

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Irányítástechnika és Informatika Tanszék

Kétszabadságfokú robusztus szabályozó tervezése és validálása

egzakt linearizálható mechatronikai rendszerhez

Design and validation of a two-degrees-of-freedom controller for mechatronic

systems

Tudományos Diákköri Konferencia dolgozat

Szerző: Finta Barnabás

Konzulens: Dr. Kiss Bálint

2020.10.28.

2

Acknowledgement

The research was supported by the EFOP-3.6.2-16-2017-00013 project – financed by the Ministry of

Human Capacities of Hungary.

I would like to thank my report supervisor Dr. Bálint Kiss for his valuable time, helpful advice and

unceasing confidence in me during the writing of this report. I am also thankful for the opportunity given

to me to visit the department’s laboratory to implement the work presented below, despite these trying

times caused by the pandemic.

3

Table of contents

Abstract ... 4

1 Introduction ... 5

2 Theoretical Background .. 6

2.1 Differential Geometry ... 6

2.1.1 Manifolds and diffeomorphisms .. 6

2.1.2 Curves and Tangent spaces ... 7

2.1.3 Tangent maps .. 10

2.1.4 Vector Fields and integral curves .. 10

2.1.5 Lie derivative and Lie bracket ... 12

2.1.6 Integrability of distributions, Frobenius theorem .. 13

2.1.7 Covector fields and codistributions ... 14

2.2 Feedback linearization ... 16

2.2.1 Linearization of SISO systems .. 16

2.2.2 Linearization of MIMO systems ... 21

2.3 Robust control ... 25

2.3.1 Norms .. 25

2.3.2 Uncertainties .. 27

2.4 Stability and performance of control loops ... 28

2.5 Linear fractional transformation .. 29

2.6 H∞ synthesis ... 30

3 Control architecture to robustify the exact linearization ... 32

3.1 Nonlinear spring-mass system (SISO) .. 33

3.2 Robotic arm (MIMO) .. 36

3.3 Quadcopter (MIMO) ... 48

4 Conclusion ... 59

5 References ... 59

4

Abstract

Exact (feedback) linearization is one of the most effective methods to control nonlinear systems. It

consists of a static or eventually dynamic state feedback and a coordinate transformation such that the

resulting closed-loop dynamics is linear and hence suitable to apply classical, linear design methods in

control theory such as pole placement.

However, exact linearization requires the knowledge of the mathematical model of the system in its

entire operating range and the value of the model parameters with high precision which may change

during operation. Without this knowledge, neither the performance nor the stability of the closed-loop

dynamics is guaranteed. Moreover, the controlled physical systems are subject to external disturbances

(e.g. friction and load variation in mechanical systems) and noisy measurements. We study a cascade

control architecture and a design method such that the outer controller ensures robustness of the exactly

linearized dynamics against parameter uncertainty.

To the extent necessary for the presentation of the design method, the report summarizes first some

elements of the theory of nonlinear and robust control and introduces all notations used in the sequel.

This is followed by the presentation of the proposed controller architecture and the design workflow.

The method allows the design of both serial and two-degrees-of-freedom (2DOF) robustifying

controllers, the latter being also suitable to improve disturbance rejection.

The applicability of the method is demonstrated for mechanical systems. Simulations show performance

and stability robustness, and thanks to the real-time implementation of the controller for a 2DOF robotic

arm in the laboratory of the IIT department, the advantages of the presented methods are also validated

by experiments on a real physical system, where the uncertain parameters were chosen considering

payloads with various mass, the rest of the parameter values were identified using measurement data.

5

1 Introduction

In many cases, the control of nonlinear systems uses linearization around an operating point and

synthetizing a controller for the arising linear model, approximating the nonlinear behavior in a

neighborhood of the operating point (using on the Hartman-Grobman theorem). This approach is simple

and works well in the proximity of the operating point [1], however the tracking of a complex reference

signal is usually problematic in this case. To solve this problem, other control techniques for nonlinear

systems emerged. It was shown that for some classes of nonlinear systems, there exists a state feedback

and nonlinear change of coordinates which if applied to the plant result in a closed-loop with linear

dynamics.

This approach provides great benefits as the transformed system is linear in the entire operating range

(as opposed to the neighborhood of an operating point), however the knowledge of the adequately

precise mathematical model of the controlled system is needed. This means the knowledge of the plant

parameters with sufficient precision. These parameters can change during operation, for example

because of the degradation of mechanical parts, changes in friction, by handling a different payload etc.

Also, considering mechanical systems, the presence of friction usually makes matters worse, the

modelling of such effects is cumbersome, where even more parameters (now to also model friction) are

arising, which are also hard to identify. This is the reason why, with the exception of linear friction,

these effects are omitted in a typical control synthesis process.

These considerations mean that by applying the state feedbacks and coordinate transformations using

the nominal parameter values for a nonlinear plant with different, uncertain parameters, the resulting

closed loop system may become quasi-linear or it is a different linear system than the nominal one. This

results in decreased reference tracking performance, and the system may also become unstable. This

thesis is concerned with a method to robustly control such nonlinear systems, despite these parameter

uncertainties.

The second chapter summarizes the necessary theoretical background. If the reader is familiar with the

concepts of nonlinear control and robust control theory this chapter may be skipped. Naturally given the

limits of the thesis, this summary only scratches the surface of the vast and exciting theory of nonlinear

and robust control, this means that for example the proofs are omitted. However, it hopefully condenses

this information to the minimal necessary level, which makes the examples and overall concept of the

control architecture clear.

The third chapter presents the proposed controller solution, which merges the two state-of-the-art

methods of robust and nonlinear control. The linearizing and tracking feedbacks are applied to the plant

and the cascaded outer loop containing the robust controller ensures robust stability and performance.

After looking at the general concept of synthetizing such a controller, several examples are presented to

illustrate the effectiveness of the method. All of them are validated by simulations, and for one particular

example, for an identified two-degrees-of-freedom robotic arm the controller is also implemented on a

real physical system. The results show the effectiveness of the method for these mechatronic systems.

In the next chapter, let us review first the theoretical concepts used in the sequel.

6

2 Theoretical Background

This chapter overviews the concept necessary to introduce the proposed control architecture. The reader

who is already familiar may only need to check the notations introduced.

Let us start with the nonlinear control theory, where the majority of the concepts and examples are from

the books [2] and [3] and also from the course material [4]. The field of controlling nonlinear systems

(including mechanical systems such as robots, cranes, ground and aerial vehicles), is often referred to

as geometric control. The name refers to the fact that the configuration manifold (and the state space) of

mechanical systems containing rotational degrees of freedom are given by a “curvy” space as opposed

to a “flat” (Euclidean) space. Take for example a simple pendulum. Its configuration can be exactly

described with one variable, the angle of the pendulum’s rod in relation to a default (in this case a

horizontal) position. It is clear that this variable we use to describe the configuration with is evolving on

a circle 1S and not on the real line 1 , e.g. after one full rotation the value 2 radians equals 0 radians

from the point of view of the system.

Fig 1. Configuration spaces of a pendulum, double pendulum and spherical pendulum

This fact motivated the concepts of geometric control to which the field of differential geometry gave

the mathematical background. The next subsection gives a brief overview of the language of differential

geometry for better understanding of the underlying concepts of geometric control.

2.1 Differential Geometry
It is mentioned earlier that mechanical systems with rotational degrees of freedom are evolving on curvy

spaces, that is, their configuration space is a curved and not a flat one. The main purpose of differential

geometry is to equip these configuration sets with a differentiable structures, locally equivalent to vector

spaces, called manifolds.

2.1.1 Manifolds and diffeomorphisms

Manifold: a n-dimensional manifold is a space that is everywhere locally diffeomorphic to n .

So anywhere we are on a manifold, the point p we stand at and its neighborhood U is diffeomorphic

to the n-dimensional flat space or n .

Diffeomorphism: A diffeomorphism is a
rC -differentiable (smooth), one-to-one and onto (bijective)

relation with a smooth inverse.

 ()  1, , =   = n T n
np x p U M x x x (2.1)

7

A diffeomorphism is thus a smooth, invertible mapping between two sets. So a manifold looks like a

locally flat space, i.e. if we “zoom in” enough (which means that the flat space itself is also a manifold).

Given a diffeomorphism  that maps an open subset U of the manifold M to the flat space, the pair

(),U is a chart. This means that we may need multiple charts to cover the whole manifold if it is

curved.

Atlas: Given a manifold M there exist a collection of charts () ,U that cover the whole manifold.

This collection is called an atlas.

There can be overlaps between the open sets that cover the manifold, however they must be compatible.

Given two neighborhoods, iU and jU , that are not disjoint and a point p in their intersection, the charts

() ,i iU and () ,j jU are compatible if by applying the diffeomorphism 1−
j that takes a point in

n and maps it to p , then applying i to the result, we get a diffeomorphism that maps a point from

n to n .

Fig 2. Compatibility of two charts covering the same point of an n-dimensional manifold

We concluded that a manifold locally looks like a flat space where differentiation is possible. An

example of manifolds, widely used in mechanics is the set of 3D orientation matrices. The collection of

all these matrices give us the group of special orthogonal 3x3 matrices, or SO(3). It can be proved that

SO(3) is indeed a manifold, where each point on the manifold is a rotation matrix.

To summarize the subject of manifolds we give the formal definition:

M is an n-dimensional
rC -differentiable manifold if:

1. For  p M there exists a neighborhood U of p in M and a diffeomorphism : → nU ,

where the pair (,)U is called a local coordinate chart.

2. =i
i

U M , the collection  (,)i iU is called an atlas.

3. Compatibility: Given  i jU U , then 1 :− →n n
j i  must be a

rC -diffeomorphism.

We can define differentiable maps between manifolds, even if they have a different structure and

dimension.

2.1.2 Curves and Tangent spaces

We can define curves on manifolds. These are functions that take a scalar variable (e.g. time) and give

us a point on the manifold. If we consider the set where we get from our scalar variable, the set of real

numbers as a manifold, then we can say that a curve is a mapping between two manifolds. First let us

look at a function that takes a point on the manifold and maps it to the real line.

To define differentiability of functions acting on manifolds we need to somehow transform them into

mappings from a vector space to another vector space, where differentiability can easily be defined.

8

A function : →f M is differentiable for all local charts (),U if the mapping 1 :− →nf  is

differentiable. We say that 1−f  is the representation of f in local coordinates, denoted by

()1 2 nf x x x .

If we take an m-dimensional manifold M, and an n-dimensional manifold N, and have a mapping F from

M to N, then : →F M N is differentiable if 1 :− →m nF  is differentiable. Alternatively,

: →F M N is differentiable if for every differentiable function g on N, the mapping : →g F M is

differentiable.

A curve γ on a manifold M is a map    : 0, t , 0, t→ = M I . It is a differentiable curve at point

p, if the mapping :  → nI  at p is differentiable.

These curves can be thought of as trajectories that are functions of time, and velocities can be defined.

The vector representing the velocity is tangent to the trajectory.

Tangent space at p. Consider all possible differentiable curves on a manifold M, which go through the

point p M at time 0. The space spanned by all possible velocity vectors is the tangent space at the

point p, denoted by pT M .

If we think about manifolds as surfaces, then it is easy to check if a given vector at a point is tangent to

the surface. Let us assume that the surface is defined by a function () .=f x const and we are given a

possible tangent vector v. If the dot product of the surface normal at point p and vector v is zero, then

vector v is tangent to the given surface at point p, hence

 () | 0  =pf x v (2.2)

Fig. 3. The connection of the tangent plane and surface normal

Tangent bundle. The tangent bundle of a manifold M is denoted by TM and given by

() , | ,


=  p p
p M

T M p v p M v T M .

Tangent space is applicable to a certain point of the manifold. The tangent bundle is the collection of all

the tangent spaces at each point of the manifold.

Let us take for example a unit sphere as our manifold embedded in 3-dimensional Euclidean space (so

we use the classical x, y and z coordinates in this example) and a curve 2() 2 1 5 4 = −
  

T

t t t t on

2S at a point  0 0 1=
T

p . It is trivial that at this point the tangent space contains vectors in the form

 0 , a, ba b . We also define a diffeomorphism ()
2 2

, ,
1 1

 
=  

− − 

T
x z

x y z
y y

 which is the so

called stereographic projection with the corresponding open set

9

() 3 2 2 2, , | (, ,) 1, 1=  = + + = U x y z f x y z x y z y . The stereographic projection takes a point in U

and projects a line from E through the given point in U, such that it maps it to the x-z plane. We want to

compute the tangent vector of the curve  at time 0, which is denoted by ()' 0 . We show two different

methods: the more classical approach, where we take advantage of the fact that the manifold is embedded

in a higher dimensional space; and the differential geometric approach, where we use the given

diffeomorphism.

Fig. 4. Curve and tangent vector on a sphere, stereographic projection to the x-z plane

With the classical approach we simply differentiate with respect to t:

 ()   2' 0 1 0.5 0= 
T

pT S (2.3)

With the differential geometric approach, the differentiation is carried out in local coordinates, meaning

that we stereographically project the curve and then differentiate.

 ()() ()()  
2

21 5 42
0 2 1

1 2 1 2

 −
 = → = 
− − 

 

T

T

p

td d t d
t T S

dt dt t t dt
    (2.4)

We conclude that the two results are equivalent, they point to the same direction. This demonstrates one

of the main features of differential geometry, namely that the calculus is independent of the choice of

the coordinate system.

Let us look at a function : , → f M f C , where M is a manifold and a vector v that acts on that

function. For example the manifold is the surface of the ocean (it is 2), and f gives us the temperature

at any given point on the surface, we assume that at every point the temperature is constant. Vector v is

the velocity of a particle. Then v acting on f expresses the relative temperature change the particle

experiences as it travels with the velocity specified by v.

 () 1

1

 
=  = + + = 

 
n

n

f f
v f v f v v f v

x x
 (2.5)

This equation is known to result the directional derivative of f along v, (), :  →pv T M v C M .

We saw that a vector acting on a scalar function is a derivation. Generally speaking, a derivation D on

a manifold M at p M is a linear map, ():  →D C M satisfying the product rule, namely

() () () () () ()| , ,  = +  pD f g f p D g g p D f f g C M . Let ()pD M denote the set of all derivatives

at p on M. This implies that if a vector is the element of the tangent space at a point, it is also a derivation

at the same point,   p pv T M v D M . This means that ()p pT M D M .

10

2.1.3 Tangent maps

Consider two smooth manifolds M and N with diffeomorphisms  and  respectively, a vector

 pv T M , and a mapping : →F M N between the manifolds. Let x denote the local coordinate

representation of M in the neighborhood of the point p, and y denote the local coordinate representation

of N in the neighborhood of ()F p .

Fig. 5. Mapping between two manifolds

The function F in local coordinates reads 1 :− →m nF  . For the sake of simplicity F is

interpreted as a function in coordinates, such that ()=y F x , omitting the notion that F is composed by

diffeomorphisms. The tangent vector at point p is given by differentiating a curve in x coordinates. Then

the same vector mapped from M to N by F can be computed by:

 (), ,
 

=    
p F p

p

F
y x x T M y T N

x
 (2.6)

where
 
   p

F

x
 is the Jacobian of F at point p. We also call it the tangent map of F, and the push-forward

by F and can also be denoted by *F . This means that
()* at p : →p F p

F T M T N is a linear mapping, the

velocities from one manifold to another always map linearly.

2.1.4 Vector Fields and integral curves

A vector field V on a manifold is a map which at each point on a manifold gives us a vector v in the

tangent space of the same point. A vector field on an n-dimensional manifold in local coordinates looks

like a vector valued function on n . The set of all vector fields on the manifold M is denoted by (). M

Then the following expression hold true: () : →V M M TM so that () pV p T M .

For example the vector field  0= −
T

v y x on
2S gives us a vector at each point p, that is tangent to

the sphere at that point p.

Fig. 6. Vector field defined on a sphere

11

If we imagine a point particle on the manifold M that flows along a vector field V and we draw its

trajectory over time, we get an integral curve of the vector field.

Given ()V M and p M , an integral curve of V through p is a curve :  →I M which satisfies

()0 = p and () ()() () , = =  
d

t V t V t t I
dt
   . In local coordinates we can write

()

()
()

1 1 1

1

, ,

, x 0

, ,

  
  

= =  
     

n

n n n

x V x x

p

x V x x

 (2.7)

which is a system of ordinary differential equations (with an initial condition), its solution for the given

interval I is an integral curve.

Flow. Given a vector field ()V M let : →V
t M M define the flow of V. It takes a point p on the

manifold and gives back another point, which we get if starting from p we flow along the vector field V

for time t.

Fig. 7. Flow and tangent vector on a manifold

For example take a vector field on n in the following form:

 () , () = , , =   n n n n nV x Ax V x T x A . (2.8)

We can rewrite it as

 =x Ax (2.9)

And it is easy to see that the solution to this ODE is

 () 0= Atx t e x (2.10)

for a given 0x . This implies that the flow map for V is

 () =V At
t x e x (2.11)

The flow is dependent on time t and it is possible to partially differentiate the flow w.r.t the time to get

back the vector field which generated it:

 () ()()


=


V V
t tp V p

t
  (2.12)

where the left side of the equation is the Jacobian or push-forward.

12

2.1.5 Lie derivative and Lie bracket

Let us have a function : →h C M and a vector field ()V M on an n-dimensional manifold M.

The Lie derivative of h along V is defined by

 ()
1=


= =  = 



n

V i
i i

h
L h V h V h V

x
 (2.13)

which is the directional derivative of h along V. The Lie derivative is an operator that acts on h, the

operator itself is in the form

1=


= 



n

V i
i i

L V
x

 (2.14)

We can apply the Lie derivative multiple times. Given two vector fields (), f g M and a function

()h C M , one possibility is to take the Lie derivative of h along g and then apply the Lie derivative

along f to get

 ()
2

1 1= =

  
= + 

     

n n

i
f g i j i

i j j i i j

gh h
L L h f g f

x x x x
 (2.15)

By applying it the other way around the results reads

 ()
2

1 1= =

  
= + 

     

n n

i
g f i j i

i j j i i j

fh h
L L h g f g

x x x x
 (2.16)

The result is not a Lie derivative along some vector field ()V M in either cases, which implies it is

not a derivation either. However, if we use the following expression

 () ()
1 1= =

    
 − = − 

      
 
n n

i i
f g g f j j

i j j j i

g f h
L L h L L h f g

x x x
 (2.17)

the result becomes a derivation of h along a new vector field. This operation is called the Lie bracket

and is one of the most important concepts used in geometric control. The usual notation of the Lie

bracket is

   () (), = −f g g ff g L L L L . (2.18)

Also there is another useful notation when this operator is applied several times, which is

      , , ,        
2 3

f f fad g= f,g ad g= f, f,g ad g= f, f, f,g (2.19)

and so on. It is easy to see the usefulness of this notation, when several Lie brackets are applied.

The Lie bracket is also interpreted as the measure of commutation. If the two vectors fields commute

then the Lie bracket is 0. Commutation is understood with the help of the flows. Starting from a point

x, we flow along the vector field f for some time t, then flow along g for the same time t, then flow

backwards along f (the same as going backwards in time along f) and finally flow backwards along g for

time t, we get a curve by changing the travel time t. The tangent vector to this curve at 0=t is the value

of the vector field [,]f g at point x, which is illustrated in Fig. 8.

13

Fig. 8. The geometric interpretation of the Lie bracket

Let us look at an example with vector fields

 ()2

0

, , ,

0

   
   

= − = 
   
   −   

y

f x g z f g S

y

. (2.20)

The Lie bracket of f and g is

   ()2, 0

− 
 

= 
 
  

z

f g S

x

 (2.21)

From a mechanical point of view, if f and g gives us directions in which we can generate velocity, then

the newly acquired vector field we got from the Lie bracket means that we can also generate velocity

along that direction by appropriate “switching” between the two vector fields.

The set of all possible vector fields () M on a manifold M with the addition of the Lie bracket as an

operator is a Lie algebra. The Lie bracket can be thought of as a operation that takes two elements from

() M and gives back another element from () M .

   () () () , :    →M M M (2.22)

The Lie bracket is an operation satisfying the following properties

• Linearity:      , , , + = + f g h f g f h

• Skew symmetry:    , ,= −f g g f

• Jacobian identity:      , , , , , , 0     + + =     f g h h f g g h f

where (), , f g h M .

2.1.6 Integrability of distributions, Frobenius theorem

We arrived at an important concept of differential geometry linked to the controllability of dynamical

systems. Let us introduce it through an example. Consider two vector fields over 3 :

    ()3
1 2 1 20 , 0 , ,= − = − 

T T
g y x g z y g g and the following question: is there an

(embedded) surface in 3 such that the vector fields 1g and 2g are always tangent to it? (We define

an embedded surface by a function 3: →f where (), , .=f x y z const is a surface.)

To check if the vector field is tangent to a surface, we take the dot product of the vector field and the

normal of the surface. If the result is zero, then they are tangent to each other. So, if there exists such a

surface the following conditions have to be satisfied:

14

 1 20 and 0 =  =g f g f . (2.23)

This is true in Euclidean space, to generalize it for manifolds we use our notion of the Lie derivative.

1 2

0 0
   

= − = = − =
   

g g

f f f f
L f y x L f z y

x y y z
 (2.24)

The problem boils down to solving a system of partial differential equations. In this case the solution

can be easily obtained

 () 2 2 2, , = + + +f x y z x y z c (2.25)

where c is a constant. This means that there is such a surface where the given two vector fields are

always tangent to it and it is a sphere.

To generalize this concept, also known as the integrability of tangent subbundles, let us introduce the

notions of distributions first. A distribution  on a manifold M is a mapping that selects for each point

p M a subspace of pT M . Thus, the distribution can be spanned by a set of vector fields.

   ()1 2, , , g 1,2, , =  =m ispan g g g M i m (2.26)

There are multiple properties that can defined for distributions:

• regular distribution: this means that the distribution has constant dimension for all points of the

manifold.

• integrable distribution: there exists a submanifold N M such that ()  =  pp T N p N .

• Involutive distribution: the distribution is closed for Lie brackets: , , .    i j i jg g g g

The Frobenius theorem says that a regular smooth distribution is integrable if and only if it is involutive.

Going back to our previous example, this means that the distribution given by the two vector fields is

integrable which implies that it is also involutive. This theorem is important because the problem of

integrability boils down to checking Lie brackets instead of trying to solve partial differential equations.

2.1.7 Covector fields and codistributions

Let us introduce the concept of covector fields and codistributions, which we also use later on. The

Frobenius theorem will also be reformulated again using these notions. A covector can be thought of as

a function that can be applied to a vector. Let us say that X is a vector space. This has a dual space *X

which is the set of linear, real valued functions, such that
* : →v X , where

* *v X . If we apply an

element of *X to a vector v , the notation is given in a scalar product form *,v v . For example, the

dual space of n is denoted as *n . Note that the dual space is also a vector space. There also exist

dual tangent spaces. Given a manifold M with the tangent space pT M at point p M , the dual tangent

space is denoted by *
pT M . The vectors of the dual tangent space are called tangent convectors. Suppose

that 1, , n  are all smooth, real valued function of the real variables 1, ,   n
nx x U . A covector

field can be defined in local coordinates as

 () () () ()1 1 2 1 3 1, , , , , , =  n n nx x x x x x x    . (2.27)

If not stated otherwise we consider covector fields to be in row vector form. Covector fields obtained

by differentiation from a real-valued functions as

15

 ()
1 2 3

    
= = 

    
d x

x x x x

   
 (2.28)

are referred to as exact differentials. Using this notion some previous concepts can be revisited. For

example, the Lie derivative is the same as applying an exact differential covector field to a vector field

f , since

 () () () ()
1

,
=

 
= =
 


n

i
i i

d x f x f x f x
x x

 
 . (2.29)

Going back to the notion of distribution, we see that a dual object, the codistribution can be also defined.

Codistributions can be defined as spans of covector fields 1, , d  , where *: →n n
i such that

 ()1, , = dspan   . (2.30)

Let us introduce now the annihilation property of a codistribution. We say that the annihilator of a

distribution  is the codistribution if

  ** : *, 0, ⊥ =  =  nv v v v . (2.31)

Let us now go back to the Frobenius theorem. Consider a distribution  in n and let d denote its

dimension. Also consider the vector fields 1, , dg g , such that

  1, , = dspan g g . (2.32)

Let the annihilator codistribution of  be ⊥=  which has dimension −n d and spanned by the

covectors 1, , −n d  . By virtue of annihilation, the following statement hold true

 () (), 0, 1 , 1 j n-d=     j ix g s i d , (2.33)

so the covector field () () 0=j x G x , where () () ()1 =  dG x g x g x , which has rank d , since we

said that  has dimension d . The space of the solutions is spanned by the −n d linearly independent

convectors, which implies that () ()1 , , −n dx x  are the basis of the solution space. To arrive at the

problem formulated by the Frobenius theorem, we say that we only accept solutions in the form



=


j

j
x


 (2.34)

where 1, , −n d  are real-valued smooth functions. This means that we seek the solution of the partial

differential equation

 () () ()1 0
 

  = =  

j j

dg x g x G x
x x

 
 (2.35)

where we need to find −n d independent solutions, such that the row vectors

 1 , , −

 

n d

x x


 (2.36)

16

are linearly independent at all x. This is the same problem as stated in the chapter regarding the Frobenius

theorem. The question now becomes: Given a distribution  , does it have an annihilator ⊥ which is

spanned by exact differentials? This annihilator is given by

  1, ,⊥
− = n dspan d d  . (2.37)

2.2 Feedback linearization
This section is dedicated to the theory of exact linearization, which transforms a nonlinear system into

a linear one by state-feedback and coordinate transformation. We mainly present the approach used in

[3], however feedback linearization can be extended to a special class of systems called differentially

flat system [5], which is not discussed here.

2.2.1 Linearization of SISO systems

In this subsection we consider an affine nonlinear control systems in the form

 () ()= +x f x g x u (2.38)

where  nx is the vector of the state variables, u is the input, f is the drift vector field and g is the

control vector field. First, we consider input-state linearizable systems. By definition, if a system is

input-state linearizable, then there exists a coordinate transformation () ,= z x which has to be a

diffeomorphism, and a fedback () ()= +u x x v  where v will be the new input of the closed-loop

system so that we obtain = +z Az bv in closed-loop.

Fig. 9. Exact linearization via feedback with coordinate transformation and the equivalent linear system

By substitution the following expression is obtained:

 ()() , v
 

= + + = +   
z f g v Az bv

x
  . (2.39)

This equation can be broken down to two separate equations in the form

()

1

 
+ =  

 
=  

f g Az
x

g B
x





 (2.40)

It is obvious that 0 , since that would mean that the closed-loop system cannot be controlled, our

new input is multiplied by  . Without loss of generality we take matrix A and vector b in the control

canonical form, such that all the poles lie at zero.

17

0 1 0 0
0

0 0 1 0

: , b=
0

0 0 0 1
1

0 0 0 0

 
  
  
  =
  
  
  

 

A (2.41)

Now, let us look at
 
  x

which is the Jacobian of the diffeomorphism. If we consider the form of the

Jacobian matrix we see that

1 1

1

1

  
  
  
 =    
  
   

n

n n

n

x x

x

x x

 (2.42)

where  i and ix is the i-th element of the diffeomorphism and the state vector respectively. Looking

at the Jacobian matrix it is easy to see that each row is the gradient of each element of the diffeomorphism

 . Using this fact our original two equations can be rewritten as

 ()

1

2

0 1 0 0

0 0 1 0

0

0 0 0 1

0 0 0 0

 
   
 

  
 + = 
 

 
 

    
 

T

T

T
n

f g

1

2

0

1

0

1

   
   
   =   
   
    

T

T

T
n

g


. (2.43)

Using the notations introduced earlier and simplifying some terms, these equations can once again be

rewritten in the form

1 2

2 3

 = 

 = 

 = −

f

f

f n

L

L

L




1

2

0

0

1

 =

 =

 =

g

g

g n

L

L

L


 (2.44)

that are actually 2n partial differential equations. The first question that arises: is this system of

equations solvable? Many PDEs may not have a solution, so before continuing it is advised to check if

it is solvable. Firstly let us look at 1 . Take the Lie bracket of f and g ,

   1 1 1,
0 =  −  =f g g ff g

L L L L L (2.45)

since 1 0 =gL , 1 2 =fL and 2 0 =gL . It is possible to take Lie brackets and simplifying up to

2 1,
0−  

 =nad f g
L . This creates the following system of equations:

     21 1 1 1, , , ,
0, 0, 0, , 0−      

 =  =  =  =ng f g f f g ad f g
L L L L (2.46)

18

for which we seek a 1 . = const satisfying all of them, in other words a surface in n such that

    2, , , , , , , ,−     
n
fg f g f f g ad g is everywhere tangent to that surface. This surface exists if

the distribution     2, , , , , , , ,−   =    
n
fspan g f g f f g ad g is integrable, and by Frobenius

theorem it is integrable if and only if it is involutive. The question of the solvability thus boils down to

checking Lie brackets and determining whether the arising new vector fields are part of the distribution.

Fig. 10. The connection between an integrable distribution and an embedded, lower dimension surface

This property is a necessary but not sufficient condition for the input-state linearization. Brockett

provided a second condition which is analogous to the linear system’s controllability matrix’s rank

condition by which a theorem is formed:

A nonlinear system in the form (2.38) is input-state linearizable if and only if:

1. The distribution     2, , , , , , , ,−   =    
n
fspan g f g f f g ad g is integrable

2.     1, , , , , , , ,−   =   
n n
fspan g f g f f g ad g .

We present a simple example to summarize the above. Consider an inverted pendulum with a motor at

the joint.

Fig. 11. Inverse pendulum

The rod is massless, has length l , at the end has a point mass m and its angle in relation to the horizontal

position is denoted by 1x , which is also the first state variable. The joint has viscous friction  and the

motor has a time constant  . The dynamics read

19

2

1

2 1 3
2

3
3

0

0sin

1
1

 
      − + +   = +          −  

 

x

x g
x x x

x ul

x
x






 (2.47)

First, we check if the system is input-state linearizable. This is performed by looking at the distribution

  1 , , = span g f g and check if it is involutive according to the Frobenius theorem.

 1 2

1 1 1
0 0 , 0

     
 = −    

     

T T

span
  

 (2.48)

Indeed this distribution is involutive, since   1, , 0  =  g f g . The second condition that needs to be

satisfied is

      3
2 , , , , ,  = = span f f g f f g . (2.49)

If we compute

   3

1 1 1
, ,

  
  = − +   

  

T
b

f f g
   

 (2.50)

it is easy to see that  , ,  f f g is linearly independent from f and  ,f g , so 2 is indeed equivalent

to 3 . This implies that this system is input-state linearizable. Next we construct the diffeomorphism

()= z x and the functions ()x and ()x . This is achieved by solving the following system of partial

differential equations

() ()

() ()

()
()

()

1 2

2 3

3

 =

 =

 = −

f

f

f

L x x

L x x

x
L x

x





()

()

()
()

1

2

3

0

0

1

 =

 =

 =

g

g

g

L x

L x

L x
x

 (2.51)

Looking at () 1
1

3

1
0


 = =


gL x

x
it becomes clear that ()1 1 1 2, = x x so it does not depend on 3x .

Substituting into () ()1 2 =fL x x we get

 ()1 1
2 2 1 3 2

1 2

sin
  

+ − + + = 
  

g
x bx x x

x l x
 (2.52)

which yet again substituted into ()2 0 =gL x yields us

 () 1
2

2

1
0


 = =


gL x

x
 (2.53)

which implies that ()1 1 1 = x . Since () ()1 1 2 =fL x x we get

20

 () 1
2 2

1


 =


x x

x
 (2.54)

which substituted into () ()2 3 =fL x x gives us

 ()
2

1 1
3 2 2 2 1 32

11

sin
    

 = + − + +   
   

g
x x x bx x x

l xx
. (2.55)

Taking into consideration that () 3
3

3

1
0


 = 


gL x

x
tells us that 1

1

0



x

. This means that we need to

choose a 1 that is only dependent on 1x and not constant. An obvious choice then is ()1 1 =x x .

Obtaining the remaining elements of the coordinate transformation is now trivial, hence

 ()

1
1

2
2

3 2 1 3sin

 
   
    = =
   
  − + +   

 

x
z

x
x z

g
z x x x

l


 . (2.56)

The function ()x can be computed by
()3

1

gL x
 and ()x by () ()3− fx L x respectively.

 () =x  () 2
2 1 1 2 3 3

1
cos sin

 
= − + − + + 

 

g g
x x x x x x x

l l
    


 (2.57)

This concludes our example to construct an input-state linearizing feedback for SISO systems.

There is however the possibility that a system is not input-state linearizable. For this consider a nonlinear

system in the form

() ()

()

x f x g x u

y h x

= +

=
 (2.58)

where y is the output of the system and the function h describes its relation to the states. Our aim is to

find a diffeomorphism ()z x= and a control input () ()u x x v=  + which transforms the states

from x into (),  and the original system into

 A bv =  + (2.59)

 ()q ,=   (2.60)

where
r rA  ,

rb ,
r ,

r n r n r

0f : − − → and r n . Equation (2.59) describes the

linear dynamics and equation (2.60) describes the remaining dynamics after feedback linearization. It is

easy to see that if r n= the system is input-state linearizable, since there won’t be any “leftover”

nonlinear dynamics.

r

r

d y
v

dt
= . The value of r is called the relative degree. We say that the system (2.38)

has a relative degree of r n at 0x M if

21

()

i

g f

r 1

g f 0

L L h 0 i=1, ,r-2

L L h 0 x U x M−

=

   
 (2.61)

This way the system with the new states becomes

()

11

22

r 1r 1

rr

0 1 0 0 0

0 0 1 0 0

v0

0 0 0 1 0

0 0 0 0 1

q ,

−−

       
      

      
      = +
      

      
            

 =  

 (2.62)

Some remarks about relative degree:

• Relative degree is the number of differentiations of y until u appears.

• Relative degree depends on ()y h x= .

• For a fixed y the relative degree is invariant.

• If the relative degree r n= , then the system is input-state linearizable.

This concludes the theory of feedback linearization of SISO systems.

2.2.2 Linearization of MIMO systems

The results discussed in the previous section can be generalized for MIMO systems as well. The

dynamics of a MIMO system are described by

 () ()
1=

= +
m

i i
i

x f x g x u (2.63)

where we suppose that the vector fields ig are linearly independent. The outputs are defined as

 () 1,2, ,= =i iy h x i m (2.64)

where we suppose that the covector fields idh are linearly independent.

The relative degree of the outputs, if it exists is the vector  1 1 mr r r and the following exact

differentials (covectors) are independent

1

2

1
1 1 1 1

1
2 2 2 2

1

−

−

−

 =  

 =  

 =
 

m

r
f f

r
f f

r
m m f m f m

dh dL h dL h

dh dL h dL h

dh dL h dL h







 (2.65)

The zero dynamics are also similar to that of the SISO systems. Since the system has m inputs and

outputs, there will be m series of integrators. The following expression is the coordinate transformation,

where the upper index of the variables indicates which series of integrators (or in other words which

input/output) are we considering.

22

() ()

() ()

() ()
1

1

1

1 1

2 2

1
1

1

−
−

−

= = =

= = =

= = =
i i

i i
i i

i i i
f i

r
ri i i

r r f ir

x y h x

dy
x L h x

dt

d y
x L h x

dt

 

 

 

 (2.66)

The dynamics corresponding to these variables read

() ()

1 2

2 3

1

1

1

−

−

=

=

=

=

= +

i i

i i

i j

i i

i i

i i
r r

m
r ri

r f i g f i j
j

L h x L L h x u

 

 

 



 (2.67)

Now let
1=

=
m

ii
r r . It is always possible to find -n r scalar functions () () ()1 2, , ,+ +r r nx x x   , which

satisfy

• () 0 1 i m, r+1 j n=    
ig jL x and

• () () () () () () ()
1

1 1 1
1 1 1+

  =  m

T
m m

r r r nx x x x x x x      , which is a

coordinate transformation being invertible.

As with the SISO case, the state variables for the remaining dynamics which do not belong to the series

of integrators are ordered in a vector and denoted by

 () () ()1 2+ + =  
T

r r nx x x    (2.68)

Let us introduce now a matrix ()A x multiplying the vector of the inputs in the dynamics. This has

elements

 () ()()1 1, , , 1 i, j m
− −=   i

j

r
ij g f ia L L h    (2.69)

and also introduce a vector with elements

 () ()()1, ,−= ir
i f ib L h    (2.70)

Using these notations, the dynamics of the whole system can be rephrased in the form

() ()

()

1 2

1

1

, ,

,

−

=

=

=

= +

=



i i

i

i i

i i
r r

m
i
r i ij j

j

b a u

q

 

 

    

  

 (2.71)

23

If 1 + + =mr r n , then the system is fully linearizable by state feedback and coordinate transformation

and there will be no remaining dynamics.

The zero dynamics in question are obtained if we set the output to zero, such that

 ()0,= q  (2.72)

The relative degree has the following properties

• () 0=
j

k
g f iL L h x for all 1 j m , 1 −ik r and 1 i m .

• The following matrix is nonsingular

 ()

() ()

() ()

() ()

1 1

1

2 2

1

1

1 1
1 1

1 1
2 2

1 1

− −

− −

− −

 
 
 

=  
 
 
  

m

m

m m

m

r r
g f g f

r r
g f g f

r r
g f m g f m

L L h x L L h x

L L h x L L h x
A x

L L h x L L h x

 (2.73)

Suppose that our system has relative degree, which means that ()A x is invertible. The new inputs for

the closed loop system equal the input for the chain of integrators.

 () ()= +v b A u  (2.74)

So the input u is easily obtained as

 () ()()1−= −u A v b  (2.75)

This means that these kinds of systems can be linearized by a static feedback. One example from this

class of systems is a robotic arm with open kinematic chain, which will be discussed later in the

following chapter.

Now consider the system

 () () ()1 1 2 2= + +x f x g x u g x u (2.76)

where

  ()  

()   ()  

1 2 3 4 4 3 4

1 3 2

, 0 0

1 0 0 , 0 0 0 1

= = +

= =

T T

T T

x x x x x f x x x x

g x x g x


 (2.77)

and the outputs are

()

()

1 1 1

2 2 2

= =

= =

y h x x

y h x x
 (2.78)

The first step is to determine the relative degree of the system, which is done by the simple

calculations of Lie derivatives and the matrix (2.73). This system has no relative degree since

 ()
3

1 0

0

 
=  
 

gL h x
x

 (2.79)

24

is singular. This problem occurred because the lowest (first) order derivatives of the outputs are both

affected by 1u and none by 2u . To resolve this one may try to “delay” the appearance of the input 1u ,

to derivatives of higher order, where, hopefully, 2u will also appear, making the matrix …

nonsingular. In this case this is achieved by attaching an integrator at the first input of the plant, which

means adding a new state variable to the closed loop system. So we need to set

1

1

=

=

u

v




 (2.80)

To have a consistent notation we also set

 2 2=u v (2.81)

Fig. 12. Dynamic extension

 The composition of this auxiliary system with the original system results in the dynamics

 () () ()
4 3

1 23 4

0 0

0 0

, , , , ,0 0

0 0 1

0 1 0

     
     

+
     
     = = =+
     
     
     
     

x x

f x g x g xx x





   (2.82)

Going back to the calculation of the relative degree to determine matrix (2.68) we get

 ()
0 0

,
0 0

 
=  
 

gL h x  (2.83)

and

 ()
3

1 0
,

1

 
=  
 

g f
L L h x

x
 (2.84)

which means that this augmented system has relative degree vector  2 2 . This process is called

dynamic extension. Now the exact linearization process can be applied exactly same way as described

before, the linearizing feedback however is a dynamic one. Unfortunately there is no proven way to tell

which outputs yield themselves to this property.

25

2.3 Robust control
Robustness plays a major role in real-life engineering applications, since these systems are subject to

disturbances, there are noises on the measured signals and the accurate mathematical model of the

dynamics may not even be known. These factors can compromise the performance or even the stability

of the closed-loop. The field of robust control takes these uncertainties into consideration when

designing a controller such that the real system can operate reliably. Luckily, the theory is thoroughly

developed to analyze systems subject to uncertainty and to perform the controller synthesis [6].

This chapter summarizes some concepts used in robust control. It is important to note that the robust

control theory presented here considers linear uncertain systems. This suits our needs since we aim to

control nonlinear system which are already linearized by a state feedback with nominal parameter values

that are different from the actual parameter values of the system, hence the uncertainty.

2.3.1 Norms

This subsection reviews the norms of signals and systems. One definition of a norm is the p-norm. It

gives a measure of a vector in a finite dimensional vector space X (which could be n or n). The

norm of  1 2=
T

nx x x x is given by

1

1

, 1 p <
=

 
=   
 

n pp

ip
i

x x (2.85)

If 2=p we get the well-known Euclidean norm. In the case of = p the definition of the norm

becomes

 ()sup


=
p

t

x x t . (2.86)

Signals in continuous time can be considered as continuous functions of time, denoted by ()x t . These

type of functions live on an infinite dimensional vector space. The p norm in this case reads

 ()

1


−

 
=  
 


pp

p
x x t dt (2.87)

This holds true if 1  p . In the case of = p the expression is modified to

 ()sup
 



=
t

x x t . (2.88)

Normed spaces consisting of signals with finite norms are denoted by p . For different values of p we

obtain different properties as measures. With 1=p the notion
1

x gives us the integral of the absolute

value of ()x t , for 2=p
2

x is also known as the energy of the signal. The ∞-norm,


x gives us the

peak value of ()x t , and it is bounded if () x t . Stability of linear systems is understood as the

bounded input, bounded output stability, or BIBO stability for short. This means that if the system is

excited by a bounded signal at its input, it is considered BIBO stable if the output is also bounded.

Let us look at a bounded linear operator. These operators will represent the systems. A linear operator

: →A X Y , with X and Y as normed spaces is bounded if there exist a c, so that the expression

Ax c x holds true for all x X . Using this boundedness property of linear operators, it is possible

to define an induced norm for the operator itself:

26

1

sup
=

=
x

A Ax (2.89)

Since we would like to analyze MIMO systems not just SISO ones, a measure for the size of matrices is

also needed. This measure is obtained through the singular value decomposition. Let  m nA F , where

=F or =F . There exist unitary matrices

  1 2
=  m m

mU u u u F  1 2
=  n n

nV v v v F (2.90)

such that

1* 0

, ,
0 0

 
=   =  

 
A U V (2.91)

where

1

2

1

0 0

0 0

0 0

 
 
  =
 
 
 k







 (2.92)

and  1 2 0, min , .    =k k m n   The largest singular value of a system or a matrix is denoted

by   .

Now we focus on probably the most important norms in robust control theory, namely system norms.

These norms are the input-output gains of the system. Let G be a linear and bounded system that maps

the input signal ()u t to the output signal ()y t . This system is a bounded linear operator and the induced

norm of G is given by

1

sup
=

=
u

G Gu . (2.93)

We are interested mostly in the  -norm, which for our system 2 2: →n mG (where n is the dimension

of the input and m is the dimension of the output) is

 ()
2

sup




=G G j


 (2.94)

where the notion ()
2

G j refers to the spectral norm of the m n matrix ()G j . The spectral norm

can be calculated using the singular values and the previously mentioned p-norm formula. Let  m nA F

have singular values  1 2 0, min , .    =k k m n   The spectral norm of A is

1

1=

 
=  
 

k p

p
ip

i

A  . (2.95)

This implies that the  -norm of the system G is the maximum energy gain of the system, which depends

on the peak of the largest singular value of the frequency response matrix over the whole frequency axis.

We do not aim to introduce in detail the concepts of Hardy spaces and Hilbert space, which are function

spaces frequently mentioned in robust control theory. However throughout our studies, we deal with

27

transfer functions that are an element of H , which is a Banach space of functions that are analytic and

bounded in the open right-half plane. In this space the norm is defined by

 ()sup




 =  F F j


  (2.96)

which is called the H norm. An interesting subspace of H is the space consisting of all proper and

real rational stable transfer functions denoted by RH .

2.3.2 Uncertainties

Models of real dynamics contain uncertainties and real systems are also subject to external disturbances

and noises. Uncertainty is considered to be a mismatch between the dynamics of the real system and its

mathematical model and we consider such uncertainties here. Concerning LTI systems, uncertainties

are concentrated into a transfer matrix () s . There are several ways to incorporate the unknown

dynamics into the system model. Let ()G s denote the uncertain system and 0 ()G s denote the nominal

system. Then the uncertain models can be, but not limited to

• Additive uncertainty model

Fig. 13. Additive uncertainty

 () () ()0= + G s G s s (2.97)

• Input multiplicative uncertainty model

Fig. 14. Input multiplicative uncertainty

 () () ()0  = +  G s G s I s (2.98)

• Output multiplicative model

Fig. 15. Output multiplicative uncertainty

 () () ()0 = +  G s I s G s (2.99)

The term () s is unknown, but norm-bounded. It can be bounded by a transfer function ()W j

meaning the norm of the bounding transfer function is less than or equal that of the unknown transfer

function at all frequencies such that () ()   j j    . If the only known property of () s is its

norm, then it is called an unstructured uncertainty. This way it is possible to choose () 1


 s without

28

loss of generality and shaping it by two weighting functions ()1W s and ()2W s according to the given

application. In this thesis we mainly concern ourselves with the output multiplicative structure, however

the uncertainty models presented are interchangeable. With these considerations in mind, the uncertain

linear system is described by

 () () () () ()1 2 0 = +  G s I W s s W s G s . (2.100)

Fig. 16. Output multiplicative uncertainty model with uncertainty weighting functions

One needs to find the appropriate weighting functions ()1W s and ()2W s such that the inequality

() 1


 s is satisfied. In the SISO case, ()2W s can be set to 1, and the equation rearranged so that

() ()

()
()

0

1

0

 0
−

  
G j G j

W j
G j

 
 


 (2.101)

holds true for any appropriate ()1W s . The algorithm for determining the weighting functions for MIMO

systems is presented in [7].

2.4 Stability and performance of control loops
Several requirements must be satisfied by the closed-loop with the controller to be deigned, including

stability. Using the block diagram of a standard feedback loop depicted in Fig. 17 we can obtain the

transfer function of the closed-loop.

Fig. 17. Classical feedback control loop

 ()

()
1−

= −

+ =

= +yr

y PKr PKy

I PK y PKr

W I PK PK

 (2.102)

Since we generally consider MIMO systems, the multiplications are not commutative. The closed-loop

can be rearranged for the analysis of internal stability the way it is shown in Fig. 18.

Fig. 18. Feedback loop used in the stability analysis

29

where

 1 2 1

2 1 2

ˆ= +

= +

e Ke w

e Pe w
 (2.103)

which can be written in matrix form

1 1

2 2

ˆ     −
=     

−     

e wI K

e wP I
 . (2.104)

It is clear from the elementary theory of linear systems that a transfer function is only realizable if it is

proper.

The system depicted in Fig. 18 is internally stable if it is well posed and

1
ˆ

−



 −
 

− 

I K
RH

P I
. (2.105)

The basis of robust stability analysis is the so-called small-gain theorem. Consider the feedback structure

depicted in Fig. 19, where () s and ()M s are transfer function matrices.

Fig. 19. Feedback loop used for the small-gain theorem

Small-gain theorem. Suppose that () M s RH and let 0 . The feedback structure shown in Fig.

19 is well-posed and internally stable for all ()  s RH if and only if:

•
1


 


 and


M  or

•
1


 


 and


M 

2.5 Linear fractional transformation
The linear fractional transformation allows rearranging the uncertain system’s block diagram in a form

where the unstructured uncertainty block and the controller can be “pulled-out”. We distinguish between

two types of LFT: upper LFT and lower LFT depending on if the “upper” or the “lower” loop is closed

by the block () s or ()K s as shown in Fig. 20.

Fig. 20. Upper and lower linear fractional transformations

30

Suppose now that the transfer function matrix M is partitioned as

11 12

21 22

 
=  
 

M M
M

M M
. (2.106)

For upper LFT, the transfer reads

 ()
1

22 21 11 12

− = +  − 
 

z M M I M M w (2.107)

and exists if ()11− I M is invertible. Hence the expression

 () ()
1

22 21 11 12,
−

 = +  − uF M M M I M M (2.108)

is the lower linear fractional transformation of M and  . The lower LFT usually indicates how the

controller is applied to the system and it reads

 () ()
1

11 12 22 21,
−

= + −lF M K M M K I M K M (2.109)

2.6 H∞ synthesis
Fig. 22 shows the setup of the H-infinity synthesis. This contains the “pulled” out uncertainty block, the

augmented plant and the robust controller ()K s . The synthesis problem is formulated as an optimization

problem.

Fig. 22. The interconnection used for the H-infinity synthesis

The aim is to minimize the infinity norm of () () ()(),= lM s F P s K s , which is determined by the choice

of ()K s , since ()P s is given. This is the so-called optimal H-infinity problem, formulated as

 () ()()
 stabilizing
min ,


l

K
F P s K s (2.110)

There is unfortunately no analytic formula that gives the solution to this problem. However, in practice

it is sufficient to solve a slightly different problem, called the suboptimal H-infinity problem, given as

 () ()(),

lF P s K s  (2.111)

The scalar  may be larger than the global minimum of the norm, hence the term “suboptimal’.

Multiple possibilities exist to get the solution of the suboptimal H-infinity problem, which given the

limits of the thesis is not detailed, however the solution itself is presented.

Let us introduce the solution of the suboptimal H-infinity problem, which means, that if we take the

block diagram in Fig. 22, the augmented system is given by

31

 ()
1 2

1 12

2 21

0

0

 
 

=
 
  

A B B

G s C D

C D

 (2.112)

Consider the following properties true:

• the pair ()1,A B is controllable and the pair ()1,C A is observable

• the pair ()2,A B is stabilizable and the pair ()2 ,C A is detectable

•    *
12 1 12 0=D C D I

•
1 *

21

21

0   
=   
  

B
D

D I

Now to solve the suboptimal H-infinity problem take the matrices

2 * *
1 1 2 2

* *
1 1



 −
=  

− −  

A B B B B
H

C C A

 * 2 * *
1 1 2 2

*
1 1



 −
=  

− −  

A C C C C
J

B B A


 (2.113)

corresponding to the tow Ricatti equations. We seek the stabilizing solution . Let us suppose that there

exists a stabilizing solution to H in the form () =X Ric H and there exists a stabilizing solution for

J in the form () =Y Ric J . Also, let us assume that () 2
  X Y  which means that the spectral

radius of the matrix is less than 2 .

Omitting the details, a realization of the suboptimal controller ()subK s satisfying the conditions

mentioned above is given by

 ()
ˆ

0

  



 −
=  
  

sub

A Z L
K s

F
 (2.114)

where the matrices of the realization are based on X and Y such that

 2 *

1 1 2 2
ˆ −

    
= + + +A A B B X B F Z L C *

2 
= −F B X *

2 
= −L Y C ()

1
2 .

−
−

  = −Z I Y X (2.115)

Using Matlab, the synthesis is executed by providing the transfer function matrix of the augmented plant

and also the number of measured and control signals as the argument of the Matlab command hinfsyn.

This command returns the controller as an LTI system in state space form, and also some additional

results such as the dynamics of the closed-loop as an LTI system and the value of the achieved  [8].

This concludes the theoretical summary, where the aim was to highlight the necessary background and

notations, used in the sequel.

32

3 Control architecture to robustify the exact linearization

The proposed control architecture combines the nonlinear plant, its linearizing feedback and a robust

controller in a cascaded structure.

Our studies focus on the synthesis of a 2DOF robust controller which is expected to exhibit better

dynamical response than a serial compensator although the workflows of designing a robustifying serial

and 2DOF compensators are similar. In fact, the 2DOF structure aims to improve the performance

presented in [9], where earlier results with a robustifying serial compensator was proposed. The 2DOF

controller is synthetized by solving a standard H-infinity, mixed sensitivity optimization problem

discussed in the previous chapter.

Fig. 23. The proposed control architecture

Fig. 23 shows the control architecture, which may contain a MIMO system linearized by dynamic

feedback. The state feedback is used to move the poles from 0 to places defined by the designer to ensure

quick and stable transients for the system, while also considering the arising controller efforts, for

example by a linear quadratic regulator (LQR). The outer loop contains the robustifying controller . The

input of the 2DOF controller is the result of the path planning that uses the derivatives of the original

reference signal, a more detailed explanation is presented later on at the MIMO examples.

The uncertain parameters span the parameter space. A point in this space is described by the parameter

vector  1 2=
T

Np p p p . Each parameter takes its value inside a bounded interval iQ ,

hence the whole parameter space is defined by 1 2=   NQ Q Q Q . The nominal parameter vector is

denoted by 0 p Q .

For the robust controller synthesis, a set of linear systems must be obtained to describe the behavior of

the dynamics for different parameter values in Q . Let ()NL p denote the closed-loop dynamics,

containing the nonlinear system with parameters p , and the linearizing feedback designed using 0p .

This implies that () ()0
0=NL p G s , but there is no reason that ()NL p be linear in general. Consider

 () : = Q NL p p Q (3.1)

and define a sufficiently fine grid to cover the uncertainties as

  : 1, , ;= = i ip i P p Q . (3.2)

Let ()iG s denote the linearized dynamic of ()i
NL p . An output multiplicative structure is considered

to cover the set of these linearized dynamics, hence the weighting functions ()1W s and ()2W s must

satisfy

33

 () () () ()() ()  1 2 0 1,= +   iG s I W s s W s G s i P (3.3)

such that () 1


 s . After defining the performance weighting functions the optimization can be

carried out to synthetize the robust controller. For all of the examples presented later, the following

(standard) performance weighting functions were used: a closed-loop model transfer function ()M s ,

describing the desired closed-loop behavior; a transfer function ()uW s to specify the available control

signal bandwidth; and the weighting function ()eW s to penalize the difference of the model and system

outputs, or in other words, the closed-loop model error. These are connected to the output multiplicative

structure with the 2DOF controller as shown in Fig. 24.

Fig. 24. The interconnection with the uncertainty and performance weighting functions

This block diagram is used after pulling out the uncertainty block () s and controller ()K s as it is

shown before in the theoretical overview. This leaves an augmented plant denoted by ()aG s which is

the transfer between the input signal  , ,

T

r ru y y and the output signal  , , , ,

T

m u ry e e y y , where the

notions are concise with Fig. 24. So the transfer matrix of the augmented plant reads

 ()

() ()
() () () () () ()

()

() ()

2 0

1 0

1 0

0 0

0 0

0 0

0

 
 

− 
 =
 
 
 
 

e e e

a u

W s G s

W s W s W s M s W s G s

G s W s

I

W s G s

. (3.4)

We seek a controller ()K s that minimizes the H-infinity norm of the lower LFT of ()aG s and ()K s ,

in other words, the optimal controller minimizes () ()(),


l aF G s K s .

In the next few sections several nonlinear example systems have been studied to demonstrate the design

workflow and to study the usefulness of the controllers. We start with some simple SISO examples.

3.1 Nonlinear spring-mass system (SISO)
Let us consider the system depicted in Fig. 25. The friction between the mass and the floor is neglected,

the spring attached to the mass and the wall has nonlinear characteristics and its stiffness is given by

 () 2= +k x cx x (3.5)

34

where x denotes the displacement of the mass, and , c  are constants. Using Newton’s second law

the dynamics of the system are easily obtained and read

2 1

+ + =
c

x x x F
m m m


 (3.6)

where m denotes the mass and F denotes the external force input. The output of the system is x , so

=y x .

Fig. 25. The spring-mass system

 We assume that the control signal is the external force =F u . The linearizing feedback has the form

 2 2 2
0 0 02= + − − +u cx x mx mx mv    (3.7)

and it is easy to see that applying this feedback results the closed-loop being an underdamped second-

order system in the form

 ()
2
0

0 2 2
0 02

=
+ +

G s
s



 
 (3.8)

where  and 0 are design parameters, set to 0.7 and 2, respectively, in our example. The uncertain

parameters are summarized in Table 1.

Table 1. The uncertain parameters for the spring-mass system

Parameter [unit] Nominal value Min. value Max. value

  m kg 1 0.6 1.4

  c N m 0.6 0.4 0.8

2  
 N m 0.2 0.1 0.3

A grid with 125 vertices is constructed in the parameter space. A set of linear systems for the robust
controller design is obtained by taking the previously discussed nonlinear system with parameter values
at each vertex of the grid, applying the linearizing feedback with nominal parameters and lastly, by
approximating the dynamics by the linear part of its Taylor series neglecting the higher-order terms.

Matlab’s Robust Control Toolbox is used to cover the uncertainties by an adequate ()1W s transfer

function. In the SISO case it is possible to choose ()2W s as 1. The ()1W s transfer function reads

 ()
7 2

1 2

4.3 10 0.0009595 0.7353

2.796 4.746

− + +
=

+ +

s s
W s

s s
 (3.9)

35

Fig. 26. The gain of the uncertainty weighting transfer function

The chosen model transfer function is a second order underdamped one, that reads

 ()
2
0

2 2
0 02

=
+ +

M s
s



 
 (3.10)

which is the same as the nominal transfer function ()0G s . The performance weighting functions for the

control signal and output error are set to be

 ()
()

()
()

2

0 0

2
00

10 10 800

4200

+
= =

++
u e

s
W s W s

ss

 


. (3.11)

The weighting functions play a major role in finding an adequate controller and are the result of a trial

and error process. The designer needs to find a trade-off between controller effort and tracking error

using these transfer functions. The augmented plant now can be constructed as described in (3.4). The

robust controller that minimizes the H-infinity norm is of order 17. The 2DOF controller has excellent

disturbance attenuation, which is shown in the simulations.

The system has been simulated with three closed-loops variants: a variant without a robustifying

controller (referred to as NORC), one with a robust serial compensator (referred to as SRC) and one

with 2DOF controller (referred to as 2DOFRC). All three controller structures are simulated for the

same six, randomly sampled parameter combinations. The reference signal is set to be a step function

that jumps from 0 to 1 at 1 second. An external disturbance is also added, in form of a step function that

jumps from 0 to 1 at 5 seconds.

Fig. 27. The output of the SISO system for the three controller variants

Fig. 27 shows the plant output for the three controller variants. It is seen that the NORC solution

performs poorly as the output does not converge to one, and the disturbance makes the error substantially

larger. The SRC variant has better transients, but disturbance attenuation is still not satisfactory. With

36

the 2DOFRC, the response is robustly close to the second-order specification and the effect of the

disturbance is barely visible.

Fig. 28. The controller efforts of the SISO system for the three controller variants

By looking at the outputs of the different controllers at Fig. 28, we see that the 2DOFRC does not require

significantly more controller effort than the other setups. We may conclude that for this SISO system,

the best closed-loop performance is achieved by the 2DOF robust controller.

3.2 Robotic arm (MIMO)
The first MIMO example is an RR-type robotic arm, which moves in the horizontal plane. This is a fully

actuated system and we consider all links to be rigid. Its mathematical model can be obtained by the

Euler-Lagrange equations.

A real version of this robotic arm can be found at the department, so the geometric and inertial

parameters are that of the real system. During the derivation of the model we use a general algorithm to

show, that this synthesis is easily applicable to all fully actuated open-chain mechanisms [10].

The relevant parameters for the real system are specified in Fig. 29. These are:

• The coordinate systems fixed to each link. The choice of these coordinate systems is done by

using the Denavit-Hartenberg (DH) convention.

• The length of the links: 1l and 2l .

• The center of mass of the links: 1C and 2C .

• The coordinates of the center off masses in their respective coordinate systems: 1 1, cx cyl l and

2cxl .

• The relative angle between the links: 1q and 2q .

• The masses and moment of inertias at the center of mass: 1 2 3 3
1 2 1 2, , ,    m m . The lower

index for the moment of inertia matrix denotes the corresponding link and the upper index

denotes the coordinate system where it is expressed. It is advised to express this matrix in its

“own” coordinate system which is fixed to the link, since then it becomes constant. Usually the

axes of the DH-coordinate systems coincide with the principal axes of the moment of inertia

matrix, so it is in the form

,

,

,

0 0

0 0

0 0

 
 

 =  
 

  

i
i x

i i
i i y

i
i z

 . (3.12)

The Euler-Lagrange equations read

37

 i=1,2, ,n
  

− + = 
  

i

i i i

d T T U
Q

dt q q q
 (3.13)

where T is the kinetic energy and U is the potential energy of the system, iq is the i-th general coordinate

and iQ is the corresponding generalized force (or moment). The term iQ is separated as

 ,= −i i d iQ   (3.14)

where i is the active torque of the i-th motor applied between the i-1 and i-th links. The term ,d i

symbolizes the disturbance torques. These disturbances generally come from friction or for example in

our case gravity, since the real physical robotic arm doesn’t perfectly horizontal. For the mathematical

model we only consider the linear part of these disturbances, which are the viscous friction of the joints,

setting , =d i i iq  , where i is the coefficient of the viscous friction.

We can write the kinetic energy in the form

 ()
1

2
= TT q H q q (3.15)

where  1 2=
T

nq q q q ,  1 2=
T

nq q q q and ()  n nM q is the generalized inertia

matrix. In our case 2=n .

Fig. 29. The two-degrees-of-freedom robotic arm

To obtain the generalized inertia matrix, the first step is to determine the appropriate transformation

matrices, which are

 () ()

1 1 2 2 1

1 1 2 2

0,1 1 1,2 2

0 0 0

0 0 0 0
,

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

− −   
   
   = =
   
   
   

c s c s l

s c s c
T q T q (3.16)

where cos=i ic q and sin=i is q . These matrices are in the form

 ()
1, 1, 3

1, 1, 1,, 3 ,
0 1

− −

− − −

 
=   
 

i i i i

i i i i i iT

R p
T R SO p . (3.17)

38

The second step is the expression of the coordinates of the center of masses in their appropriate

coordinates systems, and their transformation back to the inertial frame, which is fixed to the base of the

robotic arm.

  1 2
1 1 1 2 20 , 0 0 = = 

T T

c cx cy c cxr l l r l (3.18)

where the upper index indicates the coordinate system where the vector is expressed. To transform the

vectors back to the base coordinate system we apply

 () () ()
0

0,1 1 1,2 2 1, , i=1, ,n
1 1

−

   
=        

   

i
i i

i i i

r r
T q T q T q . (3.19)

After this, the velocities of the center of masses are obtained in the base coordinate system by calculating

the Jacobians and multiplying it by the first derivative with respect of time of the general coordinate

vector q .

()0

10
, ,

, i=1, ,n


= = 


i i

i vi

r q q
r q J q

q
 (3.20)

where 3 n
viJ is the Jacobian matrix corresponding to the velocity of the i-th link’s center of mass.

The angular velocities are also needed to express the kinetic energy. These are in the form

 0
0, 0,

  =  
T

i i iR R (3.21)

where   denotes the skew symmetric matrix of the cross product, which satisfies

  3, ,r =   r r   and

  

0

0

0

 −
 

 = − 
 − 

z y

z x

y x

 

  

 

 . (3.22)

The Jacobian matrix for the angular velocity of the i-th link in the base coordinate system is obtained by

0

,


=



i
iJ

q



 . (3.23)

Now the generalized mass matrix can easily be expressed by

 () (), , , 0, 0, ,
1=

=  +    
n

T T i T
i v i v i i i i i i

i

H q m J J J R R J  . (3.24)

Applying the Euler-Lagrange equations we get

 ()
() ()

1 1

1

2= =

     
+ − + − =           
 
n n

T
i

i ii i

H q H q U
H q q q q q q q

q q q
  . (3.25)

where  1=
T

n   and  1=
T

n   . Let us rewrite this equation to a simpler form

 () (),+ =H q q h q q  (3.26)

39

where ()
() ()

1 1

1
,

2= =

     
= − + −           
 
n n

T
i

i ii i

H q H q U
h q q q q q q q

q q q
 . Going back to our example, the

following expressions are obtained

 ()
() () ()

()

2 2 2 2 2
1, 2, 1 1 1 2 1 2 1 2 2 2, 2 2 2 1 2

2 2
2, 2 2 2 1 2 2, 2 2

2  + + + + + +  + +
 =
  + +  +
 

z z cx cy cx cx z cx cx

z cx cx z cx

m l l m l c l l l m l c l l
H q

m l c l l m l
 (3.27)

 ()
()2 1 2 2 2 1 2

2
2 1 2 2 1

2
,

 − +
=  
  

cx

cx

m l l s q q q
h q q

m l l s q
. (3.28)

Since ()H q is a positive-definite matrix, its inverse, ()
1−

H q exists. The state-space representation of

the system is

 () () ()
1 1

0

,
− −

    
= +    

−        

=

qqd

qdt H q h q q H q

y q


 (3.29)

The robotic arm is exact linearizable by static feedback with

 () (),= +H q v h q q (3.30)

which is also referred to as the computed torque method. The closed-loop becomes

 =q v . (3.31)

The same result is obtained following the algorithm for the exact linearization of MIMO systems via

feedback. The reader can check that the relative degree of the system is    1 2 2 2= =r r r with

()
() ()

() ()
()

1 1

2 2

1 1
11 1 2 1

1 1
1 2 2 2

− −
−

− −

 
= = 
  

r r
g f g f

r r
g f g f

L L h x L L h x
A x H q

L L h x L L h x
 () () () () ()1 2

1

1 2 ,
−

 = = − 

T
r r
f fb x L h x L h x H q h q q

 (3.32)

where  1 2 1 2=
T

x q q q q and the state space model is partitioned into the form

 () () ()1 1 2 2= + +x f x g x u g x u () ()1 1 1 2 2 2, = = = =y h x x y h x x . (3.33)

The feedback law is () ()= +u x x v  with () () ()
1−

= −x A x b x and () ()
1−

=x A x . This way the

closed loop becomes

1 3 1

2 4 2

= =

= =

x x v

x x v
 (3.34)

which is clearly equivalent to (3.31).

To ensure exponential decay of the reference tracking error = −e r q , we need to set the coefficients

1 and 2 of the differential equation

 1 2 0+ + =e e e  (3.35)

40

appropriately. To this aim, let us choose the eigenvalues of the error dynamics to be negative real

numbers such that

 ()()2 2 2
1 2 1 1 2 1 0+ + = + + = + + =s s sT sT s T sT  . (3.36)

Thus the coefficients are

 1 2 2

2 1
, = =

T T
  . (3.37)

Then the nominal system’s closed loop transfer function has the form

 2
0 2

1 2

  
=  

+ +  
G diag

s s



 
. (3.38)

Now let us suppose that the robustifying controller in the outer loop successfully enforces this transfer

function on the exact linearized system. Then if we set the input of the controller to

 1

2 2

1
*= + +r r r r



 
 (3.39)

then the output becomes

 () () () () () () ()* 22 1
0 2

2 21 2

1    
=  =  + + =   

+ +    
Y s G s R s diag R s sR s s R s R s

s s

 

  
 (3.40)

where () () ()*, ,Y s R s R s are the Laplace transforms of the vectors () () (), * ,y t r t r t . The complete

control loop for the robotic arm is shown in Fig. 30, a similar approach was presented in [11].

Fig. 30. The proposed controller solution for the robotic arm

For the robotic arm in our lab, we consider the geometrical parameters (1 2 1 1 2, , , ,cx cy cxl l l l l) and masses (

1 2,m m) known, system identification is performed for the inertias (1, 2,, z z) and the viscous friction

coefficients (1 2. ). The parameters are identified separately for each link. The first link is fixed to the

base and the second link is rotated by the second motor. Luckily the construction of the robotic arm is

such, that this second link can be rotated around indefinitely. After that, the second link is fixed to the

first as depicted in Fig. 31. A relay-based identification method is used in both cases. Since static friction

is present, which is a nonlinear effect, the relay’s input is the angular velocity of the link in such a way,

that the link’s rotation doesn’t change direction and does not get close to zero. This way the effect of

static friction can be eliminated.

41

Fig. 31. The setups used for the parameter identification

Let us focus on the identification of the second link, the method used for the first link being similar. The

identification is done using Matlab. The sampling time of the data collection was 10 =sT ms . We found

that the best fit is obtained by an ARMAX model, which has the form

 () () () () () ()= − +A z y t B z u t nk C z e t . (3.41)

Since we know that the structure of the transfer function is

 ()
()

() ()
2

2

2 2 2

1
= =

 +

Q s
W s

T s s s 
 (3.42)

where ()2Q s and ()2T s are the Laplace transform of the angle ()2q t and the torque ()2 t respectively,

and 2 is the moment of inertia of the second link computed for the axis of rotation, not for the center

of mass. Since there has to be an integrator in the system, we let the integral of the torque be the input

of the system, and after rearranging we arrive at

 ()
()

()

2* 2
2

2 2 2
2

1

1 1
= = =

 + +

Q s K
W s

s sT
T s

s


. (3.43)

Using the fact that the mapping between continuous poles and discrete poles is bijective the order of the

polynomial ()A z is known to be 1. Unfortunately the same property does not apply to the zeros of the

system, but as a rule of thumb the order of ()B z and ()C z is chosen to be the same as ()A z .

Fig. 32. The concept of the relay identification method presented in a block diagram

The identification thus results in a system with one pole. This discrete pole can be easily transformed

into a continuous one by
()ln

=
p

p

s

z
s

T
. The time constant is 2

1
=
− p

T
s

. The DC gain or 2K is obtained

42

by substituting ones in places of the variable z , such that
()

()2

1

1

=
=

=

B z
K

A z
. Then by using …. we get the

following parameters

 2
2 2

2 2

1
,  = =

T

K K
 . (3.44)

The same procedure is carried out with the first joint coordinate 1q , the obvious difference is that 1 is

such that it also contains the rotational inertia of the second link fixed to the first one as depicted in Fig.

31. In the mathematical model, we used the inertias computed at the center of masses, so we need to

express them as such. Using Steiner’s theorem, it is clear that

() ()

2
2 2, 2 2

22 2
1 1, 1 1 1 2, 2 1 2

 = +

 = + + + + −

z cx

z cx cy z cx

m l

m l l m l l
 (3.45)

where the moments of inertias 1, 2,,  z z can easily be calculated.

Now we are in position to choose the uncertain parameters and their parameter space. Since the usual

task that a robotic arm has to carry out is to move an object in space which is fixed to the last link (due

to it being a tool used in manufacturing, painting, welding etc. or grabbing an object with the help of its

grippers), we consider the mass, center of mass and moment of inertia of the second link uncertain, as

well as the coefficients of viscous friction for both joints.

Let loadm denote the mass of the load moved around by the manipulator. Then the new center of mass

of the second link reads

 2 2 2
2 ,

2

+
=

+

cx load
cx load

load

m l m l
l

m m
. (3.46)

The physical robotic arm at the department is built by a former student, the geometrical parameters

and masses have been determined from his thesis. These are given in Table 2.

Table 2. The parameters which are used in the identification

Parameter [unit] Value

 1m kg 1.815

 2m kg 0.735

 1l m 0.44

 2l m 0.28

 1cxl m 0.265

 1cyl m 0.009

 2cxl m 0.082

The identification described before is carried out using these values. The results for the moments of

inertia and viscous friction coefficients are

 2
1, 0.102 kgm =z

43

 2
2, 0.0033 kgm =z

 1 0.066 = Nms rad

 2 0.012 = Nms rad

Now consider that the maximal payload has mass 1 kg=loadm . This gives us a range for the uncertain

parameters, which the robustifying controllers need to cover. For the viscous friction coefficients we

take an arbitrary range. Table 3 summarizes the uncertain parameters and their range.

Table 3. The uncertain parameters for the robotic arm

Parameter [unit] Nominal value Min. value Max. value

 2m kg 0.735 0.6 1.7

 2cxl m 0.082 0.08 0.1

2
2,
   z kg m 0.0033 0.003 0.032

 1 Nms rad 0.066 0.02 0.1

 2 Nms rad 0.012 0.005 0.05

A grid with 53 243= vertices has been defined to cover the uncertain parameter ranges. The numerical

linearization is carried out on the closed loop system containing the nonlinear dynamics with parameters

from each vertex and the linearizing feedback with nominal parameters. This process results in a set of

linear systems. The weighting functions ()1W s and ()2W s satisfying (3.3) for this example read

()

()

2

2

1 2

2

2

2

2 2

2

0.6019 10.53 52.51
0

24.55 177.7

1.32 16.97 28.39
0

11.69 12.1

1.322 7.159 6.044
0

9.395 25.99

0.9935 13.24 54.03
0

12.47 23.24

 + +
 

+ + =
 + +
 

+ + 

 + +
 

+ + =
 + +
 

+ + 

s s

s s
W s

s s

s s

s s

s s
W s

s s

s s

 (3.47)

Fig. 33. The uncertainty weighting functions for the robotic arm

44

Using the interconnected structure defined in (3.4) the synthesis of the robust controllers can be done

using the hinfsyn() command in Matlab. To test the performance of the closed loop system a circular

reference path is defined in the workspace in the form

()

()

0.6 sin

cos

= +

=

d

d

x r t

y r t




 (3.48)

where the subscript d denotes that it is the desired trajectory, with 0.16 =r m and 3 = rad s . The

derivatives of the trajectory can easily be calculated. The system starts from the initial state

 0 0 0 0 0=
T

x so an initial polynomial reference trajectory is constructed that leads the system to

the beginning of the circular path. This initial path takes 0 3 =T s , the boundary conditions are

() () ()

() () () () () ()

, , ,

, 0 , , 0 , , 0 ,

0 0 0 0 0 0

0 0 0

= = =

= = =

i d i d i d

i d i circular i d i circular i d i circular

q q q

q T q q T q q T q
 (3.49)

for 1,2=i , where the subscript ‘circular’ denotes that the joint variable’s value corresponds to the

circular portion of the reference trajectory at time 0. To satisfy all boundary conditions the function of

the desired joint variables takes the form

 () 5 4 3 2
, 0, 1, 2, 3, 4, 5,= + + + + +i d i i i i i iq t a t a t a t a t a t a (3.50)

where . j ia . The derivatives are easily obtained

 () 4 3 2
, 0, 1, 2, 3, 4,5 4 3 2= + + + +i d i i i i iq t a t a t a t a t a () 3 2

, 0, 1, 2, 3,20 12 6 2= + + +i d i i i iq t a t a t a t a (3.51)

Using the boundary conditions (3.48), the three coefficients 3,ia , 4,ia and 5,ia are set to 0. The remaining

three coefficients are obtained by solving a simple linear system of equations.

()
()
()

5 4 3
0 0 0 0. ,

4 3 2
0 0 0 1. ,

3 2
2. ,0 0 0

0

5 4 3 0

020 12 6

    
    

=    
         

i i circular

i i circular

i i circular

T T T a q

T T T a q

a qT T T

 (3.52)

This provides as all the necessary coefficients to construct the initial reference signal in the joint

coordinates. The circular reference trajectory however have to be transformed from the workspace to

the joint space defined by 1q and 2q which is called the problem of inverse kinematics. In this simple

example there exist an exact analytical computational method to determine the inverse kinematics. Since

()

()

1 1 2 1 2

1 1 2 1 2

cos cos

sin sin

= + +

= + +

d

d

x l q l q q

y l q l q q
 (3.53)

To determine the values of 1q consider the following operations:

()

()

2 1 2 1 1

2 1 2 1 1

cos cos

sin sin

+ = −

+ = −

d

d

l q q x l q

l q q y l q
 (3.54)

Squaring both equations, summing them then simplifying and rearranging yields

 2 2 2 2
1 1 1 1 1 22 cos 2 sin+ = + + −d d d dl x q l y q x y l l (3.55)

45

which is an equation of the form cos sin+ =A B D  . Which has solutions

2 2 2 2 2 2

2 2 2 2
sin , cos

+ + − + + −
= =

+ +

DB A A B D DA B A B D

A B A B

 
  (3.56)

where the pair (),  can either be ()1, 1− or ()1,1− since the equality 2 2sin cos 1+ =  has to be

satisfied. This provides us two pairs of ()sin ,cos  where each pair defines exactly one angle  ,

which is obtained by ()atan 2 sin ,cos=   if the workspace condition 2 2 2 0+ − A B D is satisfied.

If not, it means that the desired point cannot be reached by the robotic arm, since it is not in its

workspace. In our case out of the two possible solutions of 1q we choose the one that is closer to the

previously defined 1q . The other joint variable is obtained by considering

 () ()1 1 1 1
1 2 1 2

2 2

sin cos
sin , cos

− −
+ = + =d dy l q x l q

q q q q
l l

 (3.57)

and then proceeding with the calculation

 () ()()2 1 2 1 2 1atan 2 sin ,cos= + + −q q q q q q . (3.58)

Since these are not proper mathematical formulas in the sense that they are not in closed form, the

derivatives must be obtained in a different way. Thankfully, the joint velocities are much easier to

compute using the Jacobian of the TCP. Let ,d TCPr denote the vector  
T

d dx y . The derivative of the

reference trajectory in the workspace is

,

,


= =



d TCP

d TCP TCP

r
r q J q

q
 (3.59)

where TCPJ is the Jacobian of the TCP. From this equation the joint velocities are

 1
,

−= TCP d TCPq J r (3.60)

if the inverse of the Jacobian exists. If we integrate this expression, we get the joint references. Indeed,

in the case where there is no analytical solution for the inverse kinematics, this (numerical) integration

is used for the joint reference signals. One more derivative is needed however, given by

 (), = = +TCP
d TCP TCP TCP

dJd
r J q q J q

dt dt
 (3.61)

which means that

 1
,

−  
= − 

 

TCP
TCP d TCP

dJ
q J r q

dt
. (3.62)

The final reference signal then consists of the initial path leading the system to the joint variables

corresponding to the beginning of the circular path and the joint variables of the circular path itself.

Before the implementation of the controller on the real robotic arm, the three different control structures

have been simulated: one without robustifying controller (referred to as NORC), a variant with a robust

serial compensator (referred to as SRC) and a variant with the 2DOF robustifying controller (referred to

as 2DOFRC). For each one of them, five simulations have been executed with distinct samples from the

uncertain parameter space. For each cycle of simulations each controller architecture is controlling a

46

plant with the same parameters. The results of the first simulations are shown below. This is the ideal

case; joint frictions are neglected except for the linear/viscous part and there are no disturbances at the

plant inputs. Fig. 34 show the path of the TCP for each controller. Each one of them gives acceptable

results, however the best reference tracking performance is achieved with 2DOFRC.

Fig. 34. The TCP paths for the three controller variants

One of the features of robust controllers is their ability to attenuate external disturbances which will

inevitably arise in the physical realizations of control systems. Another set of simulations have been

exceuted with disturbance torques acting on each joint. This effect is similar to that of the friction at the

joints. The results are seen on Fig. 35.

Fig. 35. The TCP paths for the three controller variants with external disturbances

Looking at the path of the TCP it is obvious that the NORC variant gives unsatisfactory performance.

Both SRC and 2DOFRC seem to attenuate the disturbances well.

The controllers are tested on the physical system with the help of QUARC, a software solution to

implement controllers in real-time designed in Simulink with PCs running non-real-time operating

system, e.g. Windows. The Simulink block diagram is evaluated at the sampling rate specified by the

user. Our implementation uses a sampling time of 10 ms, which means that whatever the operating

system’s task is, it is interrupted, and the Simulink diagram is called for one iteration. The solver used

is called ode14x in Matlab. The accuracy of lower order solvers was all insufficient and made the closed-

loop system containing the robust controllers unstable. As the MathWorks document states this solver

uses an implicit function of the state and the state derivative to compute the next state of the system,

 () () ()1 1 0+ − −  + =x n x n h x n (3.63)

where ()x n is the state variable and ()x n is the derivative of the state variable at the n -th time step,

with h as the step size. This is then evaluated by the combination of Newton’s method and extrapolation

from the current state.

47

The torques on the joints of the physical system are applied by geared DC motors which are driven by

servo drivers. These drivers are set to current control mode, meaning that they output a current

proportional to the voltage at their input. Since the torque of a DC motor is proportional to the current

of the armature, this basically means that this is a torque control setup. There are special blocks in

Simulink allowing the user to interface with the encoders and the servo controller. The incoming angle

and outgoing torque signals have to be multiplied by gains determined by, for example, the gear ratio,

encoder resolution and the gain of the servo driver.

The reference trajectory during the physical test has the same form as in the simulations, however the

radius and speed have been lowered simply for safety reasons, they are 0.08 m=r and 1.5 = rad s .

The joint angle outputs are shown below in Fig. 36.

Fig. 36. The joint angles of the physical robotic arm for the non-robust and 2DOF controller variants

This test really shows the advantage of the robust 2DOF controller: as it is clearly seen, the classical

computed torque method was unable to attenuate the effect of friction at the second joint, the “plateaus”

that show the presence of static friction at low torques and speeds are really prominent. In contrast, the

robust controller provides significantly better performance. Fig. 37 shows the same test in the

workspace, where the path of the TCP is traced.

48

Fig. 37. The TCP path of the physical robotic arm the non-robust and 2DOF controller variants

It is obvious that the robust controller variant has better performance, which is the result of the

previously discussed attenuation of the static friction.

3.3 Quadcopter (MIMO)
Next a more complex system is presented as a quadcopter moving through 3D space [12]. This is also

an underactuated system, meaning it has less actuators than degrees of freedom. To create the forces and

torques acting on the vehicle, the four propellers need to rotate in specific directions and speeds. For

simplicity we omit these considerations and the actuator dynamics since they can easily be implemented

on a real quadcopter and not relevant in the proposed control architecture. This means that the inputs of

the system are the torques and forces themselves.

Fig. 38. The coordinate frames used to determine the orientation of the quadcopter

To derive the mathematical model two separate coordinate systems are considered: one is inertial or

“stationary” and one is fixed to the quadcopter. The inertial frame is conventionally chosen as the North-

East-Down coordinate system, where the z axis points downwards. The orientation of the vehicle is

represented by the coordinate frame fixed to it at the center of mass and is described as a rotation matrix

relative to the inertial frame. The rotation matrix is expressed with ZYX Euler angles. The matrix

describing the orientation is thus the product of the three elementary rotational matrices

()

1 0 0

0

0

 
 

= − 
 
 

xR c s

s c

 

 

 ()

0

0 1 0

0

 
 

=
 
 − 

y

c s

R

s c

 

 

 ()

0

0

0 0 1

− 
 

=
 
  

z

c s

R s c

 

  (3.64)

and is denoted by () () () () (), , 3=   zyx z y xR R R R SO      . The rotation matrix thus has the form

49

 (), ,

 − +
 

= + − 
 − 

zyx

c c s s c c s c s c s s

R c s s s s c c c s s s c

s s c c c

           

           

    

   . (3.65)

The mathematical model is derived using Newton and Euler equations for a rigid body in space. Let

 =
T

   denote the vector for the Euler angles. The quadcopter’s coordinates and linear

velocities are  =
T

r x y z and  =
T

v x y z respectively. The angular velocity in the inertial

frame is the derivative of  with respect to time and is denoted by = . The linear and angular

velocities in the body frame are denoted by  =
T

bv u v w and  =
T

b p q r . The transformations

of these velocities between the inertial and body frame are given in

()

()
3 3

1
3 3

0

0



−


    
=     

      

T
zyxb

b

Rv v

T 
 (3.66)

where (), ,T    can be derived using the fact that   =  TR R and has the form

 ()

1

, , 0

0

 
 

= − 
 
 

s t c t

T c s

s c c c

   

 

   

   (3.67)

Its inverse exists in the neighborhood of the origin, in other words in the neighborhood of

 0 0 0=
T

. Now the Newton Euler equations can be written in the body frame as

 

 
3 3 3 3 3

3 3 3 3

0 0

0 0

 

 

 −        
= +        

−          

b b bb

b b bb

mI v v fm

J J



  
 (3.68)

with m as the mass,  =  

T

b x y zf f f f and  =  

T

b x y z    as the total force and torque applied

in the body frame and

0 0

0 0

0 0

 
 

=
 
  

x

y

z

J

J J

J

 (3.69)

as the matrix of the moment of inertia of the quadcopter, which is constant in the frame fixed to the

body. The external forces are

 , ,= − +T
b zyx z b t z b df mgR e f e f . (3.70)

The unity vector 3
, z be points in the direction of the z axis of the body frame, tf is the amplitude

of the force produced by the propellers lifting the quadcopter (also known as the control force) and
3df is the vector of the disturbing forces (e.g. wind). The external moments have the form

 = − +b b b dm g  (3.71)

50

where 3b is the vector of the control torques, 3d are the disturbing torques and 3bg are

the gyroscopic moments caused by the rotors. The gyroscopic moments are usually negligible in a

typical application, we will consider them disturbances from now on.

The state space representation of the whole system is given below. The vector of the states is

 =
T

x x y z x y z p q r   . Here, a simplification is made by setting

   = 

T T
p q r   which holds true for small angles of movements [13].

The state space equations are in the form

 () ()
4

1=

= + i i
i

x f x g x u (3.72)

where

 ()

()
()

()

() ()

()

()

1

0

0

0

0

0

0

, 0 1

0
1

1

0

0

0

  
  
  
  
 

 +   
  − 
 
+  +  
 = = − + 
  − − 
 

− −   
 − 
 
 − 

   

y z x

z x y

x y z

x

y

z

q s c r c c

q c r s

p q s t r c t

f x g x m s s c c s

m s c c s s
g

m c c
J J qr J

J J pr J

J J pq J

   

 

   

    

    

 

















 (3.73)

()  

()

()  

2

3

4

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

=

 =  

=

T

x

T

y

T

z

g x J

g x J

g x J

The controlled outputs of the quadcopter is the absolute position and the yaw angle  . This results in

an output function in the form

 ()  = =
T

y h x x y z  . (3.74)

As previously discussed, we seek a static feedback using the states as

 () ()= +u x x v  (3.75)

where v is the new input. The first step is to define the vector of the relative degree. However we find

that the relative degree does not exists, since the matrix (2.63) of this system is

51

 ()

()

()

()

() ()

1 0 0 0

1 0 0 0

1 0 0 0

0 0

 − +
 
 − −
 =
 −
 
 
 y z

m s s c c s

m s c c s s
A x

m c c

s J c c J c

    

    

 

   

 (3.76)

which is clearly singular. This happens because the input 1u affects 1 2,y y and 3y , while none of them

is affected by the rest of the inputs. The solution to these kinds of problem was presented earlier in the

chapter discussing the theoretical background of MIMO exact linearization, that is to delay 1u in such a

way that it appears later in (2.63). This is done by applying a double integrator at the input of the original

system, which delays 1u by two differentiations.

1 1

1 2

2 1

=

=

=

u

u



 



 (3.77)

for a consistent notation we also set , i=2,3,4=i iu u as the other inputs. The resulting augmented

system’s state space model uses the state variable vector

  1 2=
T

x x y z x y z p q r     (3.78)

and has the form

 () ()
4

1=

= + i i
i

x f x g x u (3.79)

where

 ()

()

()

()

()
()

()

1

1

1

2

1

1

1

0

 
 
 
 
 

 +  
  − 
 

+  +  
 
− + 
 = − − 
 

− 
 
 
 
 
 − 
 

−  
 

−   

y z x

z x y

x y z

x

y

z

q s c r c c

q c r s

p q s t r c t

m s s c c s

f x m s c c s s

m c c

J J qr J

J J pr J

J J pq J

   

 

   

    

    

 









 (3.80)

52

()  

()  

()

()  

1

2

3

4

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

=

=

 =  

=

T

T

x

T

y

T

z

g x

g x J

g x J

g x J

It is straightforward to show that this augmented system has a relative degree vector of

   1 2 3 4 4 4 4 2=r r r r and that

() () () () () ()1 2 3 4

1 2 3 4
  = + =
 

T
r r r r

y y y y b x A x u v (3.81)

where

 ()

() ()

() ()

1 1

1 1

1 1

0

0

0

0 0

 − + − − −
 
 
 
− − − + 
 
 =
 −
 
 
 
 
 
 

x y

x y

x y

y z

s s c c s c s s c s c c

m J m J m

s c c s s c c s s s s c

m J m J m
A x

c c s c s

m J m J m

s c

J c J c

           

           

    

 

 

 

 

 
 (3.82)

which is not singular in the neighborhood where the system is usually operated. The linearizing feedback

is then

 () () () ()1−  = − + = + u A x b x v x x v  . (3.83)

The block diagram of the system with dynamic linearizing feedback is seen in Fig. 39. The coordinate

transformation ()= z x is given by

53

()
()

()

()
()
()

()

()
()
()

()

()
()
()

1
1

1
2

2
1

3
3

14

25

26

2
27

3
8 2

9 3

10 3

2
11

3

312
3

13
4

14
4

 
   
   
   
   
   
   
   
   
   
   
  = = 
   
   
   
   
   
   
   
   
   
    

 

f

f

f

f

f

f

f

f

f

f

h x xz
L h x xz

xL h xz

L h x xz

h xz

L h xz

L h xz

z L h x

z h x

z L h x

z L h x

z
L h x

z
h x

z
L h x

()

()

()

3

3

3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y

y

y

y

z

z

z

z





 (3.84)

which if applied together with the linearizing feedback transform the system into a linear one. This

MIMO linear system can be thought of as 4 different SISO linear systems, since we achieved non-

interacting control using this algorithm. These systems in state space form have the following matrices

0 1 0 0 0 1

0 0 1 0 0 0
, , , i=1,2,3

0 0 0 1 0 0

0 0 0 0 1 0

     
     
     = = =
     
     
     

T
i i iA b c (3.85)

and

 4 4 4

0 1 0 1
, ,

0 0 1 0

     
= = =     
     

TA b c . (3.86)

The state vectors are

()  

()  

()  

   

3

1 1 2 3 4

3

2 5 6 7 8

3

3 9 10 11 12

4 13 14

 = =
 

 = =
 

 = =
 

= =

T T

T T

T T

TT

x x x x x z z z z

x y y y y z z z z

x z z z z z z z z

x z z 

 (3.87)

The MIMO system thus has the form

54

1 1

2 2

3 3

4 4

1

2

3

4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

   
   
   = + = +
   
   
   

 
 
 = =
 
 
 

A b

A b
z z v Az Bv

A b

A b

c

c
y z Cz

c

c

 (3.88)

Our now is to construct a state feedback to this linear system, where the poles are moved to a more

favorable location, since the type of robust control design we will consider cannot be executed for

nominal systems containing poles at the origin.

Fig. 39. The exact linearizing control of the quadcopter

For simplicity we want all the poles to be at 2= −s . We found that for sufficient performance of the

proposed control algorithm (and for the non-robust variant) integral control is also needed. The block

diagram of this controller structure is shown in Fig. 40. This means that for each SISO subsystem the

state vector is extended by another variable, = Iz Cz dt .

Fig. 40. Integral state feedback control

The state feedback in question need to be designed for the extended linear system containing Iz in the

state vector. This is given by

0

0 0

      
= + = +      
      I I

z zA B
u Az Bu

z zC
. (3.89)

Considering SISO subsystems the synthesis of the gains is obtained by the Ackermann-formula.

   ()1
, , ,0 0 1 i=1,2,3,4−  =  i i I i C i C iK K M A . (3.90)

The input for the linearized MIMO system is thus

55

 () ()

1,1

2.2

3,3

4,4

0 0 00 0 0

0 0 00 0 0

0 0 00 0 0

0 0 00 0 0

  
  
  = − + −
  
  
    



I

I

z
I

I

KK

KK
u N v z v y dt

KK

KK

 (3.91)

where the constant matrix zN is used to match the dimension of v to z .

1,

2,

1, 2, 3, 4,
3,

4,

0 0 0 1

0 0 0 0 1
, ,

0 0 0 0 0

0 0 0 0

   
   

    = = = = =       
   
    

z

z

z z z z z
z

z

N

N
N N N N N

N

N

. (3.92)

Finally, we are ready to design the robustifying controller. The uncertain parameters are the moments

of inertias and the mass of the quadcopter. This consideration is useful in for example delivery drones

that need to carry payloads of varying masses. In this example the chosen values for the nominal

parameters and their uncertainty range is given in Table 4.

Fig. 41. Delivery drone with payload [14]

The same procedure is used as described in the previous examples, namely covering the uncertain

parameter range with a sufficiently fine grid, and linearizing the system with parameter values at each

vertex to obtain the uncertainty shaping transfer matrices.

Table 4. The uncertain parameters of the quadcopter

Parameter [unit] Nominal value Min. value Max. value

 m kg 1 0.8 1.6

2 
 xJ kg m 0.01 0.006 0.016

2 
 yJ kg m 0.01 0.006 0.016

2 
 zJ kg m 0.03 0.018 0.048

The resulting linearized models confirm that the uncertainty weighting function ()2W s can be set to .I

This results in

56

 ()

2 4

2

2 4

2

1 2 5

2

2 4

2

1.09 0.0058 1.56 10
,

0.8371 2.284

1.085 0.005 1.52 10
,

0.8697 2.279

0.478 0.0016 6.57 10
,

0.3597 1.427

0.68 0.0146 3.03 10

8.908 5.127

−

−

−

−

 + + 
 

+ + 
 + + 
 
 + +

=  
+ +  

 + +
 

+ +  
 + + 

s s

s s

s s

s s
W s diag

s s

s s

s s

s s

 (3.93)

This uncertainty weighting transfer function matrix is depicted in Fig. 42, where the linearized systems

sampled at the grid vertices are drawn in cyan and ()1W s is drawn in red.

Fig. 42. The uncertainty weighting functions for the quadcopter

Despite the resulting uncertainty weighting transfer function matrix from linearization we found that if

the synthesis is carried out with (3.93) the resulting robust controller performs rather poorly if the mass

differs from the nominal value. This happens at the third output, the altitude of the aircraft. This is

probably caused by gravity, which means that there are significant uncertainties at lower frequencies,

which does not appear during the numerical linearization. To solve it the third entry of (3.93) was

changed to a unity gain. This phenomenon needs to be further investigated.

The nominal transfer function has the form ()  0 1 2 3 4, , ,=G s diag g g g g , where

()

()

5 4 3 2

4 3 2

80 32
, i=1,2,3

10 40 80 80 32

75 125

15 75 125

+
=

+ + + + +

+
=

+ + +

i

s
g s

s s s s s

s
g s

s s s

 (3.94)

The reference model is the same as the nominal system, since our aim with the robust controller is to

enforce nominal behavior of the closed loop system. The resulting controller is of order 108, however

during simulations it was reduced to 50, where adequate performance was achieved even with this rather

drastic reduction.

57

Fig. 43. The proposed controller solution for the quadcopter

The input reference is such, that for , x y and z the derivatives up to the fifth order is needed, while for

the yaw angle  up to the third order. The following expressions show, how to formulate the input

signals. First let us look at , x y and z . Taking the linear combination of the derivatives as

 (5) (4) (3)* 10 40 80 80 32= +  +  +  +  + r r r r r r r (3.95)

and taking its Laplace transform () ()* *→r t R s through a filter we obtain

 () ()
5 4 3 21 10 40 80 80 32

*
80 32 80 32

+ + + + +
= =

+ +

s s s s s
R s R s

s s
. (3.96)

Applying this modified signal to the nominal system yields

 () () () ()1= =Y s g s R s R s (3.97)

which means that the tracking error is decaying during operation. The same process is carried out for all

the reference signals.

First the controller was tested where there were no external disturbances applied at the inputs. At first,

the controller design did not contained an integrator which meant that there was a large, constant error

at the output 3y z= (which is the altitude of the aircraft), if there was a difference in the nominal and

actual mass. That’s why the previously detailed design with the integrator was applied. The outputs of

the non-robust variant are depicted in Fig. 45. It performs relatively well, however as it is seen in Fig.

46 this can be improved with the 2DOF robust design. Here it is clear that the tracking error is less than

for the non-robust case.

Fig. 44. The outputs for the quadcopter with the non-robust controller

58

During experimentation it became clear that generally speaking, the faster the reference signal is

changing the difference between the two variants becomes more significant.

Fig. 45. The outputs for the quadcopter with the proposed 2DOF robust controller

Next a series of simulations were executed with external disturbances. No significant differences were

present, which may be attributed to the integral action present in the control law, with the exception of

the output 3y z= , where the robust controller had better disturbance attenuation.

Fig. 46. The outputs for the quadcopter with the non-robust controller with external disturbances

Fig. 47. The outputs for the quadcopter with the proposed 2DOF controller with external disturbances

59

In conclusion the performance of the closed loop system was improved with the robustifying controller,

however it was not as significant as with the other examples. This may be further improved if other

performance weighting functions are chosen. We could also take into consideration the external

disturbances with adequate weighting functions, which was omitted in this thesis.

4 Conclusion
This report studied at a novel control architecture which joins two state-of-the-art techniques, namely

nonlinear feedback linearization and robust linear control (the related background has also been

presented for self-containedness). The proposed method is a cascaded structure with the linearizing

feedback inside an inner loop and the robust (or robustifying) feedback as an outer loop. A two-

degrees-of-freedom controller realizes the robustifying feedback to ensure good stability and

performance despite the parameter mismatch between the plant and the linearizing inner feedback. The

design workflow to determine the robustifying controller was detailed. It is based on the sufficiently

smooth sampling of the uncertain parameter space. Several examples were presented (ranging from

simple SISO systems to complex, MIMO dynamics) to demonstrate the usefulness of the technique.

For one specific system, namely the two-degrees-of-freedom robotic arm, the algorithm was

implemented in real-time and tested on the real plant. The uncertain parameters were chosen

considering payloads with different masses, and the rest of the parameters were identified from

measurement data. The proposed controller solution showed excellent performance in practice, which

suggests that such controllers have real application potential. In the future this method will be tested

on other mechatronic systems.

5 References

[1] L. Baratchart, M. Chyba and J.-B. Pomet, "A Grobman-Hartman theorem for control systems,"

Journal of Dynamics and Differential Equations, vol. 19, no. 1, pp. 75-107, 2007.

[2] B. Francesco és L. Andrew D., Geometric Control of Mechanical Systems: Modeling, Analysis,

and Design for Simple Mechanical Systems, New York: Springer, 2005..

[3] A. Isidori, Nonlinear Control Systems, Springer, 1994.

[4] H. E. Taha, "ENGRMAE 276. Geometric Nonlinear Control," 2019.. [Online]. Available:

http://taha.eng.uci.edu/Geometric_Control_Course.html. [Accessed 20. 10. 2020.].

[5] J. Lévine, Analysis and Control of Nonlinear Systems, Springer, 2009..

[6] K. Zhou, Essentials of Robust Control, Prentice Hall, 1999.

[7] P. M. Hof, C. Sherer and P. S. Heuberger, Model-Based Control: Bridging Rigorous Theory and

Advanced Technology, Springer, 2009..

[8] D.-W. Gu, P. Petkov and M. M. Konstantinov, Robust Control Design with MATLAB, Springer,

2013.

[9] N. Wang and B. Kiss, "A Method to Robustify Exact Linearization Against Parameter

Uncertainty," International Journal of Control, Automation and Systems, vol. 17, pp. 2441-2451,

2018.

60

[10] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge

University Press, 2017.

[11] A. A. G. Siqueira, M. H. Terra, J. Y. Ishihara and T. L. S. Barbeiro, "Underactuated manipulator

robot control via H2, H∞, H2/H∞, and µ-synthesis approaches: a comparative study," Journal of

the Brazilian Society of Mechanical Sciences and Engineering, vol. 31, no. 4, pp. 279-288, 2009.

[12] D. Lee, T. Burg, D. Dawson, D. Shu, B. Xian and E. Tatlicioglu, "Robust Tracking Control of an

Underactuated Quadrotor Aerial-Robot Based on a Parametric Uncertain Model," Systems, Man

and Cybernetics, 2009, SMC 2009, IEEE International Conference, pp. 3187-3192., 2009..

[13] A. Das, K. Subbarao and F. Lewis, "Dynamic Inversion with Zero-Dynamics Stabilisation for

Quadrotor Control," IET Control Theory Applications, vol. 3., no. 3., pp. 303-314., 2009..

[14] "https://menafn.com/updates/pr/2019-02/G_d53ed61c-5image_story.jpeg," 2020.. [Online].

[Accessed 20. 10. 2020.].

