbolic model checkers and high-
level engineering models. I implemented the new formalism in Theta, along with a textual
domain-specific language for easy model parsing. I adapted the existing abstraction-
based algorithms of Theta to the new XSTS formalism and extended the framework with
additional core components required for complete integration. Furthermore, I extended
the algorithms and introduced algorithmic improvements to exploit the constructs of the
XSTS language. My contributions form an integral part of the framework since its v2.0.0
release.
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In addition, I also cooperated with the developers of the Gamma Statechart Composition
Framework [38] who implemented a translation from their statechart language to the
XSTS formalism. This way we achieved an automated, end-to-end verification workflow
between the two tools, completely hiding the details of formal methods from the end-user.
I demonstrated the applicability of my formalism and algorithms on real-world examples
provided by industrial partners. I conducted a systematic and exhaustive benchmarking
campaign with numerous different input models and algorithm configurations to identify
the strengths and weaknesses of the approach. Results confirm that the XSTS formalism
and the related algorithms are both effective and efficient.
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Chapter 2

Background

In this chapter I address the theoretical foundations of this work. In Section 2.1 I intro-
duce model checking, which is a mathematically rigorous verification method. After this
I present the relevant modeling formalisms in Section 2.2. Symbolic transition systems
(Section 2.2.1) offer a compact way of representing transition systems, while statecharts
(Section 2.2.2) are a high-level formalism that can conveniently model reactive systems.
Section 2.3 presents abstraction-based model checking and an efficient model checking al-
gorithm based on abstraction, namely counterexample-guided abstraction refinement (CE-
GAR). Section 2.4 briefly presents Theta, the model checking framework I integrated my
work into, while Section 2.5 contains a short introduction to the related work in this area.

In my work, I will be describing states and transitions of a system using first-order logic
(FOL) formulas. I assume that there is an SMT (satisfiability modulo theories) solver [11]
available (such as [18]) that can answer various queries, e.g., is a formula satisfiable, does
a formula imply an other one, etc. I use the following notation [22] from first-order logic
(FOL) throughout my work. Given a set of variables V = {v1, v2, ...} let V ′ = {v′1, v′2, ...}
and V 〈i〉 = {v〈i〉1 , v

〈i〉
2 , ...} represent the primed and indexed version of the variables. I

use V ′ to refer to successor states, i.e. the values of the variables in the successor state
of a transition. I use V 〈i〉 for paths, in each state of a path the variables appear with a
different index. Given an expression ϕ over V ∪ V ′, let ϕ〈i〉 denote the indexed expression
obtained by replacing V and V ′ with V 〈i〉 and V 〈i+1〉 respectively in ϕ. For example if ϕ
is x′ = x+ 1, then ϕ〈5〉 is x6 = x5 + 1. Given an expression ϕ let var(ϕ) denote the set of
variables appearing in ϕ, e.g., var(x < y + 2) = {x, y}.

2.1 Model checking

Formal verification consists of numerous methods for proving the correctness of systems
with mathematical certainty, one of which is model checking [16]. It aims to exhaustively
analyze all possible behaviours (states and transitions, i.e., the state space) of a system
to check if it meets a given correctness specification. Formally, the purpose of model
checking is the following: given a model M and a specification ϕ, determine whether or
not the behavior of M meets the specification ϕ. This is illustrated by Fig. 2.1. The
result of model checking can be either safe if the specification holds, or unsafe (and a
counterexample) if it does not.

One of the biggest challenges of model checking is dealing with the problem of state
space explosion [15]. As the number of state variables in a system increases, the size of
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Figure 2.1: An illustration of model checking.

the system’s state space grows exponentially (or even at a higher rate), which makes its
explicit exploration impossible in practice. Various approaches have been developed to
tackle this problem, including bounded model checking [12], symbolic model checking [13]
and abstraction [14].

The target of model checking can be different kinds of properties. In this thesis I focus on
reachability analysis, in which case the safety property ϕ describes a logical invariant that
a correct model cannot violate. For example if the property ϕ is x > 0, then the model
checking task is to decide whether a state of the system is reachable, where x > 0 does
not hold. A counterexample in this case would be a path starting in the initial state and
ending in said erroneous state.

2.2 Modeling formalisms

In order to be able to reason about the correctness of a system using formal verification
techniques, the system needs to be modeled with mathematical precision [37]. A model
can be called formal if it has a well-defined syntax and precise semantics, usually relying
on mathematical concepts.

Choosing a suitable level of abstraction for the model is a crucial question when designing a
formal verification method. The lowest-level formalisms used in model checking are Kripke
structures [31], which are directed graphs with their states labeled. In Kripke structures,
all states and transitions of a system are explicitly represented in a graph. They aren’t
generally used to model systems directly, but rather as a mathematical formalization of
the state space of the verified system.

Model checkers usually operate on intermediate-level languages like control flow automata
(CFA) [7], symbolic transition systems (STS) [23], or the extended symbolic transition
system formalism presented in this work. These models use varying levels of abstraction
and different constructs like FOL formulas or statements to encode the possible states
of the system in a compact, symbolic manner, while being low-level enough to be easily
verifiable using satisfiability modulo theory (SMT) [3] solvers. These formalisms are used
as inputs of model checkers, but generally not as primary development languages.

High-level models allow engineers to model more efficiently by offering high-level constructs
to abstract away less important details. These formalisms are often domain-specific in
order to allow engineers and developers to use the language most suited for their domain.
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Some examples of these models are programming languages (e.g., C) or statecharts [25],
which are widely used by engineers. These higher level models can be transformed to
lower-level ones, enabling efficient lower-level algorithms to be used when verifying them.

2.2.1 Symbolic transition systems

Symbolic transition systems (STS) [23] offer a compact way of representing the set of
states, transitions and initial states using variables and FOL formulas. This formalism
provides a solid ground for the introduction of the CEGAR algorithm in Section 2.3.

Definition 1 (Symbolic transition system). A symbolic transition system is a tuple
STS = (V,Tran, Init), where:

• V = {v1, v2, ..., vn} is the set of variables with domains Dv1 , Dv2 , ..., Dvn ;

• Tran is a FOL formula over V ∪ V ′, representing the transition relation;

• Init is a FOL formula over V, representing the initial states. �

A concrete state c ∈ Dv1 × Dv2 × . . . × Dvn is an assignment of the variables. Thus, c
can also be denoted by enumerating the values of the variables, i.e., c = (d1, d2, . . . , dn),
where di ∈ Dvi . In this work I focus on Boolean and integer variables, but the presented
approaches can work on any type as long as the underlying SMT solver supports it. Given
a FOL formula ϕ over the variables V let c |= ϕ denote, that assigning the variables in ϕ
with the values of c evaluates to true. Analogously, let c 6|= ϕ denote that ϕ evaluates to
false.

The state space (C,R, I) of a symbolic transition system can be obtained from a symbolic
transition system STS = (V,Tran, Init) in the following way:

• The set of concrete states C is defined by the domains Dv1 , Dv2 , ..., Dvn in the follow-
ing way: C ⊆ Dv1×Dv2×...×Dvn . Informally, C is the set of all possible assignments
of the variables, e.g., if V = {x, y} then a possible state c is (x = 0, y = 1), or in
short, (0, 1).

• The set of transitions R is defined by Tran. In the transition formula, variables have
a non-primed (v1, v2, ..., vn) and a primed (v′1, v′2, ..., v′n) version, corresponding to
the actual and successor states respectively. R is then defined in the following way:
R = {(c, c′) ∈ C × C | (c, c′) |= Tran}. Informally, c′ is a successor of c if assigning
values from c to the non-primed variables and values from c′ to the primed variables
evaluates to true. For example if Tran is x′ = x+ 1∧ y′ = y then (x = 1, y = 0) is a
successor of (x = 0, y = 0).

• Finally, the set of initial states I is defined by Init in the following way: I = {c ∈
C | c |= Init}. Informally, I is the subset of C for which the initial formula holds.
For example if V = {x, y}, and the initial formula Init is x = y, then I contains all
states in which x equals y, i.e. (x = 1, y = 1), (x = 2, y = 2), (x = 3, y = 3), . . ..

2.2.2 Statecharts

Reactive systems appear everywhere in our daily lives: in operating systems, avionics
systems, ATMs or even microwave ovens. As these examples show, reactive systems fre-
quently appear in areas, where safety-critical operation is crucial, as even the slightest
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Figure 2.2: The statechart model of a spacecraft component from [29].

misbehaviour can have catastrophic consequences. This makes the verification of these
systems a crucial part of their design process.

The defining characteristic of reactive systems is their event-driven nature, which means
that they continuously receive external stimuli (events), based on which they change their
internal state and possibly react with some output [24]. Reactive systems can be verified
using model checking techniques if they are represented by mathematically precise models.
Statecharts [25] are a popular and intuitive language to capture the behaviour of reactive
systems [29, 34, 41], and are at the same time formal and rigorous. Statecharts are an
extension of finite state machines, introducing hierarchical state-refinement, orthogonality
and broadcast communication. These advanced constructs make statecharts easy to use
for engineers, but lead to the formal verification process being challenging.

Figure 2.2 from [29] shows the SysML1 statechart representation of a spacecraft component
(a larger version of the same figure is included in Appendix A.1 for better readability).
The spacecraft can receive a Ping signal from the ground to start sending data in packets.
The data transmission consumes battery power, and if the battery level falls below 80%,
the spacecraft has to start recharging. If the battery level falls below 40%, ongoing data
transmission is paused until a full recharge. Rectangles represent states and directed edges
denote the possible transitions between states. Black dots point to the initial states of
their containing regions. In the example, recharging and data transmission are handled
in orthogonal regions, this is denoted with the dashed line that separates the two regions.
Transitions can be labeled with guard conditions (conditions are surrounded with square
brackets) and upon execution can raise events or assign values to variables. States can
contain inner states, this is called hierarchical state refinement.

Statechart compositions

Some modeling frameworks (for example the Gamma Statechart Composition Framework
[38]) allow users to define networks of communicating statecharts. The users can define
interfaces and components implementing the same interfaces can be connected through

1The Systems Modeling Language (SysML) [20] is a general-purpose modeling language for systems
engineering applications.
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event channels. The statechart components can send and receive signals on their connected
channels. Components can be reused to build complex composite components. This
additional layer of abstraction allows engineers to efficiently model complex distributed
systems, but also makes verification more difficult (due to for example the large number
of interleavings). Therefore, efficient verification methods are needed, like CEGAR, which
is presented next.

2.3 CEGAR

The key idea behind abstraction-based model checking methods is to analyze the behaviour
of abstract, simpler models, which contain less information than the original ones, but
in exchange can be explored faster. One would think that losing information leads to
incorrect analyses. However, both of the methods presented in the following are over-
approximations, meaning they only add behaviours to the model and do not remove any.
When looking for counterexamples, false positives can occur, but no false negatives. If no
counterexample is found in the abstract model, then the original model doesn’t contain one
either. On the other hand, finding a counterexample in the abstract model isn’t enough to
be certain about the existence of one in the original model. The verification algorithm has
to check if the counterexamples obtained through abstraction are concretizable, i.e., if the
paths they describe are reproducible in the original model. If the abstract counterexample
is found spurious, i.e., it isn’t present in the concrete model, then the abstraction has to be
refined and the abstract state space has to be explored again. This iterative repetition of
abstraction and refinement phases until the precision is sufficient to come to a conclusion
regarding the safety of the model is called counterexample-guided abstraction refinement
(CEGAR) [14].

Figure 2.3: An illustration of abstraction.

When analyzing the abstract model, we explore the abstract state space, which is a set
of abstract states and abstract transitions. An abstract state can contain multiple (even
an infinite number) of concrete states. All concrete states belong to at least one abstract
state, and each concrete state can belong to at most one abstract state. An abstract
transition is present between two abstract states if there is at least one concrete transition
between the contained concrete states. This is illustrated in Fig. 2.3.

2.3.1 Abstraction

I define abstraction based on an abstract domain D, a set of precisions Π, a transfer
function T and an init function I, using notations from [7, 22].

Definition 2 (Abstract domain). An abstract domain is a tuple D = (S,>,⊥,v, expr),
where:

7



• S is a lattice of abstract states;

• > ∈ S is the top element;

• ⊥ ∈ S is the bottom element;

• v ∈ S × S is a partial order conforming to the lattice. This is used to express that
an abstract state covers another abstract state;

• expr : S 7→ FOL is the expression function that maps an abstract state to its meaning
(the concrete data states it represents) using a FOL formula. �

By abusing the notation we will allow abstract states s ∈ S to appear as FOL expressions
by automatically replacing them with their meaning, i.e., expr(s). This will allow us to
use cleaner notation for execution paths later.

Elements π ∈ Π in the set of precisions define the current precision of the abstraction,
which depends on the domain. The transfer function T : S × Π 7→ 2S calculates the
successors of an abstract state with respect to a target precision. The init function I :
Π 7→ 2S calculates the initial states for the current precision.

The two most well-known abstract domains – namely predicate abstraction and explicit
value analysis – tackle the problem of state stace explosion differently, which I introduce
in the following.

Predicate abstraction

Predicate abstraction works by only tracking wheter a set of predicates (defined by the
current precision) evaluate to true of false. All concrete states where the same predicates
hold are represented by a single abstract state. The motivation for this is that in many
cases in order to prove the correctness of a system we don’t necessarily need to know the
precise value of a variable, only whether some predicate applies to it or not. For example
in case of a 32 bit integer variable if the property can be decided by knowing whether
the value of the variable is positive or not (the predicate x > 0), then the state space
has to contain only 2 abstract states instead of 232 concrete. These predicates are logical
expressions, which can contain variables of the model, for example (x > 0), (x > y) or
(true).

In Boolean predicate abstraction [2, 22] an abstract state s ∈ S is an arbitrary Boolean
combination (negation, disjunction, conjunction, etc.) of FOL predicates. The top and
bottom elements are > ≡ true and ⊥ ≡ false respectively. The partial order corresponds
to implication, i.e., s1 v s2 if s1 ⇒ s2 for s1, s2 ∈ S (s1 implies s2). For example if
s1 is x > 0 ∧ y = 2 and s2 is x > 0, then s1 v s2, i. e. the abstract state s2 covers
s1. Informally, this means that s2 represents all the states and behaviors that s1 does.
Therefore, if all outgoing transitions of s2 were explored, then all subsequent behaviors
after s1 were explored as well. Such queries can be decided by satisfiability modulo theories
(SMT) solvers [11]. The expression function is the identity function as abstract states are
formulas themselves, i.e., expr(s) = s.

A precision π ∈ Π is a set of FOL predicates that are currently tracked by the algorithm.
For example π = {(x > 0), (x > 1)}. The result of the transfer function T (s, π) is
the strongest Boolean combination of predicates in the precision that is entailed by the
source state s and the transition formula Tran. The result of the init function I(π) is the
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strongest Boolean combination of predicates in the precision that is consistent with the
init formula Init. This can be calculated by SMT solvers [22].

In Cartesian predicate abstraction [2, 22] an abstract state s ∈ S is a conjunction of FOL
predicates, i.e., it is more restricted than Boolean predicate abstraction. Only the transfer
function and init function are defined differently than in Boolean predicate abstraction.
The transfer function yields the strongest conjunction of predicates from the precision π
that is entailed by the source state s and the transition formula Tran. The init function
yields the strongest conjunction of predicates from the precision that is consistent with
the init formula Init. Cartesian predicate abstraction is not as precise as Boolean, but it
is more efficient [22].

Explicit value abstraction

Explicit value abstraction [5] reduces the state space by marking a subset of the variables
untracked. For example if our model has the variables x and y, then we might only track
x and mark y as untracked. This means y can take any value from its domain, which is
represented by a single > value. The motivation behind this domain is that in order to
prove a property, not all variables need to be known. The goal when using this domain is
to find the smallest subset of the variables (via transitive dependencies), which is sufficient
to prove or refute the property.

In explicit-value abstraction [5, 22] an abstract state s ∈ S is an abstract variable assign-
ment, mapping each variable v ∈ V to an element from its domain extended with top and
bottom values, i.e., Dv∪{>dv ,⊥dv}. The top element > with >(v) = >vd

holds no specific
value for any v ∈ V (i.e., it represents a state where no variables are known). The bottom
element ⊥ with ⊥(v) = ⊥vd

means that no assignment is possible for any v ∈ V . For
example if V = {x, y, z}, then (x = 1, y = 2, z = >) is an abstract state that contains all
concrete states where x is 1 and y is 2. If the value of z is not relevant for deciding whether
the property holds, then this representation allows us to process a significantly smaller
state space. The partial order v is defined as s1 v s2 if s1(v) = s2(v) or s1(v) = ⊥dv or
s2(v) = >vd

for each v ∈ V . Informally, a state covers another state if it defines less or
the same variables and the value of the defined variables match. For example, (1, 0,>)
covers (1, 0, 2), but not (2, 0,>). The expression function is expr(s) ≡ true if s = >,
expr(s) ≡ false if s(v) = ⊥dv for any v ∈ V , otherwise expr(s) ≡

∧
v∈V,s(v) 6=>dv

v = s(v).
Informally, the expression function takes the defined values and creates a conjunction of
equality expressions. For example if s = (x = 1, y = 2, z = >), then expr(s) is x = 1∧y = 2.

A precision π ∈ Π is a subset of the variables π ⊆ V that is currently tracked by the
analysis. The transfer function is T (s, π) = {s′ | s ∧ Tran ⇒

∧
v∈π,s′(v)6=>dv

v′ = s′(v)}.
Informally, s′ is a successor of s regarding the precision π if assigning values in s ∧ Tran
from s to the non-primed variables and assigning values from s′ to primed variables that
are contained by the precision results in a satisfiable formula. The init function is I(π) =
{s | Init⇒

∧
v∈π,s(v) 6=>dv

v = s(v)}. Informally, s is an initial state if assigning values in
Init from s to the non-primed variables contained by the precision results in a satisfiable
formula. For example if we have the precision {x} and the init formula Init ≡ (x =
0 ∧ y = 1), then the init function I({x}) returns all states where x = 0, without regards
to the value of y, i. e. (x = 0, y = 1), (x = 0, y = 2), (x = 0, y = 3), . . ., represented by
(x = 0, y = >), even though the Init formula states that y = 1.
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Product abstraction

Each abstract domain has its strengths and limitations, there is no single domain that fits
all scenarios [22, 1]. For example there are models which cannot be verified using explicit-
value abstraction because of the amount of nondeterminicity present in their behaviour.
On the other hand, predicate abstraction struggles for example with integer variables
that get assigned a big portion of their domains as values, because it has to introduce a
separate predicate for each assigned value, causing state space exploration to be impossible
in practice.

An abstract domain that could leverage the strengths of multiple abstract (sub-)domains
could widen the set of verifiable models and lead to improved model checking performance.
The approaches of Beyer et al. [8, 9] combine explicit-value abstraction and predicate ab-
straction in algorithms that choose between the domains dynamically. Bajkai et al. propose
an approach in [1] that tracks all variables explicitly by default and changes to predicate
abstraction if a variable is assigned a specified number of different values. I’m not going
to present either of these approaches in their entirety here, only the relevant parts of them
on which I built my solution that I introduce in Section 4.3.

In a product abstraction domain with the explicit-value and predicate abstraction subdo-
mains, the abstract state space is the product of the state spaces of the subdomains [1]:
S = SE × SP , an abstract state s = (sE , sP ) ∈ S is a pair of an explicit state sE ∈ SE
and a predicate state sP ∈ SP , where SE and SP are the set of abstract states according
to the explicit-value and predicate abstraction domains, respectively. The partial order
is defined as follows: (sE1 , sP1) v (sE2 , sP2) if sE1 v sE2 and sP1 v sP2 . The expres-
sion function yields the conjunction of the expression functions of the subdomains, i.e.
expr((sE , sP )) ≡ exprE(sE) ∧ exprP (sP ), where exprE and exprP are the expression func-
tions of the explicit-value and predicate abstraction domains, respectively. A precision
π = (πE , πP ) ∈ ΠE × ΠP is a pair an explicit-value precision πE ∈ ΠE and predicate
abstraction precision πP ∈ ΠP , where ΠE and ΠP are precision sets of the explicit-value
and predicate abstraction domains, respectively.

The transfer function T (s, op, π) uses the transfer functions TE(sE , op, πE) and
TP (sP , op, πP ) as black boxes to form a joint transfer function. The transfer function
calculates the Cartesian product of the results of the subdomains’ transfer functions. For-
mally, T ((sE , sP ), op, (πE , πP )) = TE(sE , op, πE) × TP (sP , op, πP ) then removes invalid
product states using the so-called strengthening operator. This filtering is required be-
cause product states obtained through the Cartesian product can be invalid states. For
example the product state ((x = 0), (x > 5)), where the explicit state is sE = (x = 0) and
the predicate state is sP = (x > 5), is an invalid state, because the semantics of the two
substates contradict each other (x cannot be greater than 5 if x is 0).

Abstract reachability graph

The abstract state space can be represented by an abstract reachability graph (ARG)
[6, 22].
Definition 3 (Abstract reachability graph). An abstract reachability graph is a tuple
ARG = (N,E,Cov), where:

• N ⊆ S is the set of nodes, each corresponding to an abstract state in some domain;

• E ⊆ N × N is a set of directed edges. An edge (s1, s2) ∈ E is present if s2 is a
successor of s1 with regards to the transfer function T ;
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• Cov ⊆ S × S is the set of covered-by edges. A covered-by edge (s1, s2) ∈ Cov is
present if s1 v s2. �

A node s ∈ N is expanded if all of its successors are included in the ARG with respect
to the transfer function and covered if it has an outgoing covered-by edge (s, s′) ∈ Cov
for some s ∈ N . A node that violates the safety property ϕ is called unsafe. This can be
decided by checking if s 6|= ϕ holds. A node that is not expanded, covered or unsafe is called
unmarked. When building the ARG, expanded and covered nodes can be disregarded, only
unmarked nodes have to be processed (and thus expanded, covered or marked unsafe). An
ARG is complete if no nodes are unmarked.

An abstract path σ = (s1, s2, . . . , sn) is an alternating sequence of abstract states. An
abstract path is feasible if a corresponding concrete path (c1, c2, . . . , cn) exists, where each
ci is mapped to si , i.e., ci |= expr(si). In practice, this can be decided by querying an
SMT solver [11] with the formula s〈1〉1 ∧ Tran〈1〉 ∧ s

〈2〉
2 ∧ Tran〈2〉 ∧ . . . ∧ Tran〈n−1〉 ∧ s〈n〉n .

A satisfying assignment to this formula corresponds to a concrete path.

Abstraction algorithm

The input of the abstraction algorithm [22] is a partially constructed ARG (with possibly
unmarked states), a FOL safety property ϕ, an abstract domain D, a current precision π,
a transfer function T and an init function I. The result of the algorithm is whether the
model satisfies the safety property ϕ, i.e. all states reachable from the initial state satisfy
the formula.

In the first iteration, the ARG only contains the initial states returned by the init function
I, the precision π is usually empty (or is constructed from the property ϕ).

The algorithm (Alg. 1, based on [22]) initializes the reached set with all states from the
ARG and the waitlist with all unmarked states. The algorithm removes and processes
states from the waitlist based on some search strategy (e.g., BFS or DFS). If the current
state does not satisfy the property ϕ, the abstraction terminates with an unsafe result
and an unsafe ARG. Otherwise, we check if some already reached state covers the current
with respect to the partial order. If not, we calculate successors with the transfer function
making the node expanded. If there are no more nodes to explore and no unsafe states
were found, the abstraction concludes with a safe result and a complete ARG.

2.3.2 Refinement

Abstract counterexamples found during the abstraction phase are not necessarily present
in the concrete model as well, which means their concretizability has to be verified. Ab-
stract counterexamples that are not present in the concrete model are called spurious.
The occurrence of a spurious counterexample means the abstraction has to be refined to
ensure that the same counterexample isn’t found again, and thus the abstraction converges
towards a precision which is sufficient to verify the requirement property. The refinement
algorithm verifies the satfisfiability of abstract counterexamples and either returns that
the model is unsafe (if the counterexample is concretizable), or returns a refined precision
and prunes back the ARG to exclude the spurious path described by the counterexample.

The Refinement algorithm (see details in [22]) receives the ARG and the current precision
as argument. It constructs an SMT formula from the path described by the counterexample
and queries an SMT solver with it. If the solver finds that the formula is satisfiable, then
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Algorithm 1 Abstraction algorithm (based on [22])
Input: ARG(N,E,Cov): partially constructed abstract reachability graph

ϕ: FOL safety property
D = (S,>,⊥,v, expr): abstract domain
π: current precision
T : transfer function

Output: (safe or unsafe, ARG)
1: reached← N
2: waitlist← unmarked nodes from N
3: while waitlist 6= ∅ do
4: s← remove from waitlist
5: if s 6|= ϕ then
6: // s is unsafe
7: return (unsafe,ARG)
8: if s v s′ for some s′ ∈ reached then
9: // s is covered

10: Cov ← Cov ∪ {(s, s′)} // Add covered-by edge
11: else
12: // s is expanded
13: for all s′ ∈ T (s, π) \ ⊥ do
14: reached← reached ∪ {s′}
15: waitlist← waitlist ∪ {s′}
16: N← N ∪ {s′} // Add new node
17: E← E ∪ {(s, s′)} // Add successor edge
18: return (safe,ARG)

12



the counterexample is conretizable and the model is unsafe. However, if the formula is
unsatisfiable, then the algorithm queries the solver for a Craig interpolant [35], which
is a formula that “explains” the reason for the unsatisfiability. This interpolant is then
either used as a predicate (in case of predicate abstraction), or its variables are added
to the set of tracked variables to construct a new precision. The ARG is then pruned
back until the longest satisfiable prefix of the counterexample. The algorithm in this case
returns the pruned ARG and the new precision. From the viewpoint of my work the
refinement algorithm can be regarded as a black box, if the reader is interested, then [22]
is recommended for further reading.

2.3.3 The CEGAR algorithm

Counterexample-guided abstraction refinement (CEGAR) [14] is an abstraction-based
model checking algorithm, that applies abstraction and refinement iteratively. The
CEGAR-loop (Fig. 2.4, Alg. 2) is the heart of this algorithm. The verification process
starts with an initial precision. Depending on the kind of abstraction we use, a precision
can either be a list of tracked variables (explicit value abstraction), a list of tracked pred-
icates (predicate abstraction), or something else in case of a different abstraction-method.
In every iteration of the loop the abstraction algorithm (Alg. 1) checks if an abstract coun-
terexample can be found in the abstract model with the current precision. There are two
possibilities after this:

• If no counterexamples are found, then the model is deemed safe, as over-
approximation means the original model doesn’t contain one either.

• If a counterexample is found, the refiner algorithm checks if it’s concretizable:

– If it is, then the counterexample is valid in the original model as well, so the
model is deemed unsafe.

– If not, then the refiner returns a refined precision, and the loop starts again.
Ideally, this refined precision adds just enough detail to the abstract model,
that the same false counterexample can’t surface again.

Abstractor Refiner

initial	precision
abstract	counterexample,	ARG

refined	precision,	pruned	ARG

OK Counter-
example

Figure 2.4: The CEGAR-loop.

The loop keeps running until the model is deemed either safe or unsafe. In extreme cases,
the abstract state space can become so refined, that each abstract state contains only one
concrete state, i.e., the abstract state space becomes equal to the concrete state space.
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Algorithm 2 CEGAR loop (based on [22])
Input: ϕ: FOL safety property

D = (S,>,⊥,v, expr): abstract domain
π0: initial precision
T : transfer function
I: init function

Output: safe or unsafe
1: π ← π0
2: ARG← (N← I(π0),E← ∅,Cov← ∅)
3: while true do
4: result,ARG← Abstraction(ARG, ϕ, π,T)
5: if result = safe then return safe
6: else
7: result, π,ARG← Refinement(ARG, π)
8: if result = unsafe then return unsafe

2.4 Theta

Theta2 [42] is a “generic, modular and configurable model checking framework developed
at the Fault Tolerant Systems Research Group of Budapest University of Technology and
Economics, aiming to support the design and evaluation of abstraction refinement-based
algorithms for the reachability analysis of various formalisms. The main distinguishing
characteristic of Theta is its architecture that allows the definition of input formalisms
with higher level language front-ends, and the combination of various abstract domains,
interpreters, and strategies for abstraction and refinement.” [21].

Common CFA STS XTA
Tools cfa-cli sts-cli xta-cli
Analyses analysis cfa-analysis sts-analysis xta-analysis
Formalisms core, common cfa sts xta
SMT solvers solver, solver-z3

Table 2.1: An overview of the Theta modules.

One of the strengths of Theta is its modular architecture, which is illustrated in Table 2.1.
The core module contains various general building blocks for model checking, e.g. variable
declarations, expressions, statements, which are used in the control flow automata (CFA),
symbolic transition system (STS) and timed automata (XTA) formalisms. Each formal-
ism has a corresponding domain-specific language for easy parsing. The analysis backend
resides in the analysis module and contains constructs for the CEGAR loop, support-
ing multiple abstract domains such as predicate abstraction and explicit-value abstraction.
Each formalism has a corresponding analysis module that contains formalism-specific con-
cretisations of the CEGAR algorithm. In order to enable the algorithms of the analysis
module to operate on a specific formalism, formalism-specific implementations have to be
provided of the generic interfaces defined in the analysis module. These implementations
can also provide formalism-specific extensions and optimizations to the algorithm that can
make the analysis more efficient by utilizing extra information present in the models. The
CEGAR algorithm relies on the SMT solver accessible through the solver interface and

2https://github.com/ftsrg/theta
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its implementation in solver-z3 [18]. Each formalism has a formalism-specific command
line interface in its corresponding cli module.

2.5 Related work

Czipó Bence et al. present a CEGAR-based statechart verification algorithm in [17] that
exploits the hierarchy of statecharts by using clever encoding that preserves information
about state hierarchy and enables for SMT-based verification. There are multiple similar-
ities between their approach and mine, such as tracking control variables explicitly, using
an SMT solver to verify concretizability and using the CEGAR-algorithm, but the two
approaches are fundamentally different in that theirs is specific to statecharts, while mine
is a generic formalism that supports other engineering models as well.

Yael Meller et al. present a CEGAR-based statechart verification approach in [36] that
operates on UML statechart models. The approach defines an abstract domain that over-
approximates the behaviour of interfaces of some (or all) state machines of a system. They
abstract part of the interface’s variables, which may change the number and order of the
generated events on a particular interface. This abstraction method is similar to the one
I use in explicit-value abstraction in the sense that it also only tracks a subset of the
variables. The statechart-specific nature of this approach enables the verification process
to utilize the additional information that is present in the structure of a statechart model,
but comes with drawbacks in terms of genericity and flexibility, as it can only be applied
to statecharts.

Nafiseh Kahani et al. present an approach for statechart verification in [30] that is based on
bounded model checking [12]. Their algorithm takes a depth bound as input, generates all
execution paths of the system to the specified bound and encodes them as SMT formulas
to check their satisfiability with an SMT solver. Their approach reduces the state space by
considering only a subset of the paths of the system that are shorter than a given bound.
My approach on the other hand reduces the state space by applying either explicit-value
abstraction, predicate abstraction or a combination of the two.

As we can see, several different approaches exist to formal verification of statechart models.
However, all approaches presented above are specific to the statechart formalism. It is
important to highlight that the XSTS formalism presented in this work is on the other
hand a general intermediate model checking formalism that was carefully designed to
support the transformation of several high-level engineering formalisms as well as multiple
model checking paradigms. In the following paragraphs I give a brief introduction into
other intermediate model checking languages.

BoogiePL [19] is a generic intermediate language for program verification with a focus
on object oriented languages. The language is coarsely typed and offers constructs such
as procedures and arrays. BoogiePL is used as the input formalism of the Boogie model
checker. The main distinguishing characteristic of BoogiePL compared to XSTS is that it
was specifically tailored to fit programming languages and offers constructs for this specific
domain (like the aforementioned procedures).

The Spin [27, 28] model checker is a tool for verifying distributed systems, specifically data
communication protocols. The systems are described in the Promela language, which of-
fers high-level constructs such as processes and message channels with synchronous and
asynchronous semantics. The Spin model checker can check for the absence of deadlocks,
unspecified receptions, unexecutable code and also supports the verification of linear tem-
poral properties.
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PVS [40] is a specification and verification language that based on classical, typed higher-
order logic and can be used for theorem proving. This is a lower-level approach that can
be used to construct and maintain large formalizations and logical proofs.

16



Chapter 3

Extended symbolic transition
systems

The high-level nature of engineering models means they are easy-to-use for engineers,
but leads to difficulties during the formal verification process. In case of statecharts for
example, orthogonal regions, hierarchical state-refinement or broadcast communication
are all high-level constructs that make the modeling workflow more intuitive and enable
the modeling of significantly more complex systems. They are however difficult to process
using formal methods that are defined on low-level mathematical formalism and verified
using SMT solvers. In this work I propose the extended symbolic transition system (XSTS)
formalism, which aims to bridge the aforementioned gap between engineering models and
formal methods.

3.1 Design decisions

When designing XSTS several questions had to be decided. The XSTS is intended as
a general formalism that is expressive enough to allow not only statecharts, but other
higher-level formalisms (such as Petri nets or control flow automata for example) to be
able to be transformed to XSTS. In this work I focus on abstraction-based reachability
analysis, but XSTS was designed with multiple model checking properties and methods
in mind.

The STS formalism (Section 2.2.2) used FOL expressions to describe the transitions of
the system. While these offer great flexibility, they are not necessarily intuitive, which is
why higher-level formalisms such as statecharts or programming languages offer higher-
level constructs like operations or statements. For example the operation x := x + 1
can be much more intuitive for an engineer than the FOL formula x′ = x + 1. This
is why I opted for operation-based transitions in XSTS, which are high-level enough to
allow for easy understanding, while also being easy to describe using logical formulas, thus
allowing for SMT-based model checking. Even though expression-based transitions offer
more flexibility, the higher-level nature of XSTS operations allows for the transformation
process of engineering models to XSTS to be simpler and easier, while still being able to
express the behaviour of the engineering models. To achieve this the traditional list of
operations (assign and assume [22]) had to be extended with composite operations such
as non-deterministic choices and sequences.
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The XSTS formalism includes two separate initialization-related constructs, an initial-
ization formula (init formula) described through the initial value function and a set of
initialization operations (init transitions). The former denotes a FOL formula that de-
scribes the initial states of the model, the latter denotes a set of operations that can only
be invoked once, at the start of the execution. The init formula describes the very first
state so that the execution doesn’t start with unknown variable values. This is required
because else we would start with an infinite state space which would restrain us from uti-
lizing certain model checking methods such as saturation-based model checking [37] and
linear temporal logic model checking [39]. As XSTS is intended as a general formalism
that can support several model checking paradigms, an init formula can be used in XSTS
to describe the very first state. This FOL formula on the other hand is unintuitive and
inconvenient for describing complex behaviour, which is why XSTS includes the init tran-
sition that can fire only once, at the beginning. The init transition fires from the initial
states described by the init formula. The init transitions can include high-level operations,
which makes them suitable to describe complex initialization behaviour. For example in
case of statecharts the init formula can be used to initialize the variables (for example
by assigning 0 to the int variables), while an init transition can set the appropriate state
configuration (which might depend on complex logic).

s0 s1 s2 s4s3

Init	formula In En Tr En

s5

Tr

Figure 3.1: An illustration of the ordering of the transitions.

XSTS models have 3 different sets of transitions, namely Init (In), Tran (Tr) and Env
(En). We discussed Init in the previous paragraph. Tran models the internal behaviour
of the system and Env models the effect of the environment on the system and vice-versa
(for example incoming and outgoing events). This can be used to model reactive systems,
which constantly react to outer stimuli depending on their internal states. During each
execution of the system transitions from the Tran and Env set strictly follow each other in
an alternating manner to ensure that the system reacts to all incoming stimuli. Fig. 3.1
illustrates the order in which the different transition sets follow each other along paths of
a system (the grey circles denote states of the path while the labels on the arrows denote
single transitions from the denoted sets).

It is important to make a distinction between transitions and transition sets. Transition
sets are In, Tr and En, they can contain multiple operations. The behaviour of a single
transition is described by a single operation (either basic or composite). When a transition
set is executed, then a single operation is chosen from the set non-deterministically and
executed. When we say that an In transition is executed in the initial state, what we
mean is that an operation is selected from the In set non-deterministically and executed.
This means that not all operations of the In transition get executed, only a single one.

3.2 Formal definition

In order to offer mathematical precision, formal verification methods require formally
defined models with clear semantics. In this section I present the formal definition of the
novel XSTS formalism.
Definition 4 (Extended symbolic transition system). An Extended symbolic tran-
sition system is a tuple XSTS = (V, VC , IV, T r, In,En), where:
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• V = {v1, v2, ..., vn} is a set of variables with domains Dv1 , Dv2 , ..., Dvn . For example
V = {x, y}. In this work I use the integer, bool and enum domains (integers are
mathematical integers1, bool and enum domains are equivalent to the corresponding
types in common programming languages);

• VC ⊆ V is a set of variables marked as control variables. For example VC = {x}.
The set of control variables is used for algorithmic optimizations, see Section 4.3;

• IV ∈ Dv1 ×Dv2 × ...×Dvn is the initial value function used to describe the initial
state. The initial value function IV assigns an initial value IV (v) ∈ Dv to variables
v ∈ V of their domain Dv. For example IV (x) = 0, IV (y) = 1. It is also possible to
omit the initial value of a variable, in that case IV (v) = >. The initial value function
is used to construct the init formula, a FOL formula that characterises the initial
states. The init formula IF is defined as follows: IF ≡

∧
v∈IV,IV (v)6=> v = IV (v).

In case of STS the transition relation was described with a single FOL formula. While
this offered great flexibility, the complex behaviour of engineering models was hard to
translate to such a low-level formalism. XSTS uses high-level, expressive operations to
describe behaviour and divides transitions into 3 different sets with different semantics:

• Tr ⊆ Ops is a set of operations, representing the internal transition relation. This
set describes the internal behaviour of the system;

• In ⊆ Ops is a set of operations, representing the initialization transition relation.
This set is used to describe more complex initialization that cannot be described
using the initialization vector. This set is executed once and only once, at the very
beginning.

• En ⊆ Ops is a set of operations, representing the environmental transition relation.
This set is used to model the system’s interactions with its environment. �

In any state of the system a single operation is executed, which is selected from the sets
we introduced above (Tr, In and En). The set from where the operation can be selected
depends on the current state. In the initial state (which is described by the initialization
vector IV ) only operations from the In set can be executed. Operations from the In set
can only fire in the initial state and nowhere else. After that, En and Tr can be fired in
an alternating manner (Fig. 3.1).

Operations op ∈ Ops describe the transitions between states of the system, where Ops
is the set of all possible transitions. An operation op ∈ Ops can also be regarded as a
transition formula tran(op) defining its semantics. Transition formulas are interpreted
over V ∪V ′. In other words transition formulas tran(op) are logical formulas that contain
the non-primed and primed versions of the variables of the XSTS and describe the values
of the variables after the execution of the operation. All operations are atomic in the sense
that they are either executed in their entirety or none at all. XSTS defines the following
operations:

• Basic operations contain no inner (nested) operations. We define the following basic
operations:

1Mathematical here means that these integer variables are unbounded, i.e. unlike “machine integers”
they cannot overflow, there are no unsigned variables, etc.

19



– Assignments assign a value to a single variable. Assignments have the form
v := ϕ, where v ∈ V , ϕ is an expression of type Dv and var(ϕ) ⊆ V . For
example the operation x := y + 2 assigns the value y + 2 to the variable x.
For an assignment operation, the transition formula is defined as tran(v :=
ϕ) ≡ v′ = ϕ ∧

∧
vi∈V \{v} v

′
i = vi. Informally, this means that the value of v is

overwritten with ϕ, while all other variables remain the same in the next state.
For example if V = {x, y}, then tran(x := y + 2) is x′ = y + 2 ∧ y′ = y;

– Assumptions check a condition and their transition can only be taken if their
condition evaluates to true. Assumptions have the form [ψ], where ψ is a
predicate with var(ψ) ⊆ V . For example the operation [x > 0] can only be
executed if the value of x is greater than 0. For an assume operation the
transition formula is tran([ψ]) ≡ ψ

∧
v∈V v

′ = v. Informally, this means that
the condition ψ is checked, but all variables remain the same in the next state.
For example if V = {x, y}, then tran([x > 0]) is x > 0 ∧ x′ = x ∧ y′ = y.

– Havocs are non-deterministic assignments of the form havoc(v), where v ∈ V .
The havoc operation havoc(x) means that the resulting state will contain no
restrictions on the value of the variable x. This can be used to simulate unknown
user input or a nondeterministic value. The transition formula is defined as
tran(havoc(v)) ≡

∧
vi∈V \{v} v

′
i = vi, i.e. all other variables will keep their value,

and v can hold any value. For example if V = {x, y}, then tran(havoc(x)) is
y′ = y.

• Composite operations contain other operations, and can be used to describe complex
control stuctures. Note that while these are composite operations, their execution
is still atomic. XSTS defines the following composite operations:

– Sequences are essentially multiple operations executed after each other. Each
operation of the sequence operates on the result of the previous operation, Se-
quences have the form op1, op2, ..., opn, where opi ∈ Ops are basic or composite
operations, For example: x := 2, [x > 0], x := x + 1 is a sequence containing 3
operations;

– Choices model non-deterministic choices between multiple operations. One
and only one branch of the choice operation is selected for execution and only
if said choice executes in its entirety, i.e., a single failing assume operation
means that a branch can not be executed. Non-deterministic choices have the
form {op1} or {op2} or ... or {opn}, where opi ∈ Ops are basic or composite
operations.

By abusing the notation, we allow operations op ∈ Ops to appear as FOL expressions by
automatically replacing them with their semantics, i.e., tran(op). I already defined the
semantics of the basic operations above, I define the semantics of composite operations in
the following paragraphs.

Sequences are operations executed after each other, each operation using the result of the
previous operation. To represent the results of the inner suboperations in the transition
formula, let V ∗ denote the starred versions of the variables. Let star(V, n) denote the
set of variables we get by applying the star operator to each variable v ∈ V n times and
let star(ϕ, n) denote the FOL expression we get by replacing the primed versions of the
variables with their starred versions and then applying the star operator to each variable
v ∈ var(ϕ) in ϕ (both primed and unprimed versions) n additional times. For example if
V = {x, y}, then V ∗ = {x∗, y∗}, and if ϕ ≡ x′ = x+ 1, then star(ϕ, 0) ≡ x∗ = x+ 1, and
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star(ϕ, 2) ≡ x∗∗∗ = x∗∗ + 1. For a sequence operation we define the transition formula
over V ∪ V ′ as tran(op1, op2, ..., opn) ≡

∧
v∈V v

∗ = v ∧
∧n
i=1 star(tran(opi), i) ∧

∧
v∈V v

′ =
star(v∗, n). This formula consists of 3 parts:

• In the first part,
∧
v∈V v

∗ = v, we store the values of the non-starred variables
(corresponding to the source state) in the starred versions of the variables;

• In the second part,
∧n
i=1 star(tran(opi), i), we form the conjunction of the transition

formulas of the suboperations, each having the star operator applied to it once more
than the previous one, so that in each operation v will refer to v′ of the previous
operation;

• In the third part,
∧
v∈V v

′ = star(v∗, n), we store the successor values of the last
transition formula in the primed versions of the variables, so that v′ will have the
value of v′ from the last transition formula.

To demonstrate the transition formula of sequences, let’s consider the sequence x := 2, [x >
0], x := x+ 1 with V = {x}. The three parts will be the following:

• First part: x∗ = x;

• The second part: x∗∗ = 2 ∧ (x∗∗ > 0 ∧ x∗∗∗ = x∗∗) ∧ x∗∗∗∗ = x∗∗∗ + 1;

• The third part: x′ = x∗∗∗∗.

All three parts together:

x∗ = x ∧ x∗∗ = 2 ∧ (x∗∗ > 0 ∧ x∗∗∗ = x∗∗) ∧ x∗∗∗∗ = x∗∗∗ + 1 ∧ x′ = x∗∗∗∗.

For a non-deterministic choice operation of the form {op1} or {op2} or ... or {opn}, the
transition formula over V ∪V ′ is defined as follows: tran({op1} or {op2} or ... or {opn}) ≡∨n
i=1(temp = i ∧ tran(opi)), where temp is a temporary variable that is used to express

that only one branch of the choice operation is executed. To demonstrate this on an
example, let’s consider the choice operation {x := 2} or {[x > 0]} or {x := x + 1}. The
transition formula will consist of three parts, one for each suboperation:

• temp = 1 ∧ x′ = 2 for x := 2;

• temp = 2 ∧ (x > 0 ∧ x′ = x) for [x > 0];

• temp = 3 ∧ x′ = x+ 1 for x := x+ 1.

All three together:

temp = 1 ∧ x′ = 2 ∨ temp = 2 ∧ (x > 0 ∧ x′ = x) ∨ temp = 3 ∧ x′ = x+ 1.

During any execution the temp variable is assigned a single value (non-deterministically
by the SMT solver), ensuring that only one branch of the choice is executed.

3.2.1 State space of XSTS

In the preceding section I formally defined what an XSTS model consists of. In this section
I precisely define how the state space of an XSTS is constructed. I present among other
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things how a state is defined, what the possible transitions are, what a path is. The precise
definition of these constructs is crucial for model checking.

A concrete data state c ∈ Dv1 × Dv2 × ... × Dvn assigns a value c(v) = d ∈ Dv to each
variable v ∈ V of its domain Dv. For example if V = {x, y}, then (x = 1, y = 2) is a
possible concrete data state. States with a prime (c′) or an index (c〈i〉) assign values to
V ′ or V 〈i〉 respectively. A concrete state (c, i, e) is a 3-tuple, where c ∈ Dv1 ×Dv2 × ...×
Dvn is a concrete data state, i ∈ {Ini,Un} is a flag denoting whether the initialization
transition has been executed yet (Ini and Un referring to ’initialized’ and ’uninitialized’,
respectively), and e ∈ {Lt,Le} is a flag denoting whether the last executed transition was
from the Tr or the En set (Lt and Le standing for ’last Tr’ and ’last En’, respectively).
The set of initial states is { (c, i, e) | c |= IF ∧ i = Un ∧ e = Le}. In other words, the
initial state of the system satisfies the init formula and has the Un and the Le flags. As
we will see in the next paragraph, the intention behind these flags is to limit the possible
transitions of the system and to ensure that the different transition sets follow each other
in the desired order (which is illustrated in Fig. 3.1).

The set of available transitions in any state depends on the values of the i and e flags. For
a pair of source flags i and e and target flags i′ and e′ let Ops(i, e, i′, e′) denote the set of
available transitions. The value of Ops(i, e, i′, e′) is defined as follows:

• If the source flags are (Un,Le) and target flags are (Ini,Lt), then Ops(i, e, i′, e′) =
In. Informally, In transitions can fire in states where i = Un and e = Le and result
in a state where i′ = Ini and e′ = Lt. Setting the e flag to Lt in the target state
ensures that the first transition after the In transition will be an environmental
transition. This is important because else the system would ignore external stimuli
that is received right after the initialization.

• For the source flags (Ini,Lt) and target flags (Ini,Le), Ops(i, e, i′, e′) = En. Infor-
mally, if the source e flag is Lt, then En transitions can fire and will result in a state
with the Le flag.

• For the source flags (Ini,Le) and target flags (Ini,Lt), Ops(i, e, i′, e′) = Tr. Infor-
mally, if the source e flag is Le, then Tr transitions can fire and will result in a state
with the Lt flag.

• For any other value of (i, e, i′, e′), Ops(i, e, i′, e′) = ∅, i.e. no transition is possible.
Note that no transitions exist that start from a state with the Ini flag and result in
a state with the Un flag, which ultimately means that In transitions can fire once
and only once.

A transition exists between two states (c, i, e) and (c′, i′, e′) if an operation op ∈
Ops(i, e, i′, e′) exists with (c, c′) |= op, i.e., c and c′ satisfy the semantics of op.
To summarize, any path in the system starts with an operation from the initializa-
tion set and continues with the alternation of environmental and internal operations
(In,En, Tr,En, Tr,En, Tr, . . .) as illustrated in Fig. 3.1.

A concrete path is a finite, alternating sequence of concrete states and operations
σ = ((c1, i1, e1), op1, . . . , opn−1, (cn, in, en)) if the transitions exist between (ci, ii, ei) and
(ci+1, ii+1, ei+1) for every 1 ≤ i < n and (c〈1〉, c〈2〉, . . . , c〈n〉) |=

∧
1≤i<n op

〈i〉
i , i.e. there

is a sequence of transitions starting from the initial state and the interpretations satisfy
the semantics of the operations. A concrete state (c, i, e) is reachable if a concrete path
σ = ((c1, i1, e1), op1, . . . , opn−1, (cn, in, en)) with c = cn, i = in and e = en for some n.
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3.3 Domain-specific language

In order to make the transformation process of higher-level models easier I created a
domain-specific language (DSL) for the XSTS formalism which allows for the easy defini-
tion of XSTS models.

3.3.1 Language constructs

In this section I give a brief introduction into the syntax of the basic constructs of the
XSTS DSL.

Types

XSTS contains two default variable types, logical variables (boolean) and mathematical
integers (integer). XSTS also allows the user to define custom types, similarly to enum
types in common programming languages.

A custom type can be declared the following way:

type <name> : { <literal>, . . . , <literal> }

Example:

type Color : { RED, GREEN, BLUE }

Variables

Variables can be declared the following way, where <value> denotes the value that will
be assigned to the variable in the initialization vector:

var <name> : <type> = <value>

If the user wishes to declare a variable without an initial value, this is possible as well:

var <name> : <type>

A variable can be tagged as a control variable with the keyword ctrl:

ctrl var <name> : <type>

Examples:

var a : integer
var b : boolean = false
var c : Color = RED
ctrl var x : integer = 0
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Expressions

Expressions ϕ of the XSTS DSL can be described with the following context-free grammar,
where n ∈ Z is an integer and v ∈ V is a variable:

ϕ ::=>| ⊥ |v|n|¬ϕ|[ϕ ∧ ϕ]|[ϕ ∨ ϕ]|[ϕ⇒ ϕ]|[ϕ > ϕ]|[ϕ < ϕ]|[ϕ ≥ ϕ]|
[ϕ ≤ ϕ]|[ϕ = ϕ]|[ϕ+ ϕ]|[ϕ− ϕ]||[ϕ ∗ ϕ]|[ϕ/ϕ]|[ϕ%ϕ]|(ϕ)

Operator precedence can be seen below with a short description of each operator:

Lower Operators Descriptiony

⇒ implies
∨ logical or
∧ logical and
¬ logical negation
= equals

>,<,≤,≥ relational operators
+,− addition, subtraction
∗, /,% multiplication, division, modulo
v, n,>,⊥ variable, integer literal, top, bottom

() parentheses
Higher

Table 3.1: Operator precedence.

Operations

The behaviour of XSTS can be described using basic and composite operations. Basic
operations include assignments, assumptions and havocs. An assumption operation has
the following syntax, where <expr> is a boolean expression:

assume <expr>

Assignments have the following syntax, where <varname> is the name of a variable and
<expr> is an expression of the same type:

<varname> := <expr>

The syntax of havocs is the following, where <varname> is the name of a variable:

havoc <varname>

Composite operations are either non-deterministic choices or sequences. Non-deterministic
choices have the following syntax, where <operation> are arbitrary basic or composite
operations:

choice { <operation> } or { <operation> }

Sequences have the following syntax:
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<operation>
<operation>
<operation>

An example showing the usage of all operations presented above:

x := 1
choice {

assume y<2
x := x+y

} or {
choice {

havoc y
assume true

} or {
assume x>2

}
x := x-1

}
y := y*2

3.3.2 Transitions

Each transition is a single operation (basic or composite). We distinguish between three
sets of transitions, Tran, Init and Env. Transitions are described with the following syntax,
where <transition-set> is either tran, env or init:

<transition-set> {
<operation>

} or {
<operation>

} or
...
or {

<operation>
}

If the user does not intend to use a transition set, then they can also be left empty, this
translates to a set containing a single skip operation, with the semantics v′ = v for all
v ∈ V , i.e. all variables keep their value. Example:

env {}

3.3.3 Structure of an XSTS model

An XSTS model begins with the type declarations, followed by the variable declarations.
After this come the transition sets in the following order: Tran, Init, Env:

<type-declarations>
<variable-declarations>
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<tran-set>
<init-set>
<env-set>

3.4 Examples

In this section I demonstrate the use of the domain-specific language, how the formal
definitions are applied in practice and the state space generation process through examples.

Simple example

Below is a simple example given in the textual representation of the XSTS DSL. The
XSTS has two variables, x and y, both with the inital value 0. The init transition sets
both variables’ values to 1. After this, the environment repeatedly increments the value
of y, to which the systems reacts by either incrementing x, or leaving the value of x
unchanged.

var x: integer = 0
var y: integer = 0

tran {
x:=x+1

} or {
x:=x

}

init {
x:=1
y:=1

}

env {
y:=y+1

}

Formally, the set variables is V = {x, y}. Both have the initial value 0, so the initial
value function is IV (x) = 0, IV (y) = 0. The initial formula formulated from the initial
value function is IF ≡ x = 0 ∧ y = 0. The single initial state is ((x = 0, y = 0),Un,Le).
Figure 3.2 depicts a part of the concrete state space of the system (the entire state space
cannot be depicted as it is infinite, because x and y can take any value). The grey
rectangles represent concrete states of the system. The edge that only has a target state
but no source state points to the initial state of the system. The edges connecting the
states are denoted with the transitions that were required to get from their source state
to their target state.

As we can see, the single outgoing edge of the initial state is labeled with the In tran-
sition. We can also see that transitions from the Tr and En sets alternate along paths
of the system. When En fires, y is incremented. When Tr fires, there are always two
opportunities: x is incremented or remains the same. This is a non-deterministic choice,
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Figure 3.2: The concrete state space of the example XSTS.

in which case the model checker explores all possibilities. We can also see that the In set
was only active once, at the beginning with its single transition x := 1, y := 1.

To demonstrate the reachability analysis process, let’s now consider the safety property
ϕ ≡ y = x. The analysis starts in the initial state, where the property holds as both x
and y are 0. In the next state both x and y are 1, the property still holds. As we progress
to the next state however, the property is violated as y gets assigned the value 2, while x
stays 1. As a state that violates the property is reachable from the initial state, the model
is deemed unsafe.

To demonstrate a case where the model is safe, consider the property ϕ ≡ y >= x.
Simply by looking at the possible transitions of the system we can determine that the
model satisfies the property: the variables start with the same value, and any time x gets
incremented y was definitely incremented with the same amount in the previous step. On
the other hand, deciding this same property by simple exploration of the concrete state
space is impossible in practice. The state space has an infinite number of reachable states
and all reachable states have to be enumerated to be certain that none of them violate the
property. This is the reason we introduce abstraction in an attempt to avoid generating
the entire concrete state space.

Statechart example

Below is a more complex example, which describes the simple Yakindu2 statechart shown
in Fig. 3.3:

type Main_region : { __Inactive__, Normal, Error}
var signal_alert_Out : boolean = false
var signal_step_In : boolean = false
var main_region : Main_region = __Inactive__

2Yakindu Statechart Tools is a statechart modeling framework, see https://www.itemis.com/en/
yakindu/state-machine/
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tran {
assume (main_region == Normal && signal_step_In == true)
main_region := Error
signal_alert_Out := true

} or {
assume (main_region == Error && signal_step_In == true)
main_region := Normal

} or {
assume (!(main_region == __Inactive__) \\
&& !((main_region == Normal && signal_step_In == true) \\
|| (main_region == Error && signal_step_In == true)))

}

init {
main_region := Normal

}

env {
choice {
signal_step_In := true
} or {
signal_step_In := false
}
signal_alert_Out := false

}

Note how incoming and outgoing events are described as boolean variables and handled
in environmental transitions. A type (Main_region) is intruduced to describe the main
region and the states inside the region are represented by the literals of this custom type.

Figure 3.3: A simple Yakindu statechart.
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Chapter 4

Model checking of XSTS

In this chapter I present the extensions that I made to the CEGAR algorithm to enable
the verification of XSTS models. I also present a novel approach to combining multiple
abstract domains along with some minor extensions.

4.1 Extending the CEGAR algorithm for XSTS

To define the CEGAR algorithm for XSTS, I introduce XSTS-specific extensions of con-
cepts defined in Chapter 2, like the transfer function or the abstract reachability graph.
I denote the extensions with a subscript X. The extended constructs I introduce in this
section all build upon (wrap) the previously defined constructs of the abstract domains
introduced in Chapter 2. This wrapping approach is also standard in Theta to support
various formalisms with the same algorithmic backend.

Abstract domain

Given an abstract domain D = (S,>,⊥,v, expr), let DX = (SX ,⊥X ,vX , exprX) denote
its extension for XSTS. Extended XSTS abstract states wrap abstract states of a given
domain and explicitly encode the i and e flags. Formally, abstract states SX = S ×
{Un, Ini} × {Lt,Le} are 3-tuples consisting of a state s ∈ S (which can be an explicit
or a predicate state for example), and two flags i ∈ {Un, Ini} and e ∈ {Lt,Le}. The
bottom element becomes a set ⊥X = (i, e,⊥ | i ∈ {Un, Ini}, e ∈ {Un, Ini}). Informally,
this is a set of all possible combinations of the i and e flags and the bottom value. The
partial order between two states (s1, i1, e1) and (s2, i2, e2) is extended as (s1, i1, e1) vX
(s2, i2, e2) iff s1 v s2, i1 = i2 and e1 = e2, i.e. the values of the flags have to match and
the sub-state has to be covered by the other sub-state for a state to be covered by another
state. The expression function stays the same: exprX ≡ expr, the flags are not included in
the expression (the transfer function will handle them separately).

Transfer function

Informally, the extended transfer function selects the appropriate set of transitions based
on the flags (using the Ops function) and applies the transfer function of the wrapped
domain to it. Formally, the extended transfer function TX : SX×Π 7→ 2SX is the following:
TX((s, i, e), π) = {(s′, i′, e′) | op ∈ Ops(i, e, i′, e′), s′ ∈ T (s, op, π)}, i.e. (s′, i′, e′) is a
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successor of (s, i, e) if an operation op exists that is included in Ops(i, e, i′, e′), and s′ is
a successor of s with regards to the inner transfer function T , op and π. The function
Ops(i, e, i′, e′) (as defined in Section 3.2) returns the set of available transitions for a pair
of source and target flags.

Init function

The extended init function IX : Π 7→ 2SX is the following: IX(π) = {(s, i, e | s ∈ I(π), i =
Un, e = Le)}, i.e. the states returned by the inner init function I, extended with the
Un and Le flags. Informally, the extended init function takes the result of the wrapped
init function and attaches the appropriate flags (Un and Le) to it to ensure the proper
ordering of the transition sets (as depicted in Fig. 3.1).

Abstract reachability graph

The extended abstract reachability graph ARGX is a tuple ARGX = (NX , EX , CX) where

• NX ⊆ SX is the set of nodes, where an extended node (s, i, e) ∈ NX represents an
extended state;

• EX ⊆ NX × Ops ×NX is a set of directed edges labeled with operations. An edge
(s1, i1, e1, op, s2, i2, e2) ∈ EX is present if s2 is a successor of s1 with regards to op,
and op ∈ Ops(i1, e1, i2, e2);

• CX ⊆ SX × SX is the set of covered-by edges. An edge (s1, i1, e1, s2, i2, e2) ∈ CX is
present if (s1, i1, e1) v (s2, i2, e2).

Model checking

The XSTS model checker awaits two inputs, an XSTS model and a safety property ϕ.
The model checker then constructs the initial precision π0 (optionally by using the op-
timizations introduced in Section 4.4). The model checker then invokes the CEGAR
algorithm (see Alg. 2) with the safety property, the initial precision and the extended
abstract domain, transfer function and init function that were defined in the previous
sections. Formally: CEGAR(ϕ,DX , π0, TX , IX).

4.2 XSTS model checking example

In this section I demonstrate the XSTS model checking process through an example. Let
us consider the simple XSTS example model from Section 3.4.

To demonstrate the state space generation process, let’s first consider explicit-value ab-
straction with the precision π = {x}, i.e., only tracking x. In this case the init function
returns a single initial state, ((x = 0, y = >),Un,Le).

Fig. 4.1 depicts part of the ARG (this state space is infinite, so it cannot be depicted in its
entirety) in the situation outlined earlier. The grey rectangles represent nodes of the ARG
sX = (sE , i, e) ∈ NX , where sE ∈ SE are explicit states. The node with the incoming edge
that only has a target but no source contains the initial state of the system. The edges
are labeled with the transitions that were executed to get from their nodes’ source state
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Figure 4.1: Part of the ARG of the example XSTS with the precision π = {x} using
explicit-value abstraction.

to their nodes’ target state. Dashed edges represent a covered-by relation between nodes.
As we can see, transitions from the Tr and En sets alternate along paths of the system.
When En is fired, y is incremented, but its value remains > as it is not tracked. When
Tr fires, there are always two opportunities: x is incremented or remains the same. As x
is tracked explicitly, the model checker explores both possibilities. Just like in case of the
concrete state space, it is also clearly visible in the ARG that the In set was only active
once, at the beginning.

Let’s now consider the predicate abstraction domain with the precision π = {y > x, y <
1}. Fig. 4.2 denotes the ARG in this case. The result of the init function is the state
((!(y > x) ∧ y < 1),Un,Le), as the first predicate y > x contradicts the initial formula
x = 0∧y = 0, and the second predicate y < 1 is consistent with it. In the next step, when
applying In, (y < 1) changes to !(y < 1) after setting y to 1 because the formula is now
false. After that, En is applied. Note that !(y < 1) does not change when incrementing
y. However, y > x might hold or not, so there are two branches (Cartesian abstraction
would merge these two states, Boolean keeps the disjunction).

As opposed to the previous case, this ARG is finite as the state space is finite (the two
predicates and the two Boolean flags can take 24 total combinations). The analysis quickly
comes to point where all successor states are covered and can thus terminate.

4.3 Product abstraction with information exchange

In this section I present a static combination of explicit-value abstraction and predicate
abstraction. This approach builds upon the concepts defined in Section 2.3.1. In my
approach, a fixed subset of the variables is tracked explicitly, other variables are tracked
through predicates. This subset of explicitly tracked variables is the set of control variables
introduced in Section 3.2. Control variables can for example be integer variables that get

31



Figure 4.2: The ARG of the example XSTS with the precision π = {y > x, y < 1} using
predicate abstraction.

assigned a big portion of their domains or the variables storing the state configuration of
a statechart. In this case there would be too many predicates. More importantly, I also
present a novel operator which allows for information exchange between the domains to
supply the individual transfer functions of the subdomains with additional information.

Product	transfer	function

Explicit	transfer
function

Predicate	transfer
function

sE* Pre-strengthening
sP*

XsE' sP'

Strengthening

(sE,sP)

(sE',sP')

Figure 4.3: An overview of the modified product transfer function.

In order to allow the transfer functions of the subdomains to utilize information that
is present in the other domain, I introduce a novel operator, the pre-strengthening op-
erator. The pre-strengthening operator is a function PS : S 7→ SE × SP that takes a
product state as an input and returns the pair of a strengthened explicit state and a
strengthened predicate abstraction state, that can then be used as inputs of the indi-
vidual transfer functions. The original behaviour of the transfer function can be sim-
ulated with the following pre-strengthening operator: PS((sE , sP )) ≡ (sE , sP ), i.e. by
returning the input states unmodified. Instead of this, I propose the following pre-
strengthening operator: PS((sE , sP )) ≡ (sE , {s∗P | expr(s∗P ) = expr(sE) ∧ expr(sP )}).
Informally, this pre-strengthening operator returns the unchanged explicit state and a
predicate domain state that is constructed by forming the conjunction of the expressions
of the two input states and interpreting it as a predicate domain state. For example
if (sE , sP ) is ((x = 1), (y >= 2)), then PS(((x = 1), (y >= 2))) is ((x = 1), (x =
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1 ∧ y >= 2)). The transfer function extended with the pre-strengthening operator PS is
TPS((sE , sP ), op, (πE , πP )) = {TE(s∗E , op, πE) × TP (s∗P , op, πP ) | PS(sE , sP ) = (s∗E , s∗P )}.
Informally, the transfer function feeds the strengthened states returned by the pre-
strengthening operator as input to the individual transfer functions of the subdomains,
then calculates the products of their returned states. The advantage of this approach is
that the analysis can be more precise by using the information from the other subdomain.
Note that this pre-strengthening operator is not XSTS specific and can be applied to other
formalisms as well.

4.4 Initial precision optimization

When starting the CEGAR loop with an empty precision we leave some information unused
that is present in the model checking question itself. For example, if the safety property is
x > 0, then knowing something about the value of x is in most cases necessary to decide
whether or the property holds. I propose an optimization to the CEGAR algorithm that
uses the safety property ϕ to construct the initial precision and can thus save the algorithm
some refinement iterations that would be spent introducing the variables of the property
into the precision. The intuition behind this is that in order to decide whether or not the
property holds, the algorithm has to be able to track the variables that appear in it. In
case of predicate abstraction the property ϕ can be used as a predicate in the precision, i.e.,
π0 = {ϕ}. In case of explicit-value abstraction the variables of the property are tracked
explicitly from the start, i.e., π0 = var(ϕ). These optimizations are not XSTS-specific,
they can be used in any safety analysis. An additional, XSTS-specific optimization in
case of explicit-value abstraction would be to start tracking the set of control variables
VC explicitly from the start. When both optimization are applied together, the initial
precision is constructed the following way: π0 = var(ϕ)∪ VC , i.e. by forming the union of
the variables of the property and the set of control variables.
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Chapter 5

Evaluation

5.1 Implementation

I implemented the XSTS formalism along with a domain-specific language and a command-
line model checking tool in the Theta1 model checking framework [42], in three separate
modules, xsts, xsts-analysis and xsts-cli. Figure 5.1 illustrates the way these new modules
integrate into the architecture of Theta. I also had to extend and modify the existing
core and analysis modules of the framework to implement lower-level constructs such
as sequence or non-deterministic choice operations, or the product abstraction domain.
My additions were thoroughly reviewed by the developers of the Theta framework and
included in the v2.0.0 release2 of the Theta framework. As of October 2020, the XSTS
and its related modules are developed and maintained by me, and are a core part of the
Theta framework.

Common CFA STS XTA XSTS
Tools cfa-cli sts-cli xta-cli xsts-cli
Analyses analysis cfa-analysis sts-analysis xta-analysis xsts-analysis
Formalisms core, common cfa sts xta xsts
Solvers solver, solver-z3

Table 5.1: An overview of the Theta architecture as of October 2020. Italic entries
represent modules where I contributed.

5.1.1 Additions to existing Theta modules

This section gives a brief summary on my additions to existing Theta modules. I im-
plemented the high-level composite operations defined in Section 3.2 in the core module.
In Theta, operations are called statements, I created the SequenceStmt and NondetStmt
statements and modified the necessary statement processing classes (e.g classes that in-
terpret statements, transform statements to expressions, or utility classes that collect
variables) to be able to handle the new statements. I implemented product abstraction
and the related algorithms (Section 4.3) in the analysis module, this involved among other
things the modified product transfer function and the pre-strengthening operator.

1https://github.com/ftsrg/theta
2https://github.com/ftsrg/theta/releases/tag/v2.0.0
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5.1.2 XSTS modules

This section briefly summarizes the new XSTS modules I created.

xsts

The xsts3 module contains the classes representing XSTS models and the domain-specific
language described in Section 3.3. An XSTS model is represented by the XSTS class,
that contains the variables and statements of the system. In this implementation I could
reuse many of the building blocks Theta offers (such as classes representing variables,
statements, expressions). I implemented the domain-specific language in Antlr4.

xsts-analysis

The xsts-analysis5 module contains classes required for model checking of XSTS models.
XSTS-specific adjustments of the CEGAR algorithm described in Section 4.1, such as the
extended transfer function, extended init function or the extended abstract states are all
implemented in this module.

xsts-cli

The xsts-cli6 module contains a command-line model checker that provides an easy-to-
use user interface for configurable model checking of XSTS models. This program parses
the input model, input property and the algorithm configuration and instantiates the
analysis accordingly. The model checking algorithm can be configured using the following
command-line parameters [21]:

• –domain: The abstract domain. Possible values are:

– PRED_CART: Cartesian predicate abstraction, see Section 2.3.1;
– PRED_BOOL: Boolean predicate abstraction, see Section 2.3.1;
– PRED_SPLIT: Boolean predicate abstraction, but states are split into sub-states

along disjunctions. See Section 2.3.1;
– EXPL: Explicit-value abstraction, see Section 2.3.1;
– PROD: Product abstraction using two subdomains, EXPL and PRED_CART. See

Section 4.3.

• –initprec: The initial precision of the algorithm. Possible values:

– EMPTY: Start with an empty initial precision;
– PROP: Track all variables apperearing the the safety property in case of EXPL

domain. Construct predicates from the safety property in case of PRED_*. See
Section 4.4;

– CTRL: Track all control variables explicitly in case of EXPL or PROD domain. See
Section 4.4.

3https://github.com/ftsrg/theta/tree/master/subprojects/xsts
4https://www.antlr.org/
5https://github.com/ftsrg/theta/tree/master/subprojects/xsts-analysis
6https://github.com/ftsrg/theta/tree/master/subprojects/xsts-cli
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• –search: Search strategy in the abstract state space. Determines the order in which
abstract states are processed:

– BFS: Breadth-first search;
– DFS: Depth-first search.

• –maxenum: Maximal number of states to be enumerated when performing explicit-
value analysis and an expression cannot be deterministically evaluated [22], i.e. the
SMT solver returns multiple satisfying assignments as result of the operation. If the
limit is exceeded no more states are enumerated and > is returned as the succes-
sor state. This allows the explicit-value domain to better handle non-deterministic
assignments. Possible values are integers, as a special case, 0 stands for infinite;

• –refinement: Strategy for refining the precision of the abstraction, i.e., inferring
new predicates or variables to be tracked. Detailed introduction into the different
refinement strategies is outside the focus of this thesis, but below is a short informal
summary of each option (see [22] for further reading):

– FW_BIN_ITP: Forward binary interpolation. Searches for the first state where
the counterexample becomes infeasible starting from the initial state;

– BW_BIN_ITP: Backward binary interpolation. Searches backwards for the first
state where the counterexample becomes infeasible starting from the target
state;

– SEQ_ITP: Sequence interpolation, which refines the whole path at once;
– MULTI_SEQ: Sequence interpolation with multiple counterexamples.

• –predsplit: Available if –domain is PRED_*. Determines whether splitting is applied
to new predicates that are obtained during refinement. See [22] for details. Possible
values:

– WHOLE: Keep predicates as a whole, no splitting is applied;
– CONJUNCTS: Split predicates into conjuncts.
– ATOMS: Split predicates into atoms.

• –prunestrategy: The pruning strategy controls which portion of the abstract state
space is discarded during refinement. Possible values:

– FULL: The whole abstract reachability graph (ARG) is pruned and abstraction
is completely restarted with the new precision;

– LAZY: The ARG is only pruned back to the first point where refinement was
applied, i.e. until the first unconcretizable step of the abstract counterexam-
ple [26].

The command-line tool accepts the following additional parameters:

• –model: Path of the input XSTS model (mandatory).

• –property: Input property as a string or a file (*.prop) (mandatory).

• –cex: Output file where the counterexample is written (if the result is unsafe). If
the argument is not given (default) the counterexample is not printed.
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• –loglevel: Detailedness of logging. Possible values (from the least to the most
detailed): RESULT, MAINSTEP, SUBSTEP (default), INFO, DETAIL, VERBOSE.

• –version: Print version info (in this case –model and –property is of course not
required).

The tool is deployed in form or a runnable JAR file, and a Docker7 image is also offered
for portability. The following command shows an example for starting the model checker
with the default configuration, where theta-xsts-cli.jar is the JAR file containing the
xsts-cli tool:

java -jar theta-xsts-cli.jar --model crossroad.xsts --property "x>1"

5.2 End-to-end hidden formal methods

Besides their high computational complexity, the other important hindering factor holding
back formal methods from widespread engineering application is that they are cumbersome
to use. Engineers and software developers who are often experts of other domains can’t
realistically be expected to know the fine details behind formal methods or be familiar with
the low-level formalisms and concepts involved in efficient model checking techniques. A
widespread model checking tool that is an essential and easy-to-use tool of any developer’s
toolbox cannot realistically require engineers to get familiar with domain-unrelated con-
cepts such as CEGAR, SMT solvers or the XSTS formalism. Such a tool needs to accept
inputs and provide feedback in a way that is relevant to the application domain, and has
to be utilizable with minimal model checking knowledge, abstracting away such details
from its user and leading to easy-to-use end-to-end hidden formal methods.

The Gamma Statechart Composition Framework [38] (as mentioned in Section 2.2.2), is
a framework to model, verify and generate code for component-based reactive systems.
It allows users to define complex statechart networks. Based on the defined models, its
code generator can synthesize Java code. The statecharts can also be verified using the
UPPAAL model checker [33].

In an effort to extend the Gamma framework’s model checking capabilites, Theta, more
specifically the XSTS formalism and my XSTS implementation, was integrated8 into the
Gamma framework as a verification backend (as an alternative to UPPAAL). This means
that the complex statechart networks of the Gamma framework can be verified with the
click of a button. In the background, the statechart networks get transformed to the
XSTS formalism and the xsts-cli (see Section 5.1.2) tool gets invoked (parameterizing the
model checker is not a trivial question, as we will see in the next section). The Gamma
framework then interprets the output produced by the model checker and presents it in
an intuitive manner. If the model checker returns a counterexample, then the Gamma
tool also generates a test case from the trace, which can be used to verify that the coun-
terexample applies to the generated Java code as well. This integration into the Gamma
framework is in the largest part the contribution of Graics Bence (PhD student at BME
MIT). During the process he consulted with me and we discussed the syntax and semantics
of the XSTS constructs in multiple iterations. The XSTS formalism and command-line
tool being applied as backend in the end-to-end hidden formal verification workflow of the

7https://www.docker.com/
8The XSTS-related plugins of the Gamma framework: https://github.com/ftsrg/gamma/tree/

master/plugins/xsts
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Gamma framework proves the practical applicability of my approach. It also allows me
to evaluate my approach on complex statechart network models that were transformed
to XSTS using Gamma. The transformation that maps statechart compositions to XSTS
models proves that the XSTS formalism has the expressive power to encode the complex
structure and behaviour of statechart models. It is also important to note that the ability
of the Gamma framework to generate test cases from the counterexamples produced by
my tool proves that my tool is capable of producing meaningful output that other tools
can build upon.

5.3 Experimental evaluation

I evaluated my approach by formulating various research questions and answering them
using benchmarks conducted in a controlled environment. In this section I present the
questions and the results of the experiments.

5.3.1 Experiment planning

My goal during the evaluation process was to evaluate my approach on a broad set of input
models from different sources with various different configurations. I also intended the find
the set of configurations which perform well in general or in specific scenarios. I formulated
the following research questions that I intended to answer during benchmarking:

RQ1 Which configuration performs best overall?

RQ2 Does changing the search strategy (BFS vs DFS) lead to a significant difference in
performance?

RQ3 Which variant of predicate abstraction (PRED_CART vs PRED_BOOL vs PRED_SPLIT)
has the best performance?

RQ4 Which enumeration limit of explicit states (–maxenum parameter) has the best per-
formance?

RQ5 Which refinement strategy and prune strategy combination has the best perfor-
mance?

RQ6 How does product abstraction perform compared to explicit value abstraction and
product abstraction?

An important aspect of experiment planning is determining how to quantify the “goodness”
of a test subject. In my benchmarks I selected the number of successfully verified models
(within a time limit) as the primary measure of performance, i.e. if a configuration was able
to verify more models, than another configuration, then it offered better performance. The
second most important measure is the time required for verification. If two configurations
verified the same amount of models, but one did so in shorter time, then it performed
better.
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5.3.2 Benchmarking environment

The measurements were performed in the BME Smallville Cloud9. The virtual machines
each had 4 processor cores (the hosting service provides no further information about
the CPUs of the virtual machines), 8192 MiB of memory and were running the Ubuntu
18.04 LTS Server operating system. Reliable bechmarking was ensured by BenchExec
[10], a state-of-the-art benchmarking framework, which guarantees proper isolation of the
measured process and independence from outer noises. BenchExec guarantees precise
measurements, is capable of measuring the actual CPU-time (as opposed to the wall
time), and can precisely track memory consumption even in case a swapping happens.
BenchExec provides the measurements of the annual Competition on Software Verifica-
tion (SV-Comp) [4]. Each measurement was run with a timeout limit of 120s.

5.3.3 Input models

I increased the validity of the measurements by using models from different and diverse
sources, including industrial models. In this section I give a brief introduction of the
different sets of models I used.

5.3.3.1 Artificial examples

The simple set contains 18 smaller models each constructed by me. The primary goal
when constructing this test set was to provide complete coverage of all XSTS constructs
and features, like the composite statements, the En and In transition sets and the oper-
ators of the DSL.

5.3.3.2 Industrial models

The following model sets contain real-world examples provided by different industrial
partners of the university. This set contains 10 models that appear in 53 test cases overall.

• INPE10: A statechart composition modeling 2 components of a communication pro-
tocol inside a nanosatellite.

• COID: This statechart composition models components of railway safety equipment
(an antivalence filter and an indicator component). Two antivalence filter compo-
nents are connected to an indicator component, which emits signals for adjusting a
release-timing parameter. This model set was provided by a confidential industry
partner of the university;

• PIL: A statechart composition modeling components of railway safety equipment (a
railroad switch and an indicator component). These components are more complex,
their purpose is modeling and verifying railroad track blocking based on a safety
equipment algorithm. This model set was provided by a confidential industry partner
of the university;

• TrafficLight: A statechart composition modeling a crossroad traffic light with 2
traffic light components and a control component;

9https://smallville.cloud.bme.hu/
10INPE (Instituto Nacional de Pesquisas Espaciais) refers to the brazilian National Institute for Space

Research, who provided the INPE model set, see http://www.inpe.br/
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• Spacecraft: A statechart modeling a spacecraft component from [29], illustrated
in Appendix A.1. The SysML model depicted in the figure was transformed to the
statechart language of the Gamma framework, then transformed to XSTS using
Gamma.

Table 5.2 contains metrics about the variables of the input model sets. The Avg Vars
column contains the average number of variables present in models of the set. The Max
Vars column contains the maximum number of variables present in any model of the
set. Table 5.3 contains metrics about the statements present in the sets. Similarly to the
previous table, Avg Stmts contains the average number of statements present in models
of the set. Max Stmts contains the maximum number of statements present in models of
the set. In both tables the Model column contains the number of distinct models present
in the set, while the Cases column contains the total number of test cases present in the
set (a single model can be present with multiple requirement properties and thus appear
in multiple test cases).

Model set Models Cases Avg Vars Max Vars
simple 18 21 2.8 6
COID 1 12 43.0 43
INPE 1 18 31.0 31
PIL 6 8 227.6 372
Spacecraft 1 1 18.0 18
TrafficLight 1 14 29.0 29
Total 28 74

Table 5.2: Metrics about the variables of input model sets.

Model set Models Cases Avg Stmts Max Stmts
simple 18 21 13.1 29
COID 1 12 940.0 940
INPE 1 18 152.0 152
PIL 6 8 1608.6 2310
Spacecraft 1 1 146.0 146
TrafficLight 1 14 216.0 216
Total 28 74

Table 5.3: Metrics about the statements of the input model sets.

5.3.4 Configurations

In each research question except the first one (RQ1: Which configuration performs best
overall?), I focus on either 1 or 2 parameters (these are the free parameters [43]) and leave
all other parameters (these are the bounded parameters) at a fixed setting, usually one
that performed well in previous experiments (such as [22]). For example in RQ2, the single
free parameter is the –search parameter, the parameter I want to come to a conclusion
about, all other parameters are fixed at the setting that was found the overall best in
previous experiments.

The configuration names follow the following naming pattern. All parameter options are
abbreviated to 1-3 characters:
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• –domain: PC = PRED_CART, PB = PRED_BOOL, PS = PRED_SPLIT, E = EXPL, P = PROD;

• –prunestrategy: L = LAZY, F = FULL;

• –refinement: FBI = FW_BIN_ITP, BBI = BW_BIN_ITP, SI = SEQ_ITP, MS =
MULTI_SEQ;

• –search: B = BFS, D = DFS;

• –predsplit: W = WHOLE, C = CONJUNCTS, A = ATOMS.

The configuration names are constructed from the abbreviations the following way (if a
parameter is not present in the name, then it was not specified in the current configura-
tion):

<domain><maxenum>_<prunestrategy>_<refinement>_<search><predsplit>

For example the configuration PC_L_SI_BW refers to PRED_CART domain with LAZY prun-
ing strategy, SEQ_ITP refinement strategy, BFS search strategy, WHOLE predicate splitting
strategy and an omitted maxenum parameter.

5.3.5 Benchmarking results

In this section I present my benchmarking results.

RQ1: Best configuration overall

Free parameters:

• –domain: {PRED_CART, PRED_BOOL, PRED_SPLIT, EXPL, PROD};

• –initprec: {EMPTY, PROP, CTRL};

• –search: {BFS, DFS};

• –refinement: {FW_BIN_ITP, BW_BIN_ITP, SEQ_ITP, MULTI_SEQ};

• –predsplit: {WHOLE, CONJUNTS, ATOMS};

• –prunestrategy: {FULL, LAZY}.

• –maxenum: {0, 10, 250, 1000}

This benchmark had no bounded parameters, but certain parameters were omitted in
special cases. For example predicate splitting is not used in the explicit domain, so when
–domain is EXPL, then the –predsplit parameter is omitted. Similarly –maxenum is not
used when predicate abstraction domain is applied. Generating all possible combinations
of the parameters would have resulted in 2880 separate configurations, netting 213120
total measurements, which would have been too much to execute in practice. To reduce
the set of configurations, I employed the pairwise combination generator of PICT11, which
pairs parameters (for example –search with –refinement), and generates all possible

11PICT (Pairwise Independent Combinatorial Testing) is a test case generator tool, see: https://
github.com/microsoft/pict
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combinations of the pairs of values. Research shows that this is an effective alternative to
generating all possible combinations [32].

There were 74 cases in this benchmark with 34 configurations, netting 2516 measurements,
which ran for 1 day and 6 hours. All cases were verified by at least one configuration
and none of the runs returned an incorrect result. 1728/2516 (69%) measurements were
successful, 5 runs resulted in stack overflow, the rest reached the timeout limit.

Configuration SuccCount TimeSum TimeMax
PC_F_MS_DW 71 507.98 56.08
PB_L_SI_DA 68 493.10 73.91
PS_F_BBI_DA 66 762.19 113.60
P1000_L_BBI_DW 64 523.34 52.01
P10_F_BBI_DW 64 559.08 55.23
PB_F_BBI_BC 63 731.58 110.55
PS_F_SI_DC 62 508.46 64.33
E10_L_UC_B 62 403.77 68.74

Table 5.4: RQ1: The 8 best results.

Table 5.4 shows the top 8 configurations regarding the number of verified cases. The
SuccCount column contains the number of verified cases, TimeSum refers to the sum
of the CPU times of the successful runs in seconds (i.e. timeouts are not included in this
number). TimeMax is the maximum measured CPU time among successful runs in sec-
onds. Of the 34 configurations included in this benchmark, the PC_F_MS_DW configuration
performed the best, successfully verifying 71 cases.

A rowchart depicting the success rates measured in this benchmark is included in Ap-
pendix A.2. The more models a configuration verified, the wider the blue area is in its
corresponding row. The green areas represent timeouts and the red areas represent excep-
tions. This diagram indicates that there are significant differences between configurations
in their success rates.

The results show that PROD can compete with the other domains. The 4th and 5th best
configurations used the PROD domain, and the best configuration that used PROD finished
higher than the best configuration using EXPL, they successfully verified 64 and 62 cases,
respectively. This benchmark alone is on the other hand not enough to come to conclusions
about any of the parameters, because the 34 configurations cover only a small portion of
the 2880 possible configurations. For example, the best configuration based on previous
experience, PC_L_SI_BW, which is capable of verifying 73 cases of the 74, wasn’t included
in this set either.

RQ2: Search strategy

In this benchmark I constructed 2 different configurations, which only differ in their
–search parameter.

Free parameters:

• –search: {BFS, DFS}.

Bounded parameters:

• –domain: PRED_CART;
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• –refinement: SEQ_ITP;

• –predsplit: WHOLE;

• –prunestrategy: LAZY;

There were 74 cases in this run with 2 configurations, resulting in 148 measurements.

Figure 5.1: RQ2: A heatmap comparing the success rates of the two search options.

Figure 5.2: RQ2: Comparison of the two search options.

Fig. 5.2 compares the CPU times measured for each model by the two configurations.
Each dot represents a single run, with its x-coordinate corresponding to its CPU time
with DFS and similarly the y-coordinate indicating its CPU time with BFS. Points that are
above the line indicate runs, where the the DFS configuration needed less time, and point
above the line run, where the BFS domain was faster. As all points fall in close proximity of
the line, it is clearly visible that there was no significant difference between the two search
options in terms of measured CPU time. Fig. 5.1 depicts the result in a heatmap. Rows
of the heatmap correspond to the different configurations and columns correspond to the
different input model sets. Each cell contains the ratio of models from the corresponding
set that the corresponding configuration was able to verify, and also the combined time
and memory consumption of the successful measurements. The leftmost column contains
information about the total set of inputs, while the downmost row corresponds to the
virtual best configuration (taking the result of the best configuration for each individual
model). The heatmap indicates that there was no difference between the two options in
terms of success rate either, and minor differences in terms of memory consumption.
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RQ3: Predicate abstration variants

Free parameters:

• –domain: {PRED_CART, PRED_BOOL, PRED_SPLIT}.

Bounded parameters:

• –search: BFS;

• –refinement: SEQ_ITP;

• –predsplit: WHOLE;

• –prunestrategy: LAZY;

There were 74 cases in this run with 3 configurations resulting in 222 measurements.

Figure 5.3: RQ3: A heatmap comparing the success rates of the different predicate ab-
straction variants.

The results (see Fig. 5.3) show that the PRED_CART domain performed significantly better
than the two other variants. The leftmost cloumn contain the total success rates, here we
can see that PRED_CART successfully verified 73 cases, while PRED_SPLIT and PRED_BOOL
only verified 58 and 62, respectively.

RQ4: Explicit state enumeration limit

Free parameters:

• –maxenum: {0, 1, 10, 250, 500, 1000, 10000}.

Bounded parameters:

• –domain: EXPL;

• –search: BFS;

• –refinement: SEQ_ITP;

• –prunestrategy: LAZY;
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Figure 5.4: RQ4: A heatmap comparing the success rates of the different –maxenum
options.

There were 74 test cases in this run with 7 different configurations, giving 518 measure-
ments.

The results show that the 250 option performed the best. Looking at the leftmost column
of the heatmap in Fig. 5.4 we can see that it verified the most amount of models, 65, in the
least amount of time, 506s. Two other options, 500 and 1000 also verified 65 models, but
required more time. Fig. 5.5 displays the measured results on a quantile plot [10]. The
colored lines represent the different configurations, the more models a configuration was
able to verify, the further to the right its corresponding line stretches. Maximum required
CPU time is plotted on the y-axis, meaning the lower down the right end of a line is, the
lower the worst case in terms CPU time was for the corresponding configuration. Note
that the y-axis is not linear. As it can be seen in Fig. 5.5, the 250 option verified the
highest amount of models and was fastest among the configurations which had the same
amount of successful verifications. Increasing the –maxenum parameter to 500, 1000 or even
10000 did not increase the success ratio, but resulted in an increase in the measured CPU
time. This is due to the reason that the increased limit meant that more explicit states
were enumerated. Note that the optimal setting for the –maxenum parameter is highly
dependant on the verified model. Even though the 250 option fits our set of models the
best, other models might perform better with a different –maxenum value. The heatmap
in Fig. 5.4 gives a brief overview of the performance of the other configurations. It is also
interesting to see that the maxenum value 1 performed significantly worse than any other
setting (this is also clearly visible in the quantile plot).

RQ5: Refinement and pruning strategy

Free parameters:

• –refinement: {FW_BIN_ITP, BW_BIN_ITP, SEQ_ITP, MULTI_SEQ};

• –prunestrategy: {LAZY, FULL}.

Bounded parameters:
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Figure 5.5: RQ4: Quantile plot comparing the different –maxenum options.

• –domain: PRED_CART;

• –search: BFS;

• –predsplit: WHOLE.

There were 74 test cases in this run with 8 different configurations resulting in 592 mea-
surements.

Figure 5.6: RQ5: A heatmap comparing the success rates of the different refinement
strategy and pruning strategy combinations.

The results show that the FW_BIN_ITP refinement strategy performs poorly on XSTS
models. This is reaffirms the benchmarking results presented in [22], where FW_BIN_ITP
performed similarly poorly on CFA (control flow automaton) models. As visible in Fig. 5.7,
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Figure 5.7: RQ5: A quantile plot comparing the different refinement strategy and prun-
ing strategy combinations.

all other combinations performed roughly the same, except the two configurations with
the FW_BIN_ITP refinement strategy.

RQ6: Product abstraction compared to other domains

In this benchmark I compared the best configuration that uses product abstraction to the
best predicate abstraction configuration and the best explicit-value abstraction configura-
tion. To achieve this, I picked the configuration for each domain that had the best overall
performance, which resulted in three configurations:

• PC_L_SI_BW represents the predicate abstraction domain;

• P250_L_SI_BW represents the product abstraction domain;

• E250_L_SI_B represents the explicit-value abstraction domain.

There were 74 test cases in this run with 3 different configurations, resulting in 222 mea-
surements.

Figure 5.8: RQ6: A heatmap comparing the success rates of the different configurations.

The results shown in Fig. 5.8 indicate that there is no clear winner here. Based on the
result of evaluating RQ1 it is no surprise that PC_L_SI_BW had the best overall success rate.
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On the other hand, when we look at the different model sets, we can see that predicate
abstraction wasn’t able to verify the Spacecraft set, while both product and explicit-value
abstraction could. Similarly, when we look at the PIL set, we can see that explicit-value
abstraction could not verify its models (with the exception of 1 test case), while predicate
and product abstraction could. What this means is that product abstraction was able to
combine the strengths of its subdomains in such a manner in both directions, that allowed
it to verify models that can only be verified by a single one of its subdomains. On the
other hand it is also clearly visible that in certain situations, product abstraction can also
perform poorer than both of its subdomains, which can be seen in the results of the COID
and INPE sets. These sets call for further examination, which is future work.

Summary

The experimental evaluation of the XSTS formalism showed promising results. All models
were successfully verified by at least one configuration and no run yielded an incorrect re-
sult. The benchmarks reaffirmed the belief that the performance of the analysis is highly
dependant on the parameterization of the model checker, as there are significant differ-
ences in performance between the different configurations. The benchmarks also identified
configurations that generally perform well, as well as configurations whose performance is
poor overall and whom should be avoided. This helped us to determine a low number of
possible configurations that for example Gamma should try to invoke. The benchmarks
also showed that the PROD domain can compete with the other domains, and even perform
better in certain cases.
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Chapter 6

Conclusions

In this final chapter I draw the conclusions of my work and lay down possible future
directions. The goal of this work was to develop a novel intermediate language that offers
high-level constructs to make modeling easier, and to demonstrate its applicability on
real-world industrial examples.

The results of the work are twofold. From the theoretical point of view, I developed the
novel extended symbolic transition system (XSTS) formalism, an intermediate language
between low-level SMT solvers and high-level engineering models that is suitable for model
checkers to operate on. In the progress of developing the formalism, I evaluated semantic
questions and design decisions to create a flexible formalism that can support several
high-level engineering models and multiple model checking paradigms. Furthermore, I
defined the formal semantics of XSTS models, adapted the CEGAR-based model checking
algorithm to the formalism, and proposed novel variants that exploit the structure of
XSTS.

From the practical point of view, I implemented the XSTS formalism in the Theta frame-
work, along with a domain-specific language (using Antlr) for easy parsing of XSTS models.
I also created a parameterizable command-line model checking tool that can run the afore-
mentioned CEGAR-based analysis. My additions were included in the main development
branch since the v2.0.0. release of the Theta framework. I ran an exhaustive bench-
marking campaign with several models and configurations to evaluate the strenghts and
weaknesses of my approach, including real-world examples provided by industry partners.
My formalism and model checker was integrated as a verification backend to the Gamma
Statechart Composition Framework, which offers an end-to-end hidden formal verification
workflow for engineers, proving the applicability of my work.

Future work. While the XSTS formalism showed promising results, I have various plans
for further improvements. I intend to introduce further composite statements into the
XSTS formalism that would aid the modeling of concurrent, communicating systems. I also
plan to prove the generic nature and flexibility of XSTS by defining mappings from other
formalisms such as Petri nets and control flow automata. To increase the expressive power
of the analysis, I intend to adapt temporal logic (e.g., LTL) model checking algorithms to
the XSTS formalism. Furthermore, as part of a collaboration between several industrial
partners, Gamma is already integrated in a scalable and automated cloud-based model
checking service [29], currently relying on Uppaal [33] as its backend. However, we also
plan to integrate Theta (via my XSTS-based analyses) as an alternate backend into the
workflow.
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Appendix

A.1 Spacecraft model

Figure A.1.1: SysML statechart model of a spacecraft component [29].
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A.2 Overall success rates

Figure A.2.1: A rowchart depicting the success rates measured in the benchmark of RQ1
(Section 5.3.5).
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