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Abstract

For our daily activities, our limbs are indispensable. Unfortunately several people have
lost a limb due to amputation or neurological disabilities. For them, a device replacing
their lost limb would mean a complete life again. Electroencephalography (EEG) gives an
insight into the electric activity of the human brain. If we analyze this activity, we can gain
information about the patient’s intents concerning limb movement. With the use of this,
we could build thought-controlled, realistic, functional prosthetics, or even more complex
Brain-Computer Interfaces (BCI-s).

However, the method of processing the EEG signal is not straightforward at all. There-
fore this area is under active research worldwide. Although we can see more and more
successful experiments in publications of various universities and research institutions,
there are still numerous problems ahead of us on the way to a reliable solution. The first
problem is accessing the sources of the signals. The sources of the EEG signal, the neu-
rons of the human brain reside separated from the environment, inside the skull. Another
problem is the low magnitude of the brain’s electric signals. The EEG signal measured on
the scalp is typically around 10 µV and 100 µV, hence its recording with proper resolution
is not an easy task. Further problems are the limits of the recording’s spatial resolution,
the cross-talk between the electrodes picking up the electric signals, the environmental
electromagnetic noises, and the distortions caused by other activities of the human body,
such as eye movements.

A variety of approaches exist for processing the EEG signal in order to infer the motoric
activity of the brain. Medicine uncovered correlation between some brain activities, such
as deep sleep or strong focus, and the EEG signal’s properties in certain frequency bands.
Such frequency bands bear for example the name alpha, beta and mu. The power within
one of such frequency bands, of a signal coming from a certain part of the brain, can be a
good starting point for inferring local activity. Besides signal power, the change of electric
potentials can also convey information. In the case of signals recorded from the motor
cortex, the mentioned quantities help recognizing intents related to the movement of the
human body.

In my paper I present the possibilities of recognizing hand motion intents, and the pro-
cessing of a set of EEG recordings from 12 participants altogether. During the recordings,
the participants had executed series’ of hand motions, which had been partly labeled,
meaning that the time of occurrence of the given hand motions are available. My task was
to develop an algorithm which is capable of recognizing intent related to hand motion,
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and this way detecting the hand movements at the time of their occurrence during the
recording from the raw EEG signal. This work is driven by the motive of developing BCI
applications such as BCI-based prosthetic limbs. I examine the relevant possibilities of
filtering in time- and spatial domain, the calculation of power per each frequency band,
the extraction of features which help detecting movements, and the classification of data
into event categories. I present my detection algorithm, the processing of the data which
I used during the development process, and the testing of the method on a separated set
of recordings. The procedure’s success can mostly be judged by its classification accuracy,
its rate of successful detections, and its amount of false indications. Starting from these, I
carry out an evaluation, in which I elaborate on the procedure’s everyday applicability as
well.
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Absztrakt | Abstract in Hungarian

Mindennapi teendőink elvégzéséhez elengedhetetlenek a végtagjaink. Sajnálatos módon
számos embertársunk veszítette el valamely végtagját amputáció vagy idegrendszeri ren-
dellenesség miatt. Az ő számukra egy elveszített végtagjukat pótló szerkezet újból a teljes
életet jelentené. Az elektroenkefalográfia (EEG) segítségével betekintést nyerhetünk az
emberi agy elektromos aktivitásába, melynek elemzésével információt nyerhetünk a pá-
ciens végtagjai mozgatására irányuló szándékáról. Ennek segítségével akár gondolatokkal
vezérelt, valósághű, működőképes művégtagokat is készíthetnénk, nem is beszélve sokkal
összetettebb agy-számítógép interfészekről.

Az EEG jelek feldolgozásának módja azonban korántsem triviális, ezért a területet
világszerte aktívan kutatják. Bár egyre több biztató kísérleti eredményt láthatunk különféle
egyetemek és kutatóközpontok publikációiban, egyelőre számos probléma áll még előttünk
a megbízható megoldáshoz vezető úton. Elsőként a jelforrásokhoz való hozzáférés jelent
problémát. Az EEG jel forrásai, az emberi agyat felépítő neuronok a külső környezettől
elzárva, a koponyán belül helyezkednek el. Problémát jelent az agy által képzett elektro-
mos jelek alacsony szintje is. A skalpon mért EEG jelek tipikusan 10 µV és 100 µV körül
vannak, így megfelelő felbontással való rögzítésük nem egyszerű feladat. Problémát jelen-
tenek továbbá a felvétel térbeli felbontásának korlátai, az elektromos jeleket felvevő elek-
tródák közti áthallás, a környezeti elektromágneses zajok, valamint az emberi test egyéb
aktivitása, például a szemmozgás által generált torzítások.

Többféle megközelítés létezik EEG felvételek feldolgozására ahhoz, hogy az agy motoros
aktivitására következtessünk. Az orvostudomány ismer összefüggéseket az agy némely ak-
tivitásai, például mély alvás vagy folyamatos koncentráció, és az EEG jel bizonyos frekven-
ciatartománybeli tulajdonságai között. Ilyen kitüntetett frekvenciasávok viselik például
az alfa, a béta és a mü nevet. Az agy egy adott területéről származó EEG jel egy ilyen
frekvenciasávba eső részének teljesítménye jó kiindulópont lehet a lokális aktivitásra való
következtetéshez. A jelteljesítményen kívül az elektromos potenciálok változása is hor-
dozhat információt. A motoros kéreg felől rögzített jelek esetén az előbbi mennyiségek az
emberi test mozgására irányuló szándék detektálásához nyújtanak segítséget.

Dolgozatomban bemutatom a kézmozgatási szándék felismerésének napjainkban ismert
lehetőségeit, valamint egy 12 résztvevős EEG felvétel-sorozat feldolgozását. A felvételek
során a résztvevők kézmozdulat-sorozatokat hajtottak végre, melyek egy része időben meg-
jelölésre került, azaz részben rendelkezésre állnak az egyes kézmozdulatok előfordulásá-
nak időpontjai. A feladatom egy olyan algoritmus kifejlesztése volt, amely pusztán a
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rögzített EEG jelekből képes felismerni a kéz mozgatására irányuló szándékot, és ily mó-
don kimutatni a kézmozdulatokat azok megtörténtének időpontjában a felvétel során.
Az e mögötti hosszú távú motiváció BCI eszközök, például BCI alapú művégtagok fe-
jlesztése. Megvizsgálom a feladat szempontjából releváns lehetőségeit az idő- és tértar-
tománybeli szűrésnek, a frekvenciatartományonkénti jelteljesítmény-számításnak, a mozdu-
latok detektálását segítő mennyiségek származtatásának és az adatokat eseménymentes és
kézmozdulat-kategóriákba soroló klasszifikációnak. Bemutatom az általam összeállított de-
tektáló algoritmust, az ahhoz előzetes ismeretként felhasznált adatok feldolgozását, valamint
a módszer tesztelését az előző halmaztól elválasztott felvételeken. Az eljárás sikere leginkább
osztályozási pontossága, helyes detekcióinak aránya, és téves jelzéseinek mennyisége alapján
ítélhető meg. Ezekből kiindulva végzem el az értékelést, mely során kitérek az eljárásnak a
kísérletek körbehatárolt színterén kívüli, mindennapok során való alkalmazhatóságára is.
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Introduction

Designing reliable Brain-Computer Interfaces (BCI-s) is the mission of numerous researchers
and engineers, at institutes and companies all around the world. A BCI-driven, fully func-
tional prosthetic hand could grant many people their lost limb again. Brain-controlled
robotic arms would figuratively bring a whole new generation of medical or construction
applications, augmenting doctors’ or builders’ physical capabilities by doubling or tripling
the number of their limbs. Recently, there have been promising BCI experiments with no-
table results in grasping objects with a prosthetic hand (Agashe et al. 2015) and in the
restoration of overground walking in a paraplegic patient (King et al. 2015).

Unfortunately, decoding the brain activity to obtain useful control signals is an ex-
tremely difficulty task. The brain is residing under the protection of the skull, which is a
massive obstacle for neural electric signals. This is only one of the reasons why extracting
information from non-invasively obtained EEG signal is a big challenge. Also, this topic
is of rather multidisciplinary nature, as it requires certain knowledge of biology as well as
engineering skills.

The long-term objective is the development of BCI-s for everyday use. As a sub-goal
on the way, the objective of this study is to detect the time of hand movements from an
already existing, digitalized recording of scalp EEG signal. The digital signal processing
algorithm might constitute only a part of a complete BCI, but designing it is challenging
enough just by itself. It requires the knowledge of the methods for motion detection from
EEG signal. Therefore it is also among the objectives to review these methods and attempt
to develop them. The exact detection task described in this paper serves as a measure of
the developed algorithms.

Understanding the methodology with its complex mathematics is of paramount impor-
tance. There are highly adaptive algorithms with large number of parameters widely used,
but many of these are like a black box. It is hard (or impossible) to see what kind of
transformations such tools actually make. Therefore it is difficult to tell whether they can
be applied in an unknown situation or not. This motivates the study of various, transpar-
ent mathematical approaches to the hand motion recognition problem. However, highly
adaptive methods, such as Convolutional Neural Networks (CNN-s) are proven perform
outstandingly in several situations, therefore they are also examined in this work.

The structure of this paper is the following. The first chapter gives an overview of
the human brain activity, and it describes the properties of the EEG signal, such as its
main frequency bands. It also describes how the EEG signal can be recorded, and utilized
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for BCI applications. This is in order to give a basis for the later chapters. The second
chapter examines the EEG signal in the context of motoric intent recognition. This chapter
describes the features of the EEG signal around the time of a movement. It also outlines a
standard digital processing algorithm for motion detection and describes the possibilities
for implementing each step. The third chapter presents notable past works related to
motion detection. The fourth chapter presents the exact hand motion detection task, and
also the processing algorithms which have been designed for its solution in this study. The
algorithms are then evaluated based on their detection results. Finally, the last chapter
summarizes the achievements and gives perspective for further development. The frequently
used abbreviations in this paper are listed in Table 1.

Abbreviations
ANN Artificial Neural Network
AUROC Area Under Receiver Operating Characteristic
BCI Brain-Computer Interface
CNN Convolutional Neural Network
CSP Common Spatial Pattern
ECG Electrocardiography/Electrocardiogram
EEG Electroencephalography/Electroencephalogram
EMG Electrooculography/Electrooculogram
EOG Electromyography/Electromyogram
EP Evoked Potential
EPSP Excitatory Postsynaptic Potential
ERD Event-Related Desynchronisation
ERP Event-Related Potential
ERS Event-Related Synchronisation
FBCSP Filter Bank Common Spatial Pattern
FES Functional Electrical Stimulation
FIR Finite Impulse Response
FPR False Positive Rate
ICA Independent Component Analysis
IIR Infinite Impulse Response
IPSP Inhibitory Postsynaptic Potential
LDA Linear Discriminant Analysis
MIBIF Mutual Information-based Best Individual Feature
MIRSR Mutual Information-based Rough Set Reduction
PCA Principal Component Analysis
PMBS Postmovement Beta Synchronization
QDA Quadratic Discriminant Analysis
ROC Receiver Operating Characteristic
SVM Support Vector Machine
TPR True Positive Rate
VEP Visual Evoked Potential

Table 1: Frequently used abbreviations.
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Chapter 1

EEG signal acquisition and analysis

1.1 The electric activity of the brain

The electrical signals generated by the human brain represent the brain function and the
status of the whole body (Sanei and Chambers 2007). The first brain activity recording can
be dated to 1875, when Richard Caton, a pioneer electrophysiologist from England used
a galvanometer and two electrodes over the scalp of a human subject to pick up electrical
signals. The term EEG combines the concepts of electro- (referring to the registration of
electric signals), encephalo- (referring to emitting the signals from the head), and graphy
(meaning drawing or writing), and is used to denote the signals representing the electric
activity of the brain. The central nervous system consists of nerve cells (neurons), and
between them, glia cells. A neuron consists of the cell body, axons, and dendrites. The
structure of a neuron can be seen in Figure 1.1.

Figure 1.1: Neurons (Cheung 2010)

Neurons respond to stimuli and its long, cylindric axons transmit electric impulses. In
humans the length of an axon can be a fraction of a millimeter to more than a meter.
Dendrites receive impulses from other nerves or relay the signals to others. They are con-
nected to either the axons or the dendrites of other cells. In the human brain each nerve
is connected to approximately 10,000 other nerves, mostly through dendritic connections.
The activities in the central nervous system are mainly related to the synaptic currents
transferred between the junctions (called synapses) of axons and dendrites, or between
dendrites of cells. Under the membrane of the cell body, electric potential of 60-70 mV
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with negative polarity may be recorded, which changes with variations in synaptic activi-
ties. If an action potential travels along the fibre, which ends in an excitatory synapse, an
Excitatory Postsynaptic Potential (EPSP) occurs in the following neuron. If more action
potentials travel along the same fibre over a short distance, the EPSP-s will add up. If such
way a certain threshold of membrane potential is reached, action potential is produced on
the postsynaptic neuron. In case the fibre ends in an inhibitory synapse, hyperpolarization
will occur resulting in Inhibitory Postsynaptic Potential (IPSP). After the generation of an
IPSP, cations and anions flow from and into the nerve cell, causing a change in the electric
potential along the membrane of the nerve cell. These ion flows can generate secondary
ion currents along the cell membranes in the intra- and extracellular space. The extra-
cellular currents generate electric field potentials, which, with less than 100 Hz frequency
and stationary signal mean, are the EEG-s. An example of the EEG signal is shown in
Figure 1.2.

Figure 1.2: An example of the EEG signal, along with an ECG. (Modern
2014)

The human head comprises several layers such as the skull and the scalp. These layers
significantly attenuate the EEG signal. The attenuation caused by the skull is about one
hundred times more than the soft tissue. Because of the major attenuation, only large
populations of active neurons can generate an electric potential high enough for recording
with electrodes over the scalp. There is also a disturbing amount of noise being added to
the signals, mostly generated either within the brain or over the scalp. Muscles are near the
surface of the skin, and operate with strong electric signals. Especially the large muscles of
the neck and the jaw may cause serious disturbance in the EEG signal, which comes from
deep within the brain.
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Figure 1.3: The structure of the human brain. (Brain Key 2012)

Anatomically the brain can be divided into three parts: the cerebrum, the cerebellum,
and the brain stem. The cerebrum consists of both the left and the right lobes of the brain
with highly convoluted surface layers called the cerebral cortex. The different regions of the
cerebrum are responsible for e.g. movement initiation, conscious awareness of sensation,
complex analysis, and expression of emotions. The cerebellum is responsible for coordinat-
ing the voluntary movement of muscles and maintaining balance. The brain stem controls
involuntary functions such as respiration and heart function regulation. Figure 1.3 depicts
the basic structure of the brain.

In the view of hand motions, the most important part of the brain is the motor cortex.
It is involved in the planning, control, and execution of voluntary movements. It can be
divided into three areas. The first one is the primary motor cortex, which is the main
contributor to neural impulses which control the execution of movements. The second one
is the premotor cortex, which is responsible for some aspects of motor control, possibly
including the preparation for movement, the sensory guidance of movement, the spatial
guidance of reaching, or the direct control of some movements. The third area is the
supplementary motor area, located on the mid-line surface of the hemisphere just in front
of the primary motor cortex. Its possible functions include the internally generated planning
of movement, the planning of sequences of movement, and the coordination of the two sides
of the body.

1.2 The main frequency bands of the EEG signal

The amplitudes and frequencies of EEG signal, during a given state such as alertness or
deep sleep, vary over people. The characteristics of the EEG waves also change with age.
Rhythms generated by the same physiological machinery at different ages often fall into
different bands with different names.
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The categorization of different brain rhythms begun with a German psychiatrist, Hans
Berger naming the approximately 10 hertz oscillation the "alpha" rhythm. The reason of
Berger naming it "alpha" is because this was the first rhythm he observed. The subse-
quently discovered frequency bands were also labeled with Greek letters. Around the time
of these discoveries, the EEG recording technology confined the frequency of the observ-
able brain rhythms (Buzsáki 2006). The upper border of frequencies was limited by the
widely used mechanical pen recorders, and the lower border by the electrode polarization
and movement artifacts.

There are five major brain rhythms distinguished by their different frequency ranges.
These are the delta (δ, 0.5-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-12 Hz), beta (β, 12-30
Hz), and gamma (γ, above 30 Hz, up to 80 Hz) rhythms. The beta range is sometimes
subdivided into three sub-bands, namely the low beta (or "sigma", 12-15 Hz), beta 2 (15-20
Hz) and high beta (or beta 3, 20-30 Hz). Above the gamma frequencies, a "fast" (80-200
Hz) and "ultra-fast" (200-600 Hz) band are also defined. The borders of the frequency
ranges slightly vary over books and articles on the topic. Table 1.1 summarizes the main
frequency bands.

Brain rhythm Frequency
delta 0.5-4 Hz
theta 4-8 Hz
alpha 8-12 Hz
beta 12-30 Hz

gamma 30-80 Hz

Table 1.1: The main brain rhythms and their frequency bands.

The delta rhythm is associated mainly with deep sleep and fatigue. It has also been
found during some continuous-attention tasks (Kirmizi-Alsan et al. 2006). Delta-band os-
cillations in the primary visual cortex might also rise as a response for task-relevant events
(Lakatos et al. 2008). The theta waves are related to lapses in attention, drowsiness, mem-
ory consolidation, inhibition of elicited responses, creative inspiration and deep meditation.
A theta wave is often accompanied by other frequencies and seems to be related to the
level of arousal. The alpha band is connected to relaxation, readiness and inactive cogni-
tive processing. The beta range is associated with relaxation and calm focus (low beta),
intense focus and cognitive processing (beta 2), and anxiety and distractibility (beta 3).
The gamma rhythm can be observed during short-term memory matching of recognized
objects, sounds, or tactile sensations. There is another brain rhythm of possible interest
called mu, having oscillation in the 8-12 Hz band, sharing it with alpha. It is closely re-
lated to somatosensory cortex activity, and to the resting state of motor neurons. Figure 1.4
shows examples of the waveforms observable in the main frequency bands.
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Figure 1.4: Comparison of EEG Bands. (Kent 2010)

1.3 The technique of recording EEG

An EEG recording system mainly consists of electrodes, amplifiers with filters, analog-
digital converters and a recording computer (Teplan n.d.). The electrodes pick up the signal
from the scalp, and the amplifiers magnify the microvolt magnitude signals into a range
where they can be digitalized with proper accuracy. The A/D converters then transform
the signals into digital form, and a computer (desktop, embedded etc.) stores and processes
the obtained data according to the purpose. Scalp recordings made with such systems allow
the measurement of potential changes over time between active electrodes and a reference
electrode. Active electrodes are placed at the parts of interest (e.g. the primary motor
cortex), and the reference electrode is usually placed on the top of the head, the ear or the
mastoid. There can be more reference electrodes, in which case their voltages are averaged.
A ground electrode is also needed for being able to subtract the common voltages present
at the active and reference points. A minimal mono-channel configuration for an EEG
measurement consists of one active electrode, one reference and one ground electrode. A
multi-channel measurement can use up to 128 or 256 active electrodes.

The electrodes and their proper function are critical for acquiring appropriately high
quality data for interpretation. There are many types of electrodes: disposable electrodes,
saline-based electrodes, reusable disc electrodes (gold, silver, stainless steel or tin), needle
electrodes (inserted invasively under the scalp), headbands and electrode caps. For mul-
tichannel montages, electrode caps are preferred, with a number of electrodes installed.
Commonly used scalp electrodes consist of Ag-AgCl disks, with 1 to 3 mm diameter. In
order to minimize signal distortions, impedances of electrode-scalp contacts should be be-
low 5 kΩ, and balanced within 1 kΩ of each other. Some EEG devices include impedance
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monitors to help ensuring this. The required preparation of the skin varies with the type
of electrode. Generally the cleaning of the skin surface from oil and brushing from dried
parts is needed. Since the electrodes may scrape the skin the right hygiene must be ensured
when recording EEG.

In 1958, the International Federation in Electroencephalography and Clinical Neurophys-
iology had standardized the EEG electrode placement (Jasper 1958). This system, called
10-20 electrode placement, divides the head into proportional distances from prominent
skull landmarks to provide adequate coverage of all regions of the brain. This standardized
placement is depicted in Figure 1.5.

Figure 1.5: The international 10-20 electrode position system. (Hart 2008)

The "10" and "20" in the standard’s name mean that the actual distances between
adjacent electrodes are either 10% or 20% of the total front-back or right-left distance of
the skull. Each site has a letter to identify the lobe and a number to identify the hemisphere
location. The letters F, T, C, P and O stand for frontal, temporal, central, parietal, and
occipital lobes, respectively. The letter "C" is used only for identification purposes, as
no central lobe exists. A "z" (zero) refers to an electrode placed on the mid-line of the
scalp. Even numbers (2,4,6,8) refer to electrode positions on the right hemisphere, and odd
numbers (1,3,5,7) refer to those on the left hemisphere. The left and right side is considered
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from the point of view of the subject by convention.
Amplifiers adequate to measure the EEG signal must satisfy specific requirements. The

EEG amplifier’s input signal consists of five components: the desired biopotential, the
undesired biopotentials, the power line interference signal and its harmonics, interference
signals generated by the tissue-electrode interface, and other noise. The amplifier must
provide amplification selective to the physiological signal, reject superimposed noise and
interference signals, and guarantee protection from damages through voltage and current
surges for both patients and electronic equipment. Electrically shielded rooms minimize the
impact of the urban electric background, in particular the 50/60 Hz power line noise. A
shielded room is not necessary for usual medical measurements, but it is recommended for
research purposes when the maximum possible data quality is desired. The amplification
unit should have analog filters built in. A high-pass filter (with cutoff frequency around
0.1-0.7 Hz) is required to reduce low frequency components coming from bioelectric flowing
potentials (breathing, etc.), that remain in the signal after subtracting the voltages of the
ground electrode. To limit the frequency band of the signal, a low-pass filter is also needed
with cutoff at the highest frequency of interest.

The recording device (e.g. a desktop computer) repeatedly samples the channels of the
analog signal at a fixed time interval, and each sample is converted into a digital rep-
resentation by an analog to digital converter. The sampling rate should be high enough
so the Nyquist frequency is above the frequency of the signal of interest. The A/D con-
verter’s resolution (0.5 µV or more precise is recommended) is determined by the smallest
amplitude that can be sampled, which depends on the number of bits of the device. The
digitalized signal data can be then processed with digital filtering. This is usually needed
for extracting relevant information. Such filters should be designed in a way to minimize
their influence on the useful signal properties. The recording computer must also have
enough storage space, as for example 1 hour of eight channels 14-bit signal sampled with
500 Hz occupies 200 MB of the memory. Today’s desktop computers usually have enough
storage, but this may be a challenge in embedded devices.

The recorded EEG signal usually contains artifacts which should be removed either
manually by experts or automatically. These undesired components are usually higher in
amplitude and have different shape than a clean signal. Artifacts can be either patient-
related or technical. The patient related artifacts are minor body movements, the electric
activity of muscles, ECG (pulse, pace-maker), eye movements, and sweating. The technical
artifacts are related to the 50/60 Hz power line interference, impedance fluctuation, cable
movements, broken wire contacts, too wet or too dry skin surfaces pieces or low battery.
Additional electrodes for monitoring eye movement, ECG, and muscle activity can be used
for better discrimination of the physiological artifacts.

1.4 What the EEG signal is good for

The EEG signal can be used for many purposes. They can be used to locate areas of damage
following head injury, stroke, tumor etc., to investigate epilepsy and locate seizure origin,
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to investigate sleep disorders, and to diagnose coma or brain death. They can also be used
to monitor sleep, alertness or cognitive engagement (alpha rhythm), control anaesthesia
depth ("servo anaesthesia"), and to monitor brain development. Many brain disorders are
diagnosed by visual inspection of the EEG signal, done by clinical experts in the field who
are familiar with the manifestation of brain rhythms.

Brain-Computer Interfaces (BCI-s) are subjects of great interest because of multiple
reasons. A Brain-Computer Interface is a system that recognizes the user’s command only
from the EEG signal and reacts accordingly. For example in a simple task, an arrow is
displayed on a computer screen, which is to be moved only by the subject imagining the
motion of the left or right hand. During the imagining process, certain characteristics of the
brainwaves are extracted and can be used for recognizing the user’s commands. Looking
at complex tasks, EEG-driven artificial limbs could grant people the function of their lost
or paralyzed body part (due to stroke or spinal cord injury, for example).

The EEG signal can be also used for communication. For the latter purpose, the so-called
P300 spellers are rather popular and are under intense development. Figure 1.6 shows a
basic P300 speller in operation.

Figure 1.6: A P300 speller (snapshot). (Wadsworth Center 2010)

Such devices exploit a special change in potential, called P300, which is related to a
person’s reaction to a stimulus. In the EEG signal, this manifests as a positive deflection
in voltage with a latency of roughly 250 to 500 ms between the stimulus and the response
(Polich 2007). In a P300 speller, a matrix of letters is shown to the user, who would like
to spell out words of choice, and is watching for the next letter in line. The letters are
flashing up according to an order specific to the device type. When the corresponding
letter is flashing up, a P300 potential is evoked inside the brain. The signal processing
algorithm analyzes the EEG data and selects the letter with the highest P300 component,
which is then written on the screen. Normally between 2-20 flashes per letter are required
to achieve a high accuracy. The effectiveness depends mainly on the electrode position and
the individual amplitude of the P300 response of the subject.

Recently, University of Houston reported that they have created an algorithm that
allowed a man to grasp a bottle and other objects with a prosthetic hand. The algorithm
was measuring the EEG signal and hand joint angular velocities (Agashe et al. 2015).
In the demonstration of their technique, a 56-year-old man, whose right hand had been
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amputated, grasped objects including a water bottle and a credit card, as depicted in
Figure 1.7. The subject managed to grasp the selected objects 80 percent of the time using
a bionic hand fitted to the amputee’s stump.

Figure 1.7: New UH research has demonstrated that an amputee can grasp
with a bionic hand, powered only by his thoughts. (University of Houston 2015)

The research team first recorded brain activity and hand movement in able-bodied vol-
unteers as they picked up five objects, each chosen to illustrate a different type of grasp: a
soda can, a compact disc, a credit card, a small coin and a screwdriver. The recorded data
were used to create decoders of neural activity into motor signals, which successfully re-
constructed the grasping movements. This experiment showed that it is feasible to extract
detailed information on intended grasping movements from the EEG signal along with
hand joint angular velocity. It also provided evidence that the acquired signals predicted
the movement, rather than reflecting it.

Another recent study (King et al. 2015) demonstrates an individual, with paraplegia
due to spinal cord injury, purposefully operating a noninvasive BCI-FES (Brain-Computer
Interface, Functional Electrical Stimulation) system for overground walking in real time.

Figure 1.8: A man whose legs had been paralyzed for five years walks along a
12-foot course using UCI-developed technology that lets the brain bypass the

spinal cord to send messages to the legs. (University of California, Irvine 2015)

17



The participant initially operated the system while being completely suspended to an
overhead rail, and subsequently translated this skill to an overground walking condition.
The setup is depicted in Figure 1.8. The subject achieved a high level of control and
maintained this level of performance during a 19-week period. These results provide a
proof-of-concept for direct brain control of a lower extremity prosthesis to restore basic
overground walking after paraplegia due to spinal cord injury. The participant achieved
and maintained a high level of performance during the experiment. In comparison to the
suspended walking conditions, there was a notable increase in the false alarm rate during
overground walking. This is explained by an increase in EEG noise produced by movements,
such as postural stabilization or weight shifting. The false alarm rate decreased toward the
end of the study, presumably due to the practice in operating the BCI. The participant was
also able to carry a light conversation during these experiments without interfering with
the function of the system. This robustness in real-time control, together with a high-level
of performance sustained across months, indicates that BCI-FES mediated restoration of
basic walking function after spinal cord injury is feasible.

Motion restoration using the EEG signal looks promising from these results. However,
thinking about artificial limbs does not need to stop at replacing lost body parts with
realistically functional, biomechanic devices. Besides our natural limbs, additional body
parts could be of great use in numerous tasks and environments, where several objects are
to be handled with physical motion (e.g. medicine or construction). Moreover, direct control
of computers by a BCI would largely augment the possibilities of user operation. Aircraft
pilots, whose hands are occupied on the handles, could give various commands to the
airplane machinery by thought. A door would open for a new generation of communication
methods, office computer applications, and generally machinery control systems.
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Chapter 2

Processing the EEG signal for
motion recognition

2.1 The manifestation of motion in the EEG signal

There is a number of features of the EEG signal used for operating a BCI. In this chapter,
the Evoked Potentials (EP), the Event-Related Desynchronization (ERD) and Synchro-
nization (ERS), and the Bereichtshaftspotential (readiness potential) are presented.

2.1.1 Evoked potentials

Evoked potentials or event-related potentials (ERP-s) are voltage fluctuations resulting
from neural activity (Teplan n.d.). They are initiated by an external or internal stimulus.
ERP-s provide a suitable handle for studying cognitive processes. Mental operations, such
as those involved in perception, selective attention, language processing, and memory,
proceed over time ranges in the order of tens of milliseconds. PET and MRI is capable of
localizing regions of activation during a given mental task, ERP-s can help defining the
time course of these activations. Amplitudes of ERP components are often much smaller
than spontaneous EEG components, which makes them nearly impossible to be recognized
from the raw EEG signal. ERP-s are extracted from a set of single recordings by digital
averaging of epochs (recording periods) of EEG, time-locked to repeated occurrences of
sensory, cognitive, or motor events. This way the background voltage fluctuations (which
are assumed to be random relatively to the time of the stimuli) are theoretically averaged
out, leaving only the event-related brain potentials. These electrical signals reflect only
the activity which is consistently associated with the stimulus. Thus the ERP reflects the
temporal pattern of neuronal activity evoked by a stimulus.

2.1.2 Event-related synchronization and desynchronization

Another category of interesting features of the EEG signal contains the Event-Related
Synchronization (ERS) and Desynchronization (ERD) (Sanei and Chambers 2007). The
main difference between these and the ERP is that the ERP is a stimulus-locked or, more
generally, a phase-locked reaction, while the ERD/ERS is a non-phase-locked response. A
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frequent example of these is finger movement, in which case prominent negative voltage
prior to movement onset, and beta oscillations immediately after the movement offset are
respectively phase-locked (evoked) and non-phase-locked processes. The ERD is measured
in terms of the peak power of the averaged power map of the period of the event, compared
to the average power during the reference time, all this at a given frequency. In ERS, the
amplitude enhancement is based on the synchronized behavior of a large number of neurons,
making it easy to measure field potentials using scalp electrodes.

Voluntary movement results in a circumscribed desynchronization in the upper alpha
and lower beta bands over the brain’s sensorimotor regions. The ERD starts over the con-
tralateral (opposite side of that of the movement) part of the central sulcus (see Figure 2.1),
and during the movement, becomes symmetrical bilaterally (including both sides) with the
time of execution of the movement.

Figure 2.1: The central sulcus (highlighted in red). (Gray 2009)

In the case of finger motion, fast and slow movements have different corresponding
neural processes. Fast movement is preprogrammed and the afferents are delivered to the
muscles as bursts. On the other hand, slow movement depends on the reafferent input from
kinaesthetic receptors (the ones in muscles and other body parts which sense the position
and movement of the body) evoked by the movement itself. The finger movement of the
dominant hand is accompanied by a pronounced ERD in the ipsilateral side (the side of the
movement), whereas movement of the non-dominant finger is preceded by a less lateralized
ERD. Similar phenomenon can be found in the case of hand movement.

The transient beta activity after the movement (also called Postmovement Beta Syn-
chronization, PMBS for short), is another interesting phenomenon which starts during the
movement and continues for about 600 ms. It is found after finger or foot movement over
both hemispheres without any significant bilateral coherence. Its frequency band varies
from subject to subject. For finger motion the range is around 16-21 Hz whereas for foot
movement it is around 19-26 Hz. The amplitude of the PMBS is similar for both fast and
slow finger motion, despite that these movements involve different neural pathways. More-
over, this activity is significantly larger with hand movement than in the case of finger
movement. Wrist movement also comes with larger beta oscillations compared to finger
movement. These lead to the assumption that during the movements with larger beta os-
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cillations, a bigger population of motor cortex neurons change from an increased neural
discharge to a state of cortical disfacilitation or cortical idling. Therefore the movement of
more fingers results in a larger beta wave. Beta activity is also important in the generation
of a grasp signal, since it has less overlap with other frequency components.

ERS within the gamma frequency band (35-45 Hz) can also carry information. Such
activity is present after visual stimuli or just before movement. Gamma, together with
other activities in the alpha and lower beta bands, can be observed around the same time
after movement, but gamma ERS manifests itself just before the motion, whereas beta
ERS occurs immediately after the event.

Besides alpha, beta, and gamma ERS and ERD activities, a long delta oscillation starts
immediately after finger movement and lasts for a few seconds. This can be a prominent
feature in distinguishing between movement and non-movement states.

2.1.3 Bereichtshaftspotential

The Bereichtshaftspotential (BP for short, or readiness potential) is a measure of activity
in the motor cortex and supplementary motor area of the brain leading up to voluntary
muscle movement (Kornhuber and Deecke 1965).

Figure 2.2: Bereitschaftspotential (also pre-motor potential or readiness
potential). (Deecke 2005)

The BP is a manifestation of cortical contribution to the pre-motor planning of inten-
tional movement. The BP is ten to hundred times smaller than the alpha rhythm of the
EEG. It becomes apparent only by averaging the periods of a recording around the onset
of a movement. The BP has two components: the early one lasting from about -1.2 to -0.5
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sec and the late component from -0.5 to shortly before 0 sec relative to movement onset
(see Figure 2.2). The early component (BP1) is a stage with moderate steepness, whereas
the late component (BP2) is much steeper.

Artifacts due to head-, eye-, lid-, or mouth-movements and respiration must be elim-
inated before averaging, because these artifacts may have a magnitude which makes it
difficult to render them negligible even after hundreds of sweeps. In the case of eye move-
ments, eye muscle potentials must be distinguished from cerebral potentials.

In addition to finger and eye motion, the BP has been recorded accompanying willful
movements of the wrist, arm, shoulder, hip, knee, foot and toes, and also prior to speaking,
writing, and swallowing.

2.1.4 Expectations considering hand motion

In the context of hand motion detection, all of these features might be of help. ERP may
be present around the time of movements because of the subjects’ attention. ERD/ERS
may also be seen at the execution of a movement. The BP is not likely to be recognizable
due to its tiny amplitude relative to other rhythms. Still, if it is identifiable, it is may prove
as a great handle for the movement detection.

2.2 The outline of a standard digital processing algorithm

The task of a BCI is to generate control signals by exploiting the behavior of the EEG signal
before, during, and after the imaginary movement, or after certain brain stimulation. This
chapter describes the outline of extracting such control signals from the raw EEG signal
data. As the signal acquisition has already been presented, this outline deals only with
the procedure after the A/D conversion. The outline of a general digital signal processing
procedure for motoric intent recognition is shown is Figure 2.3.

Raw digital EEG signal

Time-domain filtering

Spatial filtering

Feature generation

Classification

Control signal

Figure 2.3: The outline of a general digital signal processing procedure for
motoric intent recognition.
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The purpose of this section is to give an overview of common methods for each step, but
not to present their compete mathematical formulations, solutions and proofs (for these,
see the references). Furthermore, examples of the usage of each technique are not described
here to ensure the conciseness of this chapter. Instead, past motion recognition related BCI
attempts involving such methods are presented in the next chapter.

2.3 Time-domain filtering

Usually the first transformation applied to a raw EEG signal is a time-domain filter. The
purpose of this pass on one hand is to eliminate (to the maximal possible extent) DC
and high frequency noise and power line (50/60 Hz) harmonic interference. DC and high-
frequency noise can be reduced using a band pass filter, while the power line harmonic
interference is usually cut out with a notch filter. For these purposes, FIR or IIR digital
filters are used. The advantage of FIR filters over IIR ones is their inherent stability and
linear phase characteristics. However, their operation is more costly computationally than
that of IIR filters.

Besides the elimination of noise, the time-domain filter may also serve the purpose of
separating the components of the EEG signal which fall into different frequency bands
(alpha, beta, gamma etc.), to help the extraction of relevant features later on. Such multi-
band filters are called filter banks.

Figure 2.4: An example of a filter bank applied in a BCI. (Ang et al. 2008)

Figure 2.5: Examples of filter bank characteristics (left: band-pass, right:
low-pass).
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Figure 2.4 shows an example of a process involving a time-domain filter bank, and
Figure 2.5 the magnitude plots of two examples. All of the filters within a bank are applied
to the signal, and each result is examined separately afterwards.

When analyzing the EEG signal, the power carried in the different frequency components
may be of interest. Power calculations can also be carried out in this stage using a spectral
density estimation method. A basic way to do this is using the periodogram technique, and
taking the squared magnitude of the discrete Fourier transform of the signal:

S(f) =
∆t

N

∣∣∣∣∣
N−1∑
n=0

xne
−i2πnf

∣∣∣∣∣
2

, − 1

2∆t
< f ≤ 1

2∆t
(2.1)

where N is the number of samples taken from the signal, uniformly spaced by ∆t, having
value xn, and 1/(2∆t) is the Nyquist frequency. The periodogram is a simple tool, but it
is an inconsistent estimator because it does not converge to the true spectral density as
N →∞. It also exhibits high spectral leakage.

Bartlett’s spectral density estimation method (also known as the method of averaged
periodograms) provides a way to reduce the variance of the periodogram in exchange for
a reduction of resolution (Bartlett 1948), compared to standard periodograms. A final
estimate of the spectrum at a given frequency is obtained by averaging the estimates
from the periodograms at that same frequency, derived from non-overlapping portions
of the original series. First, the original N point data segment is split up into K (non-
overlapping) data segments, each of length M . Then for each segment, the periodogram is
calculated by computing the discrete Fourier transform (without dividing by M), then the
squared magnitude of the result is taken and divided by M . Afterwards, the result of the
periodograms are averaged for the K data segments. This way the variance is reduced due
to the averaging.

Welch’s method for spectral density estimation is also based on the concept of using peri-
odogram spectrum estimates, mostly on Bartlett’s method. In Welch’s estimation method,
the portions of the series contributing to each periodogram are allowed to overlap (Welch
1967). The signal is split up into overlapping segments. The original data segment is split
up into L data segments of length M , overlapping by D points. The overlapping segments
are then windowed. After the data is split up into overlapping segments, a window is ap-
plied to the individual L data segments in time domain. Most window functions influence
the data at the center more than the data at the edges, causing loss of information. To
minimize this loss, the individual data sets are overlapped in time. Welch’s method is often
desired to reduce the noise due to the imperfection and finiteness of the data.

The signal processing procedure sometimes involves the downsampling of the input data
because of computational capacity constraints. Before such step, a low-pass filter (designed
according to the factor of downsampling) should be applied to the signal to prevent aliasing.
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2.4 Spatial filtering

The EEG signal is usually acquired from multiple electrodes spread over the scalp. The
signal picked up by the electrodes will inevitably contain some degree of redundancy. A
potential wave occurring at one point of the scalp will be sensed at other points as well. The
purpose of spatial filters is to remove this crosstalk between the electrodes, and leave only
the local signal component in the channels. Common techniques for spatial filtering are
the Principal Component Analysis (PCA), the Independent Component Analysis (ICA),
the Common Spatial Pattern, the XDAWN, and the Surface Laplacian methods.

2.4.1 Principal Component Analysis

Principal Component Analysis (PCA) uses an orthogonal transformation to convert a set
of observations of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components (Pearson 1901). The number of principal components
is less than or equal to the number of original variables. The first principal component
has the largest possible variance, and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to the preceding components.
The resulting vectors form orthogonal basis, as they are the eigenvectors of the covariance
matrix.

Matrix X stores the acquired signal data in a way that each column corresponds to a
different channel (meaning each row represents samples from a different point of time), and
that the values are translated so that each column has zero mean. Let i be the index of the
time point, and k the index of the principal component. The transformation is defined by a
set of p-dimensional vectors of weights w(k) = (w1, . . . , wp)(k) that project each row vector
x(i) of the data matrix X to a vector of principal component scores t(i) = (t1, . . . , tp)(i),
given by tk(i) = x(i) ·w(k) in a way that the individual variables of t successively inherit the
maximum possible variance from x over the dataset. Each loading vector w is constrained
to be a unit vector. This way the first weight vector w(1) must satisfy

w(1) = arg max

{
wTXTXw

wTw

}
(2.2)

where the quantity to be maximized is a Rayleigh quotient. The quotient’s maximum
possible value is the largest eigenvalue of the matrix XTX, which occurs when w is the
corresponding eigenvector. The second principal component is given by the second largest
eigenvalue and it’s eigenvector, and third is by the third one, and so on. The complete
principal component decomposition of X is given as T = XW where W is a p-by-p matrix
whose columns are the eigenvectors of XTX.

PCA is the simplest of the eigenvector-based multivariate analyses. After performing
the analysis, using only the first few principal components provides the data with reduced
dimensionality, in exchange for loss of information. A drawback of PCA is that it is sensitive
to the relative scaling of the original variables.
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2.4.2 Independent Component Analysis

Independent Component Analysis (ICA) assumes that behind the data from direct obser-
vations, there are independent signal sources which are being mixed as they get to the
spectator (Hyvärinen and Oja 2000). A typical illustration of this is the cocktail-party
problem, in multiple people are speaking simultaneously in a room equipped with micro-
phones in different locations. The objective is to obtain the original speech signals of each
person from the recorded signals, which are the mixtures of the intact ones. For this there
must be at least as many microphones as the number of people.

The model of ICA is as follows. Let x denote a vector of directly observable variables
(x1, . . . , xn), and s the vector of statistically independent sources of the signal (s1, . . . , sn).
This way the model of ICA is

x = As (2.3)

where A is the matrix mixing the intact signals into the observed data. The independent
components are latent variables as they cannot be directly observed, and the mixing matrix
is also unknown.

It is assumed that the components si are statistically independent. By estimating the
matrix A and calculating its inverse W the independent components are obtained as
s = Wx. The key to estimating the ICA model is the non-gaussianity of the original signal
sources. ICA is very closely related to the method called blind source separation (BSS)
or blind signal separation. In BSS, "blind" means that we know little about the mixing
matrix, and make few assumptions about the source signals. Involving the noise in the
model would make it more realistic, but the estimation of the noise-free model is difficult
enough already, and it is sufficient for many applications.

2.4.3 Common Spatial Pattern

The Common Spatial Pattern method (CSP) takes two sets of spatial patterns representing
two classes, into which other sets of spatial patterns are later to be classified (Müller-
Gerking, Pfurtscheller and Flyvbjerg 1999). An element of a set (a spatial pattern), will be
the amplitudes of a multi-channel EEG signal at a given point of time. A set of patterns
consists of spatial patterns that make up the EEG recording. From a recording of many
movement trials, the sets are used to calibrate the method by extracting the spatial features.
For the distinction of the classes, covariances are used.

As output, the calibration gives an ordered list of the characteristic spatial patterns.
These patterns define directions in the pattern space that are optimally suited for distin-
guishing between the two classes. After the appropriate transformation, a time-series of
patterns that belong to the first class will scatter maximally along the first direction and
minimally along the last (and vice versa in the case of the other class). The second and
the second-to-last directions are the second best directions for the distinction, and so on.

The mathematical formulation begins with Vi
a denoting the matrix containing the data

of the period of the i-th execution of the movement belonging to class a (Müller-Gerking,
Pfurtscheller and Flyvbjerg 1999). Each row of this matrix corresponds to one channel of
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the EEG. The mean of the signal is taken to be zero, as it is usually removed by a previous
time-domain band-pass filter. The characteristic information is in the second moments, or
the covariance matrix, which is to be normalized with the total variance:

Ri
a =

Vi
aV

iT
a

trace(Vi
aV

iT
a )

(2.4)

for class a and Ri
b for class b. These matrices are then averaged for all the trials within

each class. The method continues by the simultaneous diagonalization of the averaged
matrices Ra and Rb. The matrix of the resulting eigenvectors, PT will be the matrix of
the projective transformation (the eigenvectors are the rows of PT). This is applied to the
EEG signal as

Z = PTV (2.5)

where Z is the resulting spatially filtered signal. The EEG signal should be projected to
the most discriminatory characteristic patterns (vectors in PT). Then the variance of these
values within a time window should be calculated. These variances are the basic features
on which the classification is based. Picking only a few characteristic patterns are usually
sufficient for the task. These patterns are practically spatial filters which select the most
relevant spatial aspects for the classification. This also reduces the dimensionality of the
problem, while making use of the information carried by all channels.

2.4.4 xDAWN algorithm

The purpose of the xDAWN algorithm (Rivet et al. 2009) is to generally maximize the
signal-to-noise ratio (SNR). As the operators it provides calculate a linear combination
of the EEG channel values at a given point of time, xDAWN can be considered a spatial
filtering method. The name of the algorithm came from the mathematical description of
its final model, which comprises matrices denoted by the letters ’X’, ’D’, ’A’, ’W’, and ’N’.
The basic model assumed by the algorithm is written as

X = DA + N (2.6)

where X is the matrix containing the complete recorded EEG signal (with each column
corresponding to one channel). A is the matrix of the reference ERP signals of one trial
(single execution of the subject’s task). D is a Toeplitz matrix which actually schedules
the reference signals into the complete recording at the times of the task execution. Matrix
N represents the on-going activity of the subject’s brain, the artifacts etc., generally the
noise. The least square estimation of A is simply given by

Â = (DTD)−1DTX. (2.7)

The extended model involves spatial filters, which are to enhance the intact response in
the signal. This is written as XU = DAU + NU, where the columns of matrix U are the
spatial filters. The spatial filters should be defined in the following way to ensure maximal
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signal to signal plus noise ratio:

Û = arg max
U

trace(UTÂTDTDÂU)

trace(UTXTXU)
(2.8)

which leads to a Rayleigh quotient. The complete description of the solution can be found
in (Rivet et al. 2009).

To obtain the optimal spatial filters, first the QR factorization of the matrices X and
D need to be calculated. From the singular value decomposition QT

DQX = ΦΛΨT, the
desired number of singular vectors ψi should be selected which are associated with the
largest singular values. The spatial filter vectors are then obtained as ûi = RX

−1ψi. With
these spatial filter vectors stored in a matrix U, the estimation of the original signals for
the complete recording is given by

Ŝ = ÛTX (2.9)

2.4.5 Surface Laplacian

The surface Laplacian technique is based on Ohm’s law, which establishes a local relation-
ship between the surface Laplacian of the scalp potential function and the underlying flow
of electric current caused by the activity of the brain activity (Carvalhaes and de Barros
2015). This local relation is assumed to improve the spatial resolution of the EEG data.

The most common assumption within this technique is that the signal’s sources of in-
terest are inside the skull, and that there are no sources in the scalp itself, where then we
have the Laplace-equation

∆V = 0 (2.10)

with V denoting the electric potential. For small local areas, the scalp can be approximated
with a plane (x, y). Explicating the Laplace-equation in Cartesian coordinates, taking the
z component to the other side, and using the relationship between the electric field and
the potential we get

∂2V

∂x2
+
∂2V

∂y2
=
∂E

∂z
(2.11)

which can be rewritten using the relation between the electric field and the current density
E = ρj, ρ being the resistivity. The left side of the equation is defined as the surface
Laplacian of V, denoted by ∆S(V ). The resulting equation is

∆S(V ) = ρ
∂j

∂z
(2.12)

which represents the relation between the surface Laplacian of V and the change of the
current density along direction perpendicular to the surface. A non-zero value of the surface
Laplacian at a point on the surface indicates to radially diverging current flow under the
scalp, which is associated with the presence of a source of currents inside the skull. This
is a direct relationship between the surface Laplacian and the neural currents under the
scalp.
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The starting point for computing the surface Laplacian is the recorded EEG data. There
are a couple of techniques for the estimation. The Finite Difference Method operates on
a discrete-spaced grid fit to the electrode locations. However, mesh-free methods allow
for a much more flexible configuration of electrodes and are not restricted to the planar
scalp model. In such techniques, the Laplacian differentiation is performed analytically on
a continuous function built from the data, either by interpolation or a parametrization
procedure. Two examples of such methods are smoothing thin-plate spline Laplacians and
smoothing spherical splines.

2.5 Feature generation

After applying time-domain and spatial filters of choice, we would like to transform the
resulting signal into quantities, by which the instances belonging to different classes can
be best discriminated. An example of an instance is the EEG signal’s values in the window
of the last 1 second during the operation of a BCI.

A trivial shortcut at this step is to not calculate any features at all, and simply feeding
the filtered EEG signal to a classification algorithm. Interestingly, this may be appropriate
when using highly adaptive classification methods such as Convolutional Neural Networks,
in which case the classifier actually finds the best suitable transformation for the input
data. Features can also be the amplitudes of the oscillations within given frequency bands.

A common feature generation approach is calculating the power of the signal and aver-
aging it over a time period, for every channel. Especially when applied after a time-domain
filter bank, this means quantifying the neural activity of the brain in a given frequency
range, or more ranges.

Another possible way is to look for certain trends in the signal, and representing these
trends by fitting a line on the values within a time window. After this linear regression,
the steepness of such line may carry the information of interest.

A more complex feature is the covariance matrix of the multi-channel values during an
epoch. After calculating the sample covariance matrix of the current time window, different
kinds of auxiliary transformations can be applied such as normalization with the matrix
trace. The advantage of using a covariance matrix is that it contains both per-channel and
inter-channel information.

Before being fed to a classifier, the signal can also be normalized by mean and standard
deviation values obtained from a training dataset. This may make the convergence of an
adaptive classifier faster and also the detection accuracy more precise.

2.6 Classification

Classification is the problem of identifying the category to which of a new observation
belongs, on the basis of a training set of data instances whose membership category is
known. Some classifier algorithms are designed to discriminate between only two classes,
and some to between more. A binary classifier can be extended to handle more categories
with methods such as pair-wise, divide and conquer, or one versus rest classification. There
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are algorithms which involve multiple classifiers estimating the same variable, in which case
the some kind of combination of their output values (e.g. weighted average, majority voting)
is formed as the final classification output. Such ensembles may to perform better than
one classifier on its own.

In performing a prediction of a given movement from an EEG signal, the last step is to tell
the right class for each feature vector. The above described processing procedure contains
a classifier, which is not capable of correct operation without its internal parameters being
set, or in other words the adaptive classifier being trained. The basic scheme for a training
procedure is shown in figure 2.6. A set of signal records is required for this phase as training
data, along with the explicitly known class labels for each element of the dataset.

Record of raw digital EEG signal Record of output labels

Time-domain filtering

Spatial filtering

Feature generation

Classifier training

Trained classifier

Figure 2.6: The outline of a general procedure for classifier training.

It is important to note that this training data should be separated into a learning set
and a validation set. In each iteration, the classifier’s parameter setting algorithm would
examine only the learning set, and testing its performance on the validation set. This is
called cross-validation, and is required as we want the classifier to perform on a set of data
which it hasn’t ever seen yet, and not on the data on which it has been trained.

It is also important to avoid the overfitting of the classifier. Overfitting means that the
classifier has gotten suited for the training data too much, even if it has been trained with
cross-validation. This usually happens when an adaptive algorithm adjusts its parameters
over too many iterations, until it becomes refined too much. In such case, it will mislabel
incoming data instances which are just slightly different than the data it has been trained
on. In order to prevent this, the training procedure of the classifier should not consist of
too many iterations of parameter refinement.

The available amount of training data is often not enough for suitably fitting the classi-
fier. A clever trick for increasing the number of training instances is called data augmenta-
tion. This means generating new data elements from the existing ones with some kind of
transformation. A great example of data augmentation is in the case of image recognition,
when new data instances are created by mirroring the existing ones.
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2.6.1 Simple threshold

The simplest way to sort the incoming elements into classes is to define a threshold value
based on experience. Above this value, the instance is considered to be a member of one
class, and below the value, to the other class. The optimal value of the threshold in this
method is defined based on experience, which is usually gained by examining an available
training dataset.

2.6.2 Naive Bayes classifier

Bayesian classifiers assign the most likely class to a given data instance described by its fea-
ture vector. In the case of the naive approach, the features are assumed to be independent:

P (x|C) =
n∏
i=1

P (xi|C) (2.13)

where x = (x1, . . . , xn) denotes the feature vector and C the class label. P (x|C) is the
probability of the feature vector taking the value of x with the condition that it belongs
to class C. This assumption may be unrealistic, but the method has proven successful in
numerous applications.

The Bayesian classifier calculates for each class the probability of a given feature vector
belonging there. According to Bayes’ rule, this probability is given by

P (C|x) =
P (x|C)P (C)

P (x)
(2.14)

where P (x) can actually be omitted, as it has the same value for all the classes and this way
does not influence the comparison. The objective is then to find hC(x) = arg maxC P (x|C)P (C)

which is the maximum a posteriori probability hypothesis for the given feature vector x.
The difficulty is in estimating the class-conditional probability distribution P (x|C). For
this, there are numerous kinds of approximations in practice. One of these is the already
mentioned inter-feature independency, with which we obtain the naive Bayes classifier hav-
ing the discrimination function

fNBC (x) =
n∏
i=1

P (xi|C)P (C). (2.15)

The vector x is sorted to that class C which yields the highest discriminant value.

2.6.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a generalization of Fisher’s linear discriminant
method. It assumes that the feature vectors are linearly separable (Teknomo 2015). Given
a feature vector, LDA also aims to choose the class for which the P (C|x) probability is
maximal, similarly to the Bayes classifier. However, LDA assumes that the data elements
within each class have multivariate normal distribution, and the covariance matrix of all
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classes are identical. The discriminant function (based on which the classification decision
will be made) of LDA is

fLDAC (x) = µCΣ−1xT − 1

2
µCΣ−1µT

C + ln(P (C)) (2.16)

where µC is the multivariate mean vector of class C, Σ−1 is the common shared covariance
matrix, x is the feature vector, and P (C) is the probability of the occurrence of class C.
For the feature vector instance x, the class with the highest discriminant value is chosen.

2.6.4 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is a generalized version of LDA in the sense that
instead of a linear one, the separating surface between the classes is quadratic, providing
a more complex border. In the case of a quadratic classifier, the class label for a feature
vector x is decided based on xTAx + bTx + c.

QDA also assumes that the data elements in each class are normally distributed, but it
does not assume that the covariance matrices of the classes are identical. The class of a
given feature vector is decided with likelihood ratio test, from which it can be shown that
the resulting separating surface between the classes is quadratic.

2.6.5 Logistic Regression

The task is still the estimation of the conditional probability P (C|x). The basic idea is
to model this quantity with a chosen best fitting function of x. In the case of logistic
regression, the probability value (which is bounded between 0 and 1) is undergoing logistic
transformation, which way the resulting quantity can be an unbounded, linear function of
x (Shalizi 2012). The univariate model of logistic regression is

log
P (x)

1− P (x)
= β0 + xβ1 (2.17)

which after solving for P (x) gives

P (x) =
eβ0+xβ1

1 + eβ0+xβ1
=

1

1 + e−(β0+xβ1)
. (2.18)

where x is the single feature, e is Euler’s number, and β0,1 are the model parameters. In
the multivariate case, the model is stated as

P (x) =
eb+x·w

1 + eb+x·w =
1

1 + e−(b+x·w)
(2.19)

where x = (x1, . . . , xn) is the vector of features, b is constant parameter (also called offset
or bias), and w = (w1, . . . , wn) is the vector of the linear coefficients (also called weights) of
the individual features (elements of x). The probability given by the above expression is the
basis of the classification decision with the threshold of 0.5 for minimal mis-classification
rate.
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Logistic regression does not only define the boundary between classes, but also makes
the class probabilities dependent on the distance from that boundary. The parameters of
the model can be fitted using likelihood or various numerical optimization techniques such
as Newton’s method.

2.6.6 Support Vector Machine

The definition of a Support Vector Machine (SVM) is as follows. Let x denote the feature
vector and y the class label, with possible numeric values -1,+1 (Burges 1998). Let’s assume
there is a hyperplane which separates the positive from the negative instances. The points
x which lie on the hyperplane satisfy w · x + b = 0 , where w is the normal vector of
the hyperplane. In a linearly separable case, the support vector algorithm looks for the
separating hyperplane which ensures the largest distance from the hyperplane to the closest
positive and the closest negative instances (these x-es are called the support vectors). The
problem is formulated as

w · xk + b ≥ +1 for yk = +1 (2.20)

w · xk + b ≤ −1 for yk = −1 (2.21)

where xk and yk are the feature vector and th corresponding class label for the k-th data
instance, respectively. Furthermore, w is the vector of weights, and b is the bias. The above
expressions combined in one inequality are written as

yk(w · xk + b) ≥ 0 ∀t (2.22)

The optimization is performed with the Lagrangian formulation of the problem, on one
hand because Lagrange multipliers make it easier to handle. On the other hand because this
way the training data will only appear in the form of dot products between vectors, which
allow for the generalization of the procedure to nonlinear case. The Lagrangian expression
reads as

LP =
1

2
‖w‖2 −

K∑
k=1

αkyk(w · xk + b) +

K∑
k=1

αk (2.23)

where αk are the Lagrange-multipliers, K is the total number of data instances, and ‖.‖
denotes the Euclidean norm. The objective is to minimize LP with respect to w, b, and
maximize it with with respect to the αk-s (subject to the constraints αk ≥ 0 (∀k)).

The SVM can be extended to nonlinear case with applying a transformation to the
feature vectors, mapping them to another Euclidean space. For this purpose, a "kernel"
function is used, which can be for example a Gaussian radial basis function, a polynomial
(homogeneous or inhomogeneous), or a hyperbolic tangent.
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2.6.7 Artificial Neural Network

The Artificial Neural Network (ANN, or neural network for short within the field) is a
type of learning model which is inspired by biological neural networks (the brain). The
ANN is a system of interconnected "neurons". It is used to approximate functions that
may have a large number of inputs and are generally unknown. Their connections have
numeric weights that can be adjusted with learning algorithms. ANN-s are widely used in
computer vision and speech recognition. A layout of an ANN is shown in Figure 2.7.

Figure 2.7: An example of a simple Artificial Neural Network (Minnaar
2015).

In the sense of data flow, an ANN consists of three kind of layers. The first is the input
layer, which serves as a multi-channel port for the incoming feature vectors. The second
type is the hidden layer, in which each artificial neuron takes the linear combination of
the input vector x with the weight values of the connections between the hidden neuron
and the input neuron, represented by w. Besides the linear combination, usually a bias
value is added as well. Afterwards, an univariate transformation of choice is applied to
this weighted sum. The complete transformations made by one layer of neurons on the
incoming data vector can be written as

a = f(Wx + b) (2.24)

where f(.) is the output transfer function, a denotes the output of each neuron in the layer
(in column vector form), W the matrix of connection weights between the previous and
the current layer (each row corresponds to one neuron’s incoming connections), x is the
(column) vector of the input values fed to the layer, and b is the (column) vector of the
biases of each neuron. There are several different types of hidden layers, applying various
transformations at this stage. The resulting value is fed into the next layer, which can
be another hidden layer or an output layer. The third type (in the sense of data flow) is
the output layer, in which the neurons execute the same scheme of transformation as the
hidden layer’s neurons, but their results are fed into the further steps of the processing
algorithm.

The parameters of an ANN are the weights of the connections and the biases of the
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artificial neurons. These parameters are tuned iteratively with the gradient descent and
the backpropagation algorithms (Nielsen 2015). In the learning process, each neuron’s
contribution to the output error is calculated, and the parameters are adjusted accordingly.

2.6.8 Convolutional Neural Network

The Convolutional Neural Network (CNN) is the improved version of the ANN. In the
CNN, the neurons are tiled in such a way that they respond to overlapping, partial regions
of the input data. Compared to the basic ANN, in a CNN the neurons inside one layer share
the same weights for the connections over the neurons’ own receptive field. For example, the
weight of the connection at the top-right corner of one neuron’s receptive field has the same
value as the top-right weight of the neighboring neuron. These convolutional type of layers
are accompanied with various other kinds inside the network, serving auxiliary functions.
CNN-s are widely used in the fields of image and video recognition (see Figure 2.8 for an
example).

Figure 2.8: An example of a Convolutional Neural Network designed for
image recognition. (Brown 2014)

Several types of layers are applied in CNN-s. The basic layer is the above mentioned
convolutional type, in which the neurons process a partial region of the input data. Another
is the default type of the simple ANN, often called dense layer, in which all neurons are
connected to every neuron in the previous layer (this was the case of the simple ANN).
Pooling layers compute the maximal or average value of a feature over a subset of the input
vector’s components, making the network less sensitive to small offsets in the feature values.
Dropout layers are often included with the purpose to prevent overfitting the network. In
this kind of layer, in every batch of iteration individual neurons are either omitted from
the net with probability (1-P) or kept with probability P, and only the reduced network
is trained on the data in the given cycle of learning. After every such cycle, the removed
neurons are reinserted into the network with their original weights.

2.6.9 About the generality of classifiers

Generally there is no method which can be considered the best for every possible classi-
fication task. SVM-s and various kinds of ANN-s may perform very well in solving high
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dimensional problems, such as image recognition (LeCun, Cortes and Burges 1998). How-
ever, these methods come with high computational cost. In an application where there is
little computational resource available, which can be the case for many embedded systems,
methods such as Naive Bayes, LDA, QDA or Logistic Regression might be more suitable.
These simpler methods might bring the results with a precision high enough for a given
task. Figure 2.9 shows a visual comparison of the performance of some classifiers, and the
next chapter presents a couple of applications in BCI-s.

Figure 2.9: Comparison of some classifiers on three kind of datasets.
(scikit-learn developers 2014)
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Chapter 3

Past studies related to motion
detection

This chapter presents a couple of highly interesting previous attempts of using BCI for
motoric intent recognition (not necessarily limited to hand motion detection), made by
various scientists. The first chapter has already presented two remarkable experiments
with complete BCI systems, one with grasping trials using a prosthetic hand (Agashe et
al. 2015), and the other with restoring overground walking function (King et al. 2015).
Presenting these works was more about giving an overview on the architecture of two
complete BCI systems. The current chapter focuses on presenting the signal processing
algorithms in relevant works.

3.1 A case of restoring hand grasp function

Pfurtscheller et al. (2005) achieved noninvasive restoration of hand grasp function in a
tetraplegic patient, with functional electrical stimulation (FES). The patient in the experi-
ment was able to induce bursts of beta oscillations by imagining foot movement. The EEG
signal was recorded with a monochannel configuration.

The EEG was recorded bipolarly from two gold electrodes, with the active electrode
being at the Cz position (in the international standard 10-20 system). The EEG signal
was amplified between 0.5 and 30 Hz with an EEG-amplifier and sampled with 128 Hz. It
was then processed online by bandpass filtering (15-19 Hz), squaring, averaging over 128
samples, and applying logarithm. The resultant feature value was passed to a threshold
detector. If passing, a trigger pulse was generated by the BCI, followed by a disabled output
period of 3 seconds. The threshold was empirically selected by comparing the band power
values obtained from resting and motoric imagery periods.

The output of the BCI was then used as a trigger signal for switching between states
in a predefined sequence, corresponding to different grasp phases. These phases were the
following: no stimulation (phase 0), opening hand (phase 1), grasping (phase 2), releasing
(phase 3). After phase 3, the system returned to phase 0. This means that the same motor
imagery was used for triggering the transition between each consecutive states.
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Moving the hand was achieved by functional electrical stimulation. For example, the
opening of the hand by the extension of all fingers joints and the thumb could be achieved
by stimulation of the finger extensors and the thumb extensor muscle with electrodes on
the radial side of the proximal forearm.

Figure 3.1: Example of the raw and the bandpass filtered EEG signal (in the
top and the middle graphs, respectively), the band power time course (bottom
graph). Photographs of the grasping (bottom). (Pfurtscheller et al. 2005)

The subject using the BCI was a 29-year old man suffering from a traumatic spinal cord
injury. Several types of imaginations were tried to increase the classification accuracy. First,
imaginations of left versus right hand movements were carried out. The accuracy was higher
with single-foot motor imageries versus relaxing or hand movement imagination. With this
BCI, the patient was able to grasp a glass with the paralyzed hand completely on his own
without additional help or further technical aid. An arising question is the subject-wise
generality of the device, as it has only been tested with one person. The result is still
remarkable and gives valuable hints for BCI design.
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3.2 A case of two-dimensional movement control

The generation of a two-dimensional movement control signal was reportedly achieved in
(Wolpaw and McFarland 2004). The experiment was carried out with four subjects with
various disabilities. The subjects sat in front of a computer screen, on which a target point
appeared randomly in one of eight possible positions. The subjects were to learn the control
of a cursor via BCI by a reinforcement method and to drive it to the target point. If the
cursor reached the target within 10 seconds after its appearance, it flashed as a reward. In
case of failure, the cursor and the target simply disappeared. In either case, the screen was
blank for 1 second before the beginning of the next trial.

The EEG signal was recorded from 64 standard electrode locations over the scalp. All
channels were referenced to the right ear, amplified by a gain of 20,000 within the band
0.1-60 Hz, and digitalized at 160 Hz. Each dimension of the cursor movement was con-
trolled by a linear equation in which the independent variable was a weighted combination
of the amplitudes of a 8-12 Hz mu rhythm or 18-26 Hz beta band over the right and left
sensorimotor cortices. The weights in this feature variable were updated after each trial
by an adaptive algorithm to optimize the translation of the subject’s EEG activity into
cursor control. During the session, the last 400 milliseconds of spatially filtered EEG sig-
nal (Laplacian filter from C4 and C3 electrodes over the sensorimotor cortex) underwent
autoregressive frequency analysis to determine the amplitudes in specific mu and beta os-
cillations. For the adaptive control algorithm, the least- mean-square method was used in
adjusting the weights to minimize the difference between the actual target location and
the predicted target location (by the subjects’ control signal) for past trials.

Figure 3.2: Cursor trajectories. (Wolpaw and McFarland 2004)

This study connects to motion intent recognition in terms that the subjects tended to
use motor imagery to control the cursor. Figure 3.2 shows the trajectories of the cursor
while reaching for the target during operation. The four subjects reached the target within
the 10 secs allowed in 89%, 70%, 78%, and 92% of the trials respectively, and their average
movement times for these trials were 1.9, 3.9, 3.3, and 1.9 secs. The results of this study
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show that people can learn to use non-invasively recorded EEG signal to control rapid and
accurate movement of a cursor in two dimensions.

3.3 A case of single-trial EEG classification in a movement task with
CSP

The classification of single-trial EEG-s recorded during preparation for movements of the
left or right index finger or the right foot is described in (Müller-Gerking, Pfurtscheller
and Flyvbjerg 1999). This study builds on the ERD in the alpha and beta frequency
bands at the planning and the execution of the movement. In the case of finger or hand
movement, the desynchronization starts in the contralateral (the side opposite to that of
the motion) sensorimotor cortex during the planning phase and stays asymmetrical over
both hemispheres until the movement onset.

Three subjects were asked to perform one of four movements after a series of stimuli, by
pressing a micro-switch with left or right index finger, flexing the toes of the right foot, or
moving the tongue to the upper gum. Each trial started with a short warning tone, followed
by a visual cue (after 1 sec) on a computer screen, indicating a randomly chosen movement
(from the four mentioned ones) which was to be performed. The actual movement was to
be performed only after a third, acoustic stimulus occurring 2 seconds after the cue.

The EEG signal was recorded from 56 electrodes, with a reference electrode on the tip
of the nose. The electrodes were arranged in a grid of 2.5 cm spacing covering the pre- and
post-central areas. The recorded signal was filtered between 0.15-60 Hz, and sampled at
128 Hz. Electrooculograms (EOG-s) were also recorded to detect eye-movements.

The digitalized signal had been filtered to 6 different frequency bands: alpha (8-12 Hz),
lower alpha (8-10 Hz), upper alpha (10-12 Hz), beta (19-26 Hz), gamma (38-42 Hz), and
to a 8-30 Hz broad band. This was done with FIR filters.

Afterwards, the data from each filter bank underwent the Common Spatial Pattern
method as spatial filtering. The data features of choice were 2m number of variance values
varip for p = 1 . . .m and from (N−m+1) . . . N (m is the number of discrimination patterns
of choice, i denotes the i-th trial, p is the index sweeping the feature vector, and N is the
number of electrodes), which were normalized by the total variance of the projections on
the retained patterns, and finally log-transformed:

f ip = log(
varip∑2m
p=1 varip

) (3.1)

where f ip is the p-th element of the feature vector within the current frequency band. The
log-transformation is applied to make the distribution of the features normal.

The feature vectors extracted from the training data were used to calibrate the param-
eters of a linear (or quadratic) Bayesian classifier. Since the CSP method only works for
two classes, pairwise classifications were performed between all the conditions. A trial was
recognized for a given class only if that class obtained the majority in all of the pairwise
classifications. Otherwise, the trial is classified as undecidable.
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The best classification rates for 3 subjects were 94%, 90% and 84%, respectively. The best
results were obtained with the 8-30 Hz wide band-pass filter before applying CSP. The high
recognition rates and the CSP method’s procedural and computational simplicity make it
a promising method for BCI-s.

3.4 A case of motor imagery classification with Filter Bank CSP

Kai Keng Ang et al. (2012) developed a rather complex method for the classification of two
of the BCI Competition IV datasets. These recordings contain 4 classes of motor imagery
EEG trials: left hand, right hand, foot, and tongue. The dataset 2a was recorded with 22
EEG channels, along with 3 monopolar electrooculogram (EOG) channels, and used the
left mastoid serving as reference. Dataset 2b also used 3 monopolar EOG-s, and comprises
3 bipolar recordings (C3, Cz, and C4).

The processing algorithm, named Filter Bank Common Spatial Pattern (FBCSP) con-
sists of four progressive stages of signal processing and machine learning on the EEG data:
a time-domain filter bank, a CSP spatial filter, feature selection, and classification of the
selected CSP features.

Figure 3.3: Architecture of the filter bank common spatial pattern (FBCSP)
algorithm for the training and evaluation phases. (Kai Keng et al. 2012)

The time-domain filter bank decomposes the EEG into multiple frequency pass bands
using multiple Chebyshev Type II band-pass filters. Altogether 9 band-pass filters are used
with pass-bands 4-8, 8-12, . . . , 36-40 Hz. These frequency ranges are used because they
yield a stable frequency response and cover the range of 4-40 Hz.

The spatial filter stage uses the CSP algorithm. Each pair of band-pass and spatial
filter in the first and second stage performs spatial filtering on the EEG signal, and thus
calculates CSP features that are specific to that frequency range.

For the third stage, the feature selection, the Mutual Information-based Best Individual
Feature (MIBIF) and the Mutual Information-based Rough Set Reduction (MIRSR) algo-
rithms are used. These 2 algorithms perform feature selection only on the training data
by selecting the discriminative CSP features based on the mutual information computed
between each feature and the corresponding motor imagery classes.

The last stage is the classification, for which a Naive Bayesian Parzen Window classifier is
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used. The CSP algorithm is for binary classification, but there have been several proposals
for its multi-class extension, for example the Divide-and-Conquer, Pair-Wise, and One-
Versus-Rest method, or the simultaneous diagonalization of covariance matrices from the
multi-class data.

For the dataset 2a, the best results were reached by the Pair-Wise extension to FBCSP,
yielding a kappa value (an indicator that measures the agreement between two raters
classifying a set of items into mutually exclusive categories) of 0.572. Compared to this,
the One-Versus-Rest method gave a result with no significant difference, and the Divide-
and-Conquer scored worse. In the case of dataset 2b, FBCSP using the MIRSR algorithm
for feature selection reached a better kappa value (0.599). The other feature selection
algorithm’s result had no significant difference in comparison. All in all the results of the
Filter Bank Common Spatial Pattern algorithm makes this method promising for motor
imagery classification.

3.5 A case of an ensemble classifier applied in motor imagery classifica-
tion

An interesting improvement of the CSP method is described in (Lei et al. 2009). In this
study, the outputs from different CSP subspaces are combined by majority voting. The
main advantage of such classifier ensemble is that a combination of similar classifiers is
very likely to outperform one of the classifiers on its own.

The EEG signal was recorded from three healthy, right-handed participants, between
22-26 years of age. During the recording, motor imagery tasks were to be performed and
the discrimination of two classes were studied. The recording was made with two EOG and
127 EEG channels. As reference, the Cz electrode is used. The signal was sampled with 250
Hz and filtered between 0.1-48 Hz with a 8th order Butterworth filter. In off-line analysis,
the data was down-sampled to 100 Hz and re-referenced to the common average.

Figure 3.4: The diagram of the classifier for EEG signal classification. (Lei
et al. 2009)

A subject-specific frequency band was selected based on the difference of the means of the
two classes and the standard deviation of the union of the two classes for all participants.
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This was usually close to the frequency band between 8-35 Hz. The signal was then filtered
for this pass-band.

Afterwards, multiple channel selections were tried such as the full-channel set containing
all 127 EEG channels, the sensorimotor channels, or a channel bank (comprising 10 different
channel sets located in different areas of scalp). Then CSP filters were calculated for 10
individual datasets, each containing 2 patterns.

The features are obtained by projecting the signal using the spatial filters, computing
their power, applying logarithm, and calculating the difference of such log-power values
coming from two tasks:

PDLP (S) = log(wT
a SSTwa)− log(wT

b SSTwb) (3.2)

where wa,b denote the spatial filters corresponding to classes a, b, and S is the matrix of
the signal from one trial.

The sign of PDLP is interpreted as the predicted class in case of a single classifier. With
the 10 different spatial filters, 10 feature values are computed, and summed to represent the
majority voting method. The sign of the final sum is the basis of decision between classes a
and b. According to the results in the study, this CSP ensemble method outperformed LDA
classifiers and support vector machines, making it a promising method for BCI applications.
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Chapter 4

Designing the hand motion detection
algorithms

This paper so far presented the basics of the EEG signal and its nature during movements,
and the basics of digital signal processing algorithms for the purpose of motoric intent
recognition. Some interesting past works, related to this purpose, were also presented. The
primary objective of this study is to design digital signal processing algorithms capable of
detecting hand movement. The current chapter presents the development and the evalua-
tion of these algorithms. They were designed for hand motion detection generally, but for
the development, a certain dataset with a limited variety of hand motions was used.

4.1 The dataset and the task

The series of EEG recordings used for the detection task was derived from the WAY-EEG-
GAL dataset (Luciw, Jarocka and Edin 2014), transformed by Kaggle Inc. (Kaggle Inc.
2015a). During the recordings, twelve healthy participants performed grasp-and-lift series
in which the object’s weight were changed unpredictably between trials, thus enforcing
changes fingertip force coordination.

In each of the trials, the participant was cued to reach for the object, grasp it with
the thumb and index finger, lift it and hold it for a couple of seconds, put it back on the
support surface, release it, and, lastly, to return the hand to a designated rest position.
The beginning of the reach and the lowering of the object was cued by a LED, otherwise
the pace of the task was up to the participant. In total there were 12 subjects, 10 series of
trials for each subject, and approximately 30 trials within each series. The training dataset
contains the first 8, and the test set contains the 9th and 10th series for each subject. The
true labels for series 9 and 10 are unfortunately not available, as these are reserved as test
sets for competitions. It is possible to get a solution file for series 9-10 evaluated as well,
by manually uploading it to a submission portal on Kaggle’s website.

The EEG was recorded with 32 channels (the electrode locations used are shown in
Figure 4.1), marked with numbers (not by the black/white fill). The signal was first sampled
at 5 kHz and band-pass filtered between 0.016-1,000 Hz. The signal was finally sampled
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with the rate of 500 Hz preceded by an adapted low-pass filter to prevent aliasing.
Using the dataset, the task was to detect 6 events with labels "HandStart" meaning the

start of reaching for the object, "FirstDigitTouch" the moment of contact between the fin-
ger and the object, "BothStartLoadPhase" the appearance of the lifting force, "LiftOff" the
object leaving the support surface, "Replace" the object being replaced on the platform,
and "BothReleased" meaning the releasing of the object with all fingers. The participants
were healthy, and they actually carried out the motion. Even though motoric intent detec-
tion and motion detection mean slightly different things, in the current context they can
be considered the same. This is because the input dataset provides only EEG values, and
it does not contain other measurements like arm angles or EMG.

Figure 4.1: The 32 electrode locations used for the recording, marked with
numbers (not by the black/white fill). (Kaggle Inc. 2015b)

In the dataset, the events always occur in the same sequence. The event files for the
training data contains truth values for all events. The six label columns are either zero or
one, depending on whether the corresponding event has occurred within ±150 milliseconds.
For the detection task, the expectation was to predict a probability of one for the entire
window, and zero outside it. The time series’ of detections were evaluated by calculating the
area under the receiver operating characteristic curve (AUROC), which is described well
in (Tape 2015). This is calculated for each event, then the event-wise AUROC values are
averaged over all 6 events. In the ideal case, the AUROC is 1, when regardless of decision
threshold (between 0 and 1), all the events are detected, and no false detections are made.
A serious difficulty in achieving high detection results in a BCI is that the classification
decisions are not made between classes with similar population size. The events which we
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are looking for only occupy a tiny percentage of the time. This makes seemingly low False
Positive Rates (even 1-2%) still practically unacceptable. They still mean a large number
of false detections compared to the true events.

4.2 The rules

The procedure must be causal. It must not use data originating from the time after the
moment under examination. This is for imitating an on-line BCI processing algorithm,
where data from the future is really not available. Training the processing models on other
subjects and series outside of the currently analyzed series is permitted. This was not of
great help, as the participants’ brain activity has different personal characteristics.

My personal goal takes the basic task one step further. My aim is to design an algorithm,
which is generally capable of detecting the hand movements involved in the dataset. This
means some important constraints. The first is that even though the order of the movements
is known and guaranteed to be fixed, I do not consider it so. This means that when analyzing
a certain point of time in the signal, I do not scan for the last couple events which happened
just recently. A state-machine approach, always logging which event happened last, could
increase detection accuracy in a sequential trial like this, if it does not miss any event
(otherwise it would get lost in the network of states). However, in real life, the order of the
movements of a person is rather arbitrary. Therefore I assume that the order of the hand
motion events are arbitrary.

Another constraint I set for my solution is that it may not measure the time elapsed
since the end of trials. Consecutive trials during the experiment happened in similar dis-
tances from each other in time. This could also be used as information for estimating the
probability of the beginning of the next trial at a given point of time. For real-life reasons
similar to what I have described at the previous constraint, I do not use this information
in the design of my detection algorithms.

The last limitation I set for the solution is that I do not explicitly look for the occurring
of a Visual Evoked Response (VEP) when detecting the first hand movement in a trial.
In the experiment, the participants were to start a trial when a LED light flashed up in
front of them. This presumably triggered a VEP in the visual cortex of their brains. The
detection method of the first event in the sequence could then build on this fact and directly
look for the VEP in the channels which are positioned over the visual cortex. In natural,
real-life motion, there are no visual indicators lighting up to call for movement. Therefore,
I do not design my algorithms in a way that they directly search for features in the visual
cortex electrodes’ signal. Adaptive algorithms probably find parts of this feature in the
complete multi-channel signal and use it for the detection task. However, not ordering
them explicitly to do so is a step towards making the detection procedure more lifelike.

The algorithms designed during this study have been evaluated on series 1-8. These were
separated into a training set and a test set. As the true event labels are available for these
series, evaluating the algorithms could be carried out on a local computer.
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4.3 The solution approach

The main approach for designing the algorithms was to first analyze the most popular
methods and working solutions, then to improve them at some points, and finally to com-
bine them into a new one which presumably aggregates the strengths of the individual
ones.

The algorithms designed in this study create models for each subject individually. A
global model, which instantly fits all the subjects would be a great achievement, and this is
the future direction of the research. Unfortunately, such universal approach does not yield
remarkable accuracy in detecting the movements, or it is too complex computationally
to be applicable as of today. Therefore the current approach is to create subject-specific
models for each participant.

The approach for writing a computer program for the procedures was to make it modular
in terms of the different steps in the digital processing algorithm. In the end, one main
Python script has been prepared, along with two auxiliary files containing class definitions
and functions. The script follows the scheme of the procedure outline. It has been written
in a way that different methods for each step (time-domain filtering, classification etc.) can
be chosen simply by setting flags and adjusting parameters. At the end of every run, the
script exports the current configuration of the procedure. With such files it is easy to track
the process of experimenting with parameters, as well as to compare different models.

Before starting to write a digital processing algorithm for the data, one must estimate
the specificities of the brain activity during the recording. I took into consideration the
possible activity of each frequency band. The participants were properly seated during the
experiment, and they were awake. Therefore I eliminate the possibility of a participant
being in the state of deep sleep during the experiment. However, the delta activity may
be interesting if the participants focused with continuous attention, which might be shown
in channels coming from the frontal parts. During the pause between two grasp-and-lift
trials, there were possibly lapses in attention. This makes the theta band interesting at
channel locations not related to the task. The alpha band may show signs of readiness
just before the beginning of a trial. The beta (more precisely the beta 2) band is the
most interesting because of presumable intense focus and cognitive processing going on in
the participants’ brain during the task. The gamma range over the somatosensory cortex
might be active because of the short-term memory matching of the object’s touch when
the participant have reached it. I expect the motor neurons to show high activity during
the hand movement. Therefore, the mu rhythm will probably also carry information in
the channels coming from over the sensorimotor cortex. Mu-range power is expected to
decrease over contralateral motor cortex (on the opposite side of the moving hand). It is
also expected to increase over the ipsilateral motor-cortex (on the same side as the moving
hand). Figure 4.2 shows CSP patterns of the subjects as an illustration of the brain activity
at a motion event.
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Figure 4.2: CSP patterns of the subjects. (Barachant 2015)

Besides ERP-s in the above mentioned frequency bands, the presence of Bereitschaftspo-
tential right before a motion event (especially the first one) is also expected. Even if this
has a tiny amplitude and may be easily lost in noise, I tried feeding its frequency range
into the classifiers in some of the cases described later in this chapter.

Because of a LED light triggering the execution of each trial, a Visual Evoked Response
is presumably present in the signal just before the first event ("HandStart"), in the channels
coming from over the visual cortex. This causes a little corruption in detecting the first
movement, which unfortunately affects the lifelikeness of the task, even if the algorithm
does not explicitly look for the VEP in the visual cortex.

It is expected that the signal is polluted with artifacts, particularly over the frontal lobe
because of inevitable eye movement such as blinking. Such artifacts manifest in the signal
as highly salient spikes, as it is shown in Figure 4.3.

The voltage levels of these is much larger than those of natural brain activity. Thus it is
a good approach for reject these artifacts by applying a threshold to the signal values. If a
voltage value higher than this threshold is measured, then the signal is silenced (forced to
be zero) for that moment or for a short amount of time. The silencing period may be as
long as the average time of a blink, between 100-400 milliseconds. (Milo et al. 2010).

The digital processing algorithms have been written in Python 3.4.3. The main Python
modules used were:

• pandas for file operations,

• math and numpy for matrix calculations,

• scipy for time-domain filtering,
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Figure 4.3: Artifacts in the EEG signal. The spikes probably correspond to
blinks.

• mne for epoching and spatial filtering,

• sklearn for basic machine learning,

• lasagne and nolearn for Neural Networks,

• joblib for parallel computing,

• and matplotlib for plotting.

I coded several previously mentioned methods in Java to better understand their underlying
math and to see their computational requirements when using the CPU or the GPU. For
writing the actual digital processing program, I switched to Python for its widely used and
well-tested libraries.

Time-domain filters are rather easy to create using the scipy.signal module. For my
algorithms, the filter design methods tried were Remez (using the Parks-McClellan algo-
rithm), Kaiser window, and Hamming for FIR filters, and Butterworth and Chebyshev
type II. for IIR filters (Oppenheim, Schafer and Buck 1999). The first reason for choosing
these methods is that they were elaborately described in the literature. Another reason is
that they are popular in applications. The third reason is that they can be designed easily
with the available programming libraries. Examples of the frequency responses of these
filters can be seen in Figure 4.4.

The digital processing can be rather time-consuming. PCA can be used to reduce the
data dimensionality, but using it did not cause any significant speedup in the process. It
may function as spatial filter as well, but for that purpose I preferred CSP. The reason for
this is that CSP brings better results as it uses the information of the training data labels
as well, not just the signals.
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Figure 4.4: Examples of FIR and IIR filter frequency responses (band-pass
between 4-40 Hz).

The first kind of feature generation consisted of calculating the channel variances over
a time window starting before and ending right at the examined moment. In other cases,
simple normalization was used. This was carried out using signal mean and standard devi-
ation values estimated from the training data. Theoretically, normalization does not affect
the operation of most of the classification methods. However, depending on the initializa-
tion of a classifier’s parameters, and hence their initial magnitude distribution, a method
might converge faster for normalized signal values.

For classification, I tried the Naive Bayes, LDA, QDA, Support Vector Machine, Logistic
Regression, and Neural Network methods. Logistic Regression was preferred over Naive
Bayes, LDA, and QDA based on evaluations over small datasets. SVM-s were also tried,
but due to my little knowledge about their parameter optimization method, they weren’t
applied in the final algorithms. The major difference between my processing algorithms
are the examined frequency ranges and the classifier of choice. The classification method
strongly determines the kind of preprocessing to be applied. The final output needed from
the classifier (or ensemble of classifiers) is not a class label, but a probability of a certain
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class. With the packages used for the program, this is easy to carry out. The probability
values calculated for each time point in the series were the final outputs then.

4.4 Algorithm #1: Band-pass Filter Bank Common Spatial Pattern with
Logistic Regression

This algorithm builds on the CSP method to enhance signal variances at the motion events.
Its flow is shown in Figure 4.5.

Raw digital EEG signal

Artifact rejection

Band-pass filter bank

Spatial filter with CSP

Variance and normalization

Classification with Logistic Regression ensemble

Estimated probability of events

Figure 4.5: The procedure of Algorithm #1.

The artifact rejection is done by zeroing out signal values above an experimental thresh-
old. Afterwards, a filter bank consisting of two FIR band-pass filters (using Hamming
window) is applied to the signal. FIR filters are preferred here because of their linear phase
characteristics. The characteristics of the filter bank are shown in Figure 4.6.

Figure 4.6: The filter bank characteristics used in Algorithm #1.

The frequency bands of the filters overlap. If they didn’t, the frequencies at their border
would be attenuated (or cut out) in both of the filter outputs. This would mean a loss
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of information in the global frequency range of interest. A couple of more complex time-
domain filter banks have been tried. Experimenting with them took a lot of computational
time, and using them did not yield better results. Thus, the basic two-filter bank is kept.

The signals are then spatially filtered using the CSP method. The spatial filters are
calculated separately for each event. Features are generated then by calculating the signal
variance within a time window. This is actually carried out by convolving the signal with
a boxcar function, which is set to be as wide as the window. The variance values are
then normalized. For classification, Logistic Regression ensembles are used, separately for
each event. Within one event, the probabilities estimated by individual classifiers (each
analyzing one time-domain filter output) are combined using arithmetic mean. This mean
value is taken as the final estimated probability value for given event. The parameters of
the algorithm can be found in Table 4.1.

Algorithm parameters

Time-domain filter
Band-pass filter bank, FIR (Ham-
ming) filters with frequency bands
4-17 and 15-49 Hz, order 251

Spatial filter CSP, with 0.5 sec window, using the
first and last 8 components

Feature generation Variance within 0.5 sec window,
normalization

Classification Logistic Regression ensemble for
each event separately

Table 4.1: The parameters of Algorithm #1.

The algorithm has been executed for each participant separately. The result was an
event-wise AUROC of 0.722 over all of the subjects. Figure 4.7 shows the ROC curves for
each event resulted from this evaluation.

Figure 4.7: The ROC curves resulted from Algorithm #1.

4.5 Algorithm #2: Low-pass Filter Bank with Logistic Regression

This procedure focuses on the differences between frequency ranges, rather than examining
bands separately. The filter bank concentrates on the low frequencies, below the beta range.
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This frequency range seems to carry valuable information for the detection task. Therefore,
this algorithm performs a detailed examination of the signal’s features in that range. The
flow of the process is shown in Figure 4.8.

Raw digital EEG signal

Artifact rejection

Low-pass filter bank and carrying the raw signal

Normalization

Classification with Logistic Regression

Estimated probability of events

Figure 4.8: The procedure of Algorithm #2.

Artifact rejection is applied by zeroing out signal values above an experimental threshold.
Afterwards, the time-domain filtering is done by a filter bank with fourteen IIR filters. In
this algorithm, IIR filters were preferred because they take less time than with FIR filters.
Because of this, they made experimenting with model parameters much faster. In the
current case when we have this many filters, there is a significant difference between the
computational time of IIR and FIR types. The cutoff frequencies are densely defined in the
filter bank below the beta band. The characteristics of the low-pass filter bank are shown
in Figure 4.9.

Figure 4.9: The low-pass filter bank characteristics used in Algorithm #2.

There are filters with cutoff frequencies in the beta and gamma bands as well. The
filter bank could contain even more filters, which would probably lead to slightly better
results. Experimenting with 18-20 cutoff filters on smaller parts of the dataset yielded a
little increase in the detection accuracy. Unfortunately, the available RAM imposes limits
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on the number of filters. Therefore, the final processing went with fewer filters.
The filtered signals, along with the raw signal are then normalized using mean and

standard deviation estimates calculated from the training data. Afterwards, each filtered
signals, each channels are inserted next to each other in one feature matrix. The classifi-
cation is done using Logistic Regression, separately for each event. The classifiers’ input is
the vector of the raw and the low-pass filtered, then normalized signal values at the time
point of interest. The parameters used in the algorithm are summarized in Table 4.2.

Algorithm parameters

Time-domain filter

Low-pass filter bank, IIR (Butter-
worth) filters with cutoff frequen-
cies at 1, 2, 3, 4, 5, 6, 7, 8, 10, 12,
16, 24, 32, and 49 Hz, order 3 below
4 Hz and order 5 above

Spatial filter -

Feature generation
Taking the values of the signals
from every filter and the raw signal
as well, normalization per channels

Classification Logistic Regression for each event
separately

Table 4.2: The parameters of Algorithm #2.

This algorithm also has been executed for the data from each participant separately. It
has reached an event-wise average AUROC result of 0.796 over all of the subjects. The
ROC curves for each event resulted from this evaluation are shown in Figure 4.10.

Figure 4.10: The ROC curves resulted from Algorithm #2.

4.6 Algorithm #3: Normalization and a Convolutional Neural Network

This third algorithm builds on the highly adaptive nature of Convolutional Neural Net-
works. The CNN used in this algorithm is designed to have a large amount of parameters.
Little preprocessing is done before the classification of features. Figure 4.11 shows the flow
of this algorithm.
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Raw digital EEG signal

Artifact rejection

Normalization

Extraction of channels’ values within a time window

Classification with Convolutional Neural Network

Estimated probability of events

Figure 4.11: The procedure of Algorithm #3.

The algorithm first rejects the artifacts with a simple threshold. The signal’s channels
are then normalized using the mean and standard deviation estimated from the training
data. Afterwards, the normalized signals are fed into the CNN directly, without any further
temporal or spatial preprocessing.

The network’s inputs are the values of all the EEG channels within the 2 second time
window just preceding the moment of interest. The convolution inside the network happens
along the time dimension only. The CNN consists of 6 layers, including the input and output
ones, and it has 3,487,814 internal parameters altogether. The structure of the network is
shown in Figure 4.12.

Input features

Input layer

Convolutional layer (1D along the time dim., filter size 5)

Maxpooling layer (size 2)

Dense layer (512 units)

Dense layer (512 units)

Dense layer (6 units, sigmoid output)

Estimated probability of events

Figure 4.12: The structure of the CNN used in Algorithm #3.

The sequence of layers in the network is the following: input layer, 1-dimensional convo-
lutional layer, maxpooling layer, dense layer, dense layer, dense layer. The last dense layer
serves as the output layer. The purpose of the convolutional layer is to filter the input
data in several different ways. The maxpooling layer is there to make the network more
robust against feature offsets. The dense layers further combine the pooling layer’s output
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values. There is a moderately high number of internal parameters in the convolutional and
the dense layers. This is to ensure a refined CNN which still does not require too much
computational capacity.

As the CNN is trained on a large amount of data, a batch iterator object is used to
generate the individual learning samples during the training, instead of passing a large
matrix in every turn. This batch iterator stores all the data before the CNN’s learning
phase, and only indices to data samples are passed to it at the time of training. Using
these indices, the batch iterator can select and feed samples quickly to the CNN. The
algorithm separates 20% of the training data, and uses it only as cross-validation set.
For the duration of the training, dropout layers are inserted into the CNN after each
convolutional and dense layers (except the output layer) in order to mitigate the risk
of overfitting. The output error’s measure, the loss function is the mean of the output
channels’ individual cross-entropy:

C =

No∑
i=1

[−ti log(pi)− (1− ti) log(1− pi)] (4.1)

where No denotes the number of outputs, and i is the index of the output channel. For ad-
justing the CNN’s parameters, the Adam stochastic optimization method is used (Kingma
and Ba 2014). The attributes of the network used for this algorithm are summarized in
Table 4.3.

CNN attributes

Layer types Input, convolutional (1D), max-
pooling, dense, dense, dense

Loss function Mean cross-entropy
Internal output nonlinear-
ity of layers None, linear transformation is used

Nonlinearity of the output
layer Sigmoid

Dropout probability 0.5
Parameter optimization
method Adam with learning rate 0.001

Table 4.3: The attributes of the CNN.

The training of the CNN took around 1600 seconds per subject. Figure 4.13 shows the
training and validation losses over time during the learning phase, of one CNN.

Only one CNN is used for the classification of all six motion events, per each subject.
The evaluation was performed in the same way as for the two other processing algorithms
described in this chapter. This third algorithm, using a CNN, yielded an event-wise AUROC
of 0.829. The resulting ROC curves are shown in Figure 4.14 for each event.
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Figure 4.13: The training and validation losses over time during the
learning phase of a CNN.

Figure 4.14: The ROC curves resulted from Algorithm #3.

4.7 Algorithm #4: Hybrid

The final algorithm simply merges the strengths of the previously ones. It selects the best
algorithm from previous ones for each event separately. Based on the AUROC results,
Algorithm #2 is used for the first event (HandStart), and Algorithm #3 for the rest of
the events. For 5 out of the 6 motion events, the third algorithm brought the best results.
For the first event (HandStart), the second event reached the highest AUROC. The hybrid
approach achieved an event-wise averaged AUROC 0.841. It is not a surprise that this is
the best result among those of the described algorithms. The ROC curves obtained from
this result are shown in Figure 4.15.
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Figure 4.15: The ROC curves resulted from the final, hybrid algorithm.

4.8 Evaluation

The AUROC results of the above described algorithms are summarized in Table 4.4. The
results of algorithms #1, #2, and #3 are also represented by bar charts in Figure 4.16 for
visual comparison. The AUROC of the last, hybrid algorithm are visualized separately in
Figure 4.17, as this simply reproduces the best results of the first three method per each
event.

Event-wise AUROC results
Event Algorithm #1 Algorithm #2 Algorithm #3 Algorithm #4

Handstart 0.739 0.855 0.782 0.855
FirstDigitTouch 0.696 0.834 0.867 0.867

BothStartLoadPhase 0.718 0.836 0.857 0.857
LiftOff 0.758 0.769 0.815 0.815
Replace 0.71 0.751 0.831 0.831

BothReleased 0.711 0.731 0.821 0.821
Average 0.722 0.796 0.829 0.841

Table 4.4: The event-wise AUROC results of the algorithms.

The first algorithm reached the lowest score. Using CSP did increase the detection
accuracy, as a notable AUROC value has been achieved this way, with a time-domain filter
bank comprising only two band-pass filters. The accuracy could be increased with a more
complex filter bank, which could be further improved with adaptively finding the cutoff
frequencies. The accuracy could also be increased with using weighted averaging when
forming the output of the classifier ensembles. It could also be increased with using more
complex features, such as the covariance matrix as a whole, not only the set of variances.

The second algorithm performed surprisingly well, considering that it used very simple
features with a basic type of classifier. This algorithm might have exploited the information
from the sub-beta frequency ranges very well. It could probably be improved by refining
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the time-domain filter bank in the beta and gamma ranges, and by using more complex
features and classification methods.

The third algorithm brought the best results among the first three. This method relied
on the adaptivity of the CNN, which demonstrated notable performance. Studying and
applying feature generation methods suitable for CNN-s would probably increase the de-
tection accuracy. Using a time-domain filter bank could also raise the performance, but
this would require high computational capacity. The results could be improved with the
use of a more complex CNN, or an ensemble of CNN-s as well.

The last algorithm only combined the previous ones. The principle of this hybrid ap-
proach is rather simple. It takes the best method for detecting a certain motion event. This
algorithm can be thought of as an ensemble of complex methods.

Figure 4.16: The event-wise AUROC results of the motion detection
algorithms #1, #2, and #3.

Figure 4.17: The event-wise AUROC results of the hybrid motion detection
algorithm.

The execution time of each algorithm can be found in Table 4.5. The algorithms were
run on a computer equipped with an Intel Core i5 4-core CPU and 4 Gb of RAM.
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Execution times
Algorithm Training Testing

#1 3.37 hrs 25 mins
#2 4.04 hrs 4 mins
#3 5.33 hrs 60 mins
#4 6.01 hrs 61 mins

Table 4.5: The execution time of the algorithms. The testing phase means the motion detection from
the test data.

In a real-life BCI application, it is obviously expected from the digital processing algo-
rithm to perform one detection between the arrival of two consecutive samples. Otherwise,
the process couldn’t keep up with the incoming samples, and it would be useless. It is not
a serious issue if the process gets into a slight delay after 1 sample, if it manages to get
back in sync with the next samples. The total testing time then serves as a rather good
basis for comparison to other algorithms.

However, comparing the testing time to the total time of the EEG recordings is the
most interesting, when evaluating the applicability. The EEG recordings used for testing
the algorithms is 53 minutes long in total. Algorithms #1 and #2 clearly fall within the
time constraint, as they took half the time as the recordings. Algorithms #3 and #4 on
the other hand take longer than the recordings, by just a few minutes. This might be
troublesome on first sight, but it does not mean that these algorithms may not perform
well computationally.

Note that the algorithms were developed and tested on a consumer category computer.
There are two reasons why the last two algorithms can satisfy the time constraint. The
first reason is that the program written for the digital signal processing is not optimized in
terms of CPU and RAM usage. After a fine optimization, the execution time of the last two
algorithms might drop right below the constraint. The other reason is that the computer’s
hardware was not designed specifically for complex and large computations. Installing the
program on digital signal processing hardware, or exploiting the performance of a GPU
could give significant boost to the speed of execution. Nowadays such devices are becoming
more and more available, and their prices are decreasing to more affordable levels. Also,
they can be manufactured in sizes appropriate for embedded systems, so they are suitable
for everyday BCI applications. Based on these thoughts, I consider algorithms #3 and #4
applicable as well in real-life in terms of speed.

The questionable part is the detection accuracy. The AUROC values measure the quality
of a classifier without a fixing the decision threshold at an exact value. It is up to the
engineer to determine the threshold according to the acceptable rate of false positives. If
we look at the ROC curves obtained by the algorithms, we can see that 50% True Positive
Rate still comes with more than 2% False Positive Rate. Converting these to absolute
measures, the number of correct detections for the current amount of data is a couple
hundred, while the number of false ones is still a few thousand.

A BCI with such rates is clearly not reliable. There are a couple of promising ideas for
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increasing the detection accuracy. The first one is to silence the output of the detector
for a short amount of time after a positive detection. This would decrease the potential
disturbance caused by false positives coming right after a correct detection. Another idea
is using the P300 phenomenon to cancel action triggered by a false detection. For example,
noticing the movement of a prosthetic hand would act as a stimulus, if such motion was
not intended. This would evoke a P300 response in the brain. The BCI would recognize
this response, and stop the prosthetic limb’s movement.

Despite that these results do not enable applicability, the final products of this study
have great value. The variations of existing processing methods provided new information
through the experiments. Besides, a Python program was written for the processing al-
gorithms in a modular structure, which then can be easily fitted for BCI applications or
other signal processing tasks.

For the grasp-and-lift dataset, Kaggle hosted a competition, which did not have that
kind of rules regarding the everyday applicability like the ones I declared for this work. The
best submissions achieved around 0.95 or even higher AUROC values. The winner achieved
AUROC above 0.981 (Barachant and Cycon 2015). The publicly released solutions used
large and complex Convolutional Neural Networks, with 11 or even more layers. Some
used ensembles of CNN-s. There was a solution which was said to take 4 days to run
even on a computer with a modern high performance GPU. The results of these methods
are outstanding with today’s measures. However, my personal approach is that we should
increase the focus on developing algorithms which are transparent as much as possible. It is
difficult to apply such highly adaptive methods to new tasks if the internal transformations
are not known analytically. However, the fact is that CNN-s perform very well in numerous
data processing applications. In my opinion, the next step in the development of CNN-s
and similar highly adaptive methods (such as Recursive CNN-s) is to analytically uncover
the effects of utilizing the different kind of building blocks more deeply.
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Summary

The objective of this paper was on one hand to review the main methods of motion de-
tection from scalp EEG signal. The other objective was to design digital signal processing
algorithms which are capable of detecting hand motions from a given dataset. The deeper
motivation for these objectives was the development of reliable Brain-Computer Interfaces.

In the first chapter, the acquisition and the analysis of the EEG signal were described,
along with the basics of the human brain activity. This chapter also elaborated on the
possible uses of the EEG signal. The second chapter described the EEG signal’s nature
in the context of motion detection. Important phenomena such as EP-s, ERS/ERD, and
BP were presented. The chapter then outlined a standard digital processing algorithm
for motion detection and described the possibilities for implementing each step in the
procedure. The third chapter presented remarkable works and results from researchers and
engineers in various institutes and companies. The fourth chapter described the motion
detection task targeted by this study, and the algorithms which were designed to solve it.
The chapter then evaluated these algorithms based on their detection results.

The results achieved by the algorithms can be characterized as promising. They ended
up not too far from the best results in terms of AUROC. Unfortunately, setting a decision
threshold high enough to ensure a feasible True Positive Rate would also permit a large
number of false detections, as it was shown. However, by implementing a simple artifact
rejection and a hybrid combination of rather different algorithms, the initial methods were
successfully improved, even if only by a little bit.

A couple of ideas were described for increasing the detection accuracy with auxiliary
methods, such as output silencing after action, or canceling with P300. These constitute
one of the future directions towards reliable BCI-s. Another direction is the improvement
of analytical classification methods and the analysis of highly adaptive numerical ones.

From this study it is visible that there is still a long road ahead of us towards reliable
BCI-s, applicable in everyday use. The development in the field in the past decade projects
good perspective, and numerous researchers pursue the objective presently. The futuristic
vision of BCI-based fully functional prosthetics and physical augmentation might be far,
but it is certainly in our line of sight.
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