
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Evaluation Environment for Vision-Based
Relational Systems

Scientific Students’ Association Report

Author Advisor
Petra Huszti dr. Oszkár Semeráth

November 1, 2022

Contents

Kivonat i

Abstract ii

1 Intoduction 1
1.1 Context . 1
1.2 Problem Statement . 1
1.3 Objectives . 1
1.4 Contributions . 2
1.5 Added Value . 2
1.6 Struture of the Report . 2

2 Preliminaries 3
2.1 Vision-Based Relational AIs . 3

2.1.1 Machine Learning techniques . 3
2.1.2 Relational reasoning . 5

2.2 Datasets for vision-based relational models 5
2.2.1 Clevr . 5
2.2.2 Carla . 5

2.2.2.1 Scenic and traffic situation generation 6
2.3 Modeling environments . 7

2.3.1 Eclipse Modeling Framework . 7
2.3.2 Xtext . 8

2.4 Related Work . 9
2.4.1 Visual Question Answering Benchmarks 9
2.4.2 Autonomous Vehicles . 9
2.4.3 Neural Networks . 10

3 Overview of the Approach 11
3.1 Functional Overview . 11

3.2 Objects Generated by the Environment . 14
3.3 Verification and Benchmark Tasks . 16

3.3.1 Verification of the Questions . 17
3.3.2 Benchmark Tasks . 17

4 Elaboration 19
4.1 Question Templates in Xtext . 19

4.1.1 Concepts . 19
4.1.2 Question Template . 19

4.2 Test Generator in Java . 21
4.2.1 Random Question Generation . 21
4.2.2 Generation of Unique Questions . 22
4.2.3 Generation of Unique Questions With Answers 23

5 Evaluation 25
5.1 Selected domains . 25
5.2 Measurement setup . 25
5.3 Measurement results . 26
5.4 Analysis of the results . 28

6 Conclusions and Future Works 29

Bibliography 30

Kivonat

A képfeldolgozáson alapuló gépi tanulás egyre nagyobb teret hódít; az egészségügytől kezd-
ve az önvezető járművekkel bezáróan számos területen előszeretettel alkalmazzák. Ezzel
számos új lehetőség és kihívás tárul a mérnökök elé. Megjelentek továbbá Mesterséges In-
telligencián (MI) alapuló komponensek biztonságkritikus rendszerekben (például önvezető
járművekben) is, ahol a hibák életekbe kerülhetnek, ezért kiemelten fontos a tesztelés és
a megbízhatóság elemzése.

Számos tesztelésre és teljesítménymérésre képes környezet létezik a képfeldolgozó MI-
k képességeinek értékelésére, azonban gyakran kell szembesülünk azzal, hogy módszereik
részrehajlók és képesek anélkül magas pontosságú eredményeket elérni, hogy teljesítenék a
tényleges követelményét. Ebből kifolyólag olyan mérési eredménnyel szolgálnak, ami nem
tükrözi az MI tényleges képességeit, gyengeségeit.

A probléma elkerülése érdekében szükség van tehát egy olyan kiértékelési környezetre,
ami képes pártatlan teljesítménymérést végezni számos képfeldolgozó MI-n. Ezáltal olyan
mérési környezetet javaslunk, amelyben összehasonlíthatóvá válnak különböző gépi tanulás
modellek, és ezek ellenőrzési/tesztelési módszerei.

A beszámoló egy olyan újszerű módszert mutat be, ami bemeneti adatokat generál
képfeldolgozó MI-k számára, amit ezek után fel lehet használni a különböző MI modelek
és ellenőrzési technikák tesztelésre és tanítására. Az elkészült keretrendszer célja, hogy
az MI-k képességeit több különböző statisztikai és diverzitás metrika szerint legyen képes
mérni. Mintaillesztés felhasználásával képes tehát megfelelően sokrétű, releváns kérdéseket
generálni és ellenőrizni a rájuk adott választ.

A fentebb említett környezet segítségével lehetőség nyílik arra, hogy számos MI tel-
jesítményét mérjük, ezeket összehasonlítsuk, erősségeket és hiányosságaikat összegezzük.

i

Abstract

Recently, vision-based machine learning applications are getting more and more attention;
they are increasingly applied to multiple domains from healthcare to autonomous vehicles.
This presents many novel opportunities and challenges to engineers. As many of those AI-
based components operate in safety-critical environments, where errors can harm human
life, the evaluation and testing are high priorities.
Many testing and benchmark environments already exist to measure vision-based AI per-
formance, however they often use biased methods for evaluation, where high accuracy can
be achieved without satisfying their requirements. Therefore, giving an incorrect assess-
ment of the AIs capabilities.
To avoid this, we need to create an environment that is capable of serving as a non-biased
benchmark for a multitude of vision-based AI components. The goal of the report is to
present the measurement environment that I have created.
In this report I propose a novel way of generating input data for vision-based AI to evaluate
the testing and training performance of different AI models and verification approaches. I
have developed a cross-platform environment that aims to measure the capabilities of an
AI, while avoiding forming biases. It is capable of generating appropriately varied, relevant
questions with the usage of pattern matching and giving verified answers to them.
With the use of the aforementioned environment, it becomes possible to measure the
capabilities of different AIs, compare them, assess their strengths and weaknesses.

ii

Chapter 1

Intoduction

1.1 Context

Vision-based AI is becoming more and more prevalent in a multitude of domains. Many of
these AI-based components already used in a safety-critical environment; we could take a
look at the newest car on the market or at expensive medical equipment. In these systems
a single error can cost a life or a lot of money. This is the point where the evaluation and
testing of these systems become vital. Through evaluation and testing we can discover
fault and understand the limitations and capabilities of the AI, gaining the ability to assign
them correctly or improve on them.

1.2 Problem Statement

Despite the large amount of existing testing and benchmark environments already exists,
the testing of those macine learning models is still an open question. There are several
measurement environments that are capable of providing us with measurements of artificial
intelligence (AI) models, but their methods are often biased and miss diversity to achieve
high coverage metrics. Therefore, in the context of visual-reasoning AI this means that
the AI models can achieve relatively high accuracy without solving the problems rare
(but relevant) corner-cases. For example, for a question "is there a pedestrian left to the
car in front of this car" the typical answer is "no", an model can achieve high accuracy
with a constant "no" answer, but it is critical to give the correct answer in case of a
takeover maneuver for self-driving cars. Thus an evaluation environment is needed which
can systematically generate questions that are either statistically relevant, or follow some
coverage metrics to discover important corner cases.

1.3 Objectives

To battle the formation of biases we require an environment that discourage the formation
of them. The first goal of this report is to present the environment, that can serve as a
non-biased benchmark for a multitude of vision-based AI components. The second goal
of this report is to provide a cross-domain benchmark environment, so multiple solutions
from different domains can be compared with each other, or existing benchmarks or test
cases can be adapted to another domain.

1

This report focuses on visual question answering AI models, with special focus on relational
reasoning.

1.4 Contributions

In this report I propose a novel way of generating input data for vision-based AI to evaluate
the testing and training performance of different AI models and verification approaches.

• I have developed a cross-domain environment that aims to measure the capabilities
of an AI, while avoiding forming biases.

• I adapted the generation environment for the synthetic domain of Clevr [17] and
autonomous vehicle domain Carla [9, 10].

• I provided performance benchmarks to assess the feasibility of my question genera-
tion approach.

1.5 Added Value

With the use of the aforementioned environment, it becomes possible to measure the capa-
bilities of different AIs, compare them, assess their strengths and weaknesses. Moreover,
with different realistic and coverage metrics, the highly accurate performance and efficient
test suites can be generated.

1.6 Struture of the Report

The structure of this report is the following. In the 2. Chapter I discuss the necessary
background knowledge for evaluating vision-based AIs. In Chapter 3 we will take a look
at the overall concept of the work, like how a verification environment is structured, and
what is required from it. In Chapter 4 we discuss the workings of the algorithm behind the
environment. Chapter 5 presents the measurement results produced by the environment.
Finally, Chapter 6 will conclude this report.

2

Chapter 2

Preliminaries

This chapter discusses the preliminaries necessary to understand the contributions of this
report.

2.1 Vision-Based Relational AIs

Vision-Based Relational Artificial Intelligeces belong to the field of computer vision ap-
plication that allow machines to analyze images and provide an output based on their
observations.

2.1.1 Machine Learning techniques

Machine Learning (ML) techniques are widely used for automatically assessing large
datasets where it is difficult or infeasible to provide traditional software components.
The field of machine learning is diverse and ever-expanding with multiple different ap-
proaches and algorithms to use [19]. A generic taxonomy of machine learning approaches
is illustrated in Figure 2.1. In this report, we are focusing mainly on neural networks.

Figure 2.1: Machine Learning Types and Algorithms

Neural Network [1] is a family of algorithms that emulates the workings of neurons of
the brain signaling to each other. Nowadays, a wide variety of neural network algorithm
is proposed for various tasks, which can be efficiently trained and operated using the
computational capacities of modern graphical processors [25].
The use of neural networks allow computers to recognise patterns and solve problems.
As illustrated in Figure 2.2, they are composed of an input and output layer separated
by one or more hidden layers. Each layer contains nodes, that act as artificial neurons,
connected by weighted edges to higher level nodes. If a node activates then information
is only allowed to travel on edges with a lower threshold then the value of the output[3].

3

Figure 2.2: Example neural network with three inputs in its input layer, a hidden layer
with three neurons, and two neurons in it output layer.

Deep Learning[23, 16] is a subset of neural networks. Deep learning approaches are widely
used when dealing with a large scale input data with abundant training data available for
the neural network to obtain a higher level of accuracy. This is the main reason it is used
when the need to process images, videos, large texts or audio data arises.
In the field of computer vision an AIs main task is to analyse pictures, videos or other
visual media in order to make decisions. AI models are constructed to process input from
cameras and sensors, with the final goal of providing higher accuracy than humans [18].
From the basic ability of recognising objects or detecting movement to navigating abstract
concepts relating to sight, many task are being delegated to AIs.
A Convolutional Neural Network is a deep learning algorithm, commonly used for image
processing and other tasks involving pixel data. As the field of computer vision mainly
relies on images, CNN is the most favoured algorithm used. It consists of the following
layers:

• convolutional layer, that is the core of CNN. The kernel or filter inside this layer (or
layers) moves through the fields of the images and decides if a feature is present in
it.

• pooling layer, like the convolutional layer sweeps through the image, but with re-
duced parameters.

• fully connected layer where the classification of the image happens.

CNN-based solutions are frequently used in image processing components of autonomous
vehicles [11]. The algorithm receives images made by a camera on the dashboard and
outputs the steering angle directory. This algorithm is sufficient to control the steering
wheel of an autonomous vehicle and allows for training in simulators .

4

2.1.2 Relational reasoning

Relational AIs are using machine learning in combination with graph-structured or rela-
tional data. AIs are generally associated with making rational choices, but in reality, they
are susceptible to biases and exclusions. From this susceptibility derives the need for the
relational AI, where not only the given answer matters, but the correct reasoning behind
them as well. For this purpose CNN provides an interesting choice which can combine
reasoning with complex data processing like object detection.

2.2 Datasets for vision-based relational models

Deep learning requires a large amount of training data, that would take a long time to
produce manually, therefore it is recommended to use an automatic method to generate
the input.

2.2.1 Clevr

Clevr is "a diagnostic dataset for studying the ability of Visual Question Answering systems
to perform visual reasoning" [18]. This dataset contains:

• Images to be used as input data

• Questions related to the images.

The task of the AI is to answer these questions correctly. The benchmark provides tools
for generation these images and the corresponding questions with a given distribution.
The images (as illustrated in Figure 2.3) contain three to ten objects each, chosen from
the three available shapes (sphere, cube, and cylinder), in two different materials (metal
and rubber). There are also two sizes (small and big) and eight colors to choose from. All
objects on the images can be described with the use of these four parameters.
The questions present are capable of assessing aspects of visual reasoning such as attribute
identification, logical operations, comparisons, counting and multiple attention. They are
separated into 90 different families with each family containing at least 4 synonymous
templates.

Example 1. Lets check an example image/question pair generated by Clevr:

• Image: illustrated in Figure 2.3.

• Question:"Are there any big yellow rubber cube things?"

[17] provides an prototype model solution created by Facebook Research for visual
question answering. In this example, their prototype solution can give the correct
answer, which is "true" (as there is a big yellow rubber cube on the top right corner).

2.2.2 Carla

Carla [9] is an open-source simulator with open digital assets, like buildings, maps and
vehicles. It provides a wide range of utilities relating to the modification of the simulation

5

Figure 2.3: Generated image for Clevr

(ex.: generating scenarios, changing the weather, monitoring sensors). Moreover, Carla is
closely linked with testing self driving cars, including open source self driving AI models
like OpenPilon [2, 8, 26].
In this report, Carla will serve as the simulator of choice for generating the input dataset of
an AI operating in an autonomous vehicle. Carlas model for describing scenes is illustrated
on Figure 2.4

2.2.2.1 Scenic and traffic situation generation

Scenic [10] is a domain-specific probabilistic programming language for modeling the en-
vironments of cyber-physical systems like robots and autonomous cars.
Scenic allows for the creation of complex and rare traffic situations. The environment, the
placement, attributes and behaviours of vehicles can be described in a manually written
code. The placement of vehicles are chosen based on the required road or crossroad,
therefore from one code, multiple vastly different situations can arise.

Example 2. Code fragment Figure 2.5 we can observe the description of a behaviour
and a vehicle. The behaviour receives the speed of the vehicle. The vehicle is to follow
its designated lane(FollowLaneBehaviour) until an other objects enters its safety
distance, when it has to break with the intensity of 1.

The description of the vehicle includes the lane (that is picked at random from the
available lanes) and a spot (the centre of the lane). The vehicle is to spawn following
the direction of the lane, within the specified range from the spot, have the above
mentioned behaviour, with the specified model.

6

Figure 2.4: Model for describing scenes for Carla

We can observe that the lane and spawnpoint of the vehicle is chosen at random from
a number of possible choices allowing for a large number of permutations.

Figure 2.6 is made using scenic to describe the situation that we wanted the generate.
If we compare it with the image we have received from the Clevr Dataset (illustrated in
Figure 2.3), we can observe, that the relevant objects in the scenes are comparable to each
other. An object in Clevr is a vehicle in Carla, with each having their own attributes to
describe them.

2.3 Modeling environments

Finally, the report presents the modeling background for describing questions and scenes
for various domains.

2.3.1 Eclipse Modeling Framework

Model Driven Development is a distinct way to approach software design and development,
using models for a more concise system. The MDD approach separates the functional and
technical aspects of development. It allows for models to exist independently from a
platform, therefore creating a platform-free interpretation of the program. These models
are a great way of defining systems requirements from the get-go and can be used to
generate at least parts of the code.
The EMF project is a modeling framework and code generation facility for building tools
and other applications based on a structured data model [24].
EMF makes use of the MDA approach and combines it with old-school code writing. The
models created with EMF can be used to generate parts of the code, but it is necessary to
write the more complicated functions ourselves. In the EMF model one can find the data
structure of the application; objects attributes, their relationships and the functions that
are available to be executed on them.

7

1 SAFETY_DISTANCE = 30
2 BRAKE_INTENSITY = 1.0
3 EGO_MODEL = "vehicle.tesla.model3"
4 EGO_SPEED = 10
5

6 behavior EgoBehavior(speed=10):
7 try:
8 do FollowLaneBehavior(target_speed=speed)
9 interrupt when withinDistanceToObjsInLane(self, SAFETY_DISTANCE):

10 take SetBrakeAction(BRAKE_INTENSITY)
11

12 lane = Uniform(*network.lanes)
13 spot = OrientedPoint on lane.centerline
14

15 ego = Car following roadDirection from spot for Range(-30, -20),
16 with blueprint EGO_MODEL,
17 with behavior EgoBehavior(EGO_SPEED)

Figure 2.5: Carla’s Generated Scenario

Example 3. On the picture we can observe the model of the images (illustrated on
Figure 2.4) that can be generated by Carla. We see, that these images – represented
by the Scene Class – contains the following items:

• vehicles: the image contains one to ten vehicles, each having a color and a type.

• verticalRelations: the vehicles ordered, starting with the closest to the camera

• horizontalRelations: the vehicles ordered, starting from the left side of the image

We can also take a look at the generated class of Vehicles(illustrated on ??) where
we can see, that the generation automatically created a number of functions for the
class, mostly getters and setters, but we can see a toString method as well.

2.3.2 Xtext

Xtext is a framework for development of textual languages and domain-specific languages
[6].
Xtext grants programmers the ability to create their own languages, with its own parser,
linker, compiler and all the other tools required from a complete language infrastruc-
ture.

Example 4. Let’s take a look at the following template in Clevr: "Are there any
<Z> <C> <M> <S> things?" where <Z> is size, <C> is color, <M> is
material and <S> is shape.

If we bind the parameters ’big’, ’yellow’, ’rubber’ and ’square’ to <Z> <C> <M>
<S> we can create the question "Are there any big yellow rubber square
things?".

8

Figure 2.6: Carlas Generated Scenario

We can also bind nil to any of the parameters. If <C> is nil, then we get the more
general question of "Are there any big rubber square things?".

2.4 Related Work

2.4.1 Visual Question Answering Benchmarks

Clevr proposed a visual question answering benchmark witch is the main motivation of this
report [17]. This Clevr benchmark was replicated several times in the literature including
solutions from Facebook Research [28], Google Deepmind [21], OpenAI [20]. Blocksworld
[4] is a similar benchmark with vertical relations (up and down) instead of horizontal
(front, behind).
The main downside of those approaches is that they generate questions by random sam-
pling witch can produce highly biased AI models. For example, in [18] the AI model is
presented with over 60% accuracy, witch does not even get the image as an input. This
can be explained by the high amount of 0/false answers in the dataset, witch is the safest
answer in all the cases.

2.4.2 Autonomous Vehicles

The testing of autonomous vehicles is more beneficial if it is done with the use of simulators,
as it is cheaper and more safe. One of the simulators to be used for this purpose is CARLA
[9]. In Carla we can generate the rare and critical scenarios (scenarios that could end in
an accident), or even the combination of the two. For this purpose we use a tool, that
easily describes a traffic situation [10].
The most common way to operate and train an autonomous vehicles is with the use of
deep learning [11], more specifically Convolutional Neural Networks. They have already
been used in LIDARS [12] and ADAS systems [22], or training end-to-end controllers [29]
There are a variety of more complex CNNs in literature.

9

2.4.3 Neural Networks

Neural networks are widely used in the filed of computer vision, a number of more advanced
approaches have appeared in literature recently, especially at concerning the relational AIs.
Take the Recurrent neural networks(RNN) [27] or Graph Neural Networks(GNN) [13] as
an example for of a specialized neural network for assessing graph structured relational
data.

10

Chapter 3

Overview of the Approach

The goal of this report is to extend the Clevr benchmark into a domain independent
performance evaluation framework for vision-based relational artificial intelligence models.
Therefore different AI models can be objectively compared, else the visual representation of
the domain can be evaluated separately from the relational properties. Moreover existing
benchmarks for Clevr can be adapted to autonomous driving domains.
For the running example I have chosen a question from the Clevr Dataset and its modified
version from Carla.
Clevr version:
"What is the material of the big yellow square that is behind the big gray metal square?"
Carla version:
"What is the color of the car that is behind the red truck?"

3.1 Functional Overview

In the following, I represent the functional overview of my approach (illustrated in Fig-
ure 3.1). I have created an evaluation environment for artificial intelligence models.

Figure 3.1: Overview of the approach.

First, test generation is initiated from a benchmark.

Benchmark

A benchmark environment for vision-based relational AI models defines image for-
mats and (logic) reasoning task. Benchmark environments are constructed by do-
main experts to capture relevant aspects of real life problems.

11

Concepts

Concepts describe the possible types of actors, their spatial relations and attributes
on the image. Moreover more complex derived concepts can be derived.

In this report we will use vision-based AI in traffic situations. In these instances the
following concepts are crucial to be understood:

• Actor: Different types of vehicles and any other being that can actively participate
in traffic. The paper uses vehicles as it’s actors.

• Attributes: All of the attributes belonging to the actors. The paper uses color
(e.g., black, white, red) and type (e.g., car, ambulance).

• Relations: These are the terms that are applicable to the relationship between
actors; these are ’left’, ’right’, ’behind’ and ’in front of’.

With the extension of the benchmark the concepts can be extended as well. The current
concepts are illustrated on Figure 3.2 using UML class diagrams.

Figure 3.2: Class Diagram of the Concepts

Scene Graph Generators(SGG)

An SGG is a tool capable of producing graph structured data using the available
concepts.

SGGs include statistical and probabilistic methods [10] or logic solvers like [5, 7].

12

Scene

A scene is the description of a picture containing all the necessary information for
an AI to answer all the questions asked of it, and no more.

In our case a scene includes all the relevant attributes of objects and their positions on
the image, described related to each other.
To every pictures belongs a single scene, yet a scene can be used to illustrate an infinite
number of pictures. With the ability to describe every image relating to our case, it can be
said that the scene object is sufficient for deducing the correct answer to a visual question
answering problem.
A scene must contains the following items:

• Objects: this is a list of the present actors on the image. There are three to ten
object in each scene.

• Attributes: to every object belongs a series of attributes.

• Relationships: this is the ordered list of the actors on the image. It contains a
horizontal sublist, that has the actors ordered from left to right and the depth
sublist, that has them ordered from the closest to the camera to the farthest. These
sublist contain only the indexes of the actors, derived from the Objects.

The scene
Example 5. As an example of a scene, let’s look at the following images in Fig-
ure 3.3. As we take a look at the scene object on the bottom figure, we can tell the
name of the image is "Test_1.png". It has three objects; a red car, a black car and
a black police car. The relations shows that the red car is the first from the left
and the black police car is the last. It also tells, that the black car is the closest
to the camera and the red car is the farthest from it.

Let’s say, that we have moved the black car to the right by two pixels. These two
pixels create such a such a small difference, that the overall order of the objects
remain unchanged. This way we can understand, that the scene shown above can
belong to a multitude of different images.

Question Templates

Question templates are text templates with variables. These variables are bound
to different objects or attributes relating to the scene.

The generation of questions is based on preexisting question templates. These templates
are heavily inspired by Clevrs interpretation, but modified to fit autonomous vehicles.
Each question consists of terminal and non-terminal parts. The terminal parts are basis
for separating questions into categories for easy mix-and-match. The non-terminal parts
can be considered as blank spaces, that can only be filled by the correct type of variable,
chosen from the concepts section. The question templates are illustrated on Figure 3.4.

Example 6. Let’s take the following questions:

Is the number of big yellow matte squares the same as the number of big blue
matte squares?

13

Figure 3.3: A graph created from the scene and it’s real picture

Is the number of black cars the same as the number of red cars?

The first version of the question is created with Clevrs template, the second is with
Carlas. In both templates the terminal and non-terminal parts are easy to differentiate
as the parameters are distinct from the rest of the text and it is clear on both versions
what kind of variable should be bound to the parameters.

3.2 Objects Generated by the Environment

Test Inputs

A collection of questions generated for a set of images.

One of the generators main purpose is to create test inputs. In Carlas case, this happens
using the available question templates, scenes and concepts. Every test input contains a
set of one hundred questions by default that are verified to be relevant to the picture.

14

[{"text": ["Are there an equal number of <Z> <C> <M> <S>s and <Z2> <C2> <M2> <S2>s?", "Are there

the same number of <Z> <C> <M> <S>s and <Z2> <C2> <M2> <S2>s?", "Is the number of <Z> <C> <M>

<S>s the same as the number of <Z2> <C2> <M2> <S2>s?"], "nodes": [{"inputs": [], "type": "scene"},

{"side_inputs": ["<Z>", "<C>", "<M>", "<S>"], "inputs": [0], "type": "filter_count"}, {"inputs": [],

"type": "scene"}, {"side_inputs": ["<Z2>", "<C2>", "<M2>", "<S2>"], "inputs": [2], "type":

"filter_count"}, {"inputs": [1, 3], "type": "equal_integer"}], "params": [{"type": "Size", "name": "<Z>"},

{"type": "Color", "name": "<C>"}, {"type": "Material", "name": "<M>"}, {"type": "Shape", "name":

"<S>"}, {"type": "Size", "name": "<Z2>"}, {"type": "Color", "name": "<C2>"}, {"type": "Material",

"name": "<M2>"}, {"type": "Shape", "name": "<S2>"}], "constraints": [{"params": [1, 3], "type":

"OUT_NEQ"}]}

Figure 3.4: Clevr’s question Template(bottom) and my question template(top)

The number and sampling of these questions can be changed depending on the desired
outcome.

Example 7. Clevrs generates the questions to multiple images at the same time into
the same file, as it is indicated by the indexing of both pictures("image_index") and
the questions("question_index").

Carlas version generates large amount of questions to one image at the time, without
indexing, but separated by a new line.

Test Oracle

A collections of correct answers to the asked questions.

In Carlas case this set contains the correct answer in the form of a number or text. These
answers are produced alongside the questions, written into separate files per image.
Using the test oracle one can calculate the accuracy of the AI model under test as the
number of correctly answered questions are divided by the number of questions. However
accuracy is not a sufficient metric in safety critical domains [15, 14], therefore it is critical
to formulate a different coverage metrics to ensure the testing if critical and dangerous
situations.

15

1 Is there another cyan cube of the same size as the big cube ?
2 Is there a small gray rubber sphere that is behind the small yellow rubber

sphere that is behind the gray cube ?
3 Is there a yellow cylinder ?
4 Is there another small brown cylinder of the same shape as the yellow

metal sphere ?
5 Is there another brown rubber cylinder of the same color as the small blue

metal cylinder ?
6 Is there a blue cylinder ?
7 Is there a sphere ?
8 Is there a big green rubber cube that is right the small blue metal cube

that is left the big purple cube ?

1 How many blue cars are front the cyan ambulance that is behind the purple
car ?

2 Is there a purple ambulance ?
3 Are there fewer blue ambulance that are behind the blue car than gray

ambulance that are behind the purple car ?
4 Is there a green ambulance that is right the blue car that is front the

gray ambulance that is front the purple ambulance ?
5 What is the type of the car object ? The cyan car that is both behind the

green ambulance and behind the green car is what type ?
6 What number of gray car are both right the brown ambulance and front the

cyan car ?
7 What is the type of the brown object ?
8 Is the number of purple ambulance that are behind the red ambulance

greater than the number of green car ?

Figure 3.5: Generated Clevr and Carla questions

Coverage Metrics

Coverage metrics give data on the software during testing as they measure the
percentage of potential questions and scenes.

In Carlas case the coverage metrics are able to show the touched upon questions. It can
be used later to measure the type and complexity of the questions that were answered
correctly and those that were not, therefore giving an insight into the workings of the AI.
With this knowledge further question generation can be adjusted based on the performance
of the AI.

3.3 Verification and Benchmark Tasks

The final goal of the AI is to be able to answer all questions that it is trained to answer
correctly. If we want to achieve such a goal, then we have to also make sure that the
environment it is trained in only gives correct answers to all questions. That is the point
where verification of both questions and answers are necessary.

16

3.3.1 Verification of the Questions

One of the goals of question verification is to give only situationally relevant, complete
questions.

Situationally Relevant Questions

We call a question situationally relevant if the question only features actors, at-
tributes and relations that exist on the picture.

Example 8. Let’s take the image in Figure 2.6 and its scene object. On this image
we have a red car left of a black car that is left of a black police car.

In the context of these objects the question Are there any red cars left of the
black car? is a relevant question as there is both a red and a black car present on
the picture. Note that the question in this instance is relevant even if we use right
instead of left, as relevance does not mean that the answer has to be positive.

On the other hand a question like Are there any red cars left of the black car
that is right of the red firetruck? is not relevant, because the is no red firetruck
on the image. If we substitute the red firetruck with black police car the question
still remains irrelevant, because there is no black car right of the black police car.

Complete Questions

We call a question complete if all of their simple variables are accounted for and at
least one variable is present from each of their complex variables.

Example 9. Let’s take a look at the following question: What is the <adjective>
of the <actor> that is <relation> the <actor>?. This question has to meet
the following requirements to be considered complete:

• The adjective variable is simple, therefore it has to have a value and cannot be
nil.

• The relation variable is simple, therefore it has to have a value and cannot be
nil.

• The actor variables are complex, made up from a <color> and <type> part.
At least one of these variables have to have a value.

The other goal is to generate numerous questions, without repeating one.

3.3.2 Benchmark Tasks

Using the proposed evaluation environment several benchmark tasks can be adapted to
self-driving (Celvr) domains from Carla. First training set for self driving cars are fre-
quently enhanced by simulated scenarios. However large amount of simulated training
data can hinder the accuracy of the AI model because it seems it overadapts to the im-
ages. Performance benchmarks are frequently used to evaluate the accuracy of the AI
model, where a large number of synthetic image-question pairs are required. Simulated
environments are widely used in testing, as it can detect weaknesses of the model. The
main difference between performance benchmarks and testing is that performance bench-

17

marks require a realistic distribution of test inputs while testing typically is motivated by
corner cases.

Clevr Carla
Training + +/-
Testing + +

Performance benchmark + -

Table 3.1: Clevr and Carla tasks

One of the main benefit of my approach is that it can be parameterized by different
stochastic distributions to follow the real life distributions of questions. Moreover given a
coverage metric questions can be generated to increase the coverage of a test suite.

Realistic Generation

Given a statistical metric, a generated set of questions is realistic if it follows the
distribution of questions in the training set.

Diverse Generation

Given a coverage metric, a generated set of questions is diverse if each question
increases the coverage metric of the test suite (ideally 100%).

18

Chapter 4

Elaboration

This chapter discusses the details of the process responsible for generating the questions.

4.1 Question Templates in Xtext

In this section we discuss the implementation of the Question Templates.

4.1.1 Concepts

The generation of questions relating to traffic situations required the creation of a new
grammar, specifically to describe traffic situations with ease. The grammar has been name
carlaQuestions, that comes with its own extension cq.
The grammar contains all of the concepts mentioned in Chapter 3(illustrated in ??).

• Actors are represented by the only actor that is present at this stage of the develop-
ment: the Object class, that describes a vehicle.

• There are two attributes present in the program: Colortype and Cartype, both of
which are part of the Object class.

• Spatial Relations are implemented by the Relations class. As by the original notion
it is a complete class, as it has all the elements discussed in Chapter 3(Figure 3.2).

The interpretation also contains the AttributeName class for avoiding unnecessary tem-
plate duplication, whenever the inquired upon attribute changes. This class collects the
’names’ of all attributes that can exist related to any of the actors.

4.1.2 Question Template

The template collection has a number of question families of various sizes. All questions
featured are only allowed to have terminal parts written in free-text and non-terminal
parts chosen from the above mentioned concepts.
The questions are categorized based on their terminal parts, as they repeat often thus it
is necessary to reuse as much of it as possible to reduce the size of the templates. As it

19

Figure 4.1: The abstraction of the WhatIs class

stands there are twelve families in the collection, one of which we are going to take a closer
look at.
We can see, that the terminal parts of the question are highlighted in green and the non-
terminal parts in orange: these are the variables that are the substituted. There are only
one type of variable that is able to fill one spot. If the need arises for one blank to be
able to be filled by two different variable, we can simple create a class, that is capable of
achieving that goal.
The family illustrated on Figure 4.1 is the WhatIs family. By its name we can already
imagine, that it is a collection of question templates starting with "What is" and ending
in the following ways:

Figure 4.2: WhatIs family tree

20

On Figure 4.1 we can see, that the possible endings of the question are separated by a |
symbol. This allows for two possible variables to be inserted; one is the ? that ends a
question, the other one is the continue variable, that takes moves the question a tier lower.
This behavior forms the above illustrated tree.
On the first tier we can see the shortest question(s) templates that the family is able
to produce. These templates are the easiest to answer as they have to least amount of
variables to take into account and do not require the understanding of AND operators
as some of the following templates. The deeper we go in the tree, the higher the tiers
numbering becomes, we encounter more challenging questions, with more logical operators
and more variables.

Example 10. Let’s take a look at possible tiers of questions the WhatIs class can
produce. The easiest questions come from tier 1, where it must have an adjective and
a subject: What is the color of the car?. On this tier the only thing that the AI
has to accomplish is attribute identification.

If we move down a tier, then we must extend the question with another actor from
the scene and a relation:What is the color of the car that is left of the red
truck?. On this tier the AI has to be able to identify attributes and understand the
spatial relation between objects.

Another tier down one of the possible questions challenge the AI to understand the
AND operator while the other one focuses on the use of multiple that is keywords.
The former presents the What is the color of the car that is left of the red
truck that is both left of the yellow truck and right of the blue car? question
and requires multiple attribute recognition and spatial recognition. The latter produces
the What is the color of the car that is left of the red truck that is in front
of the yellow bus? question and requires the AI to shift the subject of the question
to another actor.

Further down we can find more uses of the that is keyword.

4.2 Test Generator in Java

In this section we discuss the three available methods of question generation, starting from
the simplest.

4.2.1 Random Question Generation

The simplest way of all generation is to create completely random items.
Illustrated in Figure 4.3 is the short description of the function generating the questions.
It relies on the generateRandomQuestion function to give complete questions, collects
them in a list, then saves to a file. Illustrated in Figure 4.4 the generateRandomQuestion
function. This functions purpose is to choose a template family to work with. This can be
selected entirely at random with the use of random number generation, but can be defined
manually as well.

Example 11. The following example shows the generation of the question: What
is the color of the car that is behind the red truck?.

This question belongs to the WhatIs family. The example assumes that the family
has been chosen for generation.

21

Figure 4.3: Pseudocode of the generation of random questions

Figure 4.4: Pseudocode of the generateRandomQuestion Function

As illustrated on Figure 4.2, the family tree shows that we have to generate the fol-
lowing items to achieve a complete question:

• On Tier 1: the adjective(attribute) and subject of the question. For the continue
variable we must choose Continue. This is done in the function responsible for
Tier 1 question generation of the family(illustrated on Figure 4.5).

• On Tier 2: the relationship and another actor of the scene. For the continue
variable we must choose Stops. This is done in the function responsible for Tier
2 question generation of the family(illustrated on Figure 4.6).

4.2.2 Generation of Unique Questions

A more advanced method for question generation is to allow the creation of a set of
different questions.
Illustrated in Figure 4.7 is the short description of the function responsible for generating
different questions. Like its predecessor it also relies on the generateRandomQuestion
function to give complete questions, however in each of its iterations it will also check if
the question has already been generated, in witch case the function will throw it away.
Due to the nature of the questions, it is impractical to reach the text itself, therefore
another solution was required to assess the uniqueness of the questions. This method led
to the creation of the Set class. The Set class contains the question itself and the unique
number combination identifying each question. The number combination is created by
collecting all the random numbers during the generation of the question.

22

Figure 4.5: Pseudocode of the generateRandomQuestion Function

Figure 4.6: Pseudocode of the generateRandomQuestion Function

4.2.3 Generation of Unique Questions With Answers

The most advanced method for generating questions is to create situationally relevant and
complete questions with the anticipated answers attached.
Illustrated in Figure 4.8 is the short description of the function responsible for generating
both the questions and the answers. This relies on the generateRelevantQuestions function.
This also required an answer to be added to each question. The easiest solution to the
problem was to extend the Set class with an answer variable.

23

Figure 4.7: Pseudocode of the generation of different questions

Figure 4.8: Pseudocode of the generation of different questions with answers

24

Chapter 5

Evaluation

This chapter evaluates the environment discussed in chapter 4.

RQ1 What is the performance of the proposed approach?

RQ2 Is there a performance difference between different domains?

RQ3 What is the performance cost of generating diverse questions?

5.1 Selected domains

For the measurement includes the domains discussed throughout the report: Carla and
Clevr. Both environments have the same definition of relation and attributes, but differ
in the use of actors. Carlas actors consist of two different attributes, while Clevrs consists
of four.

5.2 Measurement setup

The evaluation was conducted using a computer with the following specifications:

• CPU: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz

• Memory: 8 GB

• Operating System: 64 bit Windows 11

The measurements were executed in java environment with the following specifications:

• JRE: JavaSE-11

• VM Memory: 4 GB

Each measurement were repeated 30 times and we collected the median runtime of the
generation. We measured the generation time and the serialization of the questions sep-
arately. To take the warmup effect into account, the I run the measurement 10 more
times.

25

On both domains we conducted similar measurement, with an increasing amount of ques-
tions to be generated. The following graphs show the results of Carla and Clevr, for the
generation of 100, 1 000, 10 000 and 100 000 questions in seconds, with different samplings
techniques.

• Random sampling: the generation of questions without discarding duplicates

• Focused sampling: the generation of questions without discarding duplicates, but
manually choosing the family to generate from

• Different sampling: the generation of question with discarding the duplicates

5.3 Measurement results

Illustrated on Figure 5.1 and Figure 5.2 is the measurement results for the Focused sam-
pling of Carla and Clevr respectively. On the x axis we can see the number of questions
generated, while on the y axis the time that elapsed during the generation. The darker
part of columns are the time spent with generation, while the lighter part is the time it
took to write the questions to file.
The measurement results of the Focused sampling is illustrated on Figure 5.3 and Fig-
ure 5.4 respectively, while the results for the Different sampling are portrayed on Figure 5.5
and Figure 5.6. Both the x and y axis and the columns represent the same type of mea-
surement as they do in the Random sampling.
Note that that number of questions on the x axis increment exponentially.

Figure 5.1: Carla Figure 5.2: Clevr

Figure 5.3: Carla Figure 5.4: Clevr

26

Figure 5.5: Carla Figure 5.6: Clevr

The following diagrams present the comparison between Carla and Clevr using different
samplings. On Figure 5.7 we can see the comparison using Random sampling, on Figure 5.8
using focused sampling and on Figure 5.9 using Different sampling.
On all diagrams the x axis represents the number of questions generated, the y axis is the
time spent. With a yellow line we can see time it took Clevr to generate the questions,
while the green line represents Carla. A black line shows how long it took for Clevr to
write the questions to file, while a blue line shows Carla.
Note that that number of questions on the x axis increment exponentially.

Figure 5.7: Random Gen. Figure 5.8: Controlled Gen.

Figure 5.9: Different Question Generation

27

5.4 Analysis of the results

What is the performance of the proposed approach?

The runtime of question generation is mostly independent to the nunmber of ques-
tions. The time to write to file increases linearly, which dominates the runtime for
large number of questions. However, the generation of 10.000 questions (which is
the typical numer of questions in Clevr) is still relatively low (less then 2 minutes).

Is there a performance difference between different domains?

The generation of questions are largely the same between the two domains, the small
time increase of the Clevr domain can be attributed to the number of attributes
per actor is double.

What is the performance cost of generating diverse questions?

The time increase resulting from the generation of different questions are significant
compared to the random generation, as the algorithm starts to run out of possible
questions to generate (and it needs to look for more unique questions). However
the time spent is still within acceptable margins.

28

Chapter 6

Conclusions and Future Works

In this report I made the following architectural contributions:

• I adapted the generation environment for the synthetic domain of Clevr [17] and
autonomous vehicle domain Carla [9, 10].

I have made the following implementations:

• I have developed a cross-domain environment that aims to measure the capabilities
of an AI, while avoiding forming biases.

• I provided performance benchmarks to assess the feasibility of my question genera-
tion approach.

29

Bibliography

[1] Hervé Abdi, Dominique Valentin, and Betty Edelman. Neural networks. Number
124. Sage, 1999.

[2] Faisal S Alsubaei. Reliability and security analysis of artificial intelligence-based self-
driving technologies in saudi arabia: a case study of openpilot. Journal of advanced
transportation, 2022, 2022.

[3] James A Anderson. An introduction to neural networks. MIT press, 1995.

[4] Masataro Asai. Photo-realistic blocksworld dataset. arXiv preprint arXiv:1812.01818,
2018.

[5] Aren A. Babikian, Oszkár Semeráth, Anqi Li, Kristóf Marussy, and Dániel Varró.
Automated generation of consistent models using qualitative abstractions and explo-
ration strategies. Softw. Syst. Model., 21(5):1763–1787, 2022.

[6] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd, 2016.

[7] Boqi Chen, Dylan Havelock, Connor Plante, Michael Sukkarieh, Oszkár Semeráth,
and Dániel Varró. Automated video game world map synthesis by model-based tech-
niques. In MoDELS (Companion), pages 4:1–4:5. ACM, 2020.

[8] Li Chen, Tutian Tang, Zhitian Cai, Yang Li, Penghao Wu, Hongyang Li, Jianping
Shi, Junchi Yan, and Yu Qiao. Level 2 autonomous driving on a single device: Diving
into the devils of openpilot. arXiv preprint arXiv:2206.08176, 2022.

[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st Annual
Conference on Robot Learning, pages 1–16, 2017.

[10] Daniel J Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L Sangiovanni-Vincentelli, and Sanjit A Seshia. Scenic: A language for
scenario specification and data generation. Machine Learning, pages 1–45, 2022.

[11] Hironobu Fujiyoshi, Tsubasa Hirakawa, and Takayoshi Yamashita. Deep learning-
based image recognition for autonomous driving. IATSS research, 43(4):244–252,
2019.

[12] Hongbo Gao, Bo Cheng, Jianqiang Wang, Keqiang Li, Jianhui Zhao, and Deyi Li.
Object classification using cnn-based fusion of vision and lidar in autonomous vehicle
environment. IEEE Transactions on Industrial Informatics, 14(9):4224–4231, 2018.

[13] Martin Grohe. The logic of graph neural networks. In 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–17. IEEE, 2021.

30

[14] Florian Hauer, Alexander Pretschner, and Bernd Holzmüller. Fitness functions for
testing automated and autonomous driving systems. In International Conference on
Computer Safety, Reliability, and Security, pages 69–84. Springer, 2019.

[15] Florian Hauer, Tabea Schmidt, Bernd Holzmüller, and Alexander Pretschner. Did
we test all scenarios for automated and autonomous driving systems? In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 2950–2955. IEEE, 2019.

[16] Christian Janiesch, Patrick Zschech, and Kai Heinrich. Machine learning and deep
learning. Electronic Markets, 31(3):685–695, 2021.

[17] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence
Zitnick, and Ross B. Girshick. CLEVR: A diagnostic dataset for compositional lan-
guage and elementary visual reasoning. CoRR, abs/1612.06890, 2016.

[18] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C. Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[19] Batta Mahesh. Machine learning algorithms-a review. International Journal of Sci-
ence and Research (IJSR).[Internet], 9:381–386, 2020.

[20] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[21] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pas-
canu, Peter Battaglia, and Timothy Lillicrap. A simple neural network module for
relational reasoning. Advances in neural information processing systems, 30, 2017.

[22] Yusuf Satılmış, Furkan Tufan, Muhammed Şara, Münir Karslı, Süleyman Eken, and
Ahmet Sayar. Cnn based traffic sign recognition for mini autonomous vehicles. In
International Conference on Information Systems Architecture and Technology, pages
85–94. Springer, 2018.

[23] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015.

[24] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

[25] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural
networks on cpus. 2011.

[26] Meriel von Stein and Sebastian Elbaum. Finding property violations through network
falsification: Challenges, adaptations and lessons learned from openpilot. 2022.

[27] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by
iterative message passing. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5410–5419, 2017.

[28] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn
for scene graph generation. In Proceedings of the European conference on computer
vision (ECCV), pages 670–685, 2018.

31

[29] Shun Yang, Wenshuo Wang, Chang Liu, and Weiwen Deng. Scene understanding in
deep learning-based end-to-end controllers for autonomous vehicles. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 49(1):53–63, 2018.

32

	Kivonat
	Abstract
	Intoduction
	Context
	Problem Statement
	Objectives
	Contributions
	Added Value
	Struture of the Report

	Preliminaries
	Vision-Based Relational AIs
	Machine Learning techniques
	Relational reasoning

	Datasets for vision-based relational models
	Clevr
	Carla
	Scenic and traffic situation generation

	Modeling environments
	Eclipse Modeling Framework
	Xtext

	Related Work
	Visual Question Answering Benchmarks
	Autonomous Vehicles
	Neural Networks

	Overview of the Approach
	Functional Overview
	Objects Generated by the Environment
	Verification and Benchmark Tasks
	Verification of the Questions
	Benchmark Tasks

	Elaboration
	Question Templates in Xtext
	Concepts
	Question Template

	Test Generator in Java
	Random Question Generation
	Generation of Unique Questions
	Generation of Unique Questions With Answers

	Evaluation
	Selected domains
	Measurement setup
	Measurement results
	Analysis of the results

	Conclusions and Future Works
	Bibliography

