
Budapesti M¶szaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Hálózati Rendszerek és Szolgáltatások Tanszék

Spyware detection based on network tra�c

TDK

Készítette Konzulens

György Péter dr. Holczer Tamás

October 28, 2019

Contents

Kivonat 3

Abstract 4

1 Introduction 5

2 Spyware 7

2.1 Introduction to spyware . 7

2.2 Classi�cation of spyware . 8

2.2.1 Adware . 9

2.2.2 Password stealer . 9

2.2.3 Banking trojan . 10

2.2.4 Information stealers . 10

2.2.5 System monitors / Surveillance software 10

2.3 What is spyware doing . 11

2.3.1 How spyware is spreading . 11

2.3.2 Spreading via Email . 11

2.3.3 Spreading via vulnerabilities . 12

2.3.4 Spreading via phishing . 12

2.3.5 Spreading via trojans . 12

2.3.6 Spreading via software bundles . 12

2.4 Keyloggers . 13

2.4.1 Introduction to keyloggers . 13

2.4.2 Keyloggers on Microsoft Windows 13

2.4.3 Keyloggers on Linux . 13

2.4.4 Keyloggers on macOS . 14

2.4.5 Classi�cation of keyloggers . 14

3 Detection 16

3.1 Detecting periodic loggers . 16

3.1.1 Statistic based analysis . 17

3.1.2 Signal based analysis . 18

3.2 Bu�er based keylogger . 20

3.3 Trigger key-based keyloggers . 21

1

4 Evaluation 22

4.1 Asherah infrastructure . 22

4.2 Inserting the analyzer into the infrastructure 23

4.3 Setting up scenarios . 23

4.3.1 Example scenarios . 24

4.3.2 Performance . 29

5 Conclusion and Further Improvements 32

Acknowledgement 33

Biblopgraphy 35

2

Kivonat

A mai világban, ahol az információ egyre nagyobb érték, és szinte mindennap hallani

különböz® adatlopásokról, fontos feladat megvédeni az adatainkat. Ezek az adatok értéket

képviselnek a támadók számára is, és különböz® módokon próbálják ezeket megszerezni.

Az egyik ilyen módszer, hogy kémprogramot telepítenek a kiszemelt áldozat gépére, vagy

becsapással ráveszik az áldozatot, hogy önmaga telepítse fel a gépre a kémprogramot, amit

akár egy hasznos programnak is álcázhatnak. A kémprogramok naplózhatják a billenty¶ket

amiket lenyomunk, képeket készíthetnek a képerny®nkr®l, lekövethetik az egérmozgásunkat,

és akár még a mikrofonon és a kamerán keresztül képet is rögzíthetnek rólunk.

A dolgozatban a f® hangsúlyt az úgynevezett keylogger detekcióra fektettem. Ezek közül

is azokra a megoldásokra, amik egy távoli szerverre töltik fel a rólunk készült logokat. A

keylogger detekció a leggyakrabban magán a host gépen történik. Munkám során egy olyan

programot készítettem el, amivel a hálózati forgalom alapján tudom megmondani, hogy

van-e az adott gépen keylogger. Ennek az az el®nye, hogy egy nagy hálózat esetén nem

kell külön minden gépre telepíteni egy szoftvert, hanem a kifele men® forgalmat tükrözzük

egy olyan gépre, ahol fut az analizáló. Több ingyenes és �zet®s keyloggert is kipróbál-

tam, különböz® beállításokkal, és készítettem egy sajátot is, hogy olyan beállításokat is

kipróbálhassak, amik nem voltak elérhet¶ek a korábban kipróbált programokban.

A méréseket virtuális gépek segítségével végeztem el. Az eredmények alapján, függetlenül

a keylogger gyártójától, ha periódikusan küldte el a szervernek a rólunk készült adatokat,

azt rövid id®n belül tudtam detektálni. Ugyanerre az eredményre jutottam olyan keylog-

gereknél is, amik bizonyos mennyiség¶ lenyomott karakter után küldik fel az adatokat. Ez

a két kategória lefedi az elérhet® keyloggerek dönt® többségét.

3

Abstract

In today's world where information is becoming more valuable than ever, we can hear of

data breaches every day. It is becoming an important task to protect our data which is

highly valuable for the attackers, and they try to get these using di�erent methods. One

of this method is using spyware. The spyware can be installed many ways, one frequently

used method is phishing, where the attacker sends an email to the victim promoting the

spyware as a legit program that will help him. These spyware can log every key we press,

take screenshots of our desktop, track our mouse movement and even can gather data

about the outside world using our microphone and camera.

In this research, I focused mostly on keyloggers, especially on those which sends the

logs to a remote server. Keylogger detection is usually implemented on the host itself, I

tried to come up with a proof of concept solution that can detect keyloggers from network

tra�c. This way it is much easier to detect tra�c in an enterprise network since we need

to add only one server. Then tee the outgoing tra�c into it, and then the analyzer can

detect keyloggers from the tra�c. We don't need to install a detector on every machine,

so this is a much easier and scalable solution. I've tried freeware and proprietary software

with di�erent con�gurations and even created a keylogger for con�gurations, that wasn't

implemented in the previously mentioned software.

I've used virtual machines for my research. The results showed that keyloggers that

send the data periodically can be detected just very quickly (of course this depends on the

period itself). Keyloggers that sends logs after every n character pressed is also detectable.

These types of keyloggers are the most commonly used nowadays.

4

Chapter 1

Introduction

In today`s world where information is getting valuable day by day, it is an important task

to protect this information from the attackers. If the information falls in the wrong hand

that can lead to harmful events. This is important for both companies and individuals.

The companies can lose competition advantages and customer trust which leads to losing

money. Individuals can leak out their credit card numbers, login credentials and also can

be victims of identity theft.

Spying has been always part of our life, everyone wants to know more information about

everybody else. Companies hire black hat hackers to help them steal data from rival

companies. These hackers use various techniques to achieve their goals. These techniques

include social engineering, phishing, and the use of spyware programs. To stop them we

need strict security policies and anti-spyware programs to detect malicious activity.

There was already numerous famous spyware attack for example "CoolWebSearch" [12],

"Gator" [13] or "Hot as Hell" [21]. Using spyware is often part of a bigger attack to gather

information. For example, the Stuxnet-like malware called Duqu which was discovered by

the CrySyS Lab also included one [5].

How much trouble can spyware do? To answer this question just look at the previously

mentioned famous spyware. "Hot as Hell" was in the dial-up internet era. It dialed

toll numbers to subscribe to pornographic websites and even disconnected the user from

the local internet provider, and connected to a more expensive international provider.

"Gator" is one of the most famous adware program, which displayed advertisements based

on the user`s behavior. "Gator" is also famous for it`s spreading technique, it was bundled

in freeware software, "Kazaa" a popular �le-sharing program also helped the spreading

of "Gator". "CoolWebSearch" was used for browser hijacking, it messed up the user`s

Internet Explorer settings. We can see that spyware can cause �nancial damage, and can

be annoying.

Keyloggers are a type of spyware, they are continuously logging our activity, they can

monitor our keystrokes, mouse movement, create screenshots and even can record the

surroundings of the computer using the webcam and microphone of our device. There are

even hardware-based keyloggers, which are small devices installed between the keyboard

and the computer. Nowadays there is also a huge market for wireless keyboards, but we

5

can also �nd numerous gadgets on web stores that are capable of capturing our keystrokes.

Keyloggers are not only used by hackers, but there are also examples of legal keyloggers

that are used by parents for monitoring children and employers monitoring their employees.

Freeware and proprietary keyloggers exist on the market as well.

Software-based keylogging works di�erently depending on the operating system we are

using. There are keylogger solutions for Windows and Linux systems, and in the last few

years, there has been a huge increase in keyloggers made for macOS.

Detecting and removing spyware is important but not a trivial task. The host-based key-

logger detection mechanism is the most common. For example, on a Windows system, we

can detect keyboard hooks, and eliminate bad processes. However, some games or macros

also need to use keyboard hooks, which can result in false positives. Host-based detection

has a huge disadvantage, which is scalability, we need to install it on every machine. Imag-

ine a huge company with thousands of workstations, installing and maintaining software

like this requires a lot of resources. As I mentioned earlier keyloggers can work di�erently

based on the operation system, which means we need di�erent host-based detectors for

each os which increases the complexity of the maintenance.

I tried to come up with a solution to detect spyware based on network tra�c. This way

we don`t have to install software on every computer, instead we need to copy the outgoing

tra�c into a machine that runs the analyzer. This approach has many advantages, it is

easy to maintain, doesn't use the host computer's performance and it is placed on a single

machine. However, this solution also has disadvantages one of the biggest is that it can

only detect spyware that is logging to a remote server.

The proposed algorithm works only as an IDS, so it doesn`t try to intercept or deny the

malicious tra�c, it just creates logs for further more examination.

The remainder of the paper is organized as follows: Chapter 1 is about spyware in

general. In Chapter 2 I introduce the approaches used for spyware detection. In Chapter

3 we can see how the algorithm works on di�erent attack scenarios, while in Chapter 4 I

will conclude my work.

6

Chapter 2

Spyware

2.1 Introduction to spyware

The term spyware has been with us for a long time. The �rst recorded use of the term

spyware occurred on October 16, 1995, in a Usenet post that poked fun at Microsoft's

business model [20]. Spyware at �rst denoted software meant for espionage purposes.

However, in early 2000 the founder of Zone Labs, Gregor Freund, used the term in a press

release for the ZoneAlarm Personal Firewall. Later in 2000, a parent using ZoneAlarm

was alerted to the fact that "Reader Rabbit," educational software marketed to children

by the Mattel toy company, was surreptitiously sending data back to Mattel. Since then,

"spyware" has taken on its present sense [22]. We can �nd multiple de�nitions for the

term spyware online, but I found the following the most accurate:

Spyware is unwanted software that in�ltrates your computing device, stealing your in-

ternet usage data and sensitive information. Spyware is classi�ed as a type of malware

- malicious software designed to gain access to or damage your computer, often without

your knowledge. Spyware gathers your personal information and relays it to advertisers,

data �rms, or external users [7].

There is much spyware in the wild, with di�erent working mechanisms, and di�erent

purposes. There is much spyware for targeted attacks and of course, there is much for

gathering as much information as possible, from as many sources as possible. Some spyware

is used by their developer to create revenue, some of them are sold on the dark web.

Complex spyware can be very pricey, for example in 2018 a senior programmer at NSO

who had access to the �rm's development systems including its source code repositories,

tried to sell the company's new surveillance software for $50 million [4].

Spyware is made for smartphones, workstations, but in recent years there have been

some huge milestones in the evolution of spyware software with the appearance of spyware

programs speci�cally designed for macOS.

In 2007 a survey showed that 90% of U.S. home computers have been infected with

spyware at some time [2]. The following �gure shows us how much money gets stolen,

and how many identity thefts there are just in the United States [1]. This number has

been decreased over time, however, it is still a very big threat. There is still much spyware

7

out there, according to a paper by Security Magazine one in 50 emails contains some form

of malicious content. Digital Trends estimates that 10% of all malicious emails contain

malware such as ransomware, spyware adware or trojans [8].

Figure 2.1: Spyware casualities in the US.

In recent years the number of spyware for mobile is increasing year by year. There is

also commercial spyware which is legally downloadable surveillance software. In recent

years there is a major increase in spyware made for smartphones. In 2019 there has been

an issue, with the famous messaging application called "WhatsApp", where a vulnerability

lets the attackers inject spyware on the phone. "WhatsApp" is used by 1.5 billion users

worldwide. This spyware was called Pegasus and it was developed by an Israel-based

cyber-intelligence company called NSO [18]. By some source, this is considered one of the

biggest zero-day bugs in recent times. This vulnerability a�ected Android, iOS, Windows

Phone, and Tizen.

There are many di�erent kinds of spyware in the wild. They behave di�erently but

mostly share the same purpose which is information theft and fund producing for the

creator.

2.2 Classi�cation of spyware

There are many di�erent classi�cations for spyware. I found the list from Malwarebytes

the most accurate, however, I think the list was missing an important item which is Adware

[16]. In my opinion, spyware can be classi�ed into 5 major categories.

• Password stealers

• Banking trojans

• Information stealers

• System monitors / Surveillance software

8

• Adware

2.2.1 Adware

Adware is a software that is made for gathering information about the victim, and then

show customized ads to the user. This way the user is more likely to click on the ad. The

information gathered by the adware can be the browsing history or the victim's browsing

behavior.

Adware generates money for its creator on a per-ads-displayed or a per-click basis. They

often come with shareware software bundled into the installer.

Some sources classify adware to PUP (potentially unwanted software). Adware gathers

information without the victim's knowledge, so according to my point of view, adware is

spyware.

Adware can be quiet or aggressive, quiet ones pop just a few ads, aggressive ones can

overlay the screen with advertisements. In the following �gure, we can see a rather aggres-

sive adware. The picture was taken on an Apple computer running macOS, which shows

not only Windows users are a�ected.

Figure 2.2: Enourmous advertisement storm on a macOS.

2.2.2 Password stealer

Password stealers are malicious programs, which are designed for recording usernames and

passwords. The stolen credentials can be uploaded to a remote server or it can be stored

on the infected machine for personal retrieval. Password stealers are considered dangerous

because they can compromise email accounts and bank accounts. It can steal the saved

passwords from the browser, from plaintext �les or even from your password manager app

if your vault is unlocked. Password managers can help against this type of attack, but it

9

isn't a complete solution, because the password manager can be vulnerable, and even if it

is locked attackers may still gain access to the stored credentials.

The motivation behind password stealers is money as always. Password stealers can

generate revenue by stealing credit card details, or they might let the attacker blackmail

the victim. Password stealers also let the attacker to impersonate the victim online, which

can lead to very high damages, for example, ruin personal relationships or getting the

victim �red from their job.

In most cases, password stealers are installed with bundled shareware software.

2.2.3 Banking trojan

Banking trojans are specially designed to harvest bank account credentials or credit card

details. Some of them are also capable of crafting or modifying transactions. This way the

attacker may gain access to digital wallets and online �nancial portals. They are invisible

to the victim and for the web application as well. They use vulnerabilities in browsers to

manipulate the sites of o�cial �nancial institutes. They are also capable of sending our

credentials to the attacker's server.

This type of spyware exists because they can gather money very easily, and in a rapid

way.

This spyware often spreads through emails.

2.2.4 Information stealers

Info stealers are similar to password stealers, with the big di�erence that they not only aim

at getting the credentials from the user, but also gather documents, pictures, and other

media �les. They are very harmful because there is a huge chance it will �nd something

con�dential on our machine. It can save passwords and browsing history from the victim's

browser, loop through every �le on the victim's machine, and store con�dential �les. The

gathered data can be uploaded to a remote server, or it can be placed somewhere on the

victim's machine to let the attack retrieve it personally.

Info stealers can generate money by giving the attacker a chance to blackmail the victim,

and also it can retrieve the victim's credit card credentials. The further damage it can

cause is huge, if there is a picture of our identity card, it may let the attacker impersonate

us, and this can result in identity theft.

This spyware can come with bundled freeware or shareware software, or it can arrive as

a trojan.

2.2.5 System monitors / Surveillance software

This type of spyware is meant for giving the attacker a chance to gather information from

the victim in real-time. It can record voice or video, log victim's keystrokes and their mouse

movement. Not every surveillance software is malicious, we can �nd many legal system

monitors, which are made for parents or employers to monitor children or employees. The

legality of these software provides access to spyware software for people that don't have

10

knowledge in these �elds, which makes attacks via spyware programs practical. Keyloggers

are a type of this software which are used to capture keystrokes.

System monitors can generate revenue by stealing credentials. Legal surveillance soft-

ware generates revenue based on purchases since they are mostly proprietary.

This software might be already installed on our workstation in case of legal use. When

it comes to illegal data theft, in most cases it comes as a trojan, promoting itself a useful

application.

2.3 What is spyware doing

There are many di�erent kinds of spyware in the wild, with di�erent purposes. However,

they can be classi�ed by behavior. Spyware is stealing our data and generates funds for

the developer this way. There are di�erent kinds of spyware that are not always easy to

detect.

Adware is one very common type of spyware, not every adware can be considered as

spyware, but those which gather information about the user's behavior and then generates

advertisement designed for the user is spyware. It collects information without the user's

consent, and deliver advertisements. Luckily these programs are more annoying than

harmful.

Banking spyware is specially designed to steal credit card credentials.

Password stealers and Infostealers are a broad range of spyware which scans the user

computer for log �les, browser history, login credentials, documents, and other media �les.

They are also capable of uploading the stolen information to the attacker's remote server.

Keyloggers are created to log every activity the user takes, this includes mouse tracking,

saving keystrokes, creating screenshots and even recording media through the computers,

microphone, and webcam.

The spyware can store stolen information on the victim computer for personal retrieval

or can upload it to the attacker's remote server.

There are also legal keyloggers, these are meant for monitoring employees or children,

however, this software also can be used with malicious intent.

2.3.1 How spyware is spreading

There are many ways spyware can spread to our machine, this includes, emails, security

vulnerabilities, phishing, trojans, and bundled with other software. Spreading is often

based on user gullibility, in some cases when it comes to installing software using one or

more zero-day vulnerability it is possible that the user doesn't have to do anything to be

a�ected by the spyware.

2.3.2 Spreading via Email

This method is usually used by attackers to �nd possible victims. Nine out of ten cyberat-

tacks start with a simple phishing email, and these emails are getting both more numerous

11

and more sophisticated [19]. 14.5 billion spam emails are sent out every day and it is

estimated that 2-4% of all email tra�c is malicious [6].

In this attack type, the attacker has to rely on the victim, where the attackers try to forge

legitimate emails, with a malicious attachment. For example, the attacker disguises himself

as a bank and sends a corrupted document, as soon as the victim opens the document

becomes vulnerable to the attacker.

2.3.3 Spreading via vulnerabilities

This type of spreading in not so common, because it requires a higher knowledge, and in

some cases an understanding of the victim's system. This kind of attack is harder to avoid,

and in some cases, there is no need for user interaction.

Emotet famous spyware which was �rst detected in 2014, but some versions still exist

and came back in September of 2019, used the EternalBlue/DoublePulsar vulnerabilities

for spreading. This is the same vulnerability used by WannaCry and NotPetya [15].

2.3.4 Spreading via phishing

This method fully relies on the victim. Sending specially crafted emails can be considered

one kind of these attacks. The main idea behind this is to get the victim, to install

the malicious software on his/her device. Sometimes it requires social engineering, in

some cases, it is enough if the attacker just lays down �ash drives everywhere in the city,

some people pick up those and are fool enough to put them inside their device and open

documents, or programs which are copied on the �ash drive.

2.3.5 Spreading via trojans

The malicious program disguises itself as useful software, but when the victim installs it

on his/her device, it also performs spying alongside the promised functionality. This kind

of malware is hard to detect and hard to remove. Deleting the program doesn't help in

most cases because the spyware duplicates itself to di�erent locations, and starts when the

system starts. The famous spyware Campi was spreading this way and has stolen 500,000

online bank accounts.

2.3.6 Spreading via software bundles

The user is always in a rush when it comes to installing software the average user just

wants the software already installed, rushes through the buttons always press next and

expects the software to be installed. Well if the user is not prepared, can install spyware

alongside the so wanted software. Many software comes with an installer that installs not

only the software the user wanted but other software as well which can be spyware. The

term bundleware is used for this kind of software.

12

2.4 Keyloggers

In this thesis, I am focusing on the detection of keyloggers so I introduce them in detail in

the following section.

2.4.1 Introduction to keyloggers

Keylogger's main functionality is to record the victim's every keystroke. This log �le can

be sent to a remote server, or stored locally. Keyloggers are often used legally, by employers

and parents to monitor their employees and children.

There is a huge market of keyloggers for sale online, from basic functionality to fully

customizable loggers which are capable of recording, not just the keystrokes but even take

screenshots or track the mouse movement. Some of the high-end keyloggers provide a much

cleaner log for the spy, not only the keys pressed but also a timestamp and it can provide

information about the windows the victim typed in.

Keyloggers can be recording keystrokes, from very low level to high level, for example,

there is a device which needs to be placed between the keyboard and computer and captures

keys there.

Software-based keyloggers are fairly easy to develop. Online repositories o�er a lot of

open-source loggers, for di�erent operating systems.

Keyloggers work di�erently on di�erent systems. The methods written below are just

one type of possibilities, there are other methods to make them work.

2.4.2 Keyloggers on Microsoft Windows

Most keyloggers are made for Windows because this is the most frequently used operating

system on computers. Windows keyloggers can work using the Windows API, which lets

them hook into "SetWindowsHookEx" and after this, we can poll the "GetAsyncKeyState"

to gather information about the keys pressed. As soon as the key is retrieved it is up to

us, what we want to do with it. To create a keylogger one doesn't have to use low-level

languages to interact with the Windows API, for example, there are Python modules called

"pywin32" and "pyhook" which lets us interact with the API and this way we can create

a keylogger in Python.

2.4.3 Keyloggers on Linux

The most common Linux keylogger is called "logkeys" it is an open-source keylogger that

makes it easy for everyone to customize a bit and add to their malware. It is an advanced

keylogger, it can handle modi�er keys alongside with normal keys. This keylogger relies

on the event interface of the Linux input subsystem [14]. Linux keyloggers can be easily

written in Python or any other languages.

13

2.4.4 Keyloggers on macOS

Apple's security for macOS is generally held to a fairly high standard. A keylogger to work

has to exploit a vulnerability in Apple's security controls. In recent years spyware made

for macOS is becoming more frequent. The mechanism is almost the same as on the other

operation systems. Keyboards use the HID API to work which has to endpoint IN and

OUT, watching these endpoints makes it easy for the attacker to capture keystrokes. A

paper from 2018 promotes a keylogger written in swift that doesn't need permissions to

run [10].

2.4.5 Classi�cation of keyloggers

Keyloggers can be speci�ed to di�erent categories, there are di�erent classi�cations, but I

found the following the most accurate [9].

• Hardware keyloggers

• Software keyloggers

Hardware keyloggers

Hardware keyloggers have the advantage it doesn't rely on any other installed software.

They are also capable of record BIOS password, or password for the disk encryption soft-

ware. There are more types of hardware keyloggers. All of them have a microcontroller

and some kind of non-volatile memory where the data can be saved. Hardware keylog-

gers share a large disadvantage against software-based which is the physical presence, the

attacker has to be close to the victim, which increases the risk of getting caught.

Regular hardware keylogger A regular hardware keylogger is just a small device that

is a man-in-the-middle attack between the keyboard and the computer. It captures the

user's keystrokes and stores them locally. It is hard to notice if already installed. See the

following �gure:

Figure 2.3: The �gure shows the device itself and the same device in action

14

Wireless keylogger Today many users have a wireless keyboard, they usually commu-

nicate using a Bluetooth adapter. A wireless sni�er can capture this tra�c, if it isn't

encrypted or the encryption key can be cracked then the attacker can steal our data.

Acoustic keylogger This method is more like a proof of concept method, and it isn't

used in real life, however, I found this method very interesting. Recording the sounds the

keystrokes make with a high-end microphone lets the attacker analyze it. Every key makes

di�erent sound, which gives the chance to the attacker to use statistical methods such as

frequency analysis to pair the keys with the sounds [17].

Software keyloggers

Software keyloggers are programs made for capturing keystrokes. They are classi�ed based

on the logging mechanism. There are those which store the log locally, and there are those

which upload the captured data to a remote server. I focused on those which uploads to a

remote server. This spyware can be classi�ed into three more classes based on the logging

mechanism. The most frequently used logging protocols are SMTP, FTP, and HTTP.

• Periodic loggers

• Bu�er based loggers

• Trigger key loggers

Periodic loggers This type of malware uploads its log �les to a remote server in a

periodic behavior. Let's say it sends an email to the attacker every 3 minute containing

the log �les, and screenshots created by the spyware.

Bu�er based loggers Bu�er based loggers add the keystrokes to a bu�er, and when

the bu�er is full it can be uploaded to a remote server. For example, let's say the bu�er

is 500 bytes when it is full, then the spyware uploads the 500 bytes/characters to an FTP

server.

Trigger key loggers This is an interesting type of spyware, it de�nes a trigger key or

trigger word. When the trigger key or word is typed, the spyware uploads the logs to the

remote server. In a real-life scenario, this can be implemented by a keylogger which uses

HTTP POST request to send the logs when the Enter key is pressed.

Now that we are aware of the basics of keyloggers, we can proceed to detection.

15

Chapter 3

Detection

There are already a lot of detection mechanism out there. Most of them are host-based

approaches. I wanted to create an algorithm that enables us to detect spyware by sni�ng

the network tra�c. I have read a lot about a possible solution and concluded that an

Intrusion Detection System like approach would be the best. This way even if there is a

malfunction on the algorithm it doesn't have an impact on the network tra�c.

However this approach has limitations, we can detect only remote logging keyloggers, so

hardware-based and software-based keyloggers that store the capture locally is not possible

to detect this way.

There are many advantages to this approach, it is lightweight and doesn't need to be

installed on every machine. This solution is very scalable because if we add a new computer

to the network we don't have to do anything else, the algorithm will do the work.

I implemented a proof of concept Python script, that analyses tra�c from the given

interfaces. When it �nds a possible spyware threat its IP and some other details are

printed on to the standard output. The program uses tshark and pyshark for packet

analysis.

Currently, the program is focused on SMTP, HTTP/HTTPS, FTP and FTPS protocols.

As I mentioned earlier there are three types of remote keyloggers, each requires a di�erent

detection mechanism.

While developing the algorithm I created pcap tra�c captures, that can be used for

testing the algorithm. I made di�erent captures some of them had spyware in it, some

don't, the spyware always used di�erent logging mechanism. I used di�erent keyloggers

while creating the captures, with di�erent settings. The pcap �les were captured in the

Asherah infrastructure, which can be seen in Chapter 3.

3.1 Detecting periodic loggers

This type of keylogger uploads the captured data to the remote server in a periodic way.

For example, it sends logs in every 2 minutes to a remote FTP server.

However, I couldn't �nd statistics about the dispersion of remote logging keyloggers, I

think this is the most common type of remote loggers. Every keylogger I tried during this

16

research support periodic logging.

There are 2 di�erent solutions for this kind of loggers: one is based on statistics, the

other one builds up a binary signal and searches for the period. The development process

looked the same for both of these approaches. I created a basic script, then tested it,

re�ned it, then tested it again and this loop took many iterations.

In the following subsections I will de�ne my detection algorithms, while the performance

analysis of the solutions is described in Chapter 3.

3.1.1 Statistic based analysis

The algorithm works on the captured tra�c, and the output is the host that is suspected

to be infected by spyware. The algorithm loops through the following steps, but before

it could run we need to de�ne some constants, one important is the address range of the

local network. The other one is the protocols we are looking for, currently, it is HTTP,

HTTPS, FTP, FTPS, and STMP.

The simpli�ed description of the algorithm looks like this.

1. We are only interested in outgoing tra�c, so if the source address is not in the local

address range we skip that packet.

2. We need to separate the packets based on the source address, this way we have the

packets for each host. It is important to note that we pick 1 packet of each TCP

stream.

3. Then we need to separate the tra�c based on protocols, we are interested in.

4. Sort the packets by capture time.

5. For a given packet we need to calculate the time di�erence for every packet that

comes after it. The di�erence is added to a list.

6. From the di�erence list we can build up a dictionary and we calculate which time

di�erence is the most frequent. Because there can be errors, we provide an error

margin, and if the di�erence is in that range we increase the counter for the dictionary

and recalculate the key according to the new di�erence. The destination IP address

is also added, so we can guess the attacker's server.

7. We have to check if the packets that seem suspicious, are constantly present in the

tra�c.

8. If none of the checks fail, then we print out that we found a possible spyware victim,

and print out the details of the suspected packets.

The algorithm is not complicated at all, but it also includes some checks that are not

included above.

17

It might become more clear if we check a real-life example. Let us say there is a periodic

keylogger on our computer that sends logs every minute through SMTP, but we send out

emails during the examined period.

The examined period is 5 minutes and the sent out packets are the following.

00:36 - User sent out an email

01:00 - Spyware sent out an email

01:07 - User sent out an email

01:21 - User sent out an email

02:00 - Spyware sent out an email

02:47 - User sent out an email

03:00 - Spyware sent out an email

03:36 - User sent out and email

03:55 - User sent out an email

04:00 - Spyware sent out an email

04:11 - User sent out an email

04:29 - User sent out an email

04:48 - User sent out an email

05:00 - Spyware sent out an email

Let's do the algorithm from the �fth step. If we do everything correctly the following

frequency dictionary will be present.

01:00 - 4

01:24 - 3

00:53 - 3

02:00 - 3

03:00 - 3

00:49 - 2

00:24 - 2

00:31 - 2

03:53 - 2

02:29 - 2

00:19 - 2

02:48 - 2

02:11 - 2

...

The result shows us that even with this huge noise, the result of the algorithm was the

correct period of the keylogger. The real algorithm would also check for the duration of

the packets that seem suspicious to the duration of the whole capture and if the logging

seems continuous then it is printed to the standard output.

3.1.2 Signal based analysis

We also wanted to create a signal processing based solution. The main idea was to create

a binary signal which is 1 when there is outgoing tra�c and 0 when there is not. Our

�rst idea was to use Welch's power spectral density estimate, however, due to the high

signal-noise ratio, this didn't provide good results. We also tried several Fast Fourier

transform-based algorithm but none of them seemed to work. We asked Dr. Rucz Péter,

and he gave us the idea to try using the cepstrum of the signal. A cepstrum is a result of

taking the inverse Fourier transform (IFT) of the logarithm of the estimated spectrum of

a signal[15].

The equation for calculating cepstrum:

18

|F−1{log(|F{f(t)}|2)}|2

The simpli�ed description is presented below.

1. We are only interested in outgoing tra�c, so if the source address is not in the local

address range we skip that packet.

2. We need to separate the packets based on the source address, this way we have the

packets for each host. It is important to note that there is a maximum of 1 packet

per TCP stream.

3. Then we need to separate the tra�c based on protocols we are interested in.

4. Then we need to sort the packets by capture time.

5. Build up a binary signal from the packets, if there is no packet the value is 0 if there

is the value is 1, the algorithm uses 1 second long intervals.

6. Calculate the cepstrum of the previously created signal.

7. Check the spikes of the results, if there are spikes it means we suspect that there is

malware on the computer and we print the result to the standard output.

The following �gures show the di�erence between cepstrum and Welch's transform.

Figure 3.1: The result of Cepstrum (left), and Welch(right) on a signal where
the SNR is high.

This �gure shows us that both methods found the period, which was 60 seconds, there

is a big spike on the cepstrum plot at 60, and there is also a big spike on the Welch's

transforms plot at 0,0167 which is 1/60.

19

Figure 3.2: The result of Cepstrum (left), and Welch(right) on a short and
noisy signal

The logging period of the spyware was 60 seconds, however, the recorded tra�c was

just 4 minutes long, and there was a very huge noise. We can see the spike at 60 on the

cepstrum's plot. The other plot goes up at 1/60, but it would be di�cult to conclude from

this.

The following �gures show us the result of cepstrum and Welch's transform when there

is no spyware on the network.

Figure 3.3: The result of cepstrum (left) and Welch's transform (right).

Here we can see that there are no big spikes on either of the plots, which is the expected

behavior.

3.2 Bu�er based keylogger

Bu�er based keyloggers specify a bu�er size, and when a key is pressed, it adds it to their

bu�er. When the bu�er reaches its limit that initiates the uploading process, then the

bu�er gets cleared. The base idea was that if the payload is the same then the packet sizes

shall be the same for a given protocol. This statement seemed true, but when the tra�c

was encrypted, we couldn't �nd the data packet. So the �nal idea was to sum the whole

TCP stream size in bytes and then compare the stream sizes. However, errors can appear

here as well, for example, a packet needs to be resent which can a�ect the stream size. The

algorithm uses only statistics based approach the simpli�ed description can be read down

20

below:

1. We need to separate the tra�c based on the source address which results in a dic-

tionary where we can access the tra�c for each host.

2. We need to split the tra�c based on the protocols, if a packet matched for the

protocols we provided then the whole packet stream is copied to a list

3. We calculate the size of each stream.

4. Look for streams that are the same size, and check if they look the same, average

packet size, packet count, etc...

5. The result gives us streams that are very similar to each other.

6. We put these streams on a timeline and compare it to the capture time, based on

this we can decide if the streams need to be declared as suspicious.

7. We print out the IP addresses of the host that have been found suspicious and other

details like the destination addresses of the suspicious TCP streams.

3.3 Trigger key-based keyloggers

This type of keyloggers can't be detected using the previously mentioned methods because

the upload time, and packet size depends on the user.

Imagine a real-life scenario where the trigger key is the Enter key. This makes sense

because most people use this to submit online forms and at the end of each log our password

will appear. The time and the keystrokes among each press of the Enter key are variable.

There can be uploads that contain many characters and uploads that contain only words,

or characters.

These packets could be analyzed if we could take a look at the payload, which is not

possible when the data is encrypted and transmitted through a secure protocol.

Because of the above, the proposed algorithm is not capable of indicating trigger-based

keyloggers.

Trigger-based keyloggers aren't too common, I used many keyloggers during this research

and just a few of them were capable of trigger based keylogging.

Now that we are aware of the algorithms used for detection, we can test them on real-life

scenarios, see the next chapter for the test cases and results.

21

Chapter 4

Evaluation

I had the luck to test my solution on the upper levels of the Asherah topology. The

Asherah infrastructure was created for the International Atomic Energy Agency, and it is

a virtualized nuclear power plant. This infrastructure has working email servers, gitlab

server, DNS servers and many more, the workstations authenticate through an active

directory. With this network, I can test my solution in a fully working industrial control

system.

4.1 Asherah infrastructure

Creating Asherah was an international project of the IAEA. The CrySyS Lab participated

in this project, and we created security levels 4 and 5. The infrastructure is virtualized on

VMware vCenter and the deploy script is written in Ansible.

Ansible is a Python based program that reads con�gurations and tasks from .yaml �les

and then executes them. It is used for automatic infrastructure deployment, and the

playbooks, which contain the con�gurations can be run multiple times. This feature gives

us a good chance to test di�erent kinds of attacks, and if we want to test a new scenario,

we can rollback easily to the default state of the infrastructure.

The two levels used in my scenario can be seen in the following �gure.

22

Figure 4.1: The topology of Asherah SL 5 (left) and 4 (right)

4.2 Inserting the analyzer into the infrastructure

As mentioned earlier we use an IDS based solution where the new virtual machine doesn't

a�ect the performance of the network. We have to create a new virtual machine, and then

we need to copy the outgoing tra�c to the new virtual machine.

We can do the cloning in two di�erent ways, one of them is to use vCenters built-

in mirroring function which is called VMwareVspanSession. During my previous work

at the CrySyS Lab, I was given the task of creating an Ansible module for managing

VMwareVspanSessions [11]. Using this module we can create not just the infrastructure

but even the port mirroring in ansible, and we won't have further work with this. The

other method is independent of the virtualization method, this is done with an iptables

rule. An example iptables con�guration looks like the following:

iptables -t mangle -A PREROUTING -j TEE --gateway 10.5.0.200

Where 10.5.0.200 is the analyzer machine and the TEE target creates a copy of the

tra�c.

4.3 Setting up scenarios

I used several di�erent keyloggers for testing. The keyloggers used can be seen on the

table below, however, the results were independent of the keyloggers. To provide the same

testbed, I used a user emulator developed by Gnandt Balázs [3], this way the computers

had always the same input.

Before testing the scenarios I set up an FTP Server and an Apache Web Server where

stolen keystrokes can be uploaded. This 2 server was also virtualized on vCenter and they

23

are outside of the Asherah's network range.

The workstations which act as victim in the scenario run Microsoft Windows 10.

The user emulator does the following tasks.

• Searches for a picture and downloads it.

• Uploads the picture to the Intranet.

• Browse Reddit.

• Reads StackOver�ow.

• Searches on google.

The time amount which is spent on each task is randomized, and the tasks are also

randomized this way there will be no periodic event which is generated by us. The emulator

works with a recording script, which records the keystrokes and mouse movements, and

then replays them. Modifying that script enables me to randomize the wait time.

The keyloggers I tested had a free trial period, or the developers granted me a trial

license, I even built my keylogger for better customizability from snippets found online.

I came to the conclusion that the keylogger used doesn't a�ect the detection. This type

of keyloggers doesn't encrypt the captured data, the encryption depends on the upload

protocol.

Table 4.1: Table of tested keyloggers.

Name Periodic Bu�er Trigger

All In One Keylogger yes no yes

REFOG Keylogger yes no no

Revealer Keylogger yes no no

Best Free Keylogger Lite yes no no

Keylogger created by me yes yes yes

Keymail no yes no

4.3.1 Example scenarios

The following scenarios are selected based on importance, I wanted to show one for each

protocol. The most interesting is the HTTP tra�c since that is the most frequent. We

generate a very clear signal from SMTP tra�c because SMTP tra�c normally doesn't

come from the Workstation. FTP tra�c is rare as well, and the protocol type doesn't

change the outcome of the detection.

I did more than 20 di�erent scenarios, with di�erent settings, and the detector always

alerted the presence of a spyware.

Scenario 1

In this scenario, DESKTOP41 was already infected with malware, which records keystrokes

and uploads them to the attacker's FTP server every 2 minutes.

24

The keylogger used in this scenario was the All In One Keylogger, the con�gurations

can be seen in the following �gure.

Figure 4.2: The FTP settings for All In One Keylogger

For analyzing we use the cepstrum based approach, the simulation took 20 minutes to

run, and the analyzer runs every 5 minutes.

The calculated cepstrum can be seen in the following 4 �gures. The di�erence among

the �gures is the amount of time elapsed, which is written on the top of each plot.

Figure 4.3: The cepstrum plots for the Scenario

It can be seen here that the more data we get the more accurate the plot gets, the actual

25

period is around 120 seconds. There is just one big spike, so it is easy to conclude from

this �gure that there is a spyware present on the computer that logs every 120 seconds. It

is also nicely presented on the plots, the more data we have the easier the noise �ltering

gets.

Scenario 2

In this scenario, DESKTOP41 was already infested with a keylogger, which uploads the

logs using HTTP POST request every minute. Note that there will be a huge HTTP tra�c

noise as well.

The keylogger used in this scenario was the one that was made by me.

The detection method used here was the statistics-based approach. The script will be

handled 10 minutes, of the network tra�c.

The end result is presented below:

PERIODIC CHECK

Host: 10.4.2.100

HTTP

Spyware Found!

Period: 0:01:00.010657

Attacker 's possible logging server(s):

10.105.1.139

The algorithm can sense the presence of a spyware, it also logs the protocol used for

logging in the third line. The logging period, and the destinations of the possibly malicious

packets are printed out as well.

Scenario 3

In this scenario, DESKTOP41 was already infected with a keylogger, which sends the logs

in an email every 5 minutes.

The keylogger used in this scenario is the REFOG Keylogger.

The simulation here runs for 1 hour, and the detection script runs every 10 minutes.

Here the cepstrum based approach is used.

The results can be seen in the following �gures. The di�erence among the �gures is the

amount of time elapsed, which is written on the top of each plot.

26

Figure 4.4: The cepstrum plots for the Scenario

The �gure shows that the keylogger can be detected from the 20th minute, the problem

with the signal-based approach was that it requires a minimal dataset which wasn't present

at the 10th minute, so the script couldn't run the cepstrum calculation. As soon as the

minimal dataset is present the keylogger can be easily detected.

Scenario 4

In this scenario, DESKTOP41 was already infected with a keylogger that logs key after

every 100 characters pressed and sends the logs via email.

The keylogger used here was the Keymail Keylogger, and the email is encrypted (SS-

L/TLS). The intresting thing in this scenario is that, the encrypted emails, still share the

same size, and this comes in a result which can be detected.

The output is presented below.

Scanning ...

74.125.140.109

[1957 , 1957, 1957, 1957]

Spyware Detected!

64.233.167.109

[1957 , 1957, 1957, 1957, 1957, 1957, 1957, 1957]

Spyware Detected!

This snippet found Spywares, the printed IP addresses are the log servers of the attacker,

in this case both belong to Google. Under the IP addresses we can see a list that contain

numbers, these numbers are the packet size of the whole TCP stream in bytes.

It is important to note that the packet sizes can be di�erent, it really depends on that

27

how the attacker decides to encode them. It also depends on the connectivity, if there is a

packet lost, then the packet is transmitted again, increasing the size of the TCP stream.

For example, there can be an attacker who encodes everything as a string, there are

special characters which aren't part of the ASCII table. This has an increased size in

bytes and therefore even it is just one character it is more than 1 byte, which results in

an increased packet size. When the packet sizes have small di�erence the algorithm still

detects the spyware, but as soon as there is a bigger di�erence (15%-20%) the algorithm

fails to detect the presence of the keylogger.

Scenario 5

This is a real-life scenario, where one of the computers is infected, and the script runs on

the analyzer machine. The keylogger sends a log every minute to the attacker's web server.

The questins releated to this scenario was the following.

• How many logs are sent before we could detect the spyware?

• Which method detects the spyware �rst?

To answer these questions, we had to run the test and the results were the following:

lista 4.1: The results for statistics based algorithm

Analyzed 4 minutes

Spyware Detected!

Period :0:01:00.700317

Attacker 's server: { '10.105.1.139 ' , '216.58.208.46 '}

Analyzed 5 minutes

No spyware

Analyzed 6 minutes

Spyware Detected!

Period :0:01:00.184344

Attacker 's server: { '216.58.208.46 ' , '10.105.1.139 '}

Analyzed 9 minutes

Spyware Detected!

Period :0:00:59.441849

Attacker 's server: { '172.217.19.110 ' , '216.58.208.46 ' , '10.105.1.139 '}

28

Figure 4.5: The results for the cepstrum-based approach

To summarize the results, the statistics based could detect the spyware for the �rst time

just in 4 minutes, however, due to some interference in the 5th minute, the results came

back negative. From the 6th minute, the spyware is detected every minute. Due to the

small sample size, the algorithm gives false information for the Attacker's server which was

10.105.1.139. The cepstrum-based approach could detect the presence of the spyware from

the 8th minute. The �gure shows that with more sample we get less noise which results in

stable detection.

4.3.2 Performance

Speed

While developing the scripts the �rst problem with the performance was memory usage.

Analyzing a small pcap �le resulted in enormous memory usage. This problem was resolved

using our Packet class which keeps only the details we were interested in. After this problem

was resolved, the next bottleneck was the CPU. I measured the analyzing speed using the

following method.

First I was thinking about generating a huge load of tra�c, but then I realized that

it wouldn't be good for testing the capabilities of the algorithm because the packet size

does not a�ect our algorithm since it uses our custom Pacet class, which doesn't contain

the payload. Then I was thinking about a Packet/Second based solution since there are 3

di�erent approaches to detect spyware I will benchmark all of them.

I created a lot of .pcap �les that contain di�erent amounts of packets the algorithm is

29

interested in. Then I will run the algorithms, and calculate a packets/second speed. These

results depend on our CPU power.

The speed of each algorithm is present in the following �gures. The tests were running

on my laptop which is a Dell XPS 13 9370 and has an Intel(R) Core(TM) i7-8550U CPU

@ 1.80GHz.

Figure 4.6: Speedtest for detecting periodic keyloggers based on statistics.

Figure 4.7: Speedtest for detecting periodic keylogger based on the cepstrum
of the signal.

The speed for bu�er-based keylogger can vary on the packet count of each di�erent TCP

stream.

30

Figure 4.8: Speedtest for detecting bu�er-based keylogger based on statistics.

This measurement showed that statistics-based approach for detecting periodic keylogger

is not a viable solution on a network where the outgoing packet/second rate is high.

The cepstrum based may have disadvantages in the short run, but in the long run it is

a viable solution because high packet count doesn't slow the algorithm.

The results for bu�er based solution showed that the packet count a�ects the algorithm

but due to its simplicity it can be applied even on huge amount of tra�c

31

Chapter 5

Conclusion and Further

Improvements

Spyware is frequently used by attackers to gather information, detecting them is an impor-

tant task to minimize data loss. The detection through network tra�c makes the detection

mechanism more scalable and maintainable.

In my opinion, the fact that the algorithm detects keyloggers from di�erent vendors

makes it clear that this solution can be used for detecting malicious spyware. However,

due to the constraints that it is unable to detect other than remote logging spyware, I

would advise to use it along with a host-based approach. To increase scalability I would

advise to use host-based detection on critical infrastructure and also apply the proposed

solution.

After the performance test, I realized that I should have merged the solutions for detect-

ing periodic keyloggers. When there is a small amount of sample data the detection should

use the statistics-based approach and in other scenarios use the cepstrum-based approach.

There is still a lot of development needed for the detector script, but I think it worth

time investments because the results clearly showed that we can detect keyloggers.

To increase the accuracy of bu�er-based keyloggers, I should implement a mechanism

that detects re-sent packets, and these packets won't be added to the �nal stream size.

To give the script a better and faster detection rate on periodic loggers, the statistics

and cepstrum-based solutions need to be merged in a way these methods can reach the

best results.

The statistics based solution for detecting periodic keyloggers needs an upgrade to

counter the e�ect of packets bursts.

In summary, I showed that detecting keyloggers based on network tra�c is possible, and

an enhanced version of my solution can be a core technology used in enterprise environ-

ments.

32

Acknowledgement

I want to say thanks to dr. Holczer Tamás who guided me through not just this research

but also the last two years.

I also want to thank CrySyS Lab for allowing me to do this research during my internship.

I want to say thanks to dr. Rucz Péter who helped with the signal-based approach, and

mentioned us to try calculating the cepstrum of the signals.

I also want to say thanks to Gnandt Balázs for his awesome user emulator, and for

helping me to create the users in this emulator.

During the testing of the algorithm, many keyloggers were used. I want to say thank to

Refog Team, for giving me a license for REFOG Personal Monitor.

Finally, I want to say thanks to one of my best friend Körmendy Bertalan for helping

with his enormous vocabulary to increase the grammatical quality of this paper.

33

Bibliography

[1] Adware. 10 cyber security facts and statistics for 2018. https://us.norton.com/

internetsecurity-emerging-threats-10-facts-about-todays-cybersecurity-landscape-that-you-should-know.

html.

[2] Adware. Spyware statistics. https://www.adaware.com/knowledge-database/

spyware-statistics.

[3] Gnandt Balázs. Felhasználók emulációja csapdarendsz-

erekben. https://diplomaterv.vik.bme.hu/hu/Theses/

Felhasznalok-emulacioja-csapdarendszerekben.

[4] BBC. Dark web sting leads to arrest of alleged spyware thief. https://www.bbc.com/

news/technology-44725446.

[5] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, and Márk Félegyházi. Duqu: A

stuxnet-like malware found in the wild. Technical report, CrySyS Lab, October 2011.

[6] Mailbird Christin. 5 facts on email security threats in 2019. https://www.

getmailbird.com/5-facts-email-security/.

[7] Symantec Corporation. What is spyware? and how to remove it. https://us.norton.

com/internetsecurity-how-to-catch-spyware-before-it-snags-you.html.

[8] Casey Crane. 80 eye-opening cyber security statis-

tics for 2019. https://www.thesslstore.com/blog/

80-eye-opening-cyber-security-statistics-for-2019/.

[9] Reiner Creutzburg. The strange world of keyloggers - an overview, part i. 2017.

[10] Skrew Everything. Hacking: Keylogger for macos. *no permis-

sions needed to run*. https://medium.com/from-the-scratch/

hacking-one-of-its-kind-keylogger-for-macos-no-permissions-needed-to-run-684ff32025f5.

[11] Péter György. Create or remove a port mirroring session. https://docs.ansible.

com/ansible/latest/modules/vmware_vspan_session_module.html.

[12] Gabriel E. Hall. Coolwebsearch - the most infamous browser hijacker. https://www.

2-spyware.com/coolwebsearch-the-most-infamous-browser-hijacker.

34

https://us.norton.com/internetsecurity-emerging-threats-10-facts-about-todays-cybersecurity-landscape-that-you-should-know.html
https://us.norton.com/internetsecurity-emerging-threats-10-facts-about-todays-cybersecurity-landscape-that-you-should-know.html
https://us.norton.com/internetsecurity-emerging-threats-10-facts-about-todays-cybersecurity-landscape-that-you-should-know.html
https://www.adaware.com/knowledge-database/spyware-statistics
https://www.adaware.com/knowledge-database/spyware-statistics
https://diplomaterv.vik.bme.hu/hu/Theses/Felhasznalok-emulacioja-csapdarendszerekben
https://diplomaterv.vik.bme.hu/hu/Theses/Felhasznalok-emulacioja-csapdarendszerekben
https://www.bbc.com/news/technology-44725446
https://www.bbc.com/news/technology-44725446
https://www.getmailbird.com/5-facts-email-security/
https://www.getmailbird.com/5-facts-email-security/
https://us.norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you.html
https://us.norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you.html
https://www.thesslstore.com/blog/80-eye-opening-cyber-security-statistics-for-2019/
https://www.thesslstore.com/blog/80-eye-opening-cyber-security-statistics-for-2019/
https://medium.com/from-the-scratch/hacking-one-of-its-kind-keylogger-for-macos-no-permissions-needed-to-run-684ff32025f5
https://medium.com/from-the-scratch/hacking-one-of-its-kind-keylogger-for-macos-no-permissions-needed-to-run-684ff32025f5
https://docs.ansible.com/ansible/latest/modules/vmware_vspan_session_module.html
https://docs.ansible.com/ansible/latest/modules/vmware_vspan_session_module.html
https://www.2-spyware.com/coolwebsearch-the-most-infamous-browser-hijacker
https://www.2-spyware.com/coolwebsearch-the-most-infamous-browser-hijacker

[13] Nishantha Karunaratne. Understanding the gator ? a brief introduction to spyware.

July 2003.

[14] kernc. Logkeys. https://github.com/kernc/logkeys.

[15] Malwarebytes Labs. Emotet. https://www.malwarebytes.com/emotet/.

[16] Malwarebytes Labs. Spyware. https://www.malwarebytes.com/spyware/.

[17] Michael LeMay and Jack Tan. Acoustic surveillance of physically unmodi�ed pcs. In

Security and Management, pages 328�334, 2006.

[18] Sukesh Mudrakola. Whatsapp spyware attack: Everything you need to know. http:

//techgenix.com/whatsapp-spyware-attack/.

[19] Andrew Sanders. 15 malware statistics, trends and facts in 2019. https://www.

safetydetectives.com/blog/malware-statistics/.

[20] Finjan Team. The past and present state of spyware. https://blog.finjan.com/

the-past-and-present-state-of-spyware/.

[21] TechTarget. Top 10 spyware threats. https://searchcio.techtarget.com/

tutorial/Top-10-spyware-threats.

[22] Wikipedia. Spyware. https://en.wikipedia.org/wiki/Spyware#History_and_

development.

35

https://github.com/kernc/logkeys
https://www.malwarebytes.com/emotet/
https://www.malwarebytes.com/spyware/
http://techgenix.com/whatsapp-spyware-attack/
http://techgenix.com/whatsapp-spyware-attack/
https://www.safetydetectives.com/blog/malware-statistics/
https://www.safetydetectives.com/blog/malware-statistics/
https://blog.finjan.com/the-past-and-present-state-of-spyware/
https://blog.finjan.com/the-past-and-present-state-of-spyware/
https://searchcio.techtarget.com/tutorial/Top-10-spyware-threats
https://searchcio.techtarget.com/tutorial/Top-10-spyware-threats
https://en.wikipedia.org/wiki/Spyware#History_and_development
https://en.wikipedia.org/wiki/Spyware#History_and_development

	Kivonat
	Abstract
	Introduction
	Spyware
	Introduction to spyware
	Classification of spyware
	Adware
	Password stealer
	Banking trojan
	Information stealers
	System monitors / Surveillance software

	What is spyware doing
	How spyware is spreading
	Spreading via Email
	Spreading via vulnerabilities
	Spreading via phishing
	Spreading via trojans
	Spreading via software bundles

	Keyloggers
	Introduction to keyloggers
	Keyloggers on Microsoft Windows
	Keyloggers on Linux
	Keyloggers on macOS
	Classification of keyloggers

	Detection
	Detecting periodic loggers
	Statistic based analysis
	Signal based analysis

	Buffer based keylogger
	Trigger key-based keyloggers

	Evaluation
	Asherah infrastructure
	Inserting the analyzer into the infrastructure
	Setting up scenarios
	Example scenarios
	Performance

	Conclusion and Further Improvements
	Acknowledgement
	Biblopgraphy

