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Kivonat

A grafikus kártyák számítási teljesítményének növekedésével, továbbá az ezeken alkal-
mazott algoritmusok kifinomultabbá válásával az elmúlt években jelentősen fejlődött a
számítógépes látás. A klasszikus képfeldolgozási módszerek mellett egyre szélesebb kör-
ben terjedtek el a mély neurális hálózat alapú megoldások. Ezen módszerek jellemzője,
hogy megfelelő tanító adathalmaz rendelkezésre állása esetén a minták alapján képesek -
bizonyos korlátok között - bármilyen leképezést megtanulni. A gépi képfeldolgozás egyik
fontos területe a képszegmentálás, amely során egy képet úgy osztunk részekre, hogy egy-
egy rész egy adott objektumtípushoz tartozzon. Így tehát a kép minden egyes pixeléhez
rendelünk egy címkét, ami megmondja, hogy az adott pixel milyen típusú objektumhoz
tartozik. Városi környezetben jellemző címkék például: gyalogos, járda, út, bicikli, autó
vagy közlekedési tábla. Ezen feladat automatizált megoldása nagyon sok előnyt jelentene,
főleg, ha megfelelően rövid idő alatt képes az algoritmust lefuttatni egy számítógép. A
városi környezetben megtalálható objektumok felismerésére kialakított képszegmentációs
algoritmusok egy ígéretes felhasználási területe a vezetést támogató rendszerek, melyek
egyre több autóban vannak jelen. Ezen eszközök egy részéhez ugyanis elengedhetetlen,
hogy a rendszer szemantikailag értelmezni tudja az autót körülvevő objektumokat.
Célom egy olyan mély neurális hálózat alapú rendszer elkészítése, mely képes egy városi
közlekedési környezetre jellemző képet szegmentálni. Ehhez először áttekintem a téma-
területhez kapcsolódó releváns szakirodalmat, valamint megvizsgálok egypár korszerű, jó
teljesítményt nyújtó módszert. Mindezek alapján létrehozok egy képszegmentáló rendszert
és implementálom az azt tanító algoritmust. Ezt követően kiértékelem az egyes variánso-
kat a Cityscapes és a BDD100K adathalmazokon különböző teljesítménymutatók, mint
például intersection over union alapján.
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Abstract

Computer vision has evolved significantly in recent years with the improvements in com-
putational performance of graphics cards and the sophistication of the algorithms executed
on them. In addition to classical image processing methods, deep neural network based
solutions have become increasingly widespread. These methods are characterized by the
ability to learn, within certain limits, any mapping based on the samples, provided that
an appropriate learning dataset is available. An important field of image processing is
image segmentation, in which an image is divided into parts such that each part belongs
to a particular object type. So, we assign a label to each pixel of the image that tells us
what type of object that pixel belongs to. Labels specific to urban environments include:
pedestrian, sidewalk, road, bicycle, car, or traffic sign. An automated solution to this task
would have many benefits, especially if the algorithm could be executed in a reasonably
short amount of time by a computer. One promising application of image segmentation
algorithms for recognizing objects in urban environments is driving assistance systems,
which are present in more and more cars. For some of these tools, it is essential that the
system can semantically interpret the objects around the car.
My goal is to create a deep neural network based system that can segment the image of
an urban traffic environment. In order to do this, I first review the relevant literature on
the topic and examine a couple of state-of-the-art, well-performing methods. Based on
that, I create an image segmentation system and implement the algorithm that trains it.
Then I evaluate each variant on the Cityscapes and BDD100K datasets based on various
performance indicators, such as intersection over union.
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Chapter 1

Basics of convolutional neural
networks

1.1 Neural networks

Neural networks are function approximators. This means that they can approximate the
mapping between their input and output. To achieve this we have to train the network on
a bunch - usually thousands - of examples. The most common training method is gradient
descent. First, we have to define a loss function that measures the difference between
the expected and the predicted output. During training, we want to minimize this loss
value by computing the gradient of the loss function with respect to each parameter and
modifying them.

1.2 Basic layers

Neural networks consist of layers, at least two of them: an input layer, optional hidden
layer(s) and an output layer. The first layer serves as input for the model. The following
layers get the input from the previous layer, transform it and send it to the next layer.
The last layer serves as the output of the network.

1.2.1 Fully connected layer

Fully connected layers are essential components of neural networks. The universal approx-
imation theorem has been proven for a neural network containing a single hidden layer.
However, in this case, the width of the layer would be very large. In practice, it seems that
complex functions can be learned better using deep neural networks than a single hidden
layer-network with the same number of neurons. There have been many false "proofs" for
this theory in literature [5], but all have holes.

Each layer consists of nodes. The nodes in fully connected networks are commonly called
as neurons, referring to the biological analogy. A neuron first takes the weighted sum of
all the outputs from the neurons of the previous layer as shown in Figure 1.1 (1.1).

sl
i =

n∑
j=1

wl
j,ia

l−1
j + bl

i (1.1)
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sl
i is the weighted sum of the ith neuron in the lth layer and wl

j,i weights the al−1
j value

where j is the index of the neuron from the previous (l− 1th) layer and there are n layers
in the previous layer. bl

i is the bias value, which is another degree of freedom helping the
network to fit better by making it possible to shift the activation function.

Then, a non-linear function is applied to it (1.2), often referred to as the activation func-
tion.

ol
i = a(sl

i) (1.2)

This is the output of the ith neuron in the lth layer. Parameters b and w are learnable
through gradient descent [1].

1

2

3

...

... ...

...

Figure 1.1: A neural network containing fully connected layers.
All the nodes in the given layer are connected with all
the nodes from the previous layer. 1 - input layer, 2 -
hidden layers, 3 - output layer, source:1

1.2.2 Convolutional layer

Fully connected layers are used for a variety of problems but they have a serious disad-
vantage: when applied to image processing, the parameter space explodes. For example,
we have a (medium size) 500 × 500 × 3 RGB image so we put 64 neurons in the second
layer. This results in 500 · 500 · 3 · 64 = 48000000 trainable parameters without bias!

The solution to this problem comes from classical image processing. It adapts to the
properties of images:

• relation of pixels to each other has semantic meaning,

• elements are shift-invariant,

allowing to reduce the number of the parameters needed. The main idea behind convolu-
tional layers is the kernel which is a small matrix we slide over the image (or in the hidden
layer over the feature map). The kernel values are multiplied by the pixel values under

1https://commons.wikimedia.org/wiki/File:Neural_network_bottleneck_achitecture.svg
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them and summed for each position of the kernel in the image as shown in Figure 1.2.
Mathematically this can be formulated as:

ol
z(x, y) =

∑
c

∑
a,b

yl−1
c (x · s+ a, y · s+ b) · wl(a, b, c, z) + bl

z, (1.3)

where ol
z(x, y) is the non-activated output value in the lth layer’s zth channel in the pixel

position (x, y). yl−1
c is the output of the l− 1th layer’s cth channel. s is the stride we use

during computation: after the matrix multiplication between the kernel and the image the
kernel is shifted by this value. w and b are the weight and bias values.

The next step is to activate each value in the matrix using a non-linear function (1.4).

yl
z(x, y) = a(ol

z(x, y)) (1.4)

Figure 1.2: Convolution process. The initial matrix, the kernel,
and the result matrix formed by convolution.

For example, let us assume that we have the 500× 500× 3 RGB image and we would like
to have a 250× 250 feature map with 64 channels in the second layer using a 3× 3 kernel,
then we need 3 ·64 kernels of size 3×3. This results in 3 ·64 ·3 ·3 = 1728 parameters. Even
if we need multiple layers, this solution scales better in terms of the number of parameters.

Visualizing the first hidden layer’s activations, basic image processing step results can be
observed, such as detecting corners, edges, sharpening, blurring. Going deeper, patterns
get more complex indicating that these layers learn more abstract information, recognizing
objects not only on a given image but generalized for object classes. That is one of the
reasons why this type of deep neural network became so widespread.

1.3 Activation functions

If linear activation function is applied to the layers’ values, then no matter how many
hidden layers in the neural network is stacked, the final output is still a linear combination
of the input data. For neural networks to function as universal approximators a non-linear
function must be used.

3



1.3.1 Sigmoid

Nowadays, sigmoid function is used in binary classification problems to activate the output
layer. However, sometimes this is also used in case of segmentation. If we have objects
which can be classified into more than one classes, we can use sigmoid activation. Its
output is between 0 and 1 ((1.5)). We can interpret this value as a certainty about a class.

sigmoid(x) = 1
1 + exp (−x) (1.5)

Earlier, sigmoid activation function was also used to activate hidden layers. As deep neural
networks became widespread, this caused a problem. The derivative function of sigmoid
is the following:

sigmoid’(x) = sigmoid(x) · (1− sigmoid(x)) (1.6)

Figure 1.3 shows the graph of the sigmoid and its derivative.

Figure 1.3: Sigmoid function and its derivative.

At very high and very low values sigmoid function gets saturated meaning that the cor-
responding gradients become almost zero. Gradient descent uses the chain rule to back-
propagate the error and compute the gradient with respect to each weight. This means
that many derivative values are multiplied to get the gradient of the weights in the lower
layers. Multiplying many almost-zero values results in almost zero gradient, which leads
to a very slow learning process. This phenomenon is called gradient vanishing.

1.3.2 ReLU

The solution for the vanishing gradient problem is using rectified linear unit (ReLU)
activation function in the hidden layers. The ReLU function is defined as:

relu(x) = max(0, x) (1.7)

The derivative of the ReLU function is:

relu’(x) =
{

0, if x < 0
1, otherwise

(1.8)

4



At this point, the reason why this solution works is observable: when the derivative is
back-propagated there will be no vanishing of the error signal as it is multiplied by ones
(in most cases). In the networks I examine ReLU activation is used in the hidden layers
precisely because of its aforementioned property.

1.3.3 Softmax

Softmax activation function is applied always to the last layer of the network. It is used
for multi-class classification problems, like segmentation. The ratio of the exponential of
one logit and the sum of exponentials of all logits is computed so it sums up to one (1.9).
In other words it turns logits into a probability distribution over the different classes.

softmax(xn) = expxn∑
i expxi

(1.9)

1.4 Batch Normalization

Batch normalization is a widely used technique enabling deep neural networks to train
faster and more stable by rescaling the output of a layer. It was introduced by Sergey
Ioffe and Christian Szegedy [9] from Google research lab with the aim of reducing "internal
covariate shift". ICS refers to the change in the distribution of layer inputs caused by
updating previous layers. Such continuous change has a negative impact on training. The
results show that the method works, however, the exact reason is not clarified completely.
There are some theorems aiming to clarify this reason, for example, [15].

Batch normalization transforms activation distributions to have zero mean and a unitary
variance by controlling the mean and variance of the layers’ outputs [9]:

BN(yj)(b) = γ ·

y
(b)
j − µ(yj)
σ(yj)

 + β, (1.10)

where y(b)
j denotes the jth output on the bth input of the batch, µ and σ are the mean and

standard deviation of the output computed over the batch. Two learned parameters are
introduced: β and γ, controlling the mean and standard deviation of the output.

5



Chapter 2

Previous works

To be familiar with the previous works I’ve started my thesis with a literature review on
deep learning methods for segmentation. In parallel let me introduce the basic idea of the
segmentation networks.

2.1 Simple Fully Convolutional Networks

Simple Fully Convolutional Networks (FCN ) are very popular. J. Long et al. [12] have
been the first group to develop a Fully Convolutional Network (FCN) (containing only
convolutional layers) trained end-to-end for image segmentation. By simple FCNs I refer
to the bottleneck architecture as shown in Figure 2.1. Generally speaking this is the main
idea behind the semantic segmentation networks. Information has to flow through a more
compact representation forcing the network to interpret the image and convert it to that
smaller format.

One of the biggest advantages of the FCNs is that once the kernels are learned, it can be
used for any input resolution - with some restrictions. In my case, I trained my networks
on 320 × 640 pixel images. One of my networks uses downsampling by 32. This means
that in order to enable appropriate upsampling from the bottleneck, input resolution must
be divisible by 32.

2.1.1 Encoder

The first part of these networks is an encoder. Using 2-dimensional convolution, average-
pooling and max-pooling layers a so-called feature map is made. This is the semantically
interpreted format of the input image which has much smaller resolution than the input
image. In later models, other types of convolution layers appeared, for example, dilated
convolution or strided convolution layers. In parallel, pooling layers disappeared.

2.1.2 Decoder

The second part is the decoder. This stack of layers recovers the information using 2-
dimensional convolution and upsampling layers to the original resolution. On the last
layer, a logical activation function - usually softmax - is applied. Its value is calculated
for every pixel of the image indicating which class it belongs to.

6



Fully Convolutional Networks for Semantic Segmentation

Jonathan Long∗ Evan Shelhamer∗ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [19],
the VGG net [31], and GoogLeNet [32]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [4] to the segmentation task. We then de-
fine a novel architecture that combines semantic informa-
tion from a deep, coarse layer with appearance information
from a shallow, fine layer to produce accurate and detailed
segmentations. Our fully convolutional network achieves
state-of-the-art segmentation of PASCAL VOC (20% rela-
tive improvement to 62.2% mean IU on 2012), NYUDv2,
and SIFT Flow, while inference takes less than one fifth of a
second for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [19, 31, 32], but also making progress on lo-
cal tasks with structured output. These include advances in
bounding box object detection [29, 12, 17], part and key-
point prediction [39, 24], and local correspondence [24, 9].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[27, 2, 8, 28, 16, 14, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

∗Authors contributed equally
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN),
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [27, 2, 8, 28, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [8, 16], proposals [16, 14],
or post-hoc refinement by random fields or local classifiers
[8, 16]. Our model transfers recent success in classifica-
tion [19, 31, 32] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[8, 28, 27].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature

1

ar
X

iv
:1

41
1.

40
38

v2
  [

cs
.C

V
] 

 8
 M

ar
 2

01
5

Figure 2.1: A simple fully convolutional network for image seg-
mentation. source: [12]

2.2 U-Net

The U-Net [14] is a type of FCN. It could reach good results in biomedical imaging in
2015.

2.2.1 Encoder

It has an encoder called contractive path. It consists of repeated application of two 3× 3
convolution layers, each followed by ReLU activation and a 2× 2 max-pooling layer with
a stride of 2 for downsampling as shown in Figure 2.2. At each downsampling step the
number of feature channels is doubled.

2.2.2 Decoder

In the decoder part - called expanding path - every step consists of an upsampling layer, a
convolutional layer which halves the number of the feature map channels, a concatenation
with the corresponding layer from the contractive path and two 3 × 3 convolutions with
ReLU activation. At the end a 1 × 1 convolution is applied to reduce the number of the
channels to the number of the classes.
Here, the most important architectural solution is that the second part looks like the
mirror image of the first part as can be seen in Figure 2.2. This makes it possible to
concatenate layers with same resolution from the encoder to the decoder.

2.3 Feature Pyramid Network

The Feature Pyramid Network [11] is used in object detection and segmentation frame-
works. It is based on the same basic underlying principle as the U-Net, with a slight
difference in implementation. The encoder part - called bottom-up pathway - is pro-
cessing the input image with convolutional and pooling layers. After the bottleneck, the
decoder part - called top-down pathway - is upsampling the feature map stage-by-stage

7
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box corresponds to a multi-channel feature map. The number of channels is denoted
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boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 2.2: The architecture of U-Net. The most notable feature
is that there are connections between the correspond-
ing layers of the U-shape, which have similar size.
source: [14]

merging channel-reduced feature maps from the bottom-up pathway by element-wise ad-
dition as shown in Figure 2.3. Finally, 3× 3 convolution is applied on each stage merged
feature maps to reduce the aliasing effect of the upsampling. For image segmentation, a
5× 5 and a 7× 7 MLP is used to predict object masks with different size over the objects.

2.4 Mask R-CNN

In 2017, the Facebook AI Research (FAIR) group have released the Mask R-CNN [7]
model beating other systems on some of the Common Objects in Context (COCO) [10]
challenges. This segmentation system builds on top of Faster R-CNN [13], which is an
object detection model. First, I briefly present the architecture of Fast R-CNN.
First, a ResNet 101 [6] architecture backbone extracts features from the image. This
acts as the input for the next part, the Region Proposal Network (RPN). RPN is a small
convolutional network sliding over the feature map. It extracts objectness scores for anchor
boxes. Objectness score is basically a [0, 1] value indicating if there’s an object in the
anchor box. An anchor box is a predefined-size box which is used to predict bounding
boxes by scaling them. A bounding box is a rectangle closely enclosing the object. The
regions obtained from the RPN are then fed into the RoI to bring the regions to the same
size and then predict class labels and bounding boxes using a fully connected network.
Here is the main difference between Mask R-CNN and Faster R-CNN: in Mask R-CNN,
segmentation masks are also predicted at this last step using a convolutional network as
shown in Figure 2.4.
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Deep ConvNet object detectors. With the development

of modern deep ConvNets [19], object detectors like Over-

Feat [34] and R-CNN [12] showed dramatic improvements

in accuracy. OverFeat adopted a strategy similar to early

neural network face detectors by applying a ConvNet as

a sliding window detector on an image pyramid. R-CNN

adopted a region proposal-based strategy [37] in which each

proposal was scale-normalized before classifying with a

ConvNet. SPPnet [15] demonstrated that such region-based

detectors could be applied much more efficiently on fea-

ture maps extracted on a single image scale. Recent and

more accurate detection methods like Fast R-CNN [11] and

Faster R-CNN [29] advocate using features computed from

a single scale, because it offers a good trade-off between

accuracy and speed. Multi-scale detection, however, still

performs better, especially for small objects.

Methods using multiple layers. A number of recent ap-

proaches improve detection and segmentation by using dif-

ferent layers in a ConvNet. FCN [24] sums partial scores

for each category over multiple scales to compute semantic

segmentations. Hypercolumns [13] uses a similar method

for object instance segmentation. Several other approaches

(HyperNet [18], ParseNet [23], and ION [2]) concatenate

features of multiple layers before computing predictions,

which is equivalent to summing transformed features. SSD

[22] and MS-CNN [3] predict objects at multiple layers of

the feature hierarchy without combining features or scores.

There are recent methods exploiting lateral/skip connec-

tions that associate low-level feature maps across resolu-

tions and semantic levels, including U-Net [31] and Sharp-

Mask [28] for segmentation, Recombinator networks [17]

for face detection, and Stacked Hourglass networks [26]

for keypoint estimation. Ghiasi et al. [8] present a Lapla-

cian pyramid presentation for FCNs to progressively refine

segmentation. Although these methods adopt architectures

with pyramidal shapes, they are unlike featurized image

pyramids [5, 7, 34] where predictions are made indepen-

dently at all levels, see Fig. 2. In fact, for the pyramidal

architecture in Fig. 2 (top), image pyramids are still needed

to recognize objects across multiple scales [28].

3. Feature Pyramid Networks

Our goal is to leverage a ConvNet’s pyramidal feature

hierarchy, which has semantics from low to high levels, and

build a feature pyramid with high-level semantics through-

out. The resulting Feature Pyramid Network is general-

purpose and in this paper we focus on sliding window pro-

posers (Region Proposal Network, RPN for short) [29] and

region-based detectors (Fast R-CNN) [11]. We also gener-

alize FPNs to instance segmentation proposals in Sec. 6.

Our method takes a single-scale image of an arbitrary

size as input, and outputs proportionally sized feature maps

2x up

1x1 conv +

predict

predict

predict

Figure 3. A building block illustrating the lateral connection and

the top-down pathway, merged by addition.

at multiple levels, in a fully convolutional fashion. This pro-

cess is independent of the backbone convolutional architec-

tures (e.g., [19, 36, 16]), and in this paper we present results

using ResNets [16]. The construction of our pyramid in-

volves a bottom-up pathway, a top-down pathway, and lat-

eral connections, as introduced in the following.

Bottom-up pathway. The bottom-up pathway is the feed-

forward computation of the backbone ConvNet, which com-

putes a feature hierarchy consisting of feature maps at sev-

eral scales with a scaling step of 2. There are often many

layers producing output maps of the same size and we say

these layers are in the same network stage. For our feature

pyramid, we define one pyramid level for each stage. We

choose the output of the last layer of each stage as our ref-

erence set of feature maps, which we will enrich to create

our pyramid. This choice is natural since the deepest layer

of each stage should have the strongest features.

Specifically, for ResNets [16] we use the feature activa-

tions output by each stage’s last residual block. We denote

the output of these last residual blocks as {C2, C3, C4, C5}
for conv2, conv3, conv4, and conv5 outputs, and note that

they have strides of {4, 8, 16, 32} pixels with respect to the

input image. We do not include conv1 into the pyramid due

to its large memory footprint.

Top-down pathway and lateral connections. The top-

down pathway hallucinates higher resolution features by

upsampling spatially coarser, but semantically stronger, fea-

ture maps from higher pyramid levels. These features are

then enhanced with features from the bottom-up pathway

via lateral connections. Each lateral connection merges fea-

ture maps of the same spatial size from the bottom-up path-

way and the top-down pathway. The bottom-up feature map

is of lower-level semantics, but its activations are more ac-

curately localized as it was subsampled fewer times.

Fig. 3 shows the building block that constructs our top-

down feature maps. With a coarser-resolution feature map,

we upsample the spatial resolution by a factor of 2 (using

nearest neighbor upsampling for simplicity). The upsam-

2119

Figure 2.3: The architecture of Feature Pyramid Network. Two
pyramids can be observed: the encoding (bottom-
up pathway) and the decoding (top-down pathway)
pyramids and the lateral connections between them.
source: [11]
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Abstract

We present a conceptually simple, flexible, and general

framework for object instance segmentation. Our approach

efficiently detects objects in an image while simultaneously

generating a high-quality segmentation mask for each in-

stance. The method, called Mask R-CNN, extends Faster

R-CNN by adding a branch for predicting an object mask in

parallel with the existing branch for bounding box recogni-

tion. Mask R-CNN is simple to train and adds only a small

overhead to Faster R-CNN, running at 5 fps. Moreover,

Mask R-CNN is easy to generalize to other tasks, e.g., al-

lowing us to estimate human poses in the same framework.

We show top results in all three tracks of the COCO suite of

challenges, including instance segmentation, bounding-box

object detection, and person keypoint detection. Without

tricks, Mask R-CNN outperforms all existing, single-model

entries on every task, including the COCO 2016 challenge

winners. We hope our simple and effective approach will

serve as a solid baseline and help ease future research in

instance-level recognition. Code will be made available.

1. Introduction

The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-

riod of time. In large part, these advances have been driven

by powerful baseline systems, such as the Fast/Faster R-

CNN [9, 29] and Fully Convolutional Network (FCN) [24]

frameworks for object detection and semantic segmenta-

tion, respectively. These methods are conceptually intuitive

and offer flexibility and robustness, together with fast train-

ing and inference time. Our goal in this work is to develop a

comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires

the correct detection of all objects in an image while also

precisely segmenting each instance. It therefore combines

elements from the classical computer vision tasks of ob-

ject detection, where the goal is to classify individual ob-

jects and localize each using a bounding box, and semantic

segmentation, where the goal is to classify each pixel into

RoIAlignRoIAlign

class
box

convconv convconv

Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-

stances.1 Given this, one might expect a complex method

is required to achieve good results. However, we show that

a surprisingly simple, flexible, and fast system can surpass

prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN

[29] by adding a branch for predicting segmentation masks

on each Region of Interest (RoI), in parallel with the ex-

isting branch for classification and bounding box regres-

sion (Figure 1). The mask branch is a small FCN applied

to each RoI, predicting a segmentation mask in a pixel-to-

pixel manner. Mask R-CNN is simple to implement and

train given the Faster R-CNN framework, which facilitates

a wide range of flexible architecture designs. Additionally,

the mask branch only adds a small computational overhead,

enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of

Faster R-CNN, yet constructing the mask branch properly

is critical for good results. Most importantly, Faster R-CNN

was not designed for pixel-to-pixel alignment between net-

work inputs and outputs. This is most evident in how

RoIPool [14, 9], the de facto core operation for attending

to instances, performs coarse spatial quantization for fea-

ture extraction. To fix the misalignment, we propose a sim-

ple, quantization-free layer, called RoIAlign, that faithfully

preserves exact spatial locations. Despite being a seem-

1Following common terminology, we use object detection to denote

detection via bounding boxes, not masks, and semantic segmentation to

denote per-pixel classification without differentiating instances. Yet we

note that instance segmentation is both semantic and a form of detection.

12961

Figure 2.4: The architecture of Mask R-CNN. Bounding box,
class and segmentation mask are predicted. source:
[7]

2.5 DeepLabv3+

DeepLabv3+[2] was designed by software engineers of the Google Research group. This is
also encoder-decoder structured but has more extra features which make it more accurate.
In Figure 2.5 you can see the overall structure of the whole network. In the next sections,
I present its architecture and the architectural features built in it.
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1x1 Conv

3x3 Conv
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3x3 Conv
rate 12

3x3 Conv
rate 18

Image
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1x1 Conv

Low-Level
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Upsample
by 4
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Decoder
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DCNNImage
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Upsample
by 4

Fig. 2. Our proposed DeepLabv3+ extends DeepLabv3 by employing a encoder-
decoder structure. The encoder module encodes multi-scale contextual information by
applying atrous convolution at multiple scales, while the simple yet effective decoder
module refines the segmentation results along object boundaries.

Depthwise separable convolution: Depthwise separable convolution [27,28]
or group convolution [7,65], a powerful operation to reduce the computation cost
and number of parameters while maintaining similar (or slightly better) perfor-
mance. This operation has been adopted in many recent neural network designs
[66,67,26,29,30,31,68]. In particular, we explore the Xception model [26], similar
to [31] for their COCO 2017 detection challenge submission, and show improve-
ment in terms of both accuracy and speed for the task of semantic segmentation.

3 Methods

In this section, we briefly introduce atrous convolution [69,70,8,71,42] and depth-
wise separable convolution [27,28,67,26,29]. We then review DeepLabv3 [23]
which is used as our encoder module before discussing the proposed decoder
module appended to the encoder output. We also present a modified Xception
model [26,31] which further improves the performance with faster computation.

3.1 Encoder-Decoder with Atrous Convolution

Atrous convolution: Atrous convolution, a powerful tool that allows us to ex-
plicitly control the resolution of features computed by deep convolutional neural
networks and adjust filter’s field-of-view in order to capture multi-scale informa-
tion, generalizes standard convolution operation. In the case of two-dimensional
signals, for each location i on the output feature map y and a convolution filter
w, atrous convolution is applied over the input feature map x as follows:

Figure 2.5: The architecture of DeepLabv3+. source: [2]

2.5.1 Atrous convolution

Atrous convolution (also called dilated convolution) is a type of convolution that has been
described in [17]. The standard convolution can be computed as follows:

(F ∗ k)(p) =
∑

s+t=p
F (s)k(t) (2.1)

When applying dilated convolution we have a new parameter l, called the dilation factor.

(F ∗l k)(p) =
∑

s+lt=p
F (s)k(t) (2.2)

As can be seen, there are “holes” between the points the kernel is applied to. The con-
nection between standard and atrous convolution is when dilation rate l = 1 as shown in
Figure 2.6. The motivation for the usage of this type of convolution is the expansion of
the receptive field without loss of resolution or coverage. The receptive field is a square of
exponentially increasing size, while the number of parameters grows linearly.

2.5.2 Depthwise separable convolution

First, let’s take a look at the hyperparameter number of the standard convolution. Let
us suppose, we have a heightinp × widthinp × channelinp size input layer and the next
layer has the size of heightnext ×widthnext × channelnext. If we use standard convolution
we have kernelheight × kernelwidth × channelinp · channelnext number hyperparameters to
optimize and a lot of multiplications increasing the evaluation time.

A depthwise separable convolution separates the standard convolution process into 2 parts:
a depthwise convolution and a pointwise convolution. This means fewer hyperparameters
and less evaluation time. Staying with the previous example, first we apply depthwise
convolution by using a kernel of size of kernelheight × kernelwidth × channelinp to get a
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Figure 2.6: Dilated convolution with different dilation rates: l=1
(standard convolution), l=2, l=3.

result of a size of heightnext×widthnext×channelinp. Then, we apply pointwise convolution
to change the channel size: this convolution has a kernel of the size of 1× 1× channelinp ·
channelnext.

Depthwise separable convolutions are popular in mobile nets (neural networks for low
power devices), for example in MobileNet [8], where it is optimized for computational
complexity. In Xception [3] network separable convolution was used to enhance Inception-
v3, thus outperform it.

2.5.3 Encoder

The encoder of the DeepLabv3+ model consists of two parts: a feature extractor and an
atrous separable pyramid pooling.

2.5.3.1 Feature extractor

The feature extractor of DeepLabv3+ has two variants: with Xception backbone or with
ResNet-101. I implemented the one with Xception backbone because it reached better
results.

The Xception has three big blocks: the entry, the middle and the out flow. Each flow
contains a different number of residual blocks with separable convolution layers and a
max-pooling layer in the end. These max-pool layers have been replaced with atrous
separable convolution layers using a stride value of 2 in the DeepLabv3+ model as it can
be seen in Figure 2.7.

2.5.3.2 Atrous separable pyramid pooling

The second part of the encoder is the atrous separable feature pooling. This means, that
atrous separable convolution is applied here using several (6, 12, 18) dilation rate values on
different branches. This allows it to recognize objects of different size. A 1×1 convolution
and global pooling are also applied to the Xception’s output. All five branches’ output is
upsampled to the same size. After concatenating them, a 1× 1 convolution is applied to
reduce the number of channels.
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DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 7

Conv 32, 3x3, stride 2

Conv 64, 3x3
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Fig. 4. We modify the Xception as follows: (1) more layers (same as MSRA’s modifica-
tion except the changes in Entry flow), (2) all the max pooling operations are replaced
by depthwise separable convolutions with striding, and (3) extra batch normalization
and ReLU are added after each 3× 3 depthwise convolution, similar to MobileNet.

The proposed models are evaluated on the PASCAL VOC 2012 semantic
segmentation benchmark [1] which contains 20 foreground object classes and one
background class. The original dataset contains 1, 464 (train), 1, 449 (val), and
1, 456 (test) pixel-level annotated images. We augment the dataset by the extra
annotations provided by [76], resulting in 10, 582 (trainaug) training images.
The performance is measured in terms of pixel intersection-over-union averaged
across the 21 classes (mIOU).

We follow the same training protocol as in [23] and refer the interested readers
to [23] for details. In short, we employ the same learning rate schedule (i.e.,
“poly” policy [52] and same initial learning rate 0.007), crop size 513 × 513,
fine-tuning batch normalization parameters [75] when output stride = 16, and
random scale data augmentation during training. Note that we also include batch
normalization parameters in the proposed decoder module. Our proposed model
is trained end-to-end without piecewise pretraining of each component.

Figure 2.7: Modified Xception network in DeepLabv3+: max-
pool layers replaced with strided atrous separable con-
volution. source: [2]

2.5.4 Decoder

The decoder part starts in two branches. One of its inputs is the output of a low-level
feature layer from the entry flow of the feature extractor. It’s a simple skip connection
(referred to as hypercolumn in the paper), which is necessary to recover object segmen-
tation details. It is connected to the upsampled output of the atrous separable pyramid
pooling. After upsampling and some 3× 3 convolution layers, we get the prediction of the
network.

2.6 HRNet

High-resolution [16] network was designed by the Microsoft Research for several applica-
tions, for example pose estimation, object detection, facial landmark detection, keypoint
detection and pixel segmentation.

2.6.1 Architecture

The main idea behind the structure differs from the previously presented ones’. Whereas
the former are essentially encoder-decoder-structured, this one doesn’t follow that line.
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Instead of downsampling to low resolution representation and then recovering the high-
resolution representation from it by continuously upsampling and using skipping connec-
tions, this network maintains the full-resolution stream that carries the high-resolution
information as shown in Figure 2.8. Each unit in the downsample and upsample subnet-
works exchanges information with the full-resolution stream (and also each other), thus
replacing the skip connections.

channel

maps

conv.

block

strided

conv.
upsample

Figure 1. A simple example of a high-resolution network. There are four stages. The 1st stage consists of high-resolution convolutions.
The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution, four-resolution) blocks. The detail is given in Section 3.

resolution representations. In semantic segmentation, the
proposed approach achieves state-of-the-art results on PAS-
CAL Context, Cityscapes, and LIP with similar model sizes
and lower computation complexity. In facial landmark de-
tection, our approach achieves overall best results on four
standard datasets: AFLW, COFW, 300W, and WFLW.

In addition, we construct a multi-level representation
from the high-resolution representation, and apply it to the
Faster R-CNN object detection framework and its extended
frameworks, Mask R-CNN [38] and Cascade R-CNN [9].
The results show that our method gets great detection per-
formance improvement and in particular dramatic improve-
ment for small objects. With single-scale training and test-
ing, the proposed approach achieves better COCO object
detection results than existing single-model methods.

2. Related Work
Strong high-resolution representations play an essential

role in pixel and region labeling problems, e.g., seman-
tic segmentation, human pose estimation, facial landmark
detection, and object detection. We review representation
learning techniques developed mainly in the semantic seg-
mentation, facial landmark detection [92, 50, 69, 104, 123,
94, 119] and object detection areas1, from low-resolution
representation learning, high-resolution representation re-
covering, to high-resolution representation maintaining.
Learning low-resolution representations. The fully-
convolutional network (FCN) approaches [67, 87] com-
pute low-resolution representations by removing the fully-
connected layers in a classification network, and estimate
from their coarse segmentation confidence maps. The esti-
mated segmentation maps are improved by combining the
fine segmentation score maps estimated from intermediate
low-level medium-resolution representations [67], or iter-
ating the processes [50]. Similar techniques have also been
applied to edge detection, e.g., holistic edge detection [106].

The fully convolutional network is extended, by replac-
ing a few (typically two) strided convolutions and the as-
sociated convolutions with dilated convolutions, to the di-
lation version, leading to medium-resolution representa-
tions [126, 13, 115, 12, 57]. The representations are further

1The techniques developed for human pose estimation are reviewed
in [91].

augmented to multi-scale contextual representations [126,
13, 15] through feature pyramids for segmenting objects at
multiple scales.

Recovering high-resolution representations. An upsam-
ple subnetwork, like a decoder, is adopted to gradually
recover the high-resolution representations from the low-
resolution representations outputted by the downsample
process. The upsample subnetwork could be a symmet-
ric version of the downsample subnetwork, with skip-
ping connection over some mirrored layers to transform
the pooling indices, e.g., SegNet [2] and DeconvNet [74],
or copying the feature maps, e.g., U-Net [83] and Hour-
glass [72, 111, 7, 22, 6], encoder-decoder [77], FPN [62],
and so on. The full-resolution residual network [78] intro-
duces an extra full-resolution stream that carries informa-
tion at the full image resolution, to replace the skip connec-
tions, and each unit in the downsample and upsample sub-
networks receives information from and sends information
to the full-resolution stream.

The asymmetric upsample process is also widely stud-
ied. RefineNet [60] improves the combination of upsam-
pled representations and the representations of the same
resolution copied from the downsample process. Other
works include: light upsample process [5]; light down-
sample and heavy upsample processes [97], recombinator
networks [40]; improving skip connections with more or
complicated convolutional units [76, 125, 42], as well as
sending information from low-resolution skip connections
to high-resolution skip connections [133] or exchanging in-
formation between them [36]; studying the details the up-
sample process [100]; combining multi-scale pyramid rep-
resentations [16, 105]; stacking multiple DeconvNets/U-
Nets/Hourglass [31, 101] with dense connections [93].

Maintaining high-resolution representations. High-
resolution representations are maintained through the whole
process, typically by a network that is formed by connecting
multi-resolution (from high-resolution to low-resolution)
parallel convolutions with repeated information exchange
across parallel convolutions. Representative works include
GridNet [30], convolutional neural fabrics [86], interlinked
CNNs [132], and the recently-developed high-resolution
networks (HRNet) [91] that is our interest.

The two early works, convolutional neural fabrics [86]

Figure 2.8: The architecture of the HRNet’s feature extractor.
Instead of the encoder-decoder structure, the full-
resolution stream is maintained. source: [16]

The segmentation network consists of two main parts: the feature extractor and the
classifier.

2.6.1.1 Feature extractor

HRNet was designed to have several applications so it has several variants. This is the
part that is common to all of them. It consists of four stages. The first stage starts after
two strided 3 × 3 convolution layers which reduce the resolution by 4. Each stage starts
with a transition from the previous layer. This means that the corresponding resolution
streams are simply connected and a new stream is created with half the resolution of the
smallest resolution in the previous stage and twice the width of it. After it, the first stage
contains 4 bottleneck blocks. A bottleneck block includes a 1× 1 convolution to create a
bottleneck with a width of 64 followed by a 3 × 3 and a 1 × 1 recovering the width and
adding to the input using a residual connection.

Each stage ends with a fusion block. The fusion block serves the purpose of mixing the
information of the different resolution stream’s output. To this end, stream’s outputs
are converted to the size of the corresponding stream using strided convolution for down-
sampling and bilinear interpolation for upsampling as Figure 2.9 shows. These converted
outputs are then added.

The 2nd, 3rd and 4th stage contain 4 multi-resolution blocks instead of the bottleneck
block. This block contains 2 of 3 × 3 convolutions and a residual connection using sum-
mation.

2.6.1.2 Classifier

The output of the feature extractor connects to the classifier. The classifier contains 2
multi-resolution blocks, but there’s no transition before them thus the number of different
resolution streams remains 4. The output of the streams is concatenated and channel-
reduced through a 1 × 1 convolution. Finally, the resulting feature map is upscaled by 4
to the input resolution and softmax activation is applied.

13



strided
3× 3

up samp.
1× 1

feature
maps

Figure 3. Illustrating how the exchange unit aggregates the infor-
mation for high, medium and low resolutions from the left to the
right, respectively. Right legend: strided 3×3 = strided 3×3 con-
volution, up samp. 1×1 = nearest neighbor up-sampling following
a 1× 1 convolution.

Repeated multi-scale fusion. We introduce exchange units
across parallel subnetworks such that each subnetwork re-
peatedly receives the information from other parallel sub-
networks. Here is an example showing the scheme of ex-
changing information. We divided the third stage into sev-
eral (e.g., 3) exchange blocks, and each block is composed
of 3 parallel convolution units with an exchange unit across
the parallel units, which is given as follows,

C131 ↘ ↗ C231 ↘ ↗ C331 ↘
C132 → E13 → C232 → E23 → C332 → E33 ,
C133 ↗ ↘ C233 ↗ ↘ C333 ↗

(3)
where Cbsr represents the convolution unit in the rth resolu-
tion of the bth block in the sth stage, and Ebs is the corre-
sponding exchange unit.

We illustrate the exchange unit in Figure 3 and present
the formulation in the following. We drop the subscript s
and the superscript b for discussion convenience. The in-
puts are s response maps: {X1,X2, . . . ,Xs}. The outputs
are s response maps: {Y1,Y2, . . . ,Ys}, whose resolutions
and widths are the same to the input. Each output is an ag-
gregation of the input maps, Yk =

∑s
i=1 a(Xi, k). The

exchange unit across stages has an extra output map Ys+1:
Ys+1 = a(Ys, s+ 1).

The function a(Xi, k) consists of upsampling or down-
sampling Xi from resolution i to resolution k. We adopt
strided 3× 3 convolutions for downsampling. For instance,
one strided 3×3 convolution with the stride 2 for 2× down-
sampling, and two consecutive strided 3 × 3 convolutions
with the stride 2 for 4× downsampling. For upsampling,
we adopt the simple nearest neighbor sampling following a
1 × 1 convolution for aligning the number of channels. If
i = k, a(·, ·) is just an identify connection: a(Xi, k) = Xi.
Heatmap estimation. We regress the heatmaps simply
from the high-resolution representations output by the last
exchange unit, which empirically works well. The loss
function, defined as the mean squared error, is applied
for comparing the predicted heatmaps and the groundtruth
heatmaps. The groundtruth heatmpas are generated by ap-
plying 2D Gaussian with standard deviation of 1 pixel cen-

tered on the grouptruth location of each keypoint.
Network instantiation. We instantiate the network for key-
point heatmap estimation by following the design rule of
ResNet to distribute the depth to each stage and the number
of channels to each resolution.

The main body, i.e., our HRNet, contains four stages
with four parallel subnetworks, whose the resolution is
gradually decreased to a half and accordingly the width (the
number of channels) is increased to the double. The first
stage contains 4 residual units where each unit, the same to
the ResNet-50, is formed by a bottleneck with the width 64,
and is followed by one 3×3 convolution reducing the width
of feature maps to C. The 2nd, 3rd, 4th stages contain 1, 4,
3 exchange blocks, respectively. One exchange block con-
tains 4 residual units where each unit contains two 3 × 3
convolutions in each resolution and an exchange unit across
resolutions. In summary, there are totally 8 exchange units,
i.e., 8 multi-scale fusions are conducted.

In our experiments, we study one small net and one big
net: HRNet-W32 and HRNet-W48, where 32 and 48 rep-
resent the widths (C) of the high-resolution subnetworks in
last three stages, respectively. The widths of other three
parallel subnetworks are 64, 128, 256 for HRNet-W32, and
96, 192, 384 for HRNet-W48.

4. Experiments
4.1. COCO Keypoint Detection

Dataset. The COCO dataset [36] contains over 200, 000
images and 250, 000 person instances labeled with 17 key-
points. We train our model on COCO train2017 dataset, in-
cluding 57K images and 150K person instances. We eval-
uate our approach on the val2017 set and test-dev2017 set,
containing 5000 images and 20K images, respectively.
Evaluation metric. The standard evaluation metric is
based on Object Keypoint Similarity (OKS): OKS =∑

i exp(−d
2
i /2s

2k2i )δ(vi>0)∑
i δ(vi>0) . Here di is the Euclidean dis-

tance between the detected keypoint and the correspond-
ing ground truth, vi is the visibility flag of the ground
truth, s is the object scale, and ki is a per-keypoint
constant that controls falloff. We report standard aver-
age precision and recall scores1: AP50 (AP at OKS =
0.50) AP75, AP (the mean of AP scores at 10 posi-
tions, OKS = 0.50, 0.55, . . . , 0.90, 0.95; APM for medium
objects, APL for large objects, and AR at OKS =
0.50, 0.55, . . . , 0.90, 0.955.
Training. We extend the human detection box in height
or width to a fixed aspect ratio: height : width = 4 : 3,
and then crop the box from the image, which is resized to
a fixed size, 256 × 192 or 384 × 288. The data augmenta-
tion includes random rotation ([−45◦, 45◦]), random scale

1http://cocodataset.org/#keypoints-eval

Figure 2.9: The operation of the function block. Different resolu-
tion feature maps are converted to the same size by
(repeated) 3 × 3 strided convolution (downsampling)
and bilinear interpolation with 1× 1 convolution (up-
sampling). source: [16]

14



Chapter 3

Implementation

After examining the different networks we chose two networks with my supervisor. The
main aspects of selection were (1) good performance on the images taken in an urban
environment and (2) publicly available architecture. We chose DeepLabV3+ and HRNet
based on the current state of the applied methods table on the webpage of the Cityscapes1

benchmarks.

3.1 Framework

To implement the different algorithms Python 3 was used. Keras2 library provided a rich
environment for defining various neural networks and their training algorithms.

3.2 Data generator

After investigating the labeling policy I created a dataset generator. This makes it pos-
sible to generate training, validation and test data on multiple threads while training or
evaluating the network on the GPU in parallel. On the one hand, a batch of input images
is read in sequence, resized to input size and normalized by rescaling pixel values from [0;
255] to [0; 1]. On the other hand, a batch of label images is read, resized and encoded to
one-hot tensors pixel-by-pixel.

After some training sessions I realized that reading from the hard drive is a bottleneck
while training. So while generating the batches in the first epoch, images are also cached
in the memory. This method is a little bit memory-intensive, but the batch generation
is more than 10 times faster because in the further epochs reading from the drive is not
needed. With this solution, GPU utilization can be kept constantly above 90%.

3.3 Defining networks

Defining the network with the Keras Functional API is very spectacular. It allows defining
multi-output models, directed acyclic graphs, or models with shared layers. A layer is

1https://cityscapes-dataset.com/benchmarks/#pixel-level-results
2https://keras.io
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defined by its type and symbolic tensor is returned which is the output of the layer and the
input of the next layer. It is very useful when defining residual connection or concatenation.

3.3.1 DeepLabV3+

As far as the exact architecture is concerned, I set out from the paper and the original
implementation3. I could have downloaded the ready-made model but implementing it
for myself allowed me to get to know it deeper and also allowed further experimentation
concerning both the structure and the parameters. Also, I think, an implementation in
Keras is readable for a wider audience. The problem with the paper was that its purpose
is to get a comprehensive picture of the system, not to go into all details. Thus I had to
investigate the original code written in the TensorFlow4 framework which can not be read
easily.

First, the feature extractor was implemented. Since the 2-dimensional convolution layer
was used frequently along with batch normalization and ReLU activation a function was
defined to shorten code and make it more clear. This is also made possible by the use
of symbolic tensors. An exception block function was also made for the same purpose.
Concatenation was useful when defining atrous separable pyramid pooling because at the
end different branches must be concatenated. I wanted the network to be input resolution-
independent. The only layer preventing it was the global pooling layer which takes a
feature map as input and returns the average of the values on it. After the pooling, different
branches in the pyramid pooling must be converted to the same resolution. But without
knowing the input resolution the upscaling factor after the global pooling layer can’t be
defined. Thus two versions of the network were created: the one with global pooling layer
is input resolution-dependent and the other one without it is input resolution-independent.
For a model to be input resolution-independent means that it can be trained and used in
inference time with different resolution images.

An interesting thing is that batch normalization already includes the functionality of the
bias on the layer it is applied to. When implementing the layer, this means, that bias
should be disabled as it has no impact on the output and takes up space.

3.3.2 HRNet

As in the previous case, I set out from the paper and the original implementation5. The
description of the paper is quite detailed, however I had to examine the original imple-
mentation thoroughly. Its code is written in the Pytorch6 framework which was new to
me.

Defining this network requires caution but is simple. First, the basic units were described:
the bottleneck block, the transition, the fusion and the multi-resolution blocks. Imple-
menting the fusion is the most complex part, since information from each stream must
be fused into each other resulting in a confusing graph. Then larger components, i.e. the
feature extractor part and the classifier part were implemented and merged into the model.

3https://github.com/tensorflow/models/tree/master/research/deeplab
4https://tensorflow.org/
5https://github.com/HRNet/HRNet-Semantic-Segmentation
6https://pytorch.org/
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3.3.3 Training

Keras also makes the implementation of the training easier since gradient computation is
handled by the backend. One just needs to specify the loss function. In both of the models
categorical cross-entropy was used as loss function. Training using various optimizers have
been tested: Adam, SGD, and RMSprop.

Several callback functions were also defined. These functions are called by Keras during
training with a given frequency allowing to log changes or respond to changes. Model
checkpointer is used to save the model if it improved based on the loss computed on the
validation dataset. Although it helps to avoid overfitting by saving only when validation
loss improved, training would run further without better results. Early stopping solves
this problem by stopping the training if no improvement is observed after a given number
of epochs. An epoch is a training unit when error is calculated and the parameters are
updated for each sample of the dataset. The "reduce learning rate on plateau" callback
reduces the learning rate by a given factor once learning stagnates. A custom callback
was made to visualize the improvement of the network. At the end of each epoch, a
batch of images is fed into the network to predict segmentation mask so that training
can be followed not only by the loss and accuracy values but also visually. TensorBoard7

was used to track and compare loss and accuracy changes during the training sessions.
TensorBoard provides a graphical user interface and plots graphs for the different metrics
which is available from the browser.

7https://tensorflow.org/tensorboard
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Chapter 4

Dataset

In my work I used the Cityscapes [4] and the Berkeley DeepDrive BDD100K [18] dataset.

4.1 Cityscapes

Cityscapes is a well known open source database which is recorded during the span of
several months, covering spring, summer, and fall in 50 cities of Germany and neighboring
countries. It contains 5000 fine and 20000 coarsely annotated images focusing on semantic
understanding of urban street scenes. I used the coarse dataset containing roughly labeled
images. Then I trained the network on the fine dataset containing the same images with
fine annotations. In both cases the dataset contains 2975 train and 500 validation images.
Finally, I used the Cityscapes video sequences to illustrate the results.
There are 34 class definitions into which the elements can be classified. The labeling
format is very simple, each pixel has a label consisting of a class number from 0 to 33
saved in a PNG image, see Figure 4.1.

4.2 BDD100K

The Berkeley Deep Drive BDD100K dataset is mainly captured from the different areas of
the US road infrastructure and highway traffic signs, and it is comparable to the Cityscapes
dataset. This dataset also includes object detection, lane detection, drivable area, and
semantic instance segmentation datasets. For my work I used 7000 images for training
and 1000 images for validation.

4.3 Labeling policy

At first I used all the 34 classes from the Cityscapes dataset but then I also wanted to use
the BDD100K dataset. They claimed to be compatible with Cityscapes labeling, however
they were not entirely correct. There’s another labeling in Cityscapes called trainId. This
means that one can choose the classes to train on and all the other classes will be labeled
as "out of region of interest" (roi). BDD100K was using this labeling policy choosing 19 of
the original label types. So I had to convert the labels to make them compatible between
the two data sets in order to compare or use them together. This resulted in a labeling
which contains 15 classes and 1 out of roi class.
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Figure 4.1: Sample images from the coarse and the fine dataset of
Cityscapes.
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Chapter 5

Evaluation

5.1 Benchmark

5.1.1 Intersection over union

A common metric for evaluating object detection and segmentation networks is intersection
over union (IoU) also referred to as the Jaccard index. Pixels common between the ground
truth and prediction masks divided by the total number of pixels present across both masks
are measured for each class as can be seen in Figure 5.1.

IoU = intersection

union
= predicted pixels ∩ ground truth pixels
predicted pixels ∪ ground truth pixels

predicted segmentation mask

label segmentation mask

unionintersection

Figure 5.1: Intersection and union of predicted and label segmen-
tation masks.

5.1.2 Confusion matrix

Confusion matrices are also computed to illustrate the results. This is a simple, pixel-level
metric. The row of the confusion matrix is indexed by the labeled class of the pixel and
the column is indexed by the predicted class of the pixel. For every pixel in the image of
the test dataset, 1 is added to the corresponding cell of the confusion matrix.
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5.2 Results

After training the networks were evaluated. Since the test datasets originally used in the
paper are not available, validation datasets were created and used for this purpose. Three
type of architectures were evaluated: HRNet, DeepLabv3+ and the modified DeepLabv3+
without the global pooling layer. All three networks were trained on the Cityscapes fine,
on the Cityscapes coarse and on the BDD dataset resulting in 9 trained models. All
the trained networks were evaluated on the Cityscapes fine and the BDD dataset which
means 18 evaluations in total. Intersection over union metrics and a confusion matrix
were computed for each case.

5.2.1 Overall results

To get an overview mean intersection over union (mIoU) was computed as shown in ta-
ble 5.1. This means that IoU (as a result of evaluation) was averaged over the classes for
each of the networks. These values are not expressive in themselves, but they allow the
comparison of the networks using a single metric.

Method Training set Test set mIoU

HRNet

Cityscapes - Fine Cityscapes - Fine 0.4900
BDD 0.1719

Cityscapes - Coarse Cityscapes - Fine 0.3281
BDD 0.1438

BDD Cityscapes - Fine 0.3506
BDD 0.3981

DeepLabv3+

Cityscapes - Fine Cityscapes - Fine 0.4906
BDD 0.2213

Cityscapes - Coarse Cityscapes - Fine 0.3438
BDD 0.1531

BDD Cityscapes - Fine 0.3238
BDD 0.3894

DeepLabv3+ w/o global pooling

Cityscapes - Fine Cityscapes - Fine 0.5206
BDD 0.2312

Cityscapes - Coarse Cityscapes - Fine 0.3381
BDD 0.1537

BDD Cityscapes - Fine 0.3569
BDD 0.4294

Table 5.1: The mean intersection over union depending on the network, the training
dataset and the evaluation dataset.

As can be observed, the best result was reached with the modified DeepLabv3+ trained
and evaluated on the Cityscapes fine dataset. However, when using the BDD dataset for
the evaluation, modified DeepLabv3+ gives much worse results. This is due to two main
reasons. The first is that although different datasets (training and validation) and early
stopping were used, overfitting with respect to the training dataset is still likely. The
reason is that there are similar pictures in the training and the validation datasets in the
Cityscapes database even though they were recorded in different cities. The other possible
reason is the difference between the Cityscapes and BDD datasets. This is caused by the
usage of a different camera, camera position, area and thus the distribution of the classes.
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In the next sections, the results of the evaluations will be detailed from different points
of view. First, results of different methods are compared using the same dataset (the
Cityscapes fine dataset). Then results, obtained by training the same network (the modi-
fied DeepLabv3+) on the various databases are described. Here the evaluation takes place
on the same database (on the Cityscapes fine dataset). Finally, the results of the evalua-
tion on the BDD database are detailed. Here, the modified DeepLabv3+ was used for the
test, which was trained on BDD and Cityscapes fine. The other results are not detailed
here, but the corresponding confusion matrices are included in the appendix.

5.2.2 Comparison of results of different methods

For the sake of comparability of the various methods, results are reported (see Figure 5.2)
below under the same conditions (meaning same training, validation and evaluation set).
For this purpose Cityscapes fine dataset was chosen.

Figure 5.2 shows the accuracy and loss over the training steps. Here, accuracy refers to
the ratio of the number of well-labeled pixels and the number of pixels. A step means
evaluating a batch of samples. The validation accuracy and loss values are computed
step-by-step over the whole validation dataset after each epoch.

Learning curves are very similar. The only slight difference is that DeepLabv3+ with-
out global pooling layer was trained for a few more epochs, i.e. the accuracy of the
other two methods did not improve after 60.000 validation steps. All three methods
reached an accuracy of 0.85 after approximately 30.000 validation steps. Afterwards the
accuracy for HRnet, DeepLabv3+, and DeepLabv3+ w/o global pooling oscillated between
(0.86,0.8874),(0.8537 0.8873), and (0.85,0.8881) respectively. In terms of validation loss,
the loss of HRnet varies to the largest extent between (0.3808, 0.5516).

Based on the intersection over union values shown in Figure 5.3 the modified DeepLabv3+
network seems to be the most accurate. It performs reasonably better in case of "person",
"traffic sign", "traffic light" instances. The only class where HRNet performed better is
"train". Interestingly, this class has the smallest number of instances in the dataset. HR-
Net outperformed the original DeepLabv3+ at several classes, for example, "motorcycle",
"train", "truck", "sky" and "pole".

Figure 5.4, 5.5 and 5.6 show the confusion matrix of the various networks trained and
evaluated on the Cityscapes fine dataset. The rows of the matrix represent the true label
of an object, and the columns represent the predicted labels. The values in the diagonal
show the ratio of correctly classified objects. For example, in case of the "sidewalk" object
in the second row of Figure 5.5, the rate of "sidewalk" objects correctly classified is 0.76,
whereas some of the "sidewalk" objects is classified as "road" 0.15 or "other" 0.04.

The confusion matrices indicate that certain objects are detected with high accuracy
by all three methods (DeepLabv3+, modified DeepLabv3+, HRNet) such as "road" (0.97,
0.95, 0.93 rates respectively for the three methods), "building/wall/fence" (0.92, 0.90,
0.89), "vegetation" (0.91, 0.94, 0.93), "sky" (0.96,0.95,0.95), and "car" (0.93,0.92,0.90).
The classification of other objects such "person" are less accurate (0.72, 0.76, 0.77), and
in some cases it is missclassified as "building" (0.13, 0.08, 0.10). Furthermore, objects
that appeared relatively less frequently in the training data set are often missclassified by
all three methods, such as "truck" objects: as "truck" (0.11, 0.27, 0.28), as "bus" (0.23,
0.34, 0.03), as "car" (0.37, 0.19, 0.32), as "building" (0.17, 0.10, 0.23). Note that there are
differences between the methods as the modified DeepLabv3+ tends to classify a "truck"
as a "bus", whereas in case of the other two it is more likely that it is classified as a
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Figure 5.2: Accuracy and loss, computed on the validation dataset
during the training of the various networks on the
Cityscapes fine dataset.

"car". Although it can be argued whether classifying a "truck" as a "bus" or as a "car" are
equally erroneous, it is definitely a greater error to classify it as a "building" which is more
probable in case of HRNet (0.23) and DeepLabv3+ (0.17) than in case of the modified
DeepLabv3+ (0.10).
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In addition, there are cases in which considerable differences can be observed. "Traffic
light" and "traffic sign" objects are more accurately identified bymodified DeepLabv3+ with
corresponding rates for correct classification of 0.50 and 0.61. In case of DeepLabv3+ these
rates are lower (0.33 and 0.48 respectively for "traffic light" and "traffic sign"), and also
in case of HRNet these rate are similarly low (0.25 and 0.49). Interestingly, all methods
missclassify "traffic light" objects to some extent either as "vegetation" (0.17, 0.19, 0.30
respectively for DeepLabv3+, modified DeepLabv3+, and HRNet) or as "building" (0.42,
0.24, 0.36). Another interesting difference between results that both DeepLabv3+ and
HRNet missclassify "train" objects as "buildings" (0.46 and 0.44 respectively), whereas
the correct classification rate is low (0.02 and 0.14) which is probably due to the low
frequency of "train" objects in the training samples. In contrast, the modified DeepLabv3+
missclassifies "trains" as "buses" (0.54) with only identifies "trains" correctly in a small
portion of the cases (0.14).
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Figure 5.3: Intersection over union values, computed by evaluat-
ing the three different architectures trained (and eval-
uated) on Cityscapes fine.
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Figure 5.4: Confusion matrix of DeepLabv3+
trained on Cityscapes fine, evaluated on Cityscapes
fine.
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Figure 5.5: Confusion matrix of the modified DeepLabv3+
trained on Cityscapes fine, evaluated on Cityscapes
fine.
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Figure 5.6: Confusion matrix of HRNet trained on Cityscapes
fine, evaluated on Cityscapes fine.
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5.3 Comparison of results using different training datasets

The modified DeepLabv3+ is the best performing network, so this architecture was chosen
to compare the results of training on the three different datasets: Cityscapes fine, coarse,
and BDD. Figure 5.7 shows the learning curves of the trainings. The aim of this compar-
ison is to investigate the difference between the classification models learned by modified
DeepLabv3+. The evaluation is perfomed using the Cityscapes fine dataset, therefore it is
expected that the model trained on the same dataset has the best performance. It is also
expected that the model trained on Cityscapes coarse performs worse when evaluated on
Cityscapes fine as it was trained on less refined training data. Lastly, the model trained
on BDD can be considerably different than those that were trained on Cityscapes due to
the differences between properties of the data sets.

Results indicate that the modified DeepLabv3+ model trained on Cityscapes fine has better
accuracy than the other two models which confirms expectations. After approximately
25.000 validation steps the model trained on Cityscapes fine surpasses an accuracy rare of
0.85, whereas the other two methods barely reach this even after 70.000 steps. In terms
of accuracy, the model trained on BDD has a less steep learning curve than the model
trained on Cityscapes coarse, i.e. the BDD model learns slower. In terms of loss, however,
the model trained on BDD produced irregularities. As it is observable in Figure 5.7
there are rapid changes in the measured loss during the training on BDD which might be
attributed to labeling incompatibilities between the BDD and Cityscapes data sets. Note
that this noise was still present after several repeated measurements. This oscillation is
also observable in the predictions as Figure 5.8 shows. Here, different colors represent
different labels, for example pixels belonging to an object detected as a car is colored neon
green, whereas pixels belonging to persons (i.e. pedestrians) are colored lime (although it
is hard to see the difference on the small scaled version of the figures). The oscillation in
that example can be observed (1) on the predicted mask for the pedestrian standing on
the right hand side, (2) on the road, (3) on the traffic lamp and its pole, and (4) on the
traffic sign on the top of the image.

The oscillations during the other two trainings are also visualized on figures 5.9 and 5.10.
The oscillation during the training on Cityscapes fine (see figure5.9) can be observed on
(1) the left part of the image: the building (colored red), and the pedestrians between the
building and the car, and (2) on the right part of the image: the traffic sign above the
pedestrian crossing. A slight oscillation is also visible during the training on the Cityscapes
coarse dataset (see Figure 5.10): vehicles are well recognized in the horizontal centerline
in one case (on the top) and not at all in the other two.

The result in Figure 5.11 shows the iou values of the modified DeepLabv3+ trained on the
three datasets evaluated on the Cityscapes fine dataset. Here, also training on Cityscapes
fine shows the best results. Surprisingly, training on BDD gives better results than
Cityscapes coarse in more than half of the cases, for example in case of "sky", "vegetation",
"car", "person", "building", and "sidewalk" objects.

The confusion matrices of the model learned on Cityscapes coarse and BDD are shown in
Figures 5.12 and 5.13. The main difference between the two models is that the Cityscapes
coarse model either classifies an object correctly or it is classified as "other", whereas in
case of BDD model, this latter option is rare and rather an object is misclassified as
a different object. For example, "train" objects are either classified correctly (0.26), or
as a "building" (0.11) or "other" (0.58) by the Cityscapes coarse model, while in case of
the BDD model "train" objects are classified as "building" (0.56), "truck" (0.21), "bus"
(0.09) or "other" (0.05). Interestingly, none of the "train", "motorcycle", "bicycle" objects
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Figure 5.7: Accuracy and loss, computed on the corresponding
validation datasets during the training of the modified
DeepLabv3+ on the various datasets.

are classified correctly by the BDD model, which can be due to the lower frequency of
occurrence of these objects in the BDD dataset with respect to the Cityscapes dataset. In
addition, "traffic light" and "traffic sign" objects are also misclassified by the BDD model,
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Figure 5.8: Input image (top left), expected segmentation mask
(bottom left) and the predictions during the (27th,
28th and 29th) epochs of the training of the modified
DeepLabv3+ on the BDD dataset.

more specifically "traffic light" is identified as "building" (0.45) or "vegetation" (0.40), and
"traffic sign" objects are similarly misclassified as "building" (0.57) or "vegetation" (0.15).
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Figure 5.9: Input image (top left), expected segmentation mask
(bottom left) and the oscillating predictions during
the (24th, 25th and 26th) epochs of the training of
the modified DeepLabv3+ on Cityscapes fine.
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Figure 5.10: Input image (top left), expected segmentation mask
(bottom left) and the predictions during the (3rd,
4th, and 5th) epochs of the training of the modified
DeepLabv3+ on the Cityscapes coarse dataset.
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Figure 5.11: Intersection over union values, computed by evaluat-
ing the modified DeepLabv3+ trained on Cityscapes
fine and BDD, evaluated on Cityscapes fine.
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Figure 5.12: Confusion matrix of the modified DeepLabv3+
trained on Cityscapes coarse, evaluated on
Cityscapes fine.
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Figure 5.13: Confusion matrix of the modified DeepLabv3+
trained on BDD, evaluated on Cityscapes fine.
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5.4 Comparison of results using BDD as evaluation dataset

In the previous sections the Cityscapes fine dataset was used for evaluation. In this
comparison the BDD dataset is utilized as the evaluation dataset. The aim of this analysis
is to investigate which of the two datasets can be considered more general Figure 5.14 shows
the iou values of evaluating the modified DeepLabv3+ trained on BDD and Cityscapes fine,
evaluated on BDD.

It is expected that the model trained and evaluated on the BDD dataset performs better
than the model that is trained on Cityscapes fine dataset. Results confirm these expecta-
tions, the BDD model outperforms the Cityscapes fine model in most categories. However
both models perform poorly in classifying "bicycle", motorcycle", and "train" objects. In
addition the recognition of "traffic sign" and "traffic light" objects is moderately successful
even by the BDD model. Interestingly, "person" objects also have a low iou value in case
of BDD. It was also a little bit surprising that the iou values of "road", "sidewalk", "build-
ing", "bus" are significantly worse in case of training on Cityscapes fine and evaluating on
BDD than in case of training on BDD and evaluating on Cityscapes fine. It points in the
direction that the BDD dataset is more general.

The confusion matrices of the model trained on Cityscapes fine and BDD are shown in
Figures 5.12 and 5.13. These matrices indicate that certain objects, such as "car" (0.68,
0.92), "vegetation" (0.6, 0.92) and "sky" (0.83, 0.95 are recognized well by both networks.
Interestingly, while these values are higher in case of learning on BDD, the values belonging
to "person" (0.24, 0.69) and "traffic sign" (0.24, 0.45) are higher in case of training on
Cityscapes fine. Classes "train", "motorcycle" and "bicycle" were not recognized by the
network learned on BDD but they were misclassified as "car" (0.74, 0.68, 0.39) and a little
as "person" (0.0, 0.16, 0.26). Both models often misclassified "pole" (0.32, 0.2), "traffic
light" (0.33, 0.28) and "traffic sign" (0.24, 0.45) as "building" (0.32, 0.39, 0.42 and 0.24,
0.17, 0.19).
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Figure 5.14: Intersection over union values, computed by evaluat-
ing the modified DeepLabv3+ trained on Cityscapes
fine and BDD, evaluated on BDD.
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Figure 5.15: Confusion matrix of the modified DeepLabv3+
trained on Cityscapes fine, evaluated on BDD.
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Figure 5.16: Confusion matrix of the modified DeepLabv3+
trained on BDD, evaluated on BDD.
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Chapter 6

Conclusion

The purpose of my work was to examine state-of-the-art neural networks - that can be
applied to semantic segmentation - on different datasets. For this reason, I first reviewed
previous neural network based solutions. Then, two of them were selected that are publicly
available and fairly accurate according to the Cityscapes benchmark: the DeepLabv3+ and
the HRNet networks. These two architectures were implemented using the Keras frame-
work. Two public datasets were chosen for the training and evaluation of the networks:
the Cityscapes, and the Berkeley DeepDrive databases, with the former having two vari-
ants the so-called coarse and fine. Using two datasets made it possible to investigate the
effect of learning from different sources and also to analyze the differences between the
databases.

My contribution was the modification of the DeepLabv3+ network which involved the
elimination of the global pooling layer which made it possible to utilize input images of
arbitrary resolution at training and inference time. This modification produced better
results in some cases.

After training, the networks were evaluated from various aspects, which included the
comparison of the networks by using the same dataset and the comparison of the datasets
using the same network. Based on the detailed results some general conclusions and
suggestions for future work were formulated.

Some misclassifications do not seem to be as serious semantically as others. For example,
classifying a riding "person" as "bicycle" is not as big a mistake as labeling it as a "wall".
The weighting of such cases in the loss function may help the network to generalize better.

The various evaluations show that the accuracy of the models is highly dependent on the
dataset. If such neural networks are to be used in the industry, then a uniformly accepted
standard dataset must be developed to test their accuracy. Furthermore, the frequency
of various object classes should also be balanced in such datasets, because insufficient
occurrence of certain objects causes difficulties during training.

The training was performed using several sets of parameters, while the architecture re-
mained as described in the original implementation. However, the various parameter sets
did not produce considerably different results than the original settings, therefore the
latter was used.

Evaluation on videos showed that the image segmentation system is very sensitive to a
small perturbation of the input image. Using a recurrent neural network this oscillation on
the output could be smoothened. Human vision can perform so well because it processes
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not only a single image but a series of images. Using recurrency could also help to improve
the accuracy of the network.

Further possible future improvements include the pretraining of the network, for example
the classificator part of HRNet, which could improve the accuracy. In addition, it could
be investigated whether pruning either of the networks would have beneficial effects on
complexity, thus reducing training time and inference time.
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Appendix

A.1 Confusion matrices
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Figure A.1.1: Confusion matrix of the modified DeepLabv3+
trained on Cityscapes coarse, evaluated on BDD.
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Figure A.1.2: Confusion matrix of DeepLabv3+ trained on BDD,
evaluated on BDD.
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Figure A.1.3: Confusion matrix of DeepLabv3+ trained on BDD,
evaluated on Cityscapes fine.
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Figure A.1.4: Confusion matrix of DeepLabv3+ trained on
Cityscapes coarse, evaluated on BDD.
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Figure A.1.5: Confusion matrix of DeepLabv3+ trained on
Cityscapes coarse, evaluated on Cityscapes fine.
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Figure A.1.6: Confusion matrix of DeepLabv3+ trained on
Cityscapes fine, evaluated on BDD.
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Figure A.1.7: Confusion matrix of HRNet trained on BDD, eval-
uated on BDD.
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Figure A.1.8: Confusion matrix of HRNet trained on BDD, eval-
uated on Cityscapes fine.
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Figure A.1.9: Confusion matrix of HRNet trained on Cityscapes
coarse, evaluated on BDD.
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Figure A.1.10: Confusion matrix of HRNet trained on Cityscapes
coarse, evaluated on Cityscapes fine.
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Figure A.1.11: Confusion matrix of HRNet trained on Cityscapes
fine, evaluated on BDD.
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