
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Networked Systems and Services

TEE-based Remote Platform Attestation

Scientific Students’ Association Report

Author:

Márton László Bak

Advisors:

Levente Buttyán, habil. PhD
Dorottya Futóné Papp

2021

Contents

Abstract i

Kivonat ii

1 Introduction 1

2 Background 3

3 Threat Assessment 7

3.1 Functional Requirements . 7

3.2 Asset identification . 8

3.3 Attacker model . 9

3.4 Security Requirements . 11

4 Overview 13

5 Attestation process 15

5.1 Attestation protocol . 16

5.2 Secure channel . 18

5.3 Verifier . 20

5.3.1 Verifier data . 22

5.4 Prover TA . 23

6 Integrity checks 24

6.1 Process listing . 24

6.2 Memory integrity checks . 25

6.3 File system integrity checks . 25

6.4 Network integrity checks . 25

7 Implementation 27

7.1 Verifier . 27

7.2 Prover TA . 30

8 Evaluation and discussion 32

9 Conclusion 37

Bibliography 38

Abstract

The Internet of Things (IoT) consists of network-connected embedded devices that
enable a multitude of new applications in various domains, such as industrial au-
tomation, transportation, building automation, healthcare, and agriculture - just to
mention a few of them. However, as usual, new technologies also create new risks.
In particular, embedded IoT devices can be infected by malware. Operators of IoT
systems not only need malware detection tools, but also scalable methods to reli-
ably and remotely verify malware-free-state of their IoT devices. In this document,
we address this problem by proposing a remote attestation protocol for IoT devices
that takes advantage of the security guarantees provided by a Trusted Execution
Environment (TEE) running on the device.

In this document, we provide the necessary information required to understand the
attestation process, and various approaches to implementing remote attestation.
We perform threat assessment in order to identify the possible weaknesses of remote
attestation protocols. We present the overview of the TEE-based remote attestation
scheme we designed. We define the two main participants, the Verifier and the
Prover, in our protocol. We discuss how a secure channel is established between the
two parties, and the messages used in order to carry out the attestation. We briefly
describe the checks we use during remote attestation to verify the malware-free-state
of the device. We provide a prototype implementation of the proposed protocol, and
evaluate its features and performance. We conclude that our TEE-based remote
attestation is capable of verifying the malware-free-state of IoT devices.

i

Kivonat

A dolgok internete (Internet of Things, IoT) hálózatba kötött beágyazott rend-
szerek sokaságát jelenti, ami renget új felhasználási lehetőséget biztosít, többek
között az egészségügyben, tömegközlekedésben, iparban és mezőgaz- daságban, csak
pár lehetőséget említve. Ezzel egyidőben mint általában minden új technológia, új
veszélyeket is hordoz magában. Ezek az eszközök gyakran esnek kártékony kód
alapú támadások áldozatává. Az IoT eszközök üzemeltetőinek nem csak kártékony
kód detekcióra van szükségük, hanem egy olyan megbízható és skálázható módsz-
erre, amely távolról képes meggyőződni arról, hogy egy eszköz fertőzetlen állapotban
van. A dolgozatban erre a problémára próbálunk megoldást nyújtani egy olyan pro-
tokoll segítségével, melyet felhasználva az IoT eszközök üzemeltetői fizikai hozzáférés
nélkül képesek meggyőződni az eszköz kártékony kód mentes állapotáról, melynek
alapjául egy biztonságos futtatási környezet (Trusted Execution Environment, TEE)
szolgál.

A dolgozatban biztosítjuk a távoli kártékony kód mentes állapot igazolására szol-
gáló protokollhoz szükséges alapismereteket, és tárgyaljuk a protokoll különböző
megvalósítási lehetőségeit. Fenyegetettség felmérést végzünk annak érdekében, hogy
megállapítsuk a protokoll gyengeségeit. Bemutatjuk az általunk tervezett protokollt,
melynek alapjául egy biztonságos futtatási környezet (angolul Trusted Execution En-
vironment, TEE) szolgál, és tisztázzuk a protokollban szereplő két entitás szerepét.
Bemutatjuk a protokoll üzeneteinek továbbítására használt biztonságos csatornát,
a protokoll által küldött üzeneteket, és azokat az integritás ellenőrző számításokat,
melyeket a kártékony kód mentes állapot igazolására használunk fel. Bemutatjuk
az általunk tervezett protokoll prototípus implementációját, és kiértékeljük azt. A
kutatásunk konklúziója, hogy az általunk tervezett protokoll képes kártékony kód
mentes állapot igazolására beágyazott eszközökön.

ii

Chapter 1

Introduction

The Internet of Things (IoT) consists of network-connected embedded devices that
enable a multitude of new applications in various domains, such as industrial au-
tomation, transportation, building automation, healthcare, and agriculture - just to
mention a few of them. This connectedness enables the IoT devices to communicate
with each other and share data, without the requirement to be interfered by humans.
This feature enables solutions such as smart factories, automated transport systems
and sensor controlled agriculture.

However, as usual, new technologies also create new risks. Due to the high demand
for such IoT devices, manufacturers are in a constant rush of developing and adapt-
ing their devices, potentially sacrificing security measures on the way. This facts
leads to devices with minimal, or even nonexistent, security features. Consequently,
IoT devices are constantly exposed to cyberattacks. To address the situation, several
solutions [10], standards [6, 8] and guidelines [5] are being proposed, and regulatory
bodies are making steps1 in order to ensure the following of such proposals.

One particular issue IoT devices face is malware infection [1]. Malicious actors can
use such programs in order to infect millions of devices, compromise complete IoT
ecosystems, exfiltrate data from sensory networks or complete large scale Distributed
Denial of Service (DDoS) attacks. In order to avoid such problems, IoT ecosystem
operators need malware detection tailored for IoT devices. Additionally, they need a
scalable and reliable way of verifying the malware-free-state of IoT devices and their
system. In this document, we address this problem by proposing a remote attesta-
tion scheme for embedded IoT devices, that take advantage of security guarantees
provided by a Trusted Execution Environment (TEE) running on the device.

1The California IoT cybersecurity law SB-327 became effective Jan 1, 2020.

1

Remote attestation is a process where a trusted party, a Verifier, reliably checks
the state of a device, the Prover, via open network. In our case, the Verifier is
a trusted party, running on a server, operated by the system’s administrator, and
the Prover is an untursted IoT device, which may be compromised by malware.
Remote attestation is used to verify the malware-free-state of such untrusted devices.
Implementing this attestation process remotely means, that the administrator does
not require physical access to the devices, allowing for a large scale and automated
approach to verify all devices inside an IoT ecosystem.

The organization of the document is as follows: In Section 2, we provide the neces-
sary information required to understand the attestation process, various approaches
to implementing remote attestation and the basics of a Trusted Execution Environ-
ment. In Section 3, we perform threat assessment in order to analyze the system and
identify its potential weaknesses. Next, we present the overview of the TEE-based
remote attestation scheme we designed in Section 4. In Section 5, the attestation
process is detailed: the role of the Verifier and Prover is established; the channel
we use to communicate between the two parties, and the messages used in order to
carry out the attestation are described. In Section 6, we briefly describe the checks
we use during remote attestation to verify the malware-free-state of the device. A
prototype implementation of the protocol is provided in Section 7. Finally we eval-
uate the proposed attestation scheme and conclude our work in Section 8 and 9,
respectively.

2

Chapter 2

Background

Remote attestation is a process between two entities: the Verifier and the Prover.
During remote attestation, a remote Verifier wants to ascertain the integrity of the
Prover, which, in our case, is an IoT device. This is done with a challenge-response

Figure 2.1: Example run of remote attestation

protocol, which usually has three major steps as it is demonstrated in Fig. 2.1.:

1. The Verifier sends a challenge to the Prover,

2. the Prover calculates a response, which depends on the challenge and proves
its integrity to the Verifier

3

3. and lastly the Verifier determines the correctness of the response sent by the
Prover.

There are three general approaches to remote attestation: hardware-based, software-
based, and hybrid remote attestation. Hardware-based attestation relies on a secure
co-processor (a TPM chip1 for example) which is capable of producing a digitally
signed summary of the hardware- and software-state of the device under attestation.
The summary mentioned is typically a hash, produced by combining the hashes of
system components and software modules started during the boot process. The
key used to sign the final hash is kept in the secure co-processor and is protected
by its access control and physical tamper resistance features. Since this method of
attestation requires a secure co-processor, it is typically deemed to be too expensive
for use in embedded IoT devices.

In contrast to hardware-based approaches, software-based attestation does not re-
quire any additional hardware in the Prover device, making it a more favorable
choice in IoT devices. Solutions following this approach (e.g., [16, 17]) typically rely
on executing a protocol in which the Verifier probes the Prover, and the response of
the Prover needs to convince the Verifier that the Prover is in a malware-free state.
To generate the response, the Prover runs a checksum function, which traverses
memory locations in a pseudo-random order, based on a seed generated by the Veri-
fier. The Verifier then checks the correctness of the response by calculating the same
checksum on an expected prerecorded state. There are two possible ways of failing
the attestation, in case a malware is present on the device. Firstly, if the checksum
calculated by the Verifier differs from the response sent by the Prover, hinting that
the memory layout of the devices is modified. Secondly, if the malware tries to hide
itself by checking and redirecting memory accesses referring to the location it is in
memory, the attestation attempt will take longer than expected. In this latter case,
the Verifier can detect, that the response took too long, and discover the presence
of malware that way.

The main challenge of software-based approaches is network jitter, which makes
it practically impossible to remotely measure the exact computation time of the
checksum [13]. Another weakness of such approaches is that the adversary can
delegate the checksum computation to another, much faster, device, which cannot
be detected by the Verifier. Moreover, even if we do not take delegation attacks
into consideration, this approach assumes that the required checksum computation
cannot be performed faster than the speed of the actual implementation of the

1https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/ Last
visited: Oct 7, 2021.

4

checksum function. Unfortunately, this assumption does not always hold, enabling
attacks, where a sophisticated way of computing the checksum faster leaves time
for the malware to check and redirect memory references that would uncover its
presence [2]. Another tricky attack a malware can perform is that it compresses the
original code of the device in order to fit the malicious code into memory. During
attestation, the malware can decompress this memory segment and retrieve the
original content, thus passing the attestation [2].

Due to the above weaknesses of software-based attestation, hybrid approaches were
proposed (e.g., [4, 3]) that are largely software-based, but also require hardware
support of some sort. For example in SMART [3], the authors propose a scheme, that
uses ROM-based checksum calculation and the secret key required for authenticating
the computed checksum is kept in memory only accessable by ROM-based code. This
latter property is enforced by hardware-based memory access logic, which verifies
that the instruction pointer is in the ROM region when the secret signing key is
being accessed. This check ensures that the confidentiality of the key is preserved,
even if the device is infected by a malware. This also means that the response
presented by the Prover, authenticated with the secret key must be genuine. This
fact ensures the Verifier that the response came from the actual devices and thus
can be checked.

The next question naturally arises: What is the minimum hardware support required
for a hybrid remote attestation scheme to be secure? This question is investigated
by A. Francillon et al. in “A minimalist approach to remote attestation” [7], where
they conclude that the following set of requirements is sufficient and necessary (hence
minimal) for secure attestation of embedded devices:

• Custom hardware to enforce exclusive access to a secret key;

• Reliable and secure memory erasure;

• Attestation code must be executed from immutable memory;

• Execution of the attestation must be uninterruptible;

• Controlled execution of the attestation, meaning it can only be invoked from
the original entry point.

As presented by K. Elderfrawy et al. in HYDRA [4], the requirements stated in
[7] can be achieved in another way. The authors of HYDRA [4] propose a hybrid
remote attestation scheme that relies on security features provided by a formally
verified seL42 microkernel to obtain similar properties. In HYDRA:

2https://sel4.systems/About/seL4-whitepaper.pdf, Last visited: Oct 7, 2021.

5

• Exclusive access to the remote attestation key is handled by a privileged pro-
cess;

• Reliable and secure memory erasure is required to ensure no information about
the secret key is leaked. This is ensured by the strict memory separation of
the seL4 microkernel;

• Immutable memory is also required to make sure the checksum routine can-
not be modified. This is ensured by the microkernel which provides isolated
process memory and code integrity checks;

• Prioritized interrupt handling of the microkernel ensures uninterruptible exe-
cution of the checksum code which is run with the highest priority possible;

• Controlled invocation is enforced by the operating system.

A. Francillon et al. state [7], that secure reset is required whenever an attempt of
running the checksum function from the middle of its code detected. This is not
required in case of HYDRA [4], since the seL4 microkernel enforces controlled invo-
cation. The authors of HYDRA [4] claim that using seL4 imposes fewer hardware
requirements on the underlying microprocessor and building upon a formally verified
software component increases the confidence in security of the overall solution. An-
other approach to satisfy the minimal requirements [7] of a secure remote attestation
could be to use a Trusted Execution Environment (TEE). TEE can be simultane-
ously run next to a Rich Execution Environment (REE), a normal operating system
(e.g.: Linux). A TEE provides isolated environment for trusted processes where
they can execute without being interfered by processes running in the REE, which
might be compromised. Moreover, TEE also provides secure storage for keys, such
as the one used to sign the attestation. TEEs usually rely on hardware support to
provide the above mentioned security guarantees. For example, on ARM powered
IoT devices, the TrustZone3 technology provides such support. In case of Trust-
Zone, a special register in the processor keeps track of whether the given memory
is used by the Secure World (trusted OS and trusted applications of the TEE) or
the Normal World (REE). This enables memory separation of the device, defending
the Secure World applications from Normal World access. This property is enforced
on a hardware-level by the memory bus fabric. TEE implementations usually take
advantage of this low level support built into the processor itself. An example TEE
is OP-TEE4, an open-source implementation a TEE, which is based on the ARM
TrustZone technology.

3https://developer.arm.com/ip-products/security-ip/trustzone Last visited: Oct 10, 2021.
4https://www.op-tee.org/, Last visited: Oct 12, 2021.

6

Chapter 3

Threat Assessment

Threat assessment is a widely accepted methodology for developing and maintain-
ing a secure system. The main goal of this methodology is to derive the security
requirements of the system under development. In this section, we derive the secu-
rity requirements by applying the threat assessment methodology proposed by ETSI
[12]. Our analysis also takes the functional requirements and use cases of remote
attestation into consideration.

Remote Attestation is performed between two parties, the Verifier and the Prover.
The Verifier role will be taken by a Server, while the Prover will be a remote IoT
device reachable via open network. The architecture should support the following
requirements:

• Server can initiate remote attestation on a device.

• A device can periodically request remote attestation from the server.

The structure of this section is as follows. We discuss the functional requirements
of the system in Section 3.1, then list the assets of the system in Section 3.2. Using
the assets and the functional requirements, we build an attacker model in Section
3.3. Finally, we derive the security requirements of the system in Section 3.4.

3.1 Functional Requirements

Based on the described functionality, our system should be automatic, operating
without external user interaction. Attestations would be called periodically per de-
vice. If we want to allow the administrator(s) of the system to be able to initiate a

7

Figure 3.1: Use case diagram of the Server

remote attestation, a command line interface should be implemented. Administra-
tors can modify server side data – which will be discussed later in Section 5.3.1–,
as well as read the logs and the results of previous attestations. These are the only
user interaction that can be made to the system, other interactions happen between
system components. The use case diagram can be seen in Fig. 3.1.

3.2 Asset identification

In light of the functional requirements, we can create an overview of the system,
as shown in Fig. 3.2. In order to identify our assets, we have to analyze the
system’s use cases. During Threat, Risk, Vulnerability Analysis, we identify the
three following assets: human assets (e.g.: administrator), physical assets (e.g.:
hardware components and network) and logical assets (e.g.: data storage).

The only human asset in our system, the administrator, appears in three of our use
cases: reading the logs, modifying attestation data and initiating remote attestation.
The system does not require authentication, since the attestation is automatic and
the login to the server is out of scope for this architecture.

From what we previously described about the architecture, it is clear that there
are physical assets, mainly an environment to run the server side application and
store data on, and one or more embedded devices. Connection between the physical
devices is achieved via open network, which needs to be taken into consideration as
well. These together form our physical assets.

To determine logical assets, the data flow for achieving all use cases needs to be an-
alyzed. It helps if we create a more detailed data flow diagram. The extended data
flow diagram can be seen in Fig. 3.3. Our system consists of two main components,

8

Figure 3.2: Overview of the system

the Server (Verifier) and the Trusted Application (Prover). These components com-
municate with each other via untrusted network. On the server, we store data in
order to verify the correctness of the attestation response. We also store the list of
devices to be attested by the Verifier. On each embedded device we have a Trusted
Application (TA) that:

• handles attestation requests sent by the Server,

• calculates the challenges,

• then sends the response back to the Verifier, signed with an attestation key.

3.3 Attacker model

Constructing the attacker model, we have to take every component’s potential weak-
nesses into consideration. To organize threats, we use STRIDE framework by Mi-
crosoft [14], which includes considering threats related to: Spoofing, Tampering,

9

Figure 3.3: Extended data flow diagram of the system

Repudiation, Information disclosure, Denial of Service and Elevation of privilege.
While constructing the attacker model, we identified the following attack vectors:

• [Spoofing] Impersonating either the server of a device during attestation

• [Tampering] Adversary can block/modify attestation requests and responses

• [Tampering] If adversary can remove a device from the servers’ list, the de-
vice would not be checked, hence the adversary could hide the potentially
compromised device

• [Tampering] Adversary can replay a challenge, which he/she already captured
the response to, making a valid attestation

• [Information disclosure] Adversary can monitor the network thus gaining in-
formation on devices

• [Information disclosure] Adversary can detect the periodicity of the attestation

• [Information disclosure] Adversary can use network traffic analysis to acquire
information about the system

10

• [Denial of Service] Both the server and devices can be overloaded with network
requests

• [Denial of Service] Adversary can modify messages, potentially hanging the
attestation process, if not handled correctly

We note that two categories, namely Repudiation and Elevation of privilege, are
missing from the listing above. Elevation of privilege is not possible, since the
system does not require any privileges to run.

3.4 Security Requirements

On the server, an operator can initiate a remote attestation and modify data corre-
sponding to attestation devices. Since the security of the server is out of scope for
this project, we can assume, that no malicious attempt is made in order to tamper
with the attestation on the server side. However, trust becomes an issue between
the server and the attested devices. Since these components communicate via open
network, an adversary can read, replay, block and modify the communication be-
tween them. This critical section is marked with a dashed red line on Fig. 3.2 and
3.3. The systems’ security requirements can be sorted into six categories: CIA1 and
AAA2. In the following list, we define the requirements for each category:

• [Confidentiality] Data sent between the TA and the server must be encrypted.

• [Confidentiality] Valid states of the Prover device should be securely stored.

• [Integrity] Integrity of the sent data must be protected on both sides.

• [Integrity] Time window should be implemented for accepting attestation.

• [Availability] System should use the most up-to-date libraries to combat CVE3.

• [Authentication] The origin of the attestation challenge must be authenticated
by the Prover.

• [Authentication] The source of the challenge response must be authenticated
by the server.

• [Auditing] Every action should be logged on both sides.
1Confidentiality, Integrity, Availability
2Authentication, Authorization, Auditing
3Common Vulnerabilities and Exposures https://cve.mitre.org/, Last visited: Oct 12, 2021.

11

To satisfy security requirements, we have to plan, implement, and test various se-
curity functionalities. We can get the list of required security related functional
requirements by analyzing security requirements and abuse cases4. Since remote
attestation follows a request/response scheme, it is easy to detect if a challenge or
it’s attestation response got halted. To detect if any change has been made to any
messages and protect against replay attacks, we have to implement:

• sequence numbering

• and message authentication.

Time limit for accepting attestation should be implemented, since an adversary
could block the attestation response, or try to fabricate a valid response. Logs will
be kept server side, of which defense is out of scope. If an adversary is present
on the network, he cannot read/modify messages, if sufficiently protected, however
there is no way to stop the adversary from getting know to the address of the
device. Dummy messages can also be sent between the server and the devices to
defend against Network Traffic Analysis (NTA)5. This way the attacker won’t be
able to detect the periodicity of the attestation. To ensure that the attestation key
is not leaked, we can use the secure storage offered by the TEE on the embedded
devices. Against Denial of Service (DoS) attacks, we can have our embedded devices
whitelisted on server side, only accepting network traffic from whitelisted entities
on the port of the application. The address of the server can also be stored on the
devices themselves.

4Using a feature in a way that was not intended by the implementer
5https://www.cisco.com/c/en/us/products/security/what-is-network-traffic-analysis.html,

Last visited: Oct 12, 2021.

12

Chapter 4

Overview

Our main idea is to follow the approach of HYDRA [4], but instead of a secure mi-
crokernel, we rely on a Trusted Execution Environment (TEE). Checking malware-
free-state can be implemented in a trusted process running in the TEE, and the
secret key used for authentication the result can be stored in the TEE-protected
secure storage.

Figure 4.1: Overview of the TEE-based remote attestation
architecture

We note that embedded devices equipped with ARM or similarly powerful processors
are typically capable of hosting such a TEE. The architecture of our TEE-based re-
mote attestation scheme designed for IoT devices is shown in Fig. 4.1. In our
TEE-based attestation scheme, the Verifier is assumed to be a remote entity that
communicates with the Prover via open network. The Prover is a Trusted Applica-

13

tion (TA) running inside the TEE hosted by the processor of the IoT device. An
attestation service is running in the Rich Execution Environment (REE) also hosted
by the same processor. The term “rich” refers to the fact that the REE may be a
full-blown operating system (OS) that provides only basic services to the trusted
applications. Isolation between the two execution environment is supported by the
processor and its Memory Management Unit (MMU).

There are two ways to initiate a remote attestation in our scheme. Either the
Verifier directly challenges the Prover via the Attestation Service, or it is initiated
automatically after a certain period of time. The Attestation Service is assumed to
be always available. If it is not, then it already proves that the IoT device is not
in a normal state and may already be compromised by malware. In both cases, the
Attestation Service invokes the Prover TA via a controlled invocation mechanism
provided by the TEE (and supported by the processor). After being initiated, the
Prover TA establishes a secure connection to the Verifier that is used to execute the
remote attestation protocol securely.

In the remote attestation protocol – described in detail in Section 5–, the Prover
is challenged by the Verifier with a set of tasks to complete. These tasks consists
of the execution of one or more integrity checks that are implemented by a Rootkit
Detector TA, a component that actively searches for hidden malware, also known
as rootkits, running in the TEE. The integrity checks requested by the Verifier are
invoked by the Prover TA via a well-defined API provided by the Rootkit Detector
TA. More information about the Rootkit Detector TA is provided in Section 6. The
result of each call is returned back to the Prover TA. After all tasks are completed,
the accumulated results are sent back to the Verifier via the secure channel.

The Rootkit Detector TA has access to the entire memory of the IoT device as
well as its persistent storage. The memory includes the memory of the processes
and the OS kernel running in the REE and the persistent storage includes the file
system that they use. The integrity checks implemented by the Rootkit Detector
TA analyze this memory and file system, collect relevant data (e.g., the hash of the
text segment of the OS kernel in the REE), and try to detect anomalies that may
signal the presence of a malware (e.g., hooked function pointers).

More information about the remote attestation protocol and the integrity checks of
the TEE-based remote attestation scheme is provided in Section 5 and 6, respec-
tively.

14

Chapter 5

Attestation process

Figure 5.1: Components of the remote attestation protocol

In Section 4, an overview of the whole system is presented. In this section, the
highlighted area in Fig. 5.1 is presented in more detail. The following subsections
will present an in-depth design of the remote attestation components: the Verifier,
the Attestation Service and the Prover TA; and the messages/protocols used to
communicate between them.

The attestation process is an interaction between the Verifier and the Prover TA. The
prerequisite of the attestation for the Prover TA, is to be loaded and have control over
the execution. This can be achieved two ways. Either the device initiated the remote
attestation process in a periodical manner, or the Verifier requested an attestation.
In the latter case, the Verifier can trigger the Attestation Service, listening inside the
REE, to invoke the Prover TA, passing the execution and activating it the same time.

15

We note, that the Attestation Service should be always available on the IoT device.
If that is not the case, we can already suspect the presence of malware on the device.
It is also a possibility that the adversary has control over the REE on the device,
and blocks the invocation of the Prover TA. To counteract this, after triggering a
remote attestation from the Verifier, a timer should be set. If an attestation request
does not occur in the given time window, we can also suspect, that an adversary
might have control over the device.

The structure of this section is as follows. We present the attestation protocol used
between the Verifer and the Prover TA in Section 5.1, and the secure channel used to
transfer these messages between the two participants in Section 5.2. Last, we present
both the Verifier and the Prover TA in detail in Section 5.3 and 5.4, respectively.

5.1 Attestation protocol

In this section, we present the challenge descriptor language used to describe an
attestation request. It is a high-level text-based language, used by the Verifier to
describe the required calculations the Prover has to make during attestation. An
attestation challenge can contain one or several tasks. Each task that can be called
by the Verifier is mapped to a function call, provided by the Rootkit Detector TA’s
API. The Rootkit Detector TA provides many ways to check the integrity of the
device under attestation. These checks include:

• reading the list of running processes on the device,

• checking the integrity of the file system

• and checking the integrity of the kernel.

Each task has a text-based identifier, followed by the required arguments divided
by whitespaces. The tasks are divided by the \n character.
HASH_FILE /foo/bar
HASH_DIR --recursive /opt /opt/do/not/hash/this
HASH_KERNEL_TEXT
HASH_SYSCALL
PROCLIST
NETFILTER_HOOKS_CHECK

Listing 5.1: Example remote attestation description

An example attestation challenge can be seen in Listings 5.1. In Table 5.1 we
describe each task that can be included in an attestation challenge.

16

Command ID Arguments Functionality
HASH_FILE The one and only argument

is the absolute path of the
file to hash.

Hashes the file given as
argument.

HASH_DIR This task has an optional
switch, as well as two pa-
rameters, where the second
one is also optional. If the
switch --recursive is pro-
vided the function is called
recursively on all subdirec-
tories.

Hashes the folder given
as argument, with the
exception of provided
blacklisted elements.

HASH_KERNEL
_TEXT

No argument needs to be
provided.

Hashes the kernel’s text
segment.

HASH_SYSCALL No argument needs to be
provided.

Hashes the syscall ta-
ble.

PROCLIST No argument needs to be
provided.

Returns the names of
the running processes
on the device.

NETFILTER_
HOOKS_CHECK

No argument needs to be
provided.

Checks network hooks
on the device.

Table 5.1: Available tasks for the Verifier

17

Command ID Output Length
HASH_FILE SHA-256 hash of the file. 32-bytes
HASH_DIR SHA-256 hash of all files un-

der the given path, exclud-
ing blacklist elements.

32-bytes

HASH_KERNEL
_TEXT

Hex encoded SHA-256 hash
of the kernels text segment.

64-bytes

HASH_SYSCALL Hex encoded SHA-256 hash
of the syscall table.

64-bytes

PROCLIST List of running process
names separated by '\0'

Cannot be determined
ahead of time.

NETFILTER_
HOOKS_CHECK

Binary output, 0 if all checks
pass, 1 otherwise.

1-byte

Table 5.2: Expected responses for all tasks

In order to check the correctness of the attestation response, it is important that
the expected outcome for each attestation task is defined. In Table 5.2, we define
the expected output for each task.

5.2 Secure channel

The protocol discussed in Section 5.1 assumes a secure channel between the Verifier
and the Prover TA. Thus, it is a prerequisite to have a secure network connection
between the two participants. One could use TLS-based [18] socket handling in
order to establish such secure connection, however it might not be supported by
some TEE implementations. This is the reason, we opt for basic TCP-based socket
handling, and propose a simple yet effective security protocol. In order to establish
a secure connection we need:

• message encryption,

• message authentication,

• integrity and replay protection.

18

Figure 5.2: Authenticated Diffie-Hellman used for key ex-
change

The security protocol assumes, that both parties already exchanged their elliptic-
curve signing key with each other. Elliptic-curve Diffie-Hellman (ECDH) is used in
order to exchange a common secret between the Verifier and the Prover TA. The
key exchange is authenticated with the previously exchanged keys, using Elliptic
Curve Digital Signature Algorithm (ECDSA). The Trusted Application begins the
exchange by generating its public ECDH parameter, and sending it to the Server
with its identifier. After the Server recieved this message, it also generates a pub-
lic ECDH parameter. The response sent to the the TA includes the identifier of
the server and its public parameter, as well as the signature of all the previously
exchanged data (identifier of the TA; public parameter of the TA; identifier of the
Server; public parameter of the Server) signed with the Servers private key. In the
last message, the TA sends it identifier as well as the signature calculated on the
same parameters with its own private key. This process is displayed in Fig. 5.2.

19

After the common secret is established, both the Verifier and the Prover TA use
the PBKDF2 key derivation function to derive two keys from the common secret: a
32-byte symmetric encryption key and a 32-byte message authentication key. The
encryption key is used with the AES cipher in CBC mode. Since padding is required
in CBC mode, messages are padded with PKCS#7 before being encrypted. The
second key is used with HMAC with SHA-256 as the hash function in order to
authenticate messages.

0 .. 1 .. 3 .. 7 .. 9 .. 13 .. 16
+----+---------+-------+------+--------+--------+
| ID | Version | Magic | Seq | Length | Unused |
+----+---------+-------+------+--------+--------+

Listing 5.2: Header format used in the secure channel

A header format is also in use, in order to carry information such as sequence
numbering. The exact header format is shown in Listings 5.2. The fields of this
header include:

• ID: Identifies the message type.

• Version: Version of the attestation protocol. 1-byte for major and 1-byte for
minor versioning.

• Magic: 4-byte magic value.

• Seq: 2-byte integer for sequence numbering.

• Length: 4-byte integer that contains the length of the whole message.

• Unused: Currently unused, leaves space for other fields in case a future version
of this header is designed.

This header is used with every message sent over the secure network, during ECDH
key exchange, as well as in the attestation request and response messages.

5.3 Verifier

The remote attestation is a protocol performed between two entities: the Verifier
and the Prover. We have already established that the Prover will be a Trusted Ap-
plication running on an IoT device supporting TEE, however there were not many
details said about the Verifier yet. In our case the Verifier will be a central com-
ponent, a server, in the architecture capable of handling the attestation of multiple
IoT devices.

20

The Verifier can provide attestation to multiple IoT devices, hence the Verifier needs
to keep track of each devices’ progress in the protocol. This can easily be achieved
with a stateful approach. The distinct states that we identified can be seen in Fig.
5.3.

Figure 5.3: State machine of the Verifier

Every attestation is either started from the Prover TA inside the TEE, or by sending
an initiating message to the REE, which then initializes the Prover TA, starting the
attestation this way. In both cases, the Prover TA sends the first message in the
protocol. Up until the Verifier receives the initial message, it is waiting for a request
from a Prover. In the first message, the Prover TA initiates the secure channel
setup, hence advancing the state of the Verifier. The setup of this secure channel is
described in detail in Section 5.2. Once the secure channel is ready, the Verifier sends
an attestation challenge to the Prover TA. The exact format of this message; how
the Prover TA handles the message; how integrity checks are relayed to the Rootkit
Detector TA; and the response format is detailed in Section 5.1. After receiving the
challenge response, the Verifier evaluates it. The evaluation is done by performing
all the calculations that the Prover TA was requested to do. This is the reason that
the data stored on the Verifier server is essential. In Section 5.3.1 we discuss the
data held on the server in more detail. Finally, the Verifier checks if the response
sent by the Prover matches the local calculations. If at any given point, the response
of the Prover TA differs from the expected, the attestation is deemed unsuccessful,

21

otherwise the Prover passes. Following a successful attestation or after an error at
any given place during the protocol, the server resets the state associated with the
Prover.

5.3.1 Verifier data

Server side challenge verification requires data stored on the server that can help
verify the state of the Prover. This could be done in various ways. In order to
support all verification checks, the output of each check needs to be taken into
consideration. The list of possible checks is provided in Section 5.1.

• The Verifier can request the list of running processes on the device. The
result of this check is a list of the names of the running processes. On the
Verifier server, we store a list of process names that are whitelisted, hence
allowed on the devices. When verifying an attestation, process list names can
be compared.

• There are multiple file system related checks, hashing directories and single
files are both possibilities. The Verifier stores a mirror of the file system of each
device. If any file system hashing is requested, the Verifier hashes the same
path relative to where the mirror file system is stored, then the two outputs
can be compared. In case an update of the IoT device under attestation is
required, this way, the mirror file system should be replaced, and no further
modification is required. We note that it makes sense to check only the non-
volatile parts of the file system, such as the /bin folder, where the executables
are located.

• Checking network hooks does not require any data on the Verifier, since checks
are made on the device, and only the result is relayed to the Veirifer.

• Last, there are kernel related checks, such as hashing the kernels text segment.
During the installation of the device, these hashes can be computed and stored
on the Verifier. If changes are made to the device, that affect parts of the kernel
under measurement, these hashes should be recomputed and updated on the
Verifier.

22

5.4 Prover TA

The Prover TA is situated in the TEE of the IoT device under attestation. Its main
purpose is:

1. to establish a secure connection with the Verifier,

2. relay the requested tasks to the Rootkit Detector TA

3. and send the results back to the Verifier.

The establishment of the secure channel is detailed in Section 5.2. It consists of
running an authenticated version of ECDH key exchange with the Verifier, where
the messages of the key exchange are signed with pre-shared ECC keypairs. Once
the channel is ready, the Prover TA is ready to receive the attestation challenge from
the Verifier. A single attestation challenge can contain one or more tasks. These
tasks are parsed by the Prover TA, and executed one after the other. The result of
each individual tasks is accumulated in a buffer. When the Prover TA finished all
required tasks, it encrypts and signs the buffer, with all required formatting detailed
in Section 5.2, and sends the response back to the Verifier.

23

Chapter 6

Integrity checks

The integrity checks implemented by the Rootkit Detector TA perform rootkit de-
tection on the IoT device. Its successful execution guarantees the malware-free-state
of the device. The Rootkit Detector TA is capable of accessing both REE and TEE,
thus having access to the whole memory and the file system. More details about
the implementation can be found in the paper by Roland Nagy et al. [15]. Using
the previously mentioned capabilities, we implement several checks, each aiming to
detect different rootkit techniques or ensuring the components of the system running
inside the REE.

6.1 Process listing

One of the checks implemented by the Rootkit Detector TA, is to get the list of
processes running on the device. The Linux kernel organizes the processes into so
called tasks. Each task is approximately equivalent to a thread. Single-threaded
applications consists of one task, while multi-threaded applications have one task
for each thread. These tasks are organized into multiple dynamic data structures.
According to the paper previously mentioned [15], the Rootkit Detector TA is cur-
rently able to list process IDs and names of the processes. This data is accumulated
from the previously mentioned data structures. These structures include:

• Doubly-linked list, where each process has a next and prev pointer. You can
traverse this list from the init_task, which is the first kernel thread started
at boot.

• Process tree where the root node is the aforementioned init_task. When
a process starts another process, it becomes its child, while the new process

24

refers to its spawner as parent. You can also get the list of processes by
traversing this tree.

• Finally, you can extract this information from runqueues. Runqueues are
used by the process scheduler. These structures do not hold every process,
only runnable ones.

6.2 Memory integrity checks

The Rootkit Detector TA can also check the integrity of the device’s memory. It
checks for two memory areas of the Linux kernel frequently targeted by rootkits:
the system call table and the kernel’s text segment [15]. The system call table
is an array of function pointers, pointing to system calls such as interaction with
files, network sockets, etc.. Rootkits often replace pointers in this array in order to
re-implement certain system calls. Another common attack employed by attackers
is inline hooking [9]. In this case an attacker modifies the code of an existing
function by rewriting the first few instructions and hijacking the control flow of the
application. To detect such attacks, SHA-256 hash of both the system call table
and the entire text segment of the kernel is computed [15]. If we detect alteration
in the hashes, it signals that an adversary modified the device in a malicous way.

6.3 File system integrity checks

Another functionality provided by the Rootkit Detector TA is the ability to check
the integrity of the file system. To do so, the implementation provides two functions,
hash_file and hash_dir [15]. The first function expects an absolute path as its
only parameter. If the given file exists, its SHA-256 hash is returned. The latter
function has more arguments: besides the path parameter, one can optionally call
the function recursively on all subdirectories. A blacklist can also be provided, so
files or directories with volatile content can be avoided. For sake of consistency, all
folder content is sorted alphabetically.

6.4 Network integrity checks

Lastly, checks targeting the network stack of the kernel, are also implemented by
the Rootkit Detector TA. Rootkits usually implement two kind of attacks: hiding

25

open connections, and implementing “magic packet” functionality. Roland Nagy et
al. identified a way to hide open sockets as well as three mechanisms that can be
abused by attackers to implement magic packets [15]. The most common way of
implementing magic packets is using the Netfilter subsystem, which serves as the
backbone of Linux firewall solutions. Firewall rules are stored in so called chains,
where each chain contains an array of Netfilter hooks, storing function pointers.
When a packet is checked against a chain, all hooks in the chain are involved, and
the packet is only accepted, if all hooks accept it. An attacker can implement a rule,
that executes his payload. The Rootkit Detector TA traverses all hooks of every
chain. If any function pointers store a value pointing outside of the text segment of
the kernel, it is considered to be a sign of rootkit presence [15]. Checks targeting
hidden network connections are also implemented. Files in the /proc/net directory
contain information about open network connections. In these files, objects store
specific function pointers. Rootkits often target these to hide open connections,
therefore the check of these function pointers is also implemented in the same manner
as previously mentioned.

26

Chapter 7

Implementation

In this section, we present a prototype of the previously described system. In the
upcoming sections, we assume the following setup:

• the Verifier is running on Ubuntu 18.04.6 LTS.

• The target architecture of our IoT device is ARM,

• the IoT device is emulated in QEMU1.

• Open Portable Trusted Execution Environment2 (OP-TEE) is used as the
TEE implementation,

• the implementation of the REE comes with OP-TEE, which is a forked version
of the Linux kernel containing OP-TEEs drivers.

• The mbedTLS3 library is used as the cryptographic library of choice, due to
its availability both on the server and inside OP-TEEs build environment.

We discuss the implementation of the Verifier and the Prover TA components in
Section 7.1 and 7.2, respectively.

7.1 Verifier

In Section 5.3, we discussed the main purpose of the Verifier. To summarize, its
tasks include:

1https://www.qemu.org/, Last visited: Oct 18, 2021.
2https://www.op-tee.org/, Last visited: Oct 18, 2021.
3https://github.com/ARMmbed/mbedtls, Last visited: Oct 18, 2021.

27

1. initiating or accepting an attestation with a remote device,

2. setting up a secure channel with the Prover TA,

3. generating a remote attestation challenge and sending it to the Prover TA,

4. recieving the attestation response and processing it.

In the current prototype initiating the remote attestation from the server is not yet
possible. It would require the Attestation Service inside the REE to listen on a port
for connections, as well as an option on the server to send an initiation message.
Currently the attestation process is initiated from the command line of the IoT
device through the Attestation Service, running in the REE, which is accessible
within QEMU. The Attestation Services function is to start up the Prover TA by
initiating a context switch. The Prover TA connects to the Verifier then, which is
already listening on a predefined port.

At this point, the Verifier and the Prover TA run the key exchange described in
Section 5.2. Both the Verifier and the Prover TA use ECC keypairs in order to
sign the ECDH messages, which are generated ahead of time using OpenSSL4. The
second and third messages of the key exchange are signed, however all three of them
undergo header verification, such as checking for correct id, length and sequence
numbering. After the public parameters of the ECDH5 are exchanged the Verifier
generates the shared secret. This shared secret is then used with PBKDF26 in order
to generate two 32-byte keys. One is used for encryption with AES in CBC mode,
the other is used for message authentication with HMAC using SHA-256. Since AES
in CBC encrypts the data in 16-byte blocks, PKCS#7 is used to pad the data to be
encrypted. This concludes the setup of the secure channel. For future messages, the
attestation challenge and response, symmetric key encryption is used with message
authentication.

The next step in the remote attestation protocol we designed, is to generate an attes-
tation request, which is sent to the Prover TA. Randomizing the attestation request
is a challenge in itself. In the prototype, we decided to store several precompiled
attestation requests in a file. Each attestation request consists of multiple tasks,
which are described in 5.1. We use the standard C library function rand(), which is
seeded using time with srand() ahead of its usage, to select one of the attestation
requests at random. The selected attestation is then parsed from the file, encrypted

4https://www.openssl.org/, Last visited: Oct 19, 2021.
5https://github.com/ARMmbed/mbedtls/blob/development/programs/pkey/ecdh_curve25519.c,

Last visited: Oct 19, 2021.
6https://tls.mbed.org/api/pkcs5_8h.html, Last visited: Oct 19, 2021.

28

using AES in CBC mode, signed using HMAC with SHA-256 and packaged with
the headers described in Section 5.2. I note, the header is not encrypted, however,
it is included during the calculation of the signature.

After receiving the attestation response from the Prover TA, the last step is to verify
the correctness of the response. The verification is based on the same attestation
challenge that was sent to the device. The Verifier parses the same challenge, that
was previously sent to the Prover TA. Based on the task and its parameters, there
are four possibilities:

• If the check requested the hash of the syscall table or the hash of the kernels
text segment, the hash is compared to a hardcoded hash.

• In case of Netfilter hooks checks, the Prover TA should return “0” in case of
success. This is checked by comparing the result to a single “0” byte. If it
matches, the devices passes the test.

• If the process list was requested by the Verifier, the result –list of proccess
names– is compared to a whitelist. In case any process found on the device is
missing from the whitelist, the device fails the checks.

• Last, the file system related checks are handled by calculating the hashes
requested by the Verifier. This requires the Verifier to implement the same
checks as detailed in the article describing the various integrity checks [15].

In contrast to the previously mentioned paper [15], which implements the file sys-
tem checks inside OP-TEE, checks implemented on the Verifier are not limited by
the TEEs file system access. The file system of the IoT device is stored on the
Verifier, and file system related check parameters are prepended with a fix path, so
the parameters point to the appropriate paths on the Verifier. The file hashing is
implemented in the same way as in the Rootkit Detector TA with the exception of
the RPC calls being required in order to access the file’s contents. Directory hashing
is modified as well, files can be access similarly as in the case of file hashing. The
given directory is opened and traversed using opendir() and readdir(), respec-
tively, both being standard C library functions. After collecting each entry from
the directory stream, the array of file paths are sorted using an adapted version of
strcmp(). We note, that special directories, such as ./. and ./.., are excluded
from the list in order to avoid hashing the same file twice and to avoid infinite loops.
Additionally, sorting the array of file paths is crucial, since any difference between
the Verifiers implementation and the implementation of the Rootkit Detector TA
would lead to different hashes. Once the array of paths are accumulated, we use

29

stat() to determine whether the given path points to a file or a directory. In case
the stat() function finds a directory, and the recursive option is provided, the
hash_dir() function is called recursively with an updated path. Other parameters,
such as the recursive option and the blacklist, are passed from the previous call.

7.2 Prover TA

Prover TA is the component running inside the TEE of the IoT device. It can be
initiated from the REE using the Attestation Service. Once the control is passed to
the TEE, the Prover TA begins with setting up the secure channel with the Verifier.
This phase consists of running an authenticated version of ECDH key exchange,
where the second and third messages are authenticated using ECDSA with preshared
ECC keypairs. After the common secret is established, the Prover TA generates two
32-byte keys using the common secret with PBKDF2. The two keys are used for
encryption and message authentication with AES in CBC mode and HMAC with
SHA-256, respectively. PKCS#7 is used to pad the data to be encrypted with AES-
CBC, since CBC mode requires the data to be in 16-byte chunks. After the secure
channel is established, the Prover TA receives the attestation challenge sent by the
Verifier. The challenge consists of multiple tasks, each separated with a newline
character. The exact format of the challenge is detailed in Section 5.1. To parse
the challenge we implemented strtok(), which is part of the standard C library,
however only part of the library is available inside the TEE. Some library functions,
mainly the ones that require dynamic memory allocation, are not implemented inside
the TEE, since the C memory allocation functions, such as malloc() and free()
are not available. TEE implements these functions in a more secure manner, and
the maintainers have not yet implemented some of the required library functions,
such as strtok() and atoi(), which we use to parse the challenge sent by the
Verifier. We implemented all necessary standard library functions with TEE specific
memory allocation, which is documented in the TEE Internal Core API Specification
[11]. The attestation request is first parsed into lines using strtok(), where each
line contains a separate task. Parameters are extracted from each line, if they
have any, then the appropriate method of the Rootkit Detector TA is called. The
Rootkit Detector TA exposes its methods through an API. They are accessible
using TEE_OpenTASession() and TEE_InvokeTACommand(), which are documented
in the Core API Specification [11]. We implemented wrappers for these functions.
The result of each function call is accumulated in a buffer. Once all challenges
are calculated, the buffer containing all responses is encrypted, prepended with the
header, which is described in Section 5.2, and signed. We note, that the signature

30

is calculated on both the header and the encrypted data. Last, the response is sent
back to the Verifier. After sending the response, the Prover TA terminates, handing
back the execution to the Attestation Service.

31

Chapter 8

Evaluation and discussion

In this Section, we evaluate the implementation, which is described in the previous
Section. We discuss how the secure channel is set up, and used to transfer data
between the Verifier and the Prover TA. Finally, we evaluate the result of file system
related integrity checks.

Figure 8.1: Authenticated ECDH key exchange implementa-
tion of the Verifier

In order to communicate between the Verifier and the Prover TA, a secure channel is
set up. This channel uses symmetric cryptography, AES in CBC mode with HMAC
message authentication, in order to ensure only the attestation participants can read
the messages correctly. This requires the two parties to generate a common secret.
For this ECDH is used with message authentication, where the latter is achieved
with ECDSA signatures. In Fig. 8.1, the basics of the ECDH implementation is
shown. Both parties seed a pseudo-random number generator, load the predefined
curve, we chose this curve to be BrainpoolP256r11, generate both public and private
domain parameters, then exchange the public parameters with each other in an
authenticated manner.

1https://datatracker.ietf.org/doc/html/rfc5639#section-3.4, Last visited: Oct 20, 2021.

32

Figure 8.2: Generation of symmetric cryptography keys on
the Verifier

Each party then loads the public parameters they received, and finish the key ex-
change, thus calculate the common secret. This common secret is then used to
generate the symmetric encryption keys used to encrypt and authenticate messages.
This process is shown in Fig. 8.2. We note, that both screenshots are taken from
the Verifier’s console, however the process is the same on the Prover TA aswell.

This secure channel is used to transfer the attestation request and response messages.
Fig 8.3 shows the phases receiving and decrypting the attestation request. The
message transferred on the secure channel contains several fields, which get checked
before decryption. The header field of the request is underlined with green, the
Initialization Vector (IV), required to decrypt the message, is underlined with red,
and the HMAC signature of the message is underlined with blue. After successful
validation of both the header values and the HMAC, the message can be decrypted,
revealing the padded attestation message. The attestation is now in a human-
readable form2, however before parsing, the PKCS#7 padding needs to be removed.

The file system related checks are verified by computing the same tasks on the Ver-
ifier, that was requested from the Prover TA. This required the reimplementation
of file system related checks, such as hash_dir() and hash_file(). During imple-
mentation, Roland Nagy, the author of the Rootkit Detector TA [15] and we made
sure, that the same result is achieved both on the Verifier and on the IoT device.
We traverse the directories in the same fashion and use the same string comparison
method to sort the list of files in a directory, which is necessary in order to obtain
the same hash. The only difference being that the absolute path to each file to
be hashed is prefixed with the location of where the mirror file system is actually
stored.

In Fig. 8.4, we show a side-by-side comparison of the calculations made on the
Verifier and on the IoT device. The Verifiers and the Prover TAs output is shown
on the left and right side console, respectively. Both sides parse the task in the

20x0a is the hexadecimal value for Line Feed (LF), more commonly known as \n on Linux

33

Figure 8.3: Attestation request received by the Prover TA

same manner. The Prover TA then delegates the task to the Rootkit Detector TA,
which is exposed to us via the ree_file_api. File hashing is done in the same
manner, except the Verifier prefixes the path to the previously mirrored file system
of the device. After the Verifier receives the calculations of the device, the produced
hashes are compared. In our case, the hashes match, and the challenge is completed
successfully.

34

Figure 8.4: HASH_DIR task calculation and verification

Finally, to evaluate the security guarantees provided by our TEE-based remote
attestation, we evaluated how the solution stacks up the the minimum requirements
of a remote attestation described in “A minimalist approach to remote attestation”
[7]:

1. Exclusive access to the attestation key is provided, since it is generated with
authenticated ECDH key exchange, and the key used to sign the attestation
remains only available for the Prover TA inside the TEE, being inaccessible
from the potentially compromised REE.

2. Strict memory separation is enforced by the TEE, and memory allocation and
erasure is safely implemented inside the TEE according to the TEE Internal
Core API Specification [11].

3. Trusted Applications are integrity protected by the TEE, ensuring similar
properties as a ROM would. This means, that neither the Prover TA nor the
Rootkit Detector TA can be modified from the REE, hence protecting the
calculation of attestation.

4. Interrupts inside the TEE can be disabled and re-enabled. Disabling them
when the Rootkit Detector TA is invoked guarantees uninterrupted execution
of our integrity checks. This is however only available inside the TEE, which
poses some threats during our file system checks, which we discuss later.

5. Controlled invocation is also provided by the TEE, ensuring the correct entry
point and execution of our remote attestation.

Unfortunately, the prototype we presented has two known weaknesses, that under-
mine the 4th requirement. The first weakness occurs during the file system checks.

35

Since the file system is by default not reachable from the TEE in OP-TEEs imple-
mentation, we are forced to delegate the checks to the REE via RPC calls, where
they can actually be interrupted. On top of that, our file operations take a long time,
which means that they will most likely be interrupted by the task scheduler. We
note, that this is the case with OP-TEE, other TEE implementations may provide
a secure way of accessing the file system from within the TEE.

The other possible weakness stems from the multi-core processors themselves. On
multi-core processors, such as most ARM processors, other, potentially malicious,
processes may run parallel to the execution of our integrity checks. For example,
a malware running parallel to the Rootkit Detector TA could remove hooks from
the system call table before it is hashed, then put the hooks back once hashing is
completed.

36

Chapter 9

Conclusion

In this document, we proposed a TEE-based remote attestation scheme for IoT
devices. Prior to designing the system, we assessed the possible threats to our
scheme, constructed an attacker model, and identified the security requirements.
The proposed TEE-based remote attestation is a hybrid attestation scheme. It is
mostly based on software and relies only on the hardware requirements of the TEE
itself. Considering that TEEs are already widely supported, our scheme can be
considered as affordable and viable for many IoT solutions.

We showed that our TEE-based remote attestation scheme has similar security prop-
erties to those of HYDRA, a hybrid remote attestation scheme proposed in 2017.
Our scheme however, is capable of performing more complex integrity checks, aiming
to detect rootkits both in memory and in persistent storage. While our prototype
implementation is capable of detecting rootkits both in memory and in persistent
storage, unfortunately, it has some weaknesses due to the TEE implementation we
use, OP-TEE, as well as the parallelism provided by multi-core processors. We note
that with proper file system availability inside the TEE, and some limitations on
the processors themselves during attestation, these problems could be mitigated.

Currently our implementation is tested on, and supports only a single device. Future
work includes the handling of multiple devices simultaneously, and to provide a
console interface on the Verifier, in order to interact with the system.

37

Bibliography

[1] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding
the Mirai botnet. In USENIX Security Symposium, pages 1093–1110. USENIX
Association, August 2017.

[2] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.
On the difficulty of software-based attestation of embedded devices. In ACM
Conference on Computer and Communications Security (CCS), pages 400–409,
2009. DOI: 10.1145/1653662.1653711.

[3] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito.
SMART: Secure and minimal architecture for (establishing a dynamic) root
of trust. In Network and Distributed Systems Symposium (NDSS), 2012.

[4] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. HYDRA: Hy-
brid design for remote attestation (using a formally verified microkernel). In
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), pages 99–110, 2017. DOI: 10.1145/3098243.3098261.

[5] ENISA. Guidelines for securing the Internet of Things. ENISA study, November
2020.

[6] ETSI. CYBER; Cyber security for consumer Internet of Things: Baseline
requirements. ETSI TS 103 645 v2.1.2, June 2020.

[7] Aurélien Francillon, Quan Nguyen, Kasper B. Rasmussen, and Gene Tsudik. A
minimalist approach to remote attestation. In Conference on Design, Automa-
tion & Test in Europe (DATE), pages 1–6, 2014.

[8] Global Platform. Security evaluation standard for IoT platforms v1.1 (SESIP).
Global Platform Standard, June 2021.

38

http://dx.doi.org/10.1145/1653662.1653711
http://dx.doi.org/10.1145/3098243.3098261

[9] J. Gu, M. Xian, T. Chen, and R. Du. A Linux rootkit improvement based on
inline hook. In Proceedings of the 2nd International Conference on Advances
in Mechanical Engineering and Industrial Informatics, pages 793–798. Atlantis
Press, 2016. DOI: 10.2991/ameii-16.2016.155.

[10] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav Goyal,
and Biplab Sikdar. A survey on IoT security: Application areas, security
threats, and solution architectures. IEEE Access, 7:82721–82743, 2019. DOI:
10.1109/ACCESS.2019.2924045.

[11] GlobalPlatform Inc. Globalplatform technology tee internal core api
specification version 1.1.2.50 (target v1.2). https://globalplatform.
org/wp-content/uploads/2018/06/GPD_TEE_Internal_Core_API_
Specification_v1.1.2.50_PublicReview.pdf. Last visited: Oct. 19,
2021.

[12] European Telecommunications Standards Institute. Etsi ts 102 165-
1 v5.2.3 (2017-10) cyber; methods and protocols; part 1: Method
and pro forma for threat, vulnerability, risk analysis (tvra). https:
//www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.03_
60/ts_10216501v050203p.pdf. Last visited: Oct. 12, 2021.

[13] Yanlin Li, Yueqiang Cheng, Virgil Gligor, and Adrian Perrig. Establish-
ing software-only root of trust on embedded systems: Facts and fiction.
In International Workshop on Security Protocols, pages 50–68, 2015. DOI:
10.1007/978-3-319-26096-9_7.

[14] Microsoft. Stride, threat modelling framework by microsoft.
https://docs.microsoft.com/en-us/azure/security/develop/
threat-modeling-tool-threats#stride-model. Last visited: Oct. 12,
2021.

[15] Roland Nagy, Krisztián Németh, Dorottya Papp, and Levente Buttyán. Rootkit
detection on embedded IoT devices. Acta Cybernetica, August 2021. DOI:
10.14232/actacyb.288834.

[16] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: Software-based
attestation for embedded devices. In IEEE Symposium on Security and Privacy,
pages 272–282, 2004. DOI: 10.1109/SECPRI.2004.1301329.

[17] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Pioneer: Verifying code integrity and enforcing untampered

39

http://dx.doi.org/10.2991/ameii-16.2016.155
http://dx.doi.org/10.1109/ACCESS.2019.2924045
https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_Internal_Core_API_Specification_v1.1.2.50_PublicReview.pdf
https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_Internal_Core_API_Specification_v1.1.2.50_PublicReview.pdf
https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_Internal_Core_API_Specification_v1.1.2.50_PublicReview.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.03_60/ts_10216501v050203p.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.03_60/ts_10216501v050203p.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/05.02.03_60/ts_10216501v050203p.pdf
http://dx.doi.org/10.1007/978-3-319-26096-9_7
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
http://dx.doi.org/10.14232/actacyb.288834
http://dx.doi.org/10.1109/SECPRI.2004.1301329

code execution on legacy systems. ACM SIGOPS Operating Systems Review,
35(5):1–16, 2005. DOI: 10.1145/1095809.1095812.

[18] Sean Turner. Transport layer security. IEEE Internet Computing, 18(6):60–63,
2014. DOI: 10.1109/MIC.2014.126.

40

http://dx.doi.org/10.1145/1095809.1095812
http://dx.doi.org/10.1109/MIC.2014.126

	Abstract
	Kivonat
	Introduction
	Background
	Threat Assessment
	Functional Requirements
	Asset identification
	Attacker model
	Security Requirements

	Overview
	Attestation process
	Attestation protocol
	Secure channel
	Verifier
	Verifier data

	Prover TA

	Integrity checks
	Process listing
	Memory integrity checks
	File system integrity checks
	Network integrity checks

	Implementation
	Verifier
	Prover TA

	Evaluation and discussion
	Conclusion
	Bibliography

