
Budapesti University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Cyber-physical systems collaborating in a
service oriented architecture

Scientific Students' Associations Conference paper

Author Supervisor

Csaba Heged¶s Dr. Varga Pál

October 28, 2016

Contents

Abstract 4

Introduction 5

1 Related work 7

1.1 Service oriented architectures . 7

1.1.1 General introduction to SOA . 7

1.1.2 Web Services . 8

1.1.3 Service orchestration . 9

1.1.4 (Industrial) Internet of Things . 11

1.2 The Arrowhead Framework . 12

1.2.1 Local Clouds . 12

1.2.2 Systems and Services . 13

1.2.3 Mandatory Core Systems and their Services 14

1.2.4 Supporting Core Systems and their Services 15

1.2.5 Inter-Cloud servicing in Arrowhead . 16

2 Governance of Local Clouds 18

2.1 Requirements and expectations . 18

2.1.1 Scope of functionality . 18

2.1.2 Levels of Application System autonomy 19

2.2 Local Clouds, Systems and Services . 20

2.3 Mandatory Core Systems . 22

2.3.1 Service Registry . 22

1

2.3.2 Security aspects . 23

2.4 The Orchestrator . 26

2.4.1 Default con�guration . 26

2.4.2 Store-based orchestration . 26

2.4.3 Dynamical orchestration . 28

2.4.4 The internal workings of the Orchestrator 29

3 Veri�cation of the developed framework 32

3.1 Veri�cation of the framework principles . 32

3.2 Usability experiments . 34

3.2.1 Identi�ed test targets and scenarios . 34

3.2.2 Tests carried out . 34

4 Roadmap for future developments 37

Roadmap for future developments 37

4.1 Resource management and event handling . 37

4.2 Engineering System-of-Systems . 38

4.3 Gateways between Local Clouds . 40

Conclusions 42

Acknowledgement 44

References 48

Appendices 49

2

Abstract

In this upcoming world of the Internet of Things, global interconnectedness and interoperability

is promised between any device at any time - all orchestrated run-time in a distributed manner.

However, this grand challenge assumes new fundamentals and approaches that are far from

existing let alone being proven. Creating functioning networks of smart things even in smaller

scale, or for 50 billion devices [21], is still a very active research area.

Nevertheless, industrial applications are also pitching in, �exibility, interoperability and integra-

bility of legacy and new devices is of their high interests. Creating industrial (e.g. manufacturing)

processes by utilizing modern concepts and technologies while retaining e.g. QoS, safety or secu-

rity is also not a minor task.

The Arrowhead Project is the vision of a consortium with the backing of the European Union [23].

It aims nothing less than to create a full-scoped framework enabling collaborative automation by

networked embedded devices. It targets use cases from �ve business domains: production (process

and manufacturing), smart buildings and infrastructures, electro mobility, energy production and

virtual markets of energy.

The Arrowhead Technological Framework is aimed at providing fundamentals, concepts, guide-

lines and reference architecture implementations to achieve its goal. This service-oriented archi-

tecture builds upon cyber-physical systems, integrating and governing them in closed operational

environments while traditional industrial technologies and restrictions are still applied.

This work mainly mainly details my contribution for the design and development of the core

services of the framework: orchestration [23]. This core process has to deal with various levels of

system autonomy and capabilities while retaining a level of centralized control over the network

in co-operation with other core systems of the framework (e.g. with the Gatekeeper module [24]).

To successfully handle the expectations set for this central governance entity, certain fundamen-

tals, processes, core systems and services had to be re�ned or newly established - which are

naturally also in the scope of this work.

4

Introduction

There are various technology domains - from electro-mobility through smart buildings and in-

frastructures to energy production - that have great impact on our life. This impact will be

even more positive when the interoperability of these systems becomes a reality. There should

be some commonly de�ned patterns regarding the communication and orchestration of these

currently independently designed systems. Such patterns will enable standard design methods of

complex services provided by functionally heterogeneous System-of-Systems.

This is often referred to as the fourth industrial revolution - or shortly Industry 4.0. The design

principles are still a work in progress, but the fundamentals have been laid down [25]:

• Interoperability: The ability of devices, sensors and people to connect via the Internet of

Things

• Information transparency: The ability of information systems to create a virtual copy of

the physical world by enriching digital plant models.

• Technical assistance: The ability of assistance systems to aggregate and visualize informa-

tion for advanced and spot-on decision making.

• Decentralized decisions: Cyber-physical systems are ought to operate as autonomously as

possible without human intervention.

Accommodating these expectations are not an easy challenge, most parts are still considered

green-�eld research areas - and therefore rewarding ones. Many technologies and philosophies

are competing on how to achieve it - one of it is now the Arrowhead.

The Arrowhead project

The Arrowhead Project [13] is the vision of an industrial consortium with the backing of the Eu-

ropean Union. It aims nothing less than to create a full-scoped framework enabling collaborative

automation by networked embedded devices. The grand challenges it faces are the creation of

interoperability and integrability of almost any device. Initiatives like these could solve the ever

growing problem of the deep-rooted incompatibilities in the IoT and automation worlds [13].

The ECSEL Arrowhead project started in 2013 with over 80 partners. These stakeholders also

show heterogeneity as opening to an integrated IoT world is in the interest of many technological

areas. From smart bearings to smart cities, there is the need for interoperability and convergence

in the solutions. Since the primary objective is to create a common platform for all sorts of future

implementations, the primary pilot (use case) scenarios of the project involve several business

domains:

5

• industrial automation and production: both the processing and manufacturing sectors,

• smart buildings and infrastructure and smart cities,

• electro mobility: smart electric cars, smart tra�c control,

• energy sector: virtual market of energy, energy production and end-user services.

The project also covers various activities in order to reach the above mentioned, general targets.

These involve (i) creating a cloud-based overall system architecture based on Service Oriented

Architecture (SOA) principles [13], (ii) establishing common design and documentation guide-

lines [5] and (iii) building pilot applications based on its technological framework.

This paper presents an architectural design to solve topical problems by proposing several ad-

ditions and modi�cations of the current overall architecture, while respecting the system design

principles. Furthermore, it also identi�es the advantages and issues that arise with those new con-

cepts. Finally, it presents the reference implementation of this framework created by the author

and lays out potential future work.

Outline of this work

In the following chapters, this paper will analyze and augment the Arrowhead Framework. In

chapter 1, I will present related works that are necessary to understand the context that are

required for latter chapters. Firstly, Service Oriented Architectures (SOA) are discussed as the

key design style for this work. Since it is mostly associated with Web Service technologies, they

are also discussed (among others) as the primary references for the Arrowhead Framework as

a consequence. Moreover, since the main focus of this paper is orchestration, an overview is

presented on what orchestration means within various technological domains. After that, the

Arrowhead Framework is presented in details: I will characterize the SOA based approach of the

project together with the core elements.

In chapter 2, the my main contribution to the framework is discussed. Firstly, the speci�cation

is set up based on the requirements and use cases. After that, governance related tasks and

processes are discussed for Arrowhead Local Clouds. Further considerations are made for example

for security and QoS issues.

Chapter 3 discusses the reference implementation that realizes the architecture described in chap-

ter 2. Conceptual validation and applicability of the framework is presented in the special use

case of the electromobility scenario - as showcased at the IEEE IECON'16 conference. Also, pre-

liminary results on the technical assessment of the implemented proof-of-concept is documented.

Finally, chapter 4 will lays the corner stones for future work - since the problem space is much

wider than run-time governance of Systems-of-Systems. Moreover, this framework is mostly de-

signed for future additions. It contains placeholders and anchor points for various elements rang-

ing from additional Core Systems to a global con�gurator engineering tool. In order to move

towards the applicability and standardization of this work, clari�cation of these is inevitable.

6

Chapter 1

Related work

1.1 Service oriented architectures

Software has become increasingly complex since the early days of computing. Many things tend

to hinder interoperability: various stakeholders and their con�icting interests, competing tech-

nologies and so on. This leads to monolithic system architectures and extreme measures taken.

Even between di�erent versions of the same product (i.e. within an API) we can see exponential

growth in complexity and system overhead.

1.1.1 General introduction to SOA

Service oriented architectures (SOA) aim to handle this [20]. There are several de�nitions and

descriptions available, OASIS [38] de�nes it the following way:

A paradigm for organizing and utilizing distributed capabilities that may be under the control of

di�erent ownership domains. It provides a uniform means to o�er, discover, interact with and use

capabilities to produce desired e�ects consistent with measurable preconditions and expectations.

This approach can be interpreted as an extension of the interface concept used in the object-

oriented programming paradigm. A SOA based system is built upon a collection of loosely coupled

components that are somehow interconnected: they provide services to one another [4]. Fig. 1.1

depicts how this can be abstracted (and presented in the Arrowhead nomenclature).

Figure 1.1: Services produced and consumed by systems

The building blocks of the SOA systems are these services. There is no standardization on what

characteristics services have, or how they can be implemented. The authors of [44] emphasized

the following characteristics of service abstraction:

7

• Loose coupling: hardwired connections between entities are not permitted.

• Rather services are dynamically discoverable upon need (run-time).

• Services are self-contained and modular. A service supports a set of interfaces and these

interfaces are logically cohesive (they implement the same functionality).

• Modular understandability: the user has to be able to use the service without having knowl-

edge of any other underlying implementation details.

• Modular decomposability: a complex service can be created from simpler atomic services.

• Interoperability: systems using di�erent platforms and programming languages should able

to communicate with each other using services.

SOA is primarily associated with the Web Service stack. However, it is worth noting, that the

SOA principles can be implemented using (nearly) any technology - might be even used outside

of information technology purposes [15]. Its main advantage lies in its emphasis on a minimalistic

common ground and thrive for resource reuse. Moreover, late binding essentially has the capa-

bility of providing recon�gurability since service discovery can be tailored to retrieve specially

chosen service providers.

1.1.2 Web Services

Web Services (WS) are basically a set of protocols and standards to provide (mainly) a machine-

to-machine interoperability layer mainly managed by OASIS [38] and W3C [46]. It alleviates

certain hardships that are related to data exchange using web technologies.

This approach is nowadays used nearly everywherey in the ICT domain. Smart phones, the

Internet of Things (IoT) and also enterprise applications utilize some sort of web technology.

Its unprecedented prevalence and versatility can be mostly attributed to its simple yet elegant

transfer protocol stack (HyperText Transfer Protocol - HTTP), security capabilities (e.g. Secure

Socket Layer - SSL) and independence of the underlying programming languages or infrastruc-

ture.

Representational State Transfer protocols (as HTTP is one) provide further advantageous capa-

bilities. These are then often combined in WS applications and hence their characteristics have

also become part of general SOA approaches (among others):

• Stateless: status and context is not stored for the partner (cacheability is a consequence).

• Client-server architecture: communicating partners are separated through a pre-de�ned in-

terface structure.

• Layered system: a client might not be able to tell whether it is directly connected to an end

server (provides scalability via e.g. load balancing).

• Self descriptive messages: resources hold enough information on how to process them.

The Web Services stack implements late binding and service lookup in a particularly interesting

way. It is resolved with the introduction of Universal Description, Discovery and Integration

(UDDI [48]) servers that are registers storing service descriptions formatted in Web Services

Description Language (WSDL). These descriptors can be highly complex (usually formatted in

8

XML) and they include - among others - the URL and payload structure for requests and a

general description on what the service is o�ering (that is �lled out manually). Matchmaking of

service lookups to service providers have come a long way from string comparisons: there are now

automated WSDL matchmakers that take semantic considerations into account as well since the

description parts are manually entered [49].

1.1.3 Service orchestration

Components and services - as per de�nition - do not create automation on their own. Services are

merely a static representation of what a component is capable of. Connecting the components

and instructing them on what services to consume (and when) should be tasked with a separate

control entity that is called an orchestration. One of the focal points of this paper is considering

service orchestration. Therefore, it is viable to survey already existing platforms and approaches

and draw conclusions on how to design the capabilities of SOA-based interoperability of the

Arrowhead framework. This section explores service orchestration starting from the de�nitions

and then what this term actually means in the various technological domains.

In the WS nomenclature, orchestration refers to a control function that coordinates interactions,

�ow control and transaction management necessary within a service provider [20]. According

to [18] it is a behavior that enables the provider to e.g. fetch or manipulate data structures

to provide its service: a composition of sub-services is created that is then o�ered out as a

new service. Meanwhile, choreography refers to a focused collaboration process between service

providers and consumers to achieve a certain goal. A choreography also describes when tasks and

interactions may happen by describing a general macro-lensed operational �ow - without relying

on speci�c instances of the involved types (roles) [ibid.].

Moreover, in Web Services, all of these have their own XML-based description languages de�ned.

The Business Process Execution Language (BPEL) [34] de�nes abstract processes in a script-

like language that is supported by common WS implementations. It also includes objects design

to describe error handling scenarios, e.g. when a sub-service fails to deliver. This enables for a

detailed orchestration to provide a composition of services as a whole. Regarding choreography,

the Web Service Conversation Language (WSCL) [47] is the de facto accepted scripting language

for this function � also based on XML.

It is worth noting that there is general orchestration and choreography-related ongoing research

since this control theory area is far from being well-established (e.g. [27, 50]). They cover system

roles, actions and state representations established in a ontologies. Various operational manage-

ment layer issues are also of interest: state machines in service providers and methods on rooting

out possible deadlock scenarios. Moreover, there are ongoing projects funded by the European

Union that aim to create uni�ed process scripting languages suitable to extend general WS tasks

outside of the enterprise domain (e.g. Chorevolution [12]). Currently, high level control over a

service-oriented establishment is not explored in Arrowhead - however researched as future work.

The Web Services stack is heavily business-oriented and a mature SOA - from ontologies and

9

theoretical research to enterprise platforms. One of its drawbacks, the WS messages and protocol

stacks have a very high computational overhead.

Figure 1.2: Orchestration in the various technological domains

Besides WS, service orchestration is also referred to in other technological domains. These in-

clude (i) IT clouds [35, 19], (ii) Software De�ned Networking [29, 37, 10, 39, 9] and formalized

orchestration languages [26, 51, 27, 12, 50, 52] - among others. Table 1.2 concludes their im-

portant aspects and table 1.3 identi�es useful architectural components and shortcomings of the

solutions for this use case.

Figure 1.3: Evaluation of the concepts and solutions

To conclude, while these technologies are good reference points for the Arrowhead Framework,

10

they do not substitute the Framework and this work. Parts of them may answer many of the

relevant issues and therefore elements, concepts and even implementation can be reused. However,

they (one by one) do not cover the complete problem space - a composition of their advantages

are welcome however. The list of currently unresolved issues to resolve include the followings:

• Low powered or legacy devices are involved: not capable of the complex protocol stacks

and instead legacy automation protocols are involved in most cases. They are also mostly

incapable of implementing self-orchestration and execution of advanced choreography on

their own.

• Hence some advanced end-point functionalities (restricted autonomy) have to be allocated

to other elements in the architecture.

• No cloud technologies are involved.

• Often physically isolated networks are expected to maintain security.

• System-of-Systems model: pre-determined macro-lensed targets drive industrial applications

(e.g. production lines), therefore some sort of run-time governance is required based on

physical process �ows.

• Real-time resource management and network QoS is considered essential, yet traditional

QoS provisioning techniques might not be applicable in some cases.

1.1.4 (Industrial) Internet of Things

The Internet of Things paradigm is dealing with somewhat somewhat di�erent issues than tra-

ditional WS applications. Nowadays, the emerging number of IoT platforms makes it a laborious

task to survey the industry. Various sensing, cloud and stream processing technologies can be

(among others) brought together in an arbitrary way to realize certain well de�ned tasks.

There is common ground among them, however. A survey of 17 well-known platforms (supported

by �big players of the industry�) [16] has shown that although the goals are overlapping, solutions

di�er in scope and philosophy.

Widespread elements include the thrive for rapid application development (throughout the prod-

uct lifecycle) and easy (re-)con�gurability. Moreover, the potential for scalability and other de-

ployment considerations are also considered important and possible benchmark characteristics.

Nevertheless, platforms and frameworks have to recognize and facilitate the followings in order

to be successful [ibid.]:

• Enable devices to securely expose interfaces for others to consume.

• Enable systems to retain their implemented application protocols.

• Enable applications to participate in networks accordingly to their capabilities.

• Governance - Enable management and governance of heterogeneous networks of devices.

However, traditional industrial applications di�er from this world and IoT platforms are not

suited to be fully integrated in there. The emphasis on security and safety limits �exibility and

(sometimes) imagination. The strict engineering guidelines, ones based on the factory automation

industry standard ISA-95 pyramid [43] have to be respected. A current trend of transitioning

11

traditional automation architectures of industrial systems into IoT-like approaches is sketched

in Fig. 1.4.

Figure 1.4: The ISA-95 system hierarchy

An example on communication security shows the hardships involved. Even though within closed

environments (like those within factories) network security is considered an unnecessary overhead

on endpoints (that might be a small sensor) as hard real-time delay limits have to be kept end-to-

end. Also, no routable protocol might be implemented directly to the outside world since gateways

might get compromised - and yet outbound connections are still desired. Such justi�able paranoia

has to be supported framework targeting industrial applications.

To conclude, currently available IoT platforms are not designed to operate in the industrial

automation domain. Therefore, there is valid demand for more advanced, specialized approaches

- like the Arrowhead Framework and this work within.

1.2 The Arrowhead Framework1

Having heterogeneous systems (or architectures) work together is not an easy problem to solve

- especially in the automation domain. Legacy protocols, commercial o�-the-shelf products and

monolithic architectures often cripple interoperability and dynamic recon�gurability. This section

details the baseline Arrowhead Framework and its fundamental components. This architecture

is the take-o� point of this work.

For the sake of distinguishing general service oriented objects and those of within Arrowhead, I

will use capital letters for Systems, Services and Clouds that are to be understood as Arrowhead

objects. This is necessary here, since certain characteristics and de�nitions of these entities might

di�er from the mainstream understanding of those terms.

1.2.1 Local Clouds

The Arrowhead Framework uses the approach of Service Oriented Architectures (SOA) to tackle

this problem: it aims at providing interoperability by facilitating the service interactions within

1This section is based on [45].

12

closed or at least separated automation environments, called Local Clouds (LC). Hence creating

central governance with a minimalistic set of core components that take over certain con�guration

tasks from individual systems.

Figure 1.5: Arrowhead Local Clouds deployed in di�erent domains

Currently, there is no strict boundaries on what might become a Local Cloud.These LC's might

ful�ll various tasks and can have their own sets of appointed stakeholders (e.g. their operators

or developers). However, they all have their operational boundaries, let those be functional,

geographical or network-segmented. Nevertheless, they must be governed through their own

instances of the Arrowhead Core Systems, as Fig. 1.5 suggests. They are clouds in the sense

that they use common resources: the Core Systems of that domain. These common Core System

resources (e.g. related to Service Registry, Authorization or Orchestration) are used by all kinds

of other entities - applications - in the network, and can also be implemented in a distributed

way.

1.2.2 Systems and Services

In such Arrowhead Local Clouds there can be an arbitrary number of Systems that can provide

and consume Services from one another: they create and �nish servicing instances dynamically

in run-time. Figure 1.1 depicts these relations. Services are de�ned so that loose-coupling, late

binding, and service discoverability can be realized.

In this context, Arrowhead-compatible Systems are not just service endpoints, but can be realized

by a wide range of devices: from a small temperature sensor, in certain use cases, up to very

complex cyber-physical systems of a production plant. A resource can be a temperature sensor

or a power consumption meter. In this sense, a Service is connected to the temperature itself

regardless of the access method or technology (interface).

All Arrowhead compliant Systems will also be capable of consuming di�erent types of Services

in their di�erent implementations - that they might need and compatible with - during runtime.

Services are also not bounded by System instances, since a Service can be realized in an arbitrary

number of Service Producers and Service Consumers.

13

Arrowhead-compatible Systems must use the mandatory Core Systems and their Core Services

provided by the Framework to realize their operational targets (as shown in Figure 1.6): to

communicate with other Systems using dedicated application protocols.

Figure 1.6: Arrowhead Core Systems

1.2.3 Mandatory Core Systems and their Services

In accordance with [45], this work attributes the same functionality to each of the Core Systems.

There are three mandatory Core Systems.

The Service Registry stores all the Systems (that are currently available in the network) and

their service o�erings. Systems have to announce their presence, and the services they can o�er.

The registry takes note of this information when systems come on-line, and might have to revoke

them when they go o�-line. This System is implemented using DNS (Domain Name Service)

based Service Discovery protocol dedicated to resource management in a network [11].It uses an

(string) identi�er for the Service implementation and the Systems running it.

For a service request, the server provides information about suitable network nodes by using SRV

(service), TXT (text) and PTR (pointer) records. The hosts o�ering services have to publish

details of their available services: instance, service type, domain name and optional con�guration

parameters [ibid.].

The Authorization System - as its name suggests - manages authentication and authorization

(AA) tasks, however, it covers some other security-related issues as well (e.g. certi�cate handling).

This System is not clearly de�ned in the baseline framework. Advanced security measurements

are required - that is in scope of this work.

The Orchestrator is responsible for instrumenting each System in the cloud: where to connect

and what to consume. It instructs Systems so by pointing towards speci�c Service Providers to

consume speci�c Service(s) from. This has to be done by a simple request-response sequence,

which ends with the requester System receiving a Service endpoint. After these, the System is

obligated to consume from that Service instance. In the baseline architecture, this System is

con�gured manually with simplistic lists of hardwired �Orchestration rules� strings.

14

Figure 1.7: Arrowhead Core Systems in scope

1.2.4 Supporting Core Systems and their Services

Since the de�nition of the mandatory Core Systems, there are now further automation supporting

Core Systems available. These are currently integrated by this work (II.) or are in the scope of

future endeavors to be integrated in the Framework (III.), as Figure 1.7 suggests.

The QoS Manager concept aims to make the real-time constrained embedded devices integrable

in a Local Cloud (i.e. actuators) [22]. An other invaluable aspect of such an automation support

framework is the centralized management of resources. Resources in a Local Cloud can vary

from e.g. processor task time slots of embedded Systems through real-time networking QoS

up to setting client-server servicing requirements (e.g. transactions per second). This resource

management is tasked with the QoS Manager [22]. Its two major processes are (i) the veri�cation

of the requirements (whether the resource reservation can be made), and (ii) the actual reservation

process. The QoS Monitor sub-module is responsible of monitoring whether SLA-s are kept or

intervention is required.

The System Con�guration Store [7] provides customized storage for �rmware and con�guration

�le updates for Application Systems. This storage solution has to support a multitude of transport

and �rmware management protocols in a secure and safe way. It is not an easy task, even in closed

environments, to manage the identi�cation of the devices. The other solution (besides having the

whole �rmware downloaded), is to de�ne a uni�ed run-time Arrowhead con�guration layer (an

API) that will then be required by Application Systems to possess. However, this concept is

currently not applicable.

The Plant Description system [8] aims to integrate various topologies that might be used to

describe the same establishment (e.g. one based on physical layout and others based on process-

oriented groupings), as seen in �g. 1.8. This engineering tool gives a simpli�ed solution for

describing the di�erent hierarchies and topologies that may exist within the same plant or sys-

tem of systems, sometimes de�ned according to di�erent standards or procedures. The Plant

Description aims to provide a basic common data structure which can be used to refer to di�er-

ent objects in a large system or system-of-systems and the relations between the objects. This

System and its possible future use will be examined later on.

The Historian hosts application data for Systems, and stores the data in query-able form. The

15

Figure 1.8: Arrowhead Core Systems in scope

Translator System [17] can (will) provide application-level translation so that a producer and

consumer implementing a di�erent protocol of the same Service can still interact. Event handlers

are tasked with the run-time detection of various events and errors and triggering the appropriate

Systems (in a publish - subscribe manner).

1.2.5 Inter-Cloud servicing in Arrowhead2

Arrowhead Local Clouds might be su�cient to handle certain tasks in their isolation. However, as

one single Arrowhead Cloud (one SoS) cannot serve for all, there is need for inter-cloud operations

to achieve true global interconnectivity within the Framework.

Figure 1.9: Global Service Discovery between Local Clouds

2This subsection is based on my article [24] and Scienti�c Student' Associations Conference Paper of 2015.

16

To this end, an inter-Cloud servicing architecture was introduced in [24] based on two, new

automation supporting Core Systems: the Gatekeeper and the Network Manager (a gateway

entity). This architecture builds heavily upon the Core Systems' exclusive involvement in facili-

tating and managing the connections (servicing instances) within their authority: in this sense,

the Core Systems are responsible for all other Application Systems and their data handled in the

Local Cloud. The Gatekeeper provides essentially two services for the mandatory Core Systems.

The �rst is the Global Service Discovery (GSD) process, which aims at locating adequate service

o�erings in neighboring Clouds (as Fig. 1.9 suggests). The second is the Inter-Cloud Negotia-

tions (ICN) process, in which mutual trust is established between two Clouds and the actual

connection between endpoints is then built up.

After these processes, the Network Manager is responsible for creating the data path between

the Service Provider and the Consumer. We assumed here that the Core Systems are con�gured

properly, so that they can securely establish connections with other Clouds using the services

of the Gatekeeper. This setup includes some security considerations taking place, e.g. declaring

inter-Cloud access rights (from and to other Local Clouds) in the Authorization Systems, or

setting up the trusted neighborhood domains.

17

Chapter 2

Governance of Local Clouds

This chapter re�ne the architecture of the Arrowhead Framework. Firstly, it collects and ana-

lyzes expectations and sets up speci�cation. Based on that, new data structures are introduced

(�common descriptor objects�) to be used in the new Core Systems.

The main contribution is here, however, the introduction of an advanced and customizable or-

chestration schema of a Local Cloud that integrates various processes and hence provides the

�rst line of centralized governance. Here, the de�nition for orchestration used is based on the

baseline framework, as discussed in section 1.2.

Moreover, the introduced orchestration process has to have focus on two main aspects (as dis-

cussed previously), regarding security and QoS. This architecture builds heavily upon the Core

Systems' exclusive involvement in facilitating and managing the connections (servicing instances)

within their authority: in this sense, the Core Systems are responsible for all other Application

Systems and their data handled in the Local Cloud.

2.1 Requirements and expectations

In its evolution, Generation 1 of the Arrowhead Framework provided the fundamental princi-

ples and preliminary implementation for the mandatory Core Services - whereas Generation 2

provided further Core Services and their mature implementations. Generation 3 introduced au-

tomation support Core Systems - however as separately developed modules, yet to be integrated

whole.

2.1.1 Scope of functionality

The aim of this subsection is to re-establish Core System capabilities, tasks and responsibilities in

order to facilitate the following identi�ed expectations towards the evolution of the Framework:

1. advanced authentication and authorization capabilities,

2. dynamic service orchestration process,

18

3. real-time communication (QoS) and resource allocation functionalities,

4. event and alarm handling capabilities,

5. the integration of automation support services developed in the project separately (such as

the Historian),

6. integration of the Service protocol translation capability [17],

7. inter-Cloud orchestration,

8. secure data path among Local Clouds.

Security (1) is discussed in section 2.3.2 and its integration within the orchestration process. It

is also connected to securing the data path inbetween Local Clouds(8). The chosen solution is

based on the X.509 certi�cate hierarchy as discussed in section 2.3.2.

Moreover, in some use case scenarios a dynamical orchestration is more suitable than a static

database: a matchmaker of some sorts. It has to be able to (2) dynamically (in run-time) allocate

Service Providers to Systems seeking Services based on the current status of the SoS. This is

leading to a complex orchestration process and interfaces.

2.1.2 Levels of Application System autonomy

The Core Systems need to support a multitude of Application Systems from �dumb� sensor nodes

up to fully autonomous enterprise systems (e.i. Electronic Resource Planning - ERP). Therefore,

the Core System interfaces and security measurements have to be �exible enough to support

various levels of Application System autonomy.

Based on the primary use case requirements, the following levels of System autonomy should be

considered by any general SOA-based IoT solution � based on the given System's capabilities:

1. Passive Service Providers: Such Application Systems only o�er certain services. They only

have to register these in the Service Registry and respond to inbound connections. For

example, �dumb� sensors, that can provide readouts.

2. Statically pre-con�gured Service Consumers: In certain cases, an Application System can

su�ce its purpose by periodically consuming the same set of Services from hardwired a set

of Service Providers. This can happen e.g. in data logging devices that read out and store

measurements.

3. Service Consumers with statically con�gured Service Providers: they consume Services au-

tonomously in run-time (according to their implemented operational logic), but they can

only consume those certain Services from a hardwired lists of possible Service Providers.

This is the case e.g. for processing units that can only access certain sensors or their back-

ups (for example actuating can only happen based on local temperature sensors - but if one

fails, there has to be an auxiliary one).

4. Fully autonomous Service Consumers: they only require advanced matchmaking if they are

seeking Service Providers - their run-time operations are based on autonomous decisions.

This matchmaker orchestration process only has to return with an appropriate (suitable)

Provider and make resource reservations (and run other centralized tasks if necessary). This

is required in a market-like environment, where (e.g. energy) o�ers have to meet demands.

19

5. Self-orchestrating Systems: they implement all Core Service interfaces on their own and

capable of self-orchestration using the appropriate processes. However, centralized resource

management might still be required.

6. System-of-System Con�gurators: these Systems (or human operators through HMI) are

capable of con�guring the Core Systems themselves. Therefore, they stand above run-time

operations and can change that.

These Application Systems might co-exist in the same Local Cloud and might even interact with

each other. Also, they might not even share the same set of stakeholders and therefore advanced

AAA (Authentication - Authorization - Accounting) functionality is required throughout their

interactions. Nevertheless, this semi-centralized AAA solution has to be implemented in all levels

(even on resource-constrained devices).

2.2 Local Clouds, Systems and Services1

One of the new fundamentals here is the strict, forced and logical separation between the Systems

and Services abstractions. This conforms with SOA and DNS-SD [11], and uni�es the data

structures in the Core Systems. Nevertheless, this has not been settled explicitly in the Arrowhead

Framework previously: only a non-compulsory naming convention was introduced within the

Service Registry (DNS-SD).

Therefore, a new System and a new Service hierarchy has to be introduced to support (not just

inter-Cloud) interoperability and matchmaking, as shown in Figure 2.1. The Service hierarchy is

re�ected by the documentation structure of Arrowhead [5]: Services are identi�ed with a name

(declared in the Service De�nition document). This name is the has to be unique in its (use-case

speci�c) Service Group. This Service abstraction only de�nes the functionality provided, but a

Service can be implemented many ways using appropriate application protocols (e.g. by SOAP,

COAP or RESTful Web Services - WS). A Service Provider can therefore even implement multiple

interfaces of the same Service. Therefore, Systems do not own Services, merely implement one

or a multitude of its interfaces (either the Provider or the Consumer side).

Meanwhile, the uni�ed Cloud and System hierarchy follows a general, process-oriented principle.

Local Clouds are bound to have an operator, and an operator might maintain several dedicated

clouds depending on its use case. Similarly, Systems are bound to be grouped together logically

even within their Local Clouds, e.g. if they are located in the same production line. There is no

explicit naming convention de�ned here, since use cases might have completely di�erent hierarchy

between their Systems. However, as a proof-of-concept, the framework implements these in the

common descriptor objects used in the Core Systems.

Metadata also needs to be associated with Services (for every instance separately). By design,

currently key-value pairs can be added to describe them (e.g. "unit"="◦C") embedded in JSON.

This will enable the integration of standardized data descriptors, e.g. SenML [33]or IPSO Smart

1This section is based on my article regarding overall architecture [23].

20

Figure 2.1: Systems and Services de�ned for Arrowhead

Objects [2]. It could also integrate use case speci�c data ontologies (i.e. MIMOSA for describing

maintenance related communications [14]), and can �t into other interoperability strategies, such

as the Interoperability Repository System described in [36].

To understand the implied use case speci�city of the naming convention, let us consider temper-

ature and humidity sensors in a refrigerator warehouse. They measure the indoor temperature at

di�erent locations and heights. Each sector has two sensors that measure the �oor- and ceiling-

level temperatures. Figure 2.2 shows how these sensors are represented as Arrowhead Systems

and how their measurement readout resources can be abstracted as Arrowhead Services.

Figure 2.2: Example for unique identi�ers regarding the various Arrowhead ele-

ments

The common descriptor data structures are created to facilitate communications with and be-

tween Core Systems. Figure 2.3 describes the classes (objects) involved. However, it is worth

noting that this puts certain restrains on what an Arrowhead System can be: an network address

paired with a port number where the REST resources (Arrowhead Services) are available.

The drawbacks of this approach is the indeed the limiting e�ect. A physical system might have

multiple network interfaces and its Services might be scattered between multiple ports as well.

From a resource management point of view, therefore, another abstraction layer is required on

21

the devices level since multiple Arrowhead Systems can share the same computational resources.

However, this leads outside of the scope of the current work.

Figure 2.3: Unique identi�ers for the various Arrowhead elements

2.3 Mandatory Core Systems

2.3.1 Service Registry

The Service Registry stores all the Systems (that are currently available in the network) and

their service o�erings. Systems have to announce their presence, and the services they can o�er.

The registry takes note of this information when systems come online, and might have to revoke

them when they go o�ine.

In its earlier generations, it was only accessible through standard DNS protocol. It is a valid

platform to store short entries in a domain-based structure. It (i) is highly robust and scalable,

(ii) is used across globe as a key technology of the web, (iii) has a lightweight UDP access

protocol and (iv) requires nearly zero maintenance if properly con�gured. However, it has several

limitations as well that limits its usability as the sole technology for a Service Registry:

• The entry structure requires workarounds to �t customized data sets (e.g. key-value pairs

to described Service metadata).

• It does not provide advanced querying capabilities: it is limited to listing subdomains instead

of advanced �ltering (based on e.g. Service metadata).

• The entry has size limitation - cannot �t multi-purposed data associated with a Service

Provider.

• The access protocol is handed over to TCP when the UDP packet size is overstepped (e.g

when a new Service Provider is registering).

• The DNS-SD server does not check whether the pointer is still valid or not (only a Time

To Live - TTL value is processed).

Therefore, augmentation of this System is necessary for an advanced matchmaker-typed Orches-

trator unit. This is solved through a REST-based Service Registry bridge that stores data in

22

the DNS server - hence leaves the opportunity for low-powered devices to register through UDP

- but provides all the �ltering and management capabilities that are missing. This System is

implemented as part of this Framework and also uses the common descriptor objects described

in the previous section. It is now capable mending the shortcomings by (i) a periodical clean-up

of the database by pinging whether the Service Provider is alive, (ii) providing a REST based

facade to register and revoke Service o�erings (in harmony with other data structures used in

the Framework), and (iii) provides an advanced query interface towards the Orchestrator.

2.3.2 Security aspects2

In an Arrowhead automation cloud environment, communications can be subject to an extensive

amount of threats. These include i.e. spoo�ng, tampering or Denial of Service attacks, and can

compromise the security and integrity of the whole infrastructure. These System-of-Systems still

possess a general infrastructural vulnerability, despite its decentralized architecture.

Yet these functionalities are indispensable, considering the involved cyber-physical Systems and

business processes. Furthermore, the framework targets the collaboration and interoperability of

embedded, and often resource-constrained devices using proprietary or industrial protocols. In

many cases the devices have limited capability of performing security tasks such as advanced

encryption and decryption utilized by modern secure transmission protocols such as Transport

Layer Security (TLS) or the Internet Protocol Security (IPSec).

For such cases, a ticketing-based approach has been developed in [42], which works with Con-

strained Application Protocol (CoAP). For Message Queuing Telementry Protocol (MQTT) and

REST - which use TCP -, security based on TLS would be desirable. It uses a centrally is-

sued ticket as a token of identity but does not contain any identity information directly. To

authenticate Application Systems within a Local Cloud one must contact the AA server to ver-

ify its identity and privileges. Besides its protocol-restricted implementation (supporting merely

CoAP), the weak points of this authentication method make it vulnerable to a number of at-

tacks. Firstly, the challenge-response nature on an insecure channel implies that the ticket itself

does not verify the authenticity of the sender - and can be exploited with a man in the middle

approach. Secondly, since the service provider has to request the local ticketing AA server to val-

idate the ticket (and therefore authenticate the consumer), it is also easy to bypass this control

loop. Thirdly, this validation process is requested at every inbound connection and therefore the

AA server is vulnerable to a Denial of Service attacks.

On the other hand, this approach is advantageous for a number of reasons. The service providers

are relieved from the processing burden of identifying and verifying the consumers: it is done by

the central AA entity. It also bears the future capability of integrating it with admission control

functions: service providers can assert whether the inbound connection is rati�ed by the Core

Systems - and can be serviced - or not.

2This subsection is based on my article on the security measures [41].

23

The central governance of Arrowhead has to be able to provide all these capabilities - even

the ones that are currently missing. Firstly, Application Systems must have a veri�able identity

that cannot be stolen or copied through spoo�ng and Man-in-the-Middle attacks. Secondly,

Service Providers should be able to verify whether inbound connections are sanctioned by the

Core Systems or tampering attack is happening. Moreover, trust zones have to be established

- in accordance with the Local Cloud concept. Admission control management and achieving

accountability is also of interest.

The Public Key Infrastructure (PKI) [28] de�nes how to create certi�cates that can be used to

achieve authentication, message integrity and con�dentiality. PKI builds on Public-key cryptogra-

phy (PKC), which employs an asymmetric encryption scheme. This means that it uses di�erent

keys for the encryption and the decryption processes, compared to symmetric key encryption

methods, where the same key is used for the encryption and decryption.

Based on this, an application level AA architecture based on this X.509 PKI infrastructure is

proposed here. Each capable Arrowhead System should be provided with a certi�cate and should

therefore have its identity binded to its private key. Every Local Cloud has a Certi�cate Authority

that issues and signs these System certi�cates. This CA is the root of the trust chain within its

Local Cloud and has its own certi�cate signed by a parent CA. This entity also possesses the

Certi�cate Revocation List de�ned in the standard: certi�cates that have been invalidated and

therefore not to be accepted.

Figure 2.4: Arrowhead certi�cate hierarchy

This chain of trust model �ts well into to System hierarchy concept of the Arrowhead framework,

as depicted in Fig. 2.4. A general, master Arrowhead certi�cate can be signed by a well-known

trusted CA (such as Comodo or GlobalSign) and issued to the Arrowhead domain owner (e.g.

the project consortia). This administrator entity then can issue and sign Local Cloud certi�cates

for operators in its own application process for establishing new Local Clouds. Within these new

Clouds then the Authorization System realizes the CA tasks and owns the cloud certi�cate.

If an Application System in a Local Cloud requires a certi�cate (e.g. during its deployment

procedure), it will have to generate a private-public key pair and submit a Certi�cate Signing

Request (CSR) containing the pair and its identity. There are other �elds in a CSR used to verify

24

Subject: C=HU, L=Budapest, O=Manufacturer1,

OU=Fleetcloud1,

CN=TempSensor1.Car1.FleetCloud1.Manufacturer1.arrowhead.eu

Figure 2.5: Identity and hierarchical information stored in certi�cates

the identity of the requester. This way an Arrowhead System, bootstrapping procedure can be

created, and augmented with certi�cate generation.

Moreover, Systems acting as Service Providers should also be able to verify that inbound servicing

requests are properly authorized and veri�ed by the Core Systems. To this end, we introduce an

authorization token building on the ticketing schema that will provide application-level security.

A such token is only valid for one servicing instance: one Service Consumer is authorized one-time

to consume a speci�c Service from the Service Provider at hand. This information (Consumer

- Service - Provider) can be stored in a string and should be decryptable and parseable by

Application Systems that require such advanced admission control functionalities. These tokens

have the following characteristics:

• It builds on the certi�cate hierarchy (trust zones);

• Generated by the Authorization System based on access rights;

• This token is then passed on to the Consumer by the Orchestrator during the orchestration

process;

• It is only decryptable by the Service Provider and its private certi�cate key;

• It assures that proper orchestration took place and the Consumer is veri�ed to access the

Service;

• Based on this, the Service Provider can either accept or reject the connection.

Here, a certi�cate structure can be implemented with the above discussed hierarchy, as depicted

on Fig. 2.5. This format is a customization of the general X.509 certi�cate and it bounds the

identity of the system speci�cally to a Local Cloud (which makes spoo�ng attacks more di�cult).

Moreover, besides the Certi�cate Authority tasks, the Authorization System stores the admission

control databases. Currently, these are static tables that contain (Service Consumer - Service -

Service Provider) trios for intra-Cloud and (Service - Cloud) consumption rights for inter-Cloud

authorization purposes.

Regarding the authorization token itself, it is a mere �SHA1 with RSA� crypted byte stream.

Since the used X.509 certi�cates consist of 2048 bytes, the token itself is approx. 240 bytes -

that can be decrypted in one step. This decryption is implementable by embedded devices, and

some might even have dedicated hardware acceleration for this task. To verify the issuer CA (the

Authorization System of that Local Cloud), a signature is generated for each token.

Fig. 2.6 details what the token includes. With this information, the Provider should be able to

verify using the consumer's CN �eld whether it should accept the connection or reject. This

handshake requires a new interface - hence an admission control service has been de�ned. In case

the used strings should overstep the token size limit (using ASCII), the token

25

{

c=''TempSensor1.Car1.FleetCloud1.Manufacturer1'', //consumer CN

s=''RESTJSON.IndoorTemp.TempServices'', //service interface

i=''1477138884'', //Epoch timestamp of issue

to=''1000'' //validity period in ms

}

Figure 2.6: An example authorization token

2.4 The Orchestrator

The Orchestrator is responsible for instrumenting each System in the Cloud: where to connect

and what to consume. It instructs Systems so by pointing towards speci�c Service Providers to

consume speci�c Service(s) from. This has to be done by a simple request-response sequence,

which ends with the requester System receiving a Service endpoint. After these, the System is

obligated to consume from that Service instance.

However, this can be done in a multitude of ways. Currently, this work focuses on three major

scenarios that have to be resolved by this one Service. The following sections detail these and

2.4.4 presents how this is solved within a single request-response communication:

• Default con�guration: System initialization,

• Store-based orchestration: fall back to backup Service Providers,

• Intra-Cloud dynamical orchestration: matchmaking based on the request and

• Inter-Cloud orchestration.

2.4.1 Default con�guration

When an Application System wakes up, it will have to request a default orchestration set that

will instruct it where to connect after or during initialization. It is of essence here, that further

instructions are passed on to the System (e.g. initialization parameters) and that the Service

connections are to be made sequentially.

Figure 2.7 shows a generic example. To give a more speci�c example, we can assume that the

�rst connection (Service X) is made to the System Con�guration Store, where the System fetches

its operational �rmware. Secondly, it will have to register the Services that it provides in the

Service Registry (Service Registry) represented as Service Y. Thirdly, it will have to sign up to

the Event Handler by consuming Service Z.

2.4.2 Store-based orchestration

There might be operational limits of how Application Systems can be orchestrated, i.e. certain

hard-wired service interactions cannot change at all, supposing that an actuator can only access

certain sensors. The Arrowhead Framework has to abide by such implementational constraints

that shape this world of the industrial Internet of Things.

26

Figure 2.7: Serving default con�guration

Therefore, when Systems request orchestration, we have to consider if there is a set of orchestra-

tion rules de�ned for it (Consumer - Service combination) in the Orchestration Store. By design,

it should support auxiliary Service Providers - if the primary one fails. This enables quick er-

ror handling: re-orchestration of a failed servicing instance will return one of the backup data

sources. Figure 2.8 describes this scenario.

Figure 2.8: Store-based orchestration

As Fig. 2.8 suggests, Providers can reside in various Clouds, since Store entries can describe

Service Providers in di�erent Clouds as well. If this is the case, then the Gatekeeper's Services

are automatically invoked and a servicing connection will be negotiated whether it is possible at

that moment. As a consequence the Consumer might get a Service Provider from another Cloud

- completely transparently from its point of view.

27

2.4.3 Dynamical orchestration

The most interesting, �exible Service orchestration scenario is where the dynamical aspects of the

System-of-Systems is taken into account. The Orchestrator is the primary decision-maker here

that is aware of the current conditions in the SoS. Its primary task is to allocate Service Providers

to the Service Requests sent in by Systems. During this orchestration process the Orchestrator

consults with the other Core Systems and makes a decision based on the responses, as Figure

2.9 suggests. This orchestration process consists of the following:

1. Fetching a list of suitable on-line Service Providers from the Service Registry that o�er the

Service at hand;

2. Filtering this list of possible Service Providers based on the authorization status and pref-

erences of the Service Consumer;

3. Further �ltering this list to �nd out which Service Provider(s) can satisfy the QoS expec-

tations;

4. Choosing one Service Provider from this �ltered list (intra-Cloud matchmaking);

5. Then making the QoS resource reservations for this optimal (Provider - Service - Consumer)

combination if availabe;

6. Extending the Service discovery to other Clouds using the Gatekeeper if necessary based

on various factors (e.g. local Service Providers are inadequate);

7. Negotiating servicing aspects with a chosen partnering Cloud;

8. Responding to the requester System with an Orchestration Form.

Figure 2.9: Dynamical matchmaker Orchestrator

In this dynamical orchestration process, Service Consumers can also have preferences: where they

wish to connect to. Although these Systems might be fully aware their operational targets, they

still need to request orchestration, since resource reservation and generation of the authorization

token is still required - and that can only be done by the Core Systems.

Moreover, the current architecture enables the customization of the matchmaking function. Since

various use cases might weight various factors of Service Providers di�erently (e.g. based on

System and Service metadata), it is feasible to provide a placeholder function for this sub-process.

The output is one or more suitable Service Providers that match the criteria the best.

28

To conclude, this matchmaker orchestration process is similar to the UDDI concept from the WS

stack - where complex service requests are matchmade. In here, orchestration is a centralized

capability and orchestration rules (if there are any) are distillated from overall SoS choreography

(currently only manually). This way, �dumb� Application Systems can request new run-time

con�guration and orchestration upon a central signal distributed through e.g. the Event Handler

System.

2.4.4 The internal workings of the Orchestrator

There are two main parts of this System: the Orchestration Store and the Orchestration Service.

The Orchestration Store is a statically con�gured database that contains hardwired orchestration

data for Systems in the Cloud. Operators can set up relations between Systems that cannot

change runtime, and have to be respected in the orchestration process. One Orchestration Store

entry (Fig. 2.10) consists of a Service Provider and a Service speci�cation that must be enforced

if the Service Consumer at question requests orchestration. These entries are set by the operators

and developers of a Local Cloud suiting the physical processes and restrictions in the the Cloud.

The �rst two orchestration scenarios utilize this database.

Figure 2.10: Data structure of the Orchestration Store

The main interface of this System is towards Application Systems. Fig. 2.11 depicts the invoking

and response messages. Systems can submit a Service Request Form (SRF) that has mandatory

and optional �elds (so that resource-constrained devices don't have to store the whole mes-

sage template). This message is encoded in JSON by default (or XML) and expresses what the

Consumer is looking for. It includes the following:

• RequesterSystem: This declares the requester Consumer. This information is also present in

its X.509 certi�cate CN when using SSL.

• RequestedService: The Service that the Consumer is looking for. It might be optional in

some cases, e.g. when default con�guration set is requested.

• RequestedQoS : A complex object for QoS expectations set by the Consumer for the servicing.

• OrchestrationFlags: These �ags specify what is requested and how. They e�ect the orches-

tration process.

• PreferredClouds and Providers: These �elds specify the preferences of the Consumer: where

it wants to connect to. It is a priority list, but local Providers are always processed �rst.

29

Figure 2.11: The Service Request Form and Orchestration Response

After the orchestration process (Fig. 2.12 and detailed in Appendix F.0.6) �nishes, the Orches-

tration Response is returned. It includes the following information:

• Service: The exact Service that has to be consumed (de�ned up to the interface level and

metadata description). This stems from the chosen Provider (from its entry in the Service

Registry).

• Provider : The Service Provider detailed.

• ServiceURI : The URL path to be accessed.

• AuthorizationToken: This string contains the encrypted token.

• AuthorizationSignature: This string veri�es that the local Authorization System generated

the token.

• Instructions: This string is used to pass on further parameters.

Figure 2.12: Overview on the orchestration process

As shown in Fig. 2.11, the Service Consumer can con�gure the orchestration process it is request-

ing by setting �ags in the Service Request Form. This way, only one payload has to stored in

30

Application Systems and only �lled out in a speci�c way to trigger di�erent orchestration modes.

The simpli�ed decision tree of the Orchestrator is depicted in Fig. 2.12 and the full version in

Appendix F.0.6. Since this process is stateless, the Orchestrator itself is stateless. Every resource

is processed independently and therefore this REST service could be put behind advanced load

balancing logic - and the bottleneck of the core architecture will rely on the other Core Systems.

The interactions between Core Systems during orchestration are depicted on Appendices F.0.5

for the intra- and F.0.6 for inter-Cloud scenarios as a whole.

31

Chapter 3

Veri�cation of the developed framework

This section details the applicability and usability experiments of the developed Framework.

Firstly, a conceptual veri�cation of its capabilities is presented in the electomobility use case -

how the framework can take over orchestrational tasks to provide seamless integration between

independent systems with various stakeholders. This demonstration showcases how the extended

Local Cloud concept is applicable and how intra- and inter-Cloud orchestration utilized.

Secondly, a technical veri�cation of the framework is also necessary to validate the reference im-

plementation. Scalability and stress testing is necessary to examine the bottlenecks and whether

real-time QoS expectations can be facilitated with the current code base. Section 3.2 presents

the preliminary results of these tests.

3.1 Veri�cation of the framework principles1

The basics of the Local Cloud approach in itself only de�ne network segmentation and locally

centralized governance that has restricted applicability in the automation world. However, with

the inter-Cloud collaboration architecture and the dynamical orchestration processes introduced

by the author, it is now possible to integrate multi-stakeholder scenarios in the Arrowhead

framework as well. Here, establishing Local Clouds are tied to business use cases: companies

de�ne somewhat closed environments for their operations. In there, the Arrowhead core frame-

work manages systems run-time based on the con�guration stemming from operational targets.

Currently, these targets are manually created within the core databases, however, future work

includes automated choreography generation based on physical processes, see section 4.2.

However, these isolated Local Clouds cannot ful�ll new business trends that aim to create an

overarching cooperation between enterprise systems (e.g. integration along the value chain).

Therefore, as the developed framework is now capable of negotiating servicing terms between

Clouds - that then are sanctioned by both governing entities - new opportunities arise.

1This subsection is based on the joint demonstration with evopro Inc. detailed in [40].

32

The developed framework (and its revised fundamentals) was �rstly validated in one of todays

key development area: the electromobility use case. In this vision, multiple (currently isolated)

systems collaborate to achieve smart distribution and management of energy to provide uninter-

rupted service for the emerging number of electric vehicles. Figure 3.1 details how the various

elements of this (tier 2) system of systems are interconnected and can be represented as Arrow-

head Local Clouds. In here, a number of stakeholders have to be taken into account: from car

manufacturers through charging station infrastructure management up to the connections to the

virtual markets of energy. The depicted systems all implement their own sets of application pro-

tocols, therefore the whole set of capabilities listed in section 2.1 (Requirements) are necessary

to govern this scenario - and even more.

Figure 3.1: Local Clouds deployed within the electromobility use case

During this demonstration, the developed framework was used to provide both intra- and inter-

Cloud orchestration. The basic scenario is a supposedly simple station reservation case. However,

in a scenario where everything is interconnected, a complex process is required to facilitate this

simple end user request. This includes fetching the current status of the user's car battery (from

its manufacturer) to determine charging parameters and then reserving energy on the grid based

on that. Moreover, the choice and reservation of a suitable (possibly near) station is also required

- and that might be operated by a di�erent vendor as well. In here, the framework provided the

following orchestrational tasks to facilitate all this:

• Default con�guration: electric charging stations seeking their currently active management

servers after wake-up. This information cannot be hardwired into the stations, since the

infrastructure management function might belong to di�erent entities e.g. based on time of

33

day (e.g. between a municipality and private operators).

• Store-based orchestration: the reservation system fetches the car battery's pro�le from the

manufacturer (based on type metadata) and then reaches out to the smart grid energy

market to buy.

• Dynamical orchestration: the infrastructure management system is seeking available (free)

charging stations that can facilitate the current reservation request based on various pa-

rameters (e.g. car type, geographical location, battery status).

3.2 Usability experiments

3.2.1 Identi�ed test targets and scenarios

Since this framework aims to create run-time governance within automation scenarios, where

response time might be limited, it is of high interest to measure the capabilities of the developed

architecture since its primary task of orchestration relies on database accesses and internal com-

munications between Core Systems via REST interfaces (to promote distributed deployability).

Therefore, this designed �exibility might have negative e�ects on system response time that can-

not be tolerated in real-time scenarios (e.g. in re-orchestration of failed connections). Currently,

there should be three primary platforms for deploying the Core Systems: (i) public servers, (ii)

private on-site servers and (iii) embedded controllers (or gateways, e.g. in environmental sensor

networks).

Moreover, we have to di�erentiate between the three types of processes integrated: (i) default

con�guration-typed (related to Application System startup), (ii) intra-Cloud (and often Store-

based) governance and (iii) dynamical (and inter-Cloud) orchestration. Although, these scenarios

might be augmented and enhanced later, but the priorities between them should be cleared: the

Orchestration Service has to be segmented into at least two categories based on service QoS.

One of them is dedicated towards strict real-time expectations, where orchestration shall not take

much time, since physical processes are dependent on it. In here, the telemetry collection, event

detection and re-orchestration process of a failure will have an upper limit on execution time.

The other scenario, where dynamic matchmaking and lookup is done (even includes inter-Cloud

communications), the dynamic aspects are more important than reaction time (e.g. in IoT-like

use cases, such as electromobility).

3.2.2 Tests carried out

The current development environment consists of two publicly available servers each one forming

a whole Local Cloud. These are deployed on Cent OS running on virtual machines � each limited

to 2 GB of RAM and 2 processor cores. The database runs on a MySQL Community server,

while the core modules themselves are separate Java executables. The following technologies are

34

used: (i) Java Jersey [31], (ii) Hibernate Object-Relational Mapper (ORM) [30] and (iii) Grizzly

servlet container [32].

To test out the responsiveness of the core framework, I created a simple tool using Java mul-

tithreading: it is capable of sending custom amounts and combinations of Service Requests si-

multaneously and taking note of the response time in a .csv �le. This way, the scalability of

the implementation can be tested. However, there were restrictions on how many simultaneous

connections are allowed to avoid being identi�ed as a Denial of Service attack: the two instances

were deployed on the Telecommunications and Media Informatics Department's infrastructure.

For future tests, the whole deployment will have to be moved to an unprovisioned network

segment.

Nevertheless, I have successfully identi�ed certain nice behavior characteristics and also some

limitations of the current implementation. The dynamic orchestration is considered in three

scenarios. Each scenario was measured multiple times with an increasing number of parallel

requests (10 - 20 -30). The �rst tests showed that sending in the same request is not a valid

test case, since after the �rst request, response time falls back signi�cantly. Therefore, multiple

Service Request Forms were registered in the core framework for each choice on orchestration.

For each scenario 3 di�erent Consumers are requesting di�erent Services through (i) default

con�guration, (ii) Store-based or (iii) dynamical intra- and (iv) inter-Cloud orchestration. The

test cases included the followings:

• Only intra-Cloud orchestration: default con�guration and Store-based (simulating industrial

applications).

• Only intra-Cloud, but dynamical orchestration is used (IoT domains).

• Well established Local Clouds: mainly intra-Cloud orchestration, with occasional inter-

Cloud collaborations.

• Excessive inter-Cloud communications (not well established Local Cloud boundaries).

As an example of the results, �g. 3.2 depicts the histograms of the response time for individual

requests. These describe the distribution of how much time it takes when 15 simultaneous re-

quests are made to the orchestration, but their contents di�er: e.g. 10 of them is for intra-Cloud

dynamical orchestration and 5 ends up in inter-Cloud orchestration. This scenario is similar

to what we can expect in the veri�cation use case of electromobility described in the previous

section.

The experiment resulted in the following identi�ed issues:

• The currently activated logging pro�le (for debugging) is too aggressive, cripples scalability.

• The virtual machine based server solution has a very slow response time.

• The wakeup time of the virtual machine SQL server is higher than acceptable in certain

cases (some Java Database Connections - JDBC- might run into timeout).

• The Store-based orchestration accesses the same tables too fast, therefore the amount of

possible parallel connections are limited.

• The inter-Cloud orchestration does add signi�cant amount of extra latency to orchestration:

therefore timeout sensitive Services cannot be orchestrated this way.

35

Figure 3.2: Response time tests of orchestration

• Various load balancing techniques of the deployment (Grizzly server and VM characteristics)

were (re)discovered.

• Currently the Orchestration Store-related tables in the database form the main bottleneck.

Besides these technical issues, the tests concluded that Store-based orchestration has an average

of 3.4 seconds when 10 parallel requests are made, and 7. 9 seconds when 30 requests are made.

This leads to the conclusion, that this test bed deployment is not yet suitable for real-time

management of an industrial SoS as is. However, it is partially acceptable when taking the

processes behind the curtains into account. It is also clear, that further work will be required to

streamline communications between Core Systems for embedded applications (joining them in

one executable), e.g. for the Raspberry Pi target environment.

36

Chapter 4

Roadmap for future developments

In order to provide an even more complete technical picture than the earlier parts of this doc-

ument describes, let us go through these enhancements � that are already have their high-level

design created, but not yet developed.

Therefore, this section lays out concepts for future work to enhance this framework, since the

declared objectives of section 2.1.1 are not completely realized yet. Since this work is designed

to support various - yet to be fully described - capabilities and sub-processes, it is of impor-

tance to declare design components that will facilitate those. Currently, the framework provides

minimalistic capabilities for e.g. resource management, event handling and distillation of SoS

choreographies. Also, the data path issues identi�ed for inter-Cloud communications are still yet

to be resolved - possibly building on existing solutions.

4.1 Resource management and event handling

As indicated in the previous chapter, real-time Quality of Service is essential within the automa-

tion domain. Therefore, resource management has to be done not just between endpoints, but

in the Application Systems themselves. Currently, the QoS Manager and QoS Monitor Systems

are responsible for that. Reservation is made during the orchestration process, where possible

Service Providers are assessed whether they can satisfy the QoS expectations set in the SRF and

- after choosing the most appropriate one - the actual reservation is made for the Consumer -

Service - Provider trio (as observable on appendix F.0.4). The current implementation of the QoS

subsystem is based on custom time triggered Ethernet developed by the Portuguese partners [3]:

it uses allocatable time slots using speci�c messages and tra�c shaping on industrial Ethernet.

However, currently the monitoring function is limited to disbanding the current setup, thus

proper re-orchestration of a failing servicing instance is yet to be solved. This will require another

co-operation between the Core Systems: detecting, identifying and solving events occurring in

the Local Cloud. The orchestration process has anchor-points designed to handle such scenarios

(by adding new orchestration �ags), however the Core System roles and responsibilities in this

37

Figure 4.1: Core Systems interacting for resource management

matter (between the QoS Monitor, Event Handler System [1] and the Orchestrator) are yet to

be cleared. Further issues are to be solved in relation to error handling during translation [17]

between Systems or Local Clouds.

Currently, the Orchestrator is request-triggered (not a traditional centralized choreographer). If a

servicing instance breaks up (e.g. the Provider vanishes in an instant), it should be the partners'

task to signal the appropriate Core Systems (e.g. QoS Monitor) and request re-orchestration.

Through this approach, the scalability of a Local Cloud would be maintained, since there should

be no centralized monitoring of every Application System in run-time. That would require peri-

odic control tra�c between the monitor and all Systems. Nevertheless, this approach puts more

responsibility on Application Systems, that could still be an issue (noticing that the servicing

partner is not adequate anymore).

4.2 Engineering System-of-Systems1

The Core Systems currently run on pre-de�ned rule-sets (in the Orchestration and Authorization

stores and in the Service Registry). They also assume that Application Systems themselves

are con�gured to ful�ll their tasks - in somewhat autonomous way. They can fetch their run-

time con�guration from the Con�guration Store - if available. Currently, orchestration refers

1This section is based on my article regarding SoS con�guration [6].

38

to a supportive task, namely providing instructions to Application Systems on their service

consumption behavior.

What is then more intriguing, how we provide the overall system-of-systems a choreography.

This is currently limited to manual planning and con�guration of the core databases. However,

there should be automated engineering tools within Arrowhead that distillate (e.g. orchestration)

rules from operational targets. This is to be tasked with an Plant Con�gurator whose input is

an operational target (e.g. a new manufacturing process) described using appropriate industrial

tools using the most suitable view on the devices. Its output then should be placed in the various

core databases, as �g. 4.2 suggests. This �gure also describes the which core elements are to be

a�ected by the Con�gurator's presence.

Figure 4.2: System-of-Systems con�gurator

This approach consistent with the choreography solutions of Web Services. The overall con�gu-

ration of the System-of-System should be optimized for the global target of the given local cloud

(e.g. setting a production target for production lines, or optimal energy consumption for a smart

building). A such choreographer engine would naturally have to utilize Plant Description related

data and its operation must rely on the functional, (physical) architectural and process-oriented

mappings of the SoS. This means that the Plant Description in this case will be used to store

required, desired or recommended connections between design objects as well (taking over certain

relations between Systems from the Orchestration Store).

The decisions and acts of such an engine should be asynchronous to the general operations

within a Local Cloud. It should only be invoked to change the general �ow in order to enforce

new operational targets on the SoS. However, the main di�erence here compared to Web Services

is that not Application Systems will receive the individual choreographies they are required to

39

follow, rather the Core Systems are re-con�gured appropriately. After that, there has to be an

event broadcast, that every Application System has to request new orchestration (and maybe

System con�guration).

4.3 Gateways between Local Clouds

Local Clouds are de�ned by having their own set of various boundaries. These might include

having a closed communication network, where addresses are local and �rewalls (or even full

physical segregation) separates Systems from the outside world. However, within these Local

Clouds network visibility and addressability problems are were not considered previously - since

it was unnecessary. Yet, with the introduction of inter-Cloud communicational requirements, it

is now expected that Application Systems should be able to contact, send to and receive data

from external entities (residing in other Local Clouds). It is also required that these interactions

happen in a controlled way and should not compromise the Local Cloud's integrity, security or

safety.

These issues are to be mended within the inter-Cloud orchestration process. In this architec-

ture, the Core Systems are responsible for Application Systems: inter-Cloud servicing cannot

happen without the two set of Core Systems knowledge and approval. Since Local Clouds are

generally autonomous and operationally independent from each other - and might not even share

stakeholders -, proper orchestration is required for establishing every servicing instance.

In the Inter-Cloud Negotiations process2, the last step is building up a data path between the to-

be Consumer and Provider that reside in two di�erent Clouds. This data path requires gateways

on the edges of both Local Clouds. Such gateways will replicate the servicing partner at the

borders and tunnel the communication in-between Clouds, as Fig. 8 suggests.

Con�guration of the gateways (e.g. the establishment of Service Provider emulation or creating a

data tunnel with the other gateway) has to be part of the process as well as instructing the Service

Consumer to connect to its own gateway to start the connection chain. This will be aided by

the authorization token concept (with the servicing handshake between Consumer and Provider)

that will have to be issued for all three links in a simple scenario. Moreover, as �g. 8 also depicts,

there is a distinction between the data (grey) and control (green) planes here and both planes will

have to implement a strict protocol (currently called Inter-Cloud Negotiations [ibid]). Meanwhile,

the Gatekeeper modules operate on the control plane, Gateways will tunnel communications on

the data plane and might will have to be divided into two: external and internal parts.

Between the external- and internal-gateways, a non-routable protocol will have to be imple-

mented. Con�guration of the gateways should only be done by their own Orchestrator (through

a one-way command port perhaps). This way, the compromise of the external gateway should

have no e�ect on the internals of the Local Clouds. To realize such an advanced tunneling ser-

vice (that can emulate various Service interfaces, not just REST-based), will require extensive

2Described in my Students' Scienti�c Conference paper of 2015.

40

Figure 4.3: Tunneling connections between Local Clouds

research and integration of advanced state-of-the-art networking technologies, such as Network

Function Virtualization (as discussed in section 1).

41

Conclusion

To conclude, this paper described the re�nement of the Arrowhead framework, my work from the

high-level design throughout the implementation up to the preliminary results of the veri�cation

process.

Firstly, de�nitions of the Arrowhead objects and principles were established and polished in

order to support various expectations that have arisen through the project. These include Local

Clouds, Arrowhead Systems and Services. Common descriptor objects (data structures) were

introduced to clarify and formalize communications within the framework.

Secondly, advanced Service Registry and Authorization System capabilities were created to pro-

vide the necessary functionality for the revised Orchestrator. This included handling of e.g.

Service metadata and a �ltering capability within the Service Registry - and an X.509 certi�cate

based solution within the Authorization System (and on Application Systems' side as well). The

inter-Cloud architecture was established by the author previously: it relies on the Gatekeeper

module.

Thirdly, a centralized governance concept was founded based on various interactions with and

between Arrowhead Core Systems. These include - among others - resource allocation tasks, error

and event handling, and general management tools for System-of-Systems. The collection and

negotiations of the requirements was a major part of this work.

Based on this, and overall high-level design and a roadmap was engineered to cover the whole

problem space. As a corner stone of that, the Orchestrator unit was developed to support the

run time of Application Systems. Currently, it includes three di�erent processes within its one

simple request-response structure, and reliance on the Orchestration Store in some cases.

Finally, the veri�cation of the developed proof-of-concept framework was done on two levels:

the overall system design and Local Cloud related principles were showcased and validated in

a complex electromobility scenario. It has shown and demonstrated that this version of the

framework is capable of facilitating a whole integrated value chain from the end-user (car owners)

to the smart grid. Furthermore, preliminary applicability and scalability tests were carried out

as well.

Regarding dissemination, this work has resulted in four conference papers and a demonstration

at the 43nd International Conference of IEEE Industrial Application Society (2016).

42

Finally, about current endeavors, the author would like to continue this work, even besides the

roadmap for future works described in this paper, as part of his master thesis.

43

Acknowledgement

I would like to express my deepest gratitude towards my supervisor, Dr. Pál Varga, for the

opportunity to work on this project and for his continuous engagement. His guidance and support

made it possible to create this work.

I would also like to thank everyone who has worked on this project: the team from the University

and from evopro Innovations Inc.

44

Bibliography

[1] Michele Albano, Luis Lino Ferreira, and Jose Sousa. Event handler system: Publish/sub-

scribe communication for the arrowhead world. In 12th IEEE World Conference on Factory

Communication Systems (WFCS), 2016.

[2] IPSO Allicance. Ipso smart objects. http://www.ipso-alliance.org/wp-content/

uploads/2016/01/ipso-paper.pdf, 2016.

[3] Alberto Ballesteros and Julián Proenza. A description of the ftt-se protocol. Technical

report, Technical report, DMI, Universitat de les Illes Balears, 2013.

[4] Michael Bell. Introduction to Service-Oriented Modeling. Wiley and Sons., 2008.

[5] Fredrik Blomstedt, Luis Lino Ferreira, Markus Klisics, Christos Chrysoulas, Iker Martinez

de Soria, Brice Morin, Anatolijs Zabasta, Jens Eliasson, Mats Johansson, and Pal Varga.

The arrowhead approach for soa application development and documentation. In IEEE

IECON, 2014.

[6] Oscar Carlsson, Csaba Heged¶s, Pál Varga, and Jerker Delsing. Organizing iot systems-of-

systems from standardized engineering data. In 42nd Annual Conference of IEEE Industrial

Electronics Society (IECON), Florence, Italy, 2016.

[7] Oscar Carlsson, Pablo Punal Pereira, Jens Eliasson, and Jerker Delsing. Con�guration ser-

vice in cloud based automation systems. In 21th IEEE Conference on Emerging Technologies

and Factory Automation, 2016.

[8] Oscar Carlsson, Daniel Vera, Jerker Delsing, and Bilal Ahmad. Plant descriptions for en-

gineering tool interoperability. In 14th International Conference on Industrial Informatics,

2016.

[9] Ramon Casellas and Raül Mu noz. Sdn orchestration of open�ow and gmpls �exi-grid

networks with a stateful hierarchical pce. J. Opt. Commun. Netw., 7:A106�A117, Jan 2015.

[10] Ramon Casellas, Raül Mu noz, Ricardo Martínez, Ricard Vilalta, Lei Liu, Takehiro Tsuri-

tani, Itsuro Morita, Víctor López, Oscar González de Dios, and Juan Pedro Fernández-

Palacios. Sdn orchestration of open�ow and gmpls �exi-grid networks with a stateful hier-

archical pce. J. Opt. Commun. Netw., 7(1):A106�A117, Jan 2015.

[11] S. Cheshire and M. Krochmal. Rfc-6763: Dns-based service discovery, 2013.

[12] Chorevolution. The chorevolution project site. http://www.chorevolution.eu/bin/view/

Main/, 2016.

45

http://www.ipso-alliance.org/wp-content/uploads/2016/01/ipso-paper.pdf
http://www.ipso-alliance.org/wp-content/uploads/2016/01/ipso-paper.pdf
http://www.chorevolution.eu/bin/view/Main/
http://www.chorevolution.eu/bin/view/Main/

[13] The Arrowhead consortia. The arrowhead framework wiki. https://forge.soa4d.org/

plugins/mediawiki/wiki/arrowhead-f/index.php/Arrowhead_Framework_Wiki.

[14] MIMOSA consortium. The mimosa project site. http://www.mimosa.org/, 2016.

[15] C. H. Crawford and G. P. Bate. Towards an on demand service-oriented architecture. In .

IBM Systems Journal, volume 44, pages 81�107, 2005.

[16] Hasan Derhamy, Jens Eliasson, Jerker Delsing, and Peter Priller. A survey of commercial

frameworks for the internet of things. In 20th IEEE Conference on Emerging Technologies

and Factory Automation, 2015.

[17] Hasan Derhamy, Pal Varga, Jens Eliasson, Jerker Delsing, and Pablo Punal. Translation

error handling for multi-protocol soa systems. In 20th IEEE International Conference on

Emerging Technologies and Factory Automation (EFTA), 2015.

[18] Remco Dijkman and Marlon Dumas. Service-oriented design: A multi-viewpoint approach.

International journal of cooperative information systems, 13(04):337�368, 2004.

[19] Scott Dowell, Albert Barreto, James Bret Michael, and Man-Tak Shing. Cloud to cloud in-

teroperability. In System of Systems Engineering (SoSE), 2011 6th International Conference

on, pages 258�263. IEEE, 2011.

[20] Thomas Erl. Service-Oriented Architecture (SOA) Concepts, Technology and Design. 2005.

[21] Dave Evans. The internet of things: How the next evolution of the internet is chang-

ing everything. http://www.iotsworldcongress.com/documents/4643185/0/IoT_IBSG_

0411FINAL+Cisco.pdf.

[22] Luis Lino Ferreira, Michele Albano, and Jerker Delsing. QoS-as-a-Service in the Local Cloud.

In 21th IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA'2016), 2016.

[23] Csaba Heged¶s, Dániel Kozma, Gábor Soós, and Pál Varga. Enhancements of the arrowhead

framework to re�ne intcloud service interactions. In 42nd Annual Conference of IEEE

Industrial Electronics Society (IECON), Florence, Italy, 2016.

[24] Csaba Heged¶s and Pál Varga. Service interaction through gateways for inter-cloud col-

laboration within the arrowhead framework. In 5th International Conference on Wireless

Communications, Vehicular Technology, Information Theory, Aerospace and Electronic Sys-

tems (VITAE), Hyderabad, India, 2015.

[25] Mario Hermann, Tobias Pentek, and Boris Otto. Design principles for industrie 4.0 scenarios.

In 49th International Conference on System Sciences, USA, 2016.

[26] Yang Hongli, Zhao Xiangpeng, Cai Chao, and Qiu Zongyan. Exploring the connection

of choreography and orchestration with exception handling and �nalization/compensation.

In International Conference on Formal Techniques for Networked and Distributed Systems,

pages 81�96. Springer, 2007.

[27] Yang Hongli, Zhao Xiangpeng, Cai Chao, and Qiu Zongyan. Exploring the connection

of choreography orchestration with exception handling �nalization/compensation. Formal

Techniques for Networked and Distributed Systems - FORTE 2007, pages 81 � 96, 2007.

46

https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Arrowhead_Framework_Wiki
https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Arrowhead_Framework_Wiki
http://www.mimosa.org/
http://www.iotsworldcongress.com/documents/4643185/0/IoT_IBSG_0411FINAL+Cisco.pdf
http://www.iotsworldcongress.com/documents/4643185/0/IoT_IBSG_0411FINAL+Cisco.pdf

[28] Telecommunication Standardization Sector (ITU-T) International Telecommunica-

tion Union. X.509: Public-key and attribute certi�cate frameworks. http://www.itu.int/

rec/T-REC-X.509-201210-I/en, 2012.

[29] Michael Jarschel, Thomas Zinner, Tobias Hoÿfeld, Phuoc Tran-Gia, and Wolfgang Kellerer.

Interfaces, attributes, and use cases: A compass for sdn. IEEE Communications Magazine,

52(6):210�217, 2014.

[30] Java. Hibernate orm. http://hibernate.org/orm/.

[31] Java. Jersey: Restful web services in java. https://jersey.java.net/.

[32] Java. Project grizzly. https://grizzly.java.net/.

[33] C. Jennings and Z. Shelby. Media types for sensor markup language (senml) draft-jennings-

senml-10. Technical report, IETF, 2013.

[34] Diane Jordan and John Evdemon. Web services business process execution language version

2.0, 2007.

[35] Changbin Liu, Boon Thau Loo, and Yun Mao. Declarative automated cloud resource orches-

tration. In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 26. ACM,

2011.

[36] Pedro Malo, Tiago Teixeira, Bruno Almeida, and Marcio Mateus. Interoperability Reposi-

tory System for the Internet-of-Things. In Green Computing and Communications (Green-

Com), 2013 IEEE iThings/CPSCom, 2013.

[37] Raul Muñoz, Ricard Vilalta, Ramon Casellas, Ricardo Martínez, Thomas Szyrkowiec, Achim

Autenrieth, Victor López, and Diego López. Sdn/nfv orchestration for dynamic deployment

of virtual sdn controllers as vnf for multi-tenant optical networks. In Optical Fiber Commu-

nication Conference, pages W4J�5. Optical Society of America, 2015.

[38] OASIS. Organization for the advancement of structured information standards. http:

//www.oasis-open.org.

[39] Intel White Paper. Sdn orchestration layer implementation considerations, 2016.

[40] Bálint Péceli, Csaba Heged¶s, Pál Varga, and Gábor Singler. Integrating an electric vehicle

supply equipment with the arrowhead framework. In 42nd Annual Conference of IEEE

Industrial Electronics Society (IECON), Florence, Italy, 2016.

[41] Sandor Plosz, Csaba Hegedus, and Pal Varga. Advanced Security Considerations in the

Arrowhead Framework. In DECSoS, pages 1�13, September 2016.

[42] Pablo Punal, Jens Eliasson, and Jerker Delsing. An authentication and access control frame-

work for coap-based internet of things. In 40th Annual Conference of the IEEE Industrial

Electronics Society (IECON), 2014.

[43] B. Scholten. The road to integration: A guide to applying the isa-95 standard in manufac-

turing. International Society of Automation, 2007.

[44] Mohammad Hadi Valipour, Bavar Amirzafari, Khashayar Niki Maleki, and Negin Danesh-

pour. A Brief Survey of Software Architecture Concepts and Service Oriented Architecture.

In 2nd IEEE International Conference on Computer Science and Information Technology,

pages 34�38, 2009.

47

http://www.itu.int/rec/T-REC-X.509-201210-I/en
http://www.itu.int/rec/T-REC-X.509-201210-I/en
http://hibernate.org/orm/
https://jersey.java.net/
https://grizzly.java.net/
http://www.oasis-open.org
http://www.oasis-open.org

[45] Pal Varga, Fredrik Blomstedt, Luis Lino Ferreira, Jens Eliasson, Mats Johansson, Jerker

Delsing, and Iker Mart�nez de Soria. Making system of systems interoperable - the core

components of the arrowhead framework. Journal of Network and Computer Applications,

2016.

[46] W3C. The world wide web consortium. https://www.w3.org/.

[47] W3C. Web services choreography working group. https://www.w3.org/2002/ws/chor/,

2009.

[48] A. E. Walsh. UDDI, SOAP and WSDL: The Web Services Speci�cation Reference Book.

Prentice Hall Professional Technical Reference, 2002.

[49] S. S. Yau and J. Liu. A service matchmaking approach for service-oriented architecture

based on service functionalities. http://dpse.eas.asu.edu/papers/F-Match.pdf.

[50] Johannes Maria Zaha, Alistair Barrors, Marlon Dumas, and Ter Hofstede. A language for

service behavior modeling. Queensland University of Technology Technical Report, 2006.

[51] Johannes Maria Zaha, Alistair Barros, Marlon Dumas, and Arthur ter Hofstede. Let's dance:

A language for service behavior modeling. In OTM Confederated International Conferences"

On the Move to Meaningful Internet Systems", pages 145�162. Springer, 2006.

[52] Qiu Zongyan, Zhao Xiangpeng, Cai Chao, and Yang Hongli. Towards the theoretical foun-

dation of choreography. 2007.

48

https://www.w3.org/
https://www.w3.org/2002/ws/chor/
 http://dpse.eas.asu.edu/papers/F-Match.pdf

Appendices

49

Figure F.0.4: Dynamical intra-Cloud orchestration message sequence

50

Figure F.0.5: Inter-Cloud orchestration message sequence

51

Figure F.0.6: Inter-Cloud orchestration message sequence

52

	Abstract
	Introduction
	Related work
	Service oriented architectures
	General introduction to SOA
	Web Services
	Service orchestration
	(Industrial) Internet of Things

	The Arrowhead FrameworkThis section is based on AHcore.
	Local Clouds
	Systems and Services
	Mandatory Core Systems and their Services
	Supporting Core Systems and their Services
	Inter-Cloud servicing in ArrowheadThis subsection is based on my article HCsgateways and Scientific Student' Associations Conference Paper of 2015.

	Governance of Local Clouds
	Requirements and expectations
	Scope of functionality
	Levels of Application System autonomy

	Local Clouds, Systems and ServicesThis section is based on my article regarding overall architecture HCsenhancements.
	Mandatory Core Systems
	Service Registry
	Security aspectsThis subsection is based on my article on the security measures PloszAHSecurity.

	The Orchestrator
	Default configuration
	Store-based orchestration
	Dynamical orchestration
	The internal workings of the Orchestrator

	Verification of the developed framework
	Verification of the framework principlesThis subsection is based on the joint demonstration with evopro Inc. detailed in HCsevopro.
	Usability experiments
	Identified test targets and scenarios
	Tests carried out

	Roadmap for future developments
	Roadmap for future developments
	Resource management and event handling
	Engineering System-of-SystemsThis section is based on my article regarding SoS configuration HCssosconfig.
	Gateways between Local Clouds

	Conclusions
	Acknowledgement

	References
	Appendices

