
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Fábián Füleki

Image-based depth estimation with
deep neural networks

Bálint Gyires-Tóth, PhD Róbert Zsolt Kabai
University Supervisor Industrial Supervisor

October 27, 2019



Kivonat

Az elmúlt évek egyik legnagyobb szoftvermérnöki kihívása egy olyan önvezető rendszer
megalkotása, amely képes tetszőleges közlekedési szituációban önállóan helyes döntést
hozni (ezt hívjuk ötös szintú autonómiának). A technológia jelen állása lehetővé teszi
a részben önvezető rendszerek meglétét a már utcán közlekedő autókban (kettes szintű
autonómia). Jelenleg úgy tűnik, hogy az önvezetéshez használatos szenzorok képességei
és a feldolgozáshoz szükséges nagy számítási igény lehetővé tennék egy ötös szintnek
megfelelő önvezető rendszer megalkotását, de a probléma bonyolultságából kifolyóan nem
lehet klasszikus algoritmusokkal elvégezni ezt a feladatot.

Az utóbbi évtizedben sokat fejlődött a machine learning terület deep learning (mély
tanulás) iránya, amely lehetővé teszi olyan kép és egyéb szenzoradatok feldolgozását, ami
nagyban elősegítheti egy magasabb szintű önvezető rendszer létrejöttét.

Egy lehetséges megközelítés, hogy a különböző szenzoradatok feldolgozásáért összesen
egy mély neurális háló a felelős, amely több, különböző részfeladatot old meg egyszerre
(multitask learning). Ilyen részfeladatok az objektumdetekció, a sávok észlelése, vagy ép-
pen a kereszteződés helyének és a közlekedési lámpa állapotának megállapítása. Egyes
részfeladatok együttes tanítása hatékonyabb lehet és jobb teljesítményt eredményezhet,
mintha ezeket a feladatokat külön-külön neurális hálóval oldottuk volna meg.

Dolgozatomban a távolságbecslés problémakörét és annak megvalósítását vizsgálom,
mégpedig kizárólag kameraszenzorok segítségével. Célom egy olyan neurális hálózat létre-
hozása volt, amely képes a képen látható egyes pixelekhez távolságértékeket rendelni.
Munkám részeként újszerű hibafüggvényt dolgozok ki és valósítok meg, mely esetén a
távolságértékek hibájának számításakor figyelembe veszem a rendelkezésre álló szeman-
tikus szegmentációt is. Célom ezzel, hogy egyes objektumok, mintpéldául az autók és
gyalogosok, amik a kép csupán egy kis részét alkotják, nagyobb súllyal szerepeljenek a
hibaszámításban, így ellensúlyozva az aránylag kis méretüket.
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Abstract

In recent years, one of the biggest software engineering challenges is the goal of creating a
completely autonomous system, which is capable of navigating in a complex driving envi-
ronment (called the fifth level of autonomy). Today’s state-of-the-art technology makes it
possible to have partially self-driving cars on the roads (level two of autonomy). It seems
like the capabilities of the sensor suits and the processing power of embedded systems
make it possible to create a level five autonomous system, but the complexity of the
problem makes it impossible to solve this task based on classical algorithms only.

In the last decade, deep learning, a subfield of machine learning has grown in popu-
larity and in performance as well. Deep learning makes it possible to process the data
coming from the sensor suits and with its help, there is a common vision that a level five
autonomous system could be created in a few years.

The processing of the sensor data can be done using a deep neural network, which solves
multiple tasks at the same time. These tasks are object detection, drivable area detection,
intersection and traffic light state detection, etc. Some of these tasks help each other,
meaning that a model creating multiple outputs can perform better than two models
trained for only one task.

In this work, I aimed to explore and implement the task of distance estimation based
only on camera visuals. My goal was to create a neural network which is capable of
predicting distance values for each pixel on the input image. Furthermore, I created a loss
calculation method based on a novel idea of taking semantic segmentation into account.
This method helps to balance the size of some objects on a single image. For example, a
pedestrian is relatively small on an image compared to a building, but it is more important
to have a precise prediction for the pedestrian than the building.
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Chapter 1

Introduction

Self-driving is one of the most inspiring yet challenging aspect of the automotive industry.
A number of car manufacturing and technology companies are working on creating a
software and hardware suite which is capable of navigating a vehicle on the road.

Personally, I am fascinated by the improvements that self-driving car concepts had
over the recent years, therefore I have the motivation to contribute to the vision of full
autonomy. However, the task of self-driving requires knowledge from a number of sub-
fields of engineering. Mechanical, electrical and software engineers are working together
on different kinds of solutions across the globe. As an individual, it is impossible to create
every required component of a self-driving system, all the way from sensing to controlling.
As a software engineer, I can contribute to the visual recognition system part, which is
essential in a self-driving system.

In this work, my intention is to create a depth estimation system using convolutional
deep neural networks. Depth map can be really useful for drivable area segmentation, 3D
object detection, or even parking space identification. Nowadays, the easiest way for this
approach is the use of lidar sensors, although these sensor are relatively expensive and also
have some limitations. Therefore, my solutions are going to be based only on cameras.

A novel idea for loss calculation will be also introduced, which takes advantage of the
available semantic segmentation. Some parts of the captured camera images are not taken
into calculation as much as they should be. For example, pedestrians are highly involved
in the traffic scenes, but they are represented by only a small portion of pixels on the
image. To solve this problem, my proposed idea is to use a weight mask based on the
semantic segmentation and multiply the loss with it. Important objects, such as cars and
pedestrians are going to have much bigger weight on the mask. This approach turns out
to be a little helpful if we look at the results in chapter 5.
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Chapter 2

Background

2.1 Machine Learning Introduction

In recent years, machine learning-related algorithms have grown in popularity, thanks to
the technological advancements in the IT industry and the widely available high-level
libraries. Other tools and online courses are for the help of a beginner in the field of
training neural networks. At first glance, some ‘one click to run’ methods (such as Google
Seedbank) seem really controversial, but the whole training process of a neural network
is far more complex than a high-level API (application programming interface) suggests.
For the training process, many factors should be taken into calculation, and the cause of
a poorly performing neural network can be almost any of them. As Andrej Karpathy, the
head of Artificial Intelligence research at Tesla says, “Neural net training fails silently” [21].
For example, a poorly chosen learning rate decay (the slowdown of the learning speed)
can cause the training process to stop at a local optima.

Machine learning is a subset of artificial intelligence related algorithms, which are mostly
based on statistical data analyzing methods. Machine learning is utilized including but
not limited to solve the following tasks:

• Natural language processing (See BERT [7])

• Stock price prediction

• Object identification on images (See YOLO [30])

• Network traffic analysis for cybersecurity (See [38])

In general, a machine learning algorithm has an input and an output, and we can
differentiate two main types of machine learning algorithms based on the type of output:

• Classification: In this case, the network tries to predict which class a given input
belongs to. Usually, cross-entropy loss is in use for multiclass classification.

• Regression: The output of the network is a vector, and in most cases, the mean
absolute error function is in use as a loss.
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• In some cases, the machine learning algorithm has multiple types of outputs, which
have some correlation. For the input is an image of someone, and the age output is
a regression and the gender output is a classification.

There are three types of machine learning techniques that are mostly utilized nowadays:

• Supervised learning: If the expected output value of a huge amount of input data is
available, we can train a machine learning algorithm to produce the desired output
of a given input with the method of minimizing the error between the output of the
algorithm and the predefined output, also known as ground truth.

• Unsupervised learning: This type of machine learning algorithms are in use in the
case of missing or partially missing ground truth. The algorithm tries to learn the
internal structure of the data. The combination of the supervised and self-supervised
method is called semi-supervised.

• Reinforcement learning: In this case, an agent is utilized in an environment. This
environment can be dynamically changed by the agent using an available action and
the environment returns a state to the agent. This procedure is called the Markov
decision process. After some time, the agent receives a reward, which can be either
positive or negative. The agent tries to maximize its reward by taking the best
possible actions in the environment.

2.2 Deep Learning

Deep learning is a subset of machine learning, where deep artificial neural networks are in
use. In this paper, deep learning will be utilized with the training method of supervised
learning.

2.2.1 The concept of artificial neural networks

The human brain was the main source of inspiration in the creation of artificial neural
networks. This naming can be a little misleading, as artificial neural networks (neural
network or network for the rest of the paper) are not about the simulation of the brain
cells.

Neural networks consist of layers and these layers consist of some neurons and a bias.
A neuron has an input and an output, and the bias is a special neuron that does not have
any input, it just outputs a constant number, which is 1. The connection between two
neurons is called a weight, which is also a number. On the output of every neuron, there
is an activation function (explained further in section 2.2.4), and the output value of a
neuron can be calculated using the formula 2.1.
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Figure 2.1: The structure of a single neuron

The output of a single neuron can be calculated using the following formula:

Y = a

(
b+

∑
i

wi ·Xi

)
(2.1)

Where Xi is the output of the ith neuron in the previous layer and wi is the weight
between the ith neuron in the previous layer and the currently examined neuron. The
activation function is noted as a and the bias as b.

The most straightforward way to connect the neurons of each layer is the following:
every neuron in a layer is connected to the neighboring layer’s every neuron. There isn’t
any connection between neurons in the same layer. The connection type itself is called
fully connected layers, and this architecture is called the multi-layer perceptron (MLP).
The first layer of the network is called the input layer and the last layer is called the
output layer. All the other layers together are called the hidden layers.

Figure 2.2: The structure of a multi-layer perceptron (Source: [27])

The neural network can calculate (predict) the output for a given input, this process
is called forward passing or forwarding in short. The output values together are called
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prediction. Forwarding consists of the following steps:

1. Fill the input layer’s values with the vectorized input data.

2. For each layer calculate the output values of every neuron in the next layer based
on the formula 2.1.

3. The output of the last layer contains the output values.

2.2.2 Backpropagation

In this section, I briefly introduce the backpropagation algorithm [15], which is used for
the training process of neural networks. In short, backpropagation tells how much each
weight (and bias) should be changed in the network to achieve better prediction results.
In more mathematical phrases, backpropagation is a specialization of a technique called
reverse mode differentiation or reverse accumulation, which computes the derivatives of
functions that can be represented as computational graphs.

After the forwarding of a single input data is done, an error value is calculated for every
neuron in the output layer. This error value is determined by the loss function, which has
two inputs: the predicted value and the expected value for a neuron.

I would like to explain the calculus of backpropagation through a simple example. Let’s
consider a small MLP, which has one output neuron and let’s also take into the calculation
a single neuron from the last hidden layer. The weight between these neurons will be noted
with w(L). Let’s note the output value of the output layer as A(L), and the output of a
neuron from the previous layer as A(L− 1).

A(L) = a

(
w · A(L− 1)

)
(2.2)

Where a notes the activation function. For this sample, the loss function (noted as c) is
going to be the squared error:

c(x, y) = (x− y)2 (2.3)

This function is also used in a widely applied loss function, the mean squared error (MSE).
In this case, the interpreted value of cost function for this output neuron is

C = (A(L)− y)2 (2.4)

Where y is the desired output. The derivative of this cost function with respect to the
output value of the last layer is:

δC

δA(L)
= 2 · (A(L)− y) (2.5)
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The derivative of the last output with respect to the weight ( noted as w(L) ) between
the two considered neuron:

δA(L)

δw
= A(L− 1) · a′

(
w(L) · A(L− 1)

)
(2.6)

The final result for this weight is:

δC

δw
= 2 ·

(
A(L)− y

)
· A(L− 1) · a′

(
w(L) · A(L− 1)

)
(2.7)

The name backpropagation makes sense if we look at this previous formula. The deriva-
tive depends on the previous layer’s neuron activation ( A(L − 1) ) as well, so we have
to make the same steps for the second last and the last layer as well. This process should
be repeated for each neighboring layer until the derivative of the cost function can be de-
scribed using only the weights of the network and the values of the input. The derivative
of the cost function with respect to the previous layer is

δC

δA(L− 1)
=

δC

δA(L)
· δA(L)

δA(L− 1)
(2.8)

This simple example can be extended for several output neurons and several hidden
layer neurons. The number of output neurons will be noted as J , and the number of the
previous layer’s neurons is K. Let’s note the jth output layer activation with Aj(L) and
the kth activation of the previous layer Ak(L− 1). Let’s note the weight between the jth
output neuron and the kth hidden layer’s neuron as wjk(L).

For easier notation, let Sj(L) be the weighted sum for the jth neuron in the output
layer before activation:

Sj(L) =
K∑
k=1

wjk(L) · Ak(L− 1) (2.9)

And the activation will be:
Aj(L) = a(Sj(L)) (2.10)

The squared error cost function is going to be:

C0 =
J∑
j=1

(
Aj(L)− yj

)2

(2.11)

The derivative of the cost function with respect to the last layer’s jth neuron:

δC

δAj(L)
= 2 ·

J∑
j=1

(
Aj(L)− yj

)
(2.12)
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The derivative of the output layer’s jth neuron with respect to wjk(L):

δAj(L)

δwjk(L)
= Ak(L− 1) · a′

(
Sj(L)

)
(2.13)

The derivative of the cost function with respect to any weight wjk(L) in the considered
layer can be expressed as:

δC

δwjk(L)
= Ak(L− 1) · a′

(
Sj(L)

)
· 2 ·

J∑
j=1

(
Aj(L)− yj

)
(2.14)

With this proposed formula, the gradient of the cost function with respect to any
weight in between two layers can be calculated. Using the formula 2.8, the derivatives can
be calculated the same way in the previous layers.

2.2.3 Optimizer

A common misunderstanding of backpropagation is that it changes the weights of the
neural network. Actually, this is the task of the utilized optimizer algorithm. In this
section, some of the mostly used optimizers will be introduced in order to explore how
the calculated gradients are utilized throughout the training process.

An epoch is a term used to note processing every input data once in the training set.
The backpropagation algorithm is executed for each input data in every epoch, but the
modification of the weights might not be executed immediately after each gradient calcu-
lation. The optimizer may accumulate multiple gradient values from multiple input data
before changing the weights. This set of data is called mini batch and the corresponding
gradients are averaged in order to create a gradient that may be able to improve the loss
for some input data in the mini batch. The size of the mini batch is referred as batch
size in the field of machine learning. The number of weight updates in an epoch is called
an iteration. Stochastic gradient descent (SGD) is one of the simplest optimizers, which
updates the weights of the network according to the following formula:

w = w − η · 1

N
·
N∑
i=1

δCi
δw

(2.15)

Where w notes the weight values of the network, N notes the batch size, η notes the
learning rate and δCi

δw
notes the gradient for the ith input, calculated by backpropagation

explained previously in section 2.2.2. For a simplified visual representation of the gradient
descent, see figure 2.3.

The stochastic gradient descent algorithm has an improved variant called SGD with
momentum. This improves the performance of the optimizer with introducing memory
over iterations: the previous gradient values influence the current weight changes.
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Figure 2.3: A simplified example of gradient descent (Source: [29])

Learning rate is a scalar hyperparameter, which changes the values of the averaged
gradient. Determining the value of the learning is crucial in some cases as an incorrect
value can prevent the network from learning anything. For instance, a tiny learning rate
can cause the network to slow down the training process or even to stop the loss in a
local optima. A giant learning rate causes overshooting of the global optima. For the
corresponding examples, see figure 2.4.

(a) Learning rate is too big, the optimizer is overshooting
the optima

(b) Learning rate is too small: learning is stopped in a local
optima

Figure 2.4: Picking an optimal learning rate can be crucial for the training process (Source: [29])

Some optimizers are less dependent from the overall learning rate, as they determine a
learning rate for each parameter throughout the training process. These kind of optimizers
are called adaptive optimizers and the mostly used one is the adaptive moment estimation
(Adam) [22]. As the amount of optimizer algorithms are rapidly growing, the between
them would be a great research topic to succeed in.

12



2.2.4 Activation functions

The activation function is needed to introduce nonlinearities in the network. If the network
had only linear activation functions, such as a(x) = c · x, the network could not converge
to any nonlinear function. Activation functions play a key part in a neural network, as
the changes of the weights are going to be calculated based on the first derivative of the
activation function (as explained in section 2.2.2).

Choosing an activation function for a network can be hard, if we take a look at the
variety of possibilities: Leaky ReLU, ELU, LReLU, SReLU are only some subtypes of the
widely utilized ReLU [28] (see figure 2.5). There are a vast number of activation functions
that can be utilized in different circumstances. Most of the time, the rectified linear unit
[4], sigmoid and tanh are in use. The utilization of ReLU has an advantage at deployment,
as the hardware implementation is requires almost no additional computational power.

Figure 2.5: There are a number of variety activation function based on the rectified linear unit. [5]

The idea of introducing nonlinearities in the network is really important because the
goal is to model a nonlinear function. This can be done by utilizing ReLU as the activation
function of a neural network. According to the formula, the rectified linear unit returns
its input only if it is positive, and a value of zero is returned in the case of a negative
input value. The derivative of this function is zero for negative x values and 1 for the
positive ones. This function is also known as the Heaviside step function. According to
[10], the zero value of the derivative function for negative x values does not cause any
problems. For some input values, the weighted sum for a given neuron becomes negative,
and both the activated value and its derivative will be zero. Because of this effect, a lot
of activation values are going to be zero, which is called sparse activation.

One thing to be noted here, the derivatives of the sigmoid and tanh function is really
small in the region of great positive or negative x values.

lim
x→±∞

sigmoid(x) = 0 (2.16)
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ReLU(x) = max(0, x) Sigmoid(x) =
1

1− e−x
tanh(x) =

ex − e−x

ex + e−x

δReLU(x)

δx
=

{
0 : x < 0

1 : x > 0

δSigmoid(x)

δx
=

e−x

(1 + e−x)2
δtanh(x)

δx
=

4

(e−x + ex)2

(a) Rectified linear unit (b) Sigmoid (c) Tanh

Figure 2.6: Comparison of the activation functions

The small gradient values in these regions can cause the well-known vanishing gradient
problem, which occurs in very deep neural networks. As we propagate backward, the
gradients of the activations become smaller and smaller and after a while, the network is
not learning anything. In this paper, only the ReLU and the leaky ReLU are going to be
utilized.

2.2.5 Convolutional neural networks

Convolutional neural networks (CNN) are nowadays the standard methods for processing
images containing complex features. This type of network architecture trained with back-
propagation was first utilized in [24]. These networks are able to detect low level features
in the first layers and higher level features in the deeper layers. This architecture also re-
duces the number of neurons needed for sufficient object detection, image segmentation,
etc.

In the case of images, two dimensional convolutions are in use. In short, convolutional
processing in 2D is sliding a window over the input image, calculating the weighted sum
and using the activation function, just like in the case of a single neuron output value
calculation.

Let’s consider a simple example: let our input image have a size of 5x5 and let’s create
the output values based on a 3x3 convolutional kernel. Because the kernel fits in 9 different
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locations (3 rows and 3 columns) without hanging out at the edges, the output size is
going to be 3x3. The procedure is the following: we place the window in the first possible
location (colored red on figure 2.7) and calculate the weighted sum.

Figure 2.7: An example of convolution over a small image

There are some other factors which also influence how the input is processed: the stride
defines the displacement of the window, and the padding defines how the edge of the input
image should be filled.

After the activation, a pooling layer is in use to downsample the image and to extract
some features. In the case of convolutional networks, max pooling layer is utilized, as it
enables to keep only the most activated regions of the input. Maximum pooling means
that we keep the biggest value from the previously calculated convolution. In order to un-
derstand why max pooling is the better choice over average pooling, examine the example
on figure 2.8.

Figure 2.8: An example of max pooling

In this case, the filter is filled diagonally, and the input contains a diagonal line as well.
On the output, the biggest activation is on the position of the diagonal line. The output of
average pooling would be 2, and the output of the max pooling is 4, which we are looking
for in this example.

2.3 Introduction to autonomous driving

Self-driving is one of the most challenging problems of the automotive industry at the
moment. Most of the car manufacturers and other technology companies are working on
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different types of advanced driver-assistance systems (ADAS). Every ADAS is aiming
to lower the number of actions made by the driver, thus making the trip safer and less
tedious. As the competence of the assistance systems will increase, Automated driving
systems (ADS) are going to be in the focus in the next years. The difference is the driver:
ADAS is focusing on helping the human driver, while ADS does not depend on one. One
key technology behind these systems are neural networks.

Fully autonomous cars are going to be a vital transportation option in the near future,
therefore the safety of the vehicle and its surrounding should be guaranteed. A key com-
ponent achieving this goal is the visual recognition system, which supplies information
about the surroundings to the intelligence and controlling systems.

The field of self-driving contains a lot of subfields, such as lane detection, traffic sign
recognition, collision detection, and last but not least pedestrian movement prediction.
These tasks can be solved separately with a few dedicated subsystems with or without
utilizing a neural network. In this work, my goal was to create a deep neural network for
solving the task of depth estimation.

Automating road transportation — even partly — has a lot of advantages. The first
factor is safety: Even the simplest collision warning system in a few percentage of the
cars can reduce the number of accidents on the road. Studies have shown [34] that only
a small percent of autonomous cars on the road can increase safety and eliminate stop-
and-go traffic jams.

According to the SAE standard [32], six levels of automation can be differentiated by
who is in control of the vehicle and who is monitoring the environment:

0. No automation: Full-time monitoring and execution are required by the human
driver. A vehicle is on level 0 even if it is equipped with warning or intervention
systems.

1. Driver assistance: The human driver is still completely in continuous control of the
vehicle, but may be assisted by different systems for different tasks. In most cases,
adaptive cruise control, lane keeping system and parking assistance are implemented.

2. Partial automation: In some cases, the onboard system can take control of the
vehicle, but the human driver always has to monitor the environment and must
take over if needed. Keeping the hands on the steering wheel and the eyes on the
road are required. Dynamic driving is completely performed by the human driver.

3. Conditional automation: The autonomous system is in full control of the vehicle
and can determine in which cases human intervention is needed. The driver has to
be prepared to take over, mostly for the dynamic driving tasks, such as driving in a
roundabout.
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4. High automation: No human driver attention is ever needed for safety. The onboard
system can manage to control the vehicle in most of the driving situations. If the
human driver does not take control when needed, the vehicle can safely abort the
trip.

5. Full automation: The vehicle can handle all of the driving situations as good as a
human driver would.

The most intuitive way of driving a car on public roads is using vision: human drivers
are making decisions based mostly on their sight. The computer-based implementation of
this approach is a forward-facing camera used as a sensor. The video feed is processed by
the onboard computer using traditional image processing techniques or neural networks.

These sensors are described in detail in section 2.4. Adapting more than one type of
sensors ensures that monitoring the environment can be achieved in all kinds of conditions.
The sensor arrangement on a Tesla vehicle for example can be seen on figure 2.9.

Figure 2.9: A modern vehicle utilizes different types of technologies at the same time (Source: [17])

2.4 Main sensors of driving-related tasks

In this section, I introduce the human sense perception and the possible sensors of a
self-driving car. The widely utilized cameras for computer vision-related tasks and the
rapidly developing lidars (which stands for Light Detection and Ranging) are mostly
used for distance measurement and localization problems. Both sensors have their own
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applications, characteristics, advantages, and disadvantages, so I would like to provide a
brief summary of them. As the goal is to create a dense and accurate depth map with a
sufficient range, other tools, such as radar and ultrasonic sensors are not in use for this
project.

2.4.1 Human sense perception

We, humans are able to estimate the distances of our surrounding objects. In this section,
I aim to explore which aspects of human vision are mostly responsible for the 3D space
detection, extend these methods for silicon-based vision systems and also introduce some
methods that humans are not utilizing.

Stereo vision may seem the most intuitive way of distance estimation, and in section
2.4.2, a traditional stereo matching algorithm will be introduced, which is capable of
distance estimation, if the parameters, such as focal lengths and positions of the cameras
are available. In the manner of human sense, stereo vision is not that important as it
seems. It may be really hard to catch a ball with one eye covered, but it is far from being
impossible.

Humans are able to estimate 3D-space positions combining information from multiple
effects at the same time: stereo vision, object movements, egomotion, and dynamic focus
are all helping to perform well in different environments.

If the size of an object cannot be approximated, its location cannot be estimated from a
single image. In this case, the movement of this object may be really useful for localization.
There are some artificial neural network-based self-supervised solutions using only the
relative movements of the objects [14]. If the object is not moving, the movement of the
sensing person, also known as egomotion can be used as well [40] [25]. In some cases, these
movement effects may not be available, as the object is far away. In this case, human vision
has a great feature called dynamic focus with feedback. The feedback makes it possible to
focus on certain objects correctly and estimate the corresponding distance based on the
required focus level.

Humans are able to combine these types of localization techniques, and most of these
methods can be implemented for computer vision based tasks as well. Stereo matching,
object tracking, and egomotion calculation can be implemented easily.

2.4.2 Digital cameras

The development of digital cameras started in the 1960s. The cold war had a great impact
on its advancements as a digitally transmittable image was needed in space projects.
Digital cameras became really popular and widely accessible in the last decades. They
are capable of producing high-quality photos with a decent framerate at a reasonable
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price point. The usage of cheap, reliable, high framerate and high-resolution sensors are
perfect in a lot of situations. A mobile phone’s camera for example nowadays is capable of
delivering up to 120 frames every second in full HD resolution, which is more than enough
for most of the tasks of self-driving.

Driving is one of the tasks where humans are heavily dependent on vision, so comes
the obvious idea of utilization of digital cameras. Lane detection, semantic segmentation,
and pose estimation tasks can all be solved using a neural network which is based on a
single camera as an input. There are some special kinds of cameras that are more efficient
for some problems, so a self-driving vehicle can contain a dozen or even more cameras
operating all at the same time. Some of them face different directions but overlap each
other, and some of them face the exact same direction. In the latter case, the cameras have
different properties, such as field of view, focus or sensor type. Some grayscale cameras
have higher resolution than its color equivalent, and in some cases, a lower quality camera
is utilized because of its lower price.

Artifacts and limitations of digital cameras

Every camera-based solution has some disadvantages, which mostly derive from the lim-
itations of the used camera sensors. Digital cameras are not capable of taking perfect
frames in every situation, which results in unusable photos in some cases. The most obvi-
ous limitation for the camera is the amount of light reaching the sensor. The brightness
of the scene is one of the most significant measures. Other factors, such as rain, dust, and
fog can occlude the camera image in a quite similar way than darkness does. On photos
taken in these challenging conditions, it is much harder to identify an object or to create
segmentation, etc.

Even in quite advantageous situations, other factors can also create unwanted artifacts.
Artifacts are basically any of the undesired changes of an image that is caused by different
effects within a camera. These side-effects can be found in almost every situation, where
the cameras are in use, and most of the time, at least one of the artifacts is present. Some
of the artifacts are so disturbing, that multiple consecutive captured frames cannot be
used for anything.

One of the well-known artifacts is the lens flare, where a bright object shines into the
lenses and leaves multiple bright rings on the image. Interestingly, the bright light source
can be out of the field of view as well.

Another unwanted effect of the cameras (and sometimes even human vision) are over-
and underexposure. These artifacts mostly occur when the bright scenery becomes quickly
much darker (underexposure) or the dark scene becomes quickly much brighter (overex-
posure). In the same way as the human eye, cameras need time to adapt to the new light
conditions, and in this period, some of the details can be lost around the darkest or the
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brightest part of the image. Even the same frame could contain really bright and poorly
lit parts, which results in lost details in these regions. For an example, see figure 2.10,
where the curb is not visible on the left and the cyclist is barely noticeable on the right
side of the image.

Figure 2.10: An example of over and underexposure from the Kitti dataset [9]

Poor light conditions can affect the captured image in other ways as well, such as noise
is increased on the darker image. In normal conditions, a solution would be to increase the
shutter time and lower the ISO sensitivity, but in case of driving scenes, it would result
in blurred images.

In some cases, moiré can occur in the image. Moiré is a pattern, which occurs on
relatively high resolution, repetitive textures. The camera’s resolution is too low to capture
it in all detail, so the original pattern becomes a different, wavy pattern on the image. As
the pattern usually changes over time, it can be disturbing for the eye and for a computer
vision system as well.

The rolling shutter effect and compression loss are not taken into account, as in practice
usually, a global shutter camera provides raw images for the vision system.

Stereo cameras

The utilization of two cameras at the same time comes from the fact that humans (mostly)
coordinate themselves based on stereo vision. In theory, the stereo camera setup should
be sufficient for proper distance estimation at least on the same level as humans’. Stereo
matching algorithms based on two cameras provide a decent baseline for the task of depth
map estimation, therefore I briefly introduce the topic.

Rectification

Before stereo matching, the images are rectified, which is essentially the projection of the
two images onto a common, enlarged image plane. This plane contains the two images
in a way where every point in the 3D space on the left image takes the same vertical
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position as on the right image. Rectification makes it easier to match the two images,
because of the fact that every point has its pair on the same horizontal line. In the case of
the simulated environment, the cameras are attached in a way where rectification is not
necessary. For real-life sensors, both rectification and calibration is mandatory.

Figure 2.11: Rectification [33]

Stereo matching

After rectification, stereo matching algorithms are capable of calculating the disparities
between the two images. The disparity map tells how much each pixel is shifted on the right
image compared to the left image. In terms of self-driving, this method is implemented
using two cameras, which take images at the exact same time. This setup solves the
problem of moving objects in the scene, which would corrupt the results. Images taken
over time are another approach for the source of the two images, but I don’t consider
testing its performance as the mainly utilized dataset does not provide adequately high
framerate and accurate location logs.

Based on the disparity map and the properties of the cameras, the distances can be
calculated for the successfully matched parts of the images. Interestingly, one of the main
problems of stereo matching comes from the displacements of the cameras as well. The
objects relatively close to the cameras cover other parts of the image differently on the
two images. Therefore some of the pixels on the left image cannot be found on the right
and vice versa. These parts cannot be matched with each other, and the stereo matching
algorithm does not identify any disparities. The same effect can be noticed at the left edge
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(a) Left (b) Right

Figure 2.12: Example RGB stereo images from the Synthia dataset [31]

of the image, because of the displacement. (This effect on the left side can be removed by
appending blank areas to the image.)

On figure 2.13, an example of semi global matching can be seen. The coloring of the
depth map is explained in section 4.1. The black areas show where SGM was not able to
calculate disparities. It should be noted, that the parameters of the SGM algorithm has
been optimized by hand for better visual results.

Figure 2.13: An example of the SGM algorithm on the Synthia dataset based on the images on figure
2.12

The biggest drawback of stereo matching is the need for a texture that can be identified.
It’s impossible to tell the distance of a white wall for example because the disparities of
the pixels cannot be identified.
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2.4.3 Light Detection and Ranging (lidar)

Lidars are the most capable distance measurement devices, but they have a lot of limi-
tations that should be taken into calculations. Lidars are utilized in a variety of fields,
including but not limited to agriculture, robotics, as well as the space industry [35]. I
did not utilize any type of raw lidar measurements in my work, but as the real-world
driving-related datasets are mostly collecting point clouds from lidars, it is important to
have a brief overview of this marvelous technology.

Lidar is a widely used distance measurement device, which utilizes laser light to illumi-
nate the surface and measures the reflected light with a sensor. Based on the travel time
of the light and the speed of light, the traveled distances can be calculated. The provided
measurements are the 3D coordinates of the measured points and every one of them has an
intensity value as well. The reliability of a single measurement is relatively low, because of
the way light is reflected from the surfaces. In some cases, photons get reflected, in other
cases, they go through the material or get absorbed. This effect creates inconsistency over
a homogeneous surface, which can be solved easily by analyzing multiple measurements
to create a single data point with a sacrifice of refresh rate.

The well-known mechanical lidar consists of a rotating mirror, which reflects the out-
going laser light in the direction of the objects and also reflects the returning light into
the sensor. This setup seems outdated compared to the technological advancements of
digital photography. Rotating lidar in today’s stage has a lot of disadvantages, such as
the wearing of the mechanical parts, low resolution, and most of the time, they are very
expensive. A really high-resolution rotating lidar can cost multiple times the price of the
car it is attached to.

Another type of lidar called flash lidar is under development, which promises a lower
entry price for a lower resolution sensor. The ultimate goal of flash lidars is to lower
the price of the equipped vehicle dramatically without losing too many details about the
environment. Flash lidars have some general advantages as well, such as it has no moving
parts, (therefore no wearing, less possible point of failure) and no rolling shutter effect
can be observed in the measurements.

Artifacts and limitations of lidar measurements

Just like cameras, lidars are far from being perfect and suffer some type of artifacts in
the same way as cameras do. For example, lidars can be disturbed by the same lens flare
as cameras. One of the advantages is a disadvantage as well in case of lidars: they emit
the light that they use for measurement. This means that they can work well in the dark,
but in the case of highly reflective and highly absorbing surfaces, no measurements can
be created. The same goes for the sky, as it does not reflect any light.
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Figure 2.14: An example lidar measurement from the Kitti dataset [9]

Moving objects are another weak point of lidars too: the use of multiple measurements
for a single data point can cause inconsistency at moving objects. In the case of mechanical
lidars, the rolling shutter effect can be observed on moving objects as well.

In the case of lidars, particle occlusion, such as dust can be another challenge. Although
the use of multiple measurements solves the issue in most cases, heavy rain, dust or fog
eliminates a lot of useful information from the sensors, like in the case of cameras.

A significant limitation of the lidar measurements are the density of the measurements:
approximately, 5-10% of the pixels contain measurement values after projection to the
camera image.

2.4.4 Other sensor

In certain cases, other active measurement sensors, such as infrared cameras, ultrasonic
sensors, and radars are more useful than vision-based estimation.

Radar can be used to determine the distance of an object from the vehicle. It can be
used in any weather condition, at high speed, and has a long range as well. The drawback
is, that radar cannot determine the shape of an object precisely. A creative way of utilizing
radar is annotation for camera images [18].

Ultrasonic sensors are mostly useful for parking assistance, but they can be used for
blind-spot monitoring and clearance detection at lane changing as well.
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Chapter 3

Previous works

A number of different approaches can be found for the task of depth estimation. As I
intended to use supervised learning, the most useful paper was the paper High Quality
Monocular Depth Estimation via Transfer Learning [1]. In this work, a pretrained encoder-
decoder convolutional neural network with skip connections was used, which suited my
intentions as well. In this paper, the ground truth is densified from sparse distance mea-
surements and even the authors point out that real-life datasets are not sufficient for
supervised learning.

In paper [1], in section 4.4, the authors claim:

“ Since our loss function is designed to not only consider point-wise differences but also
optimize for edges and appearance preservation by looking at regions around each point,
the learning process does not converge well for very sparse depth images. ”

In the paper [8], also real-life datasets are utilized with densified ground truth values.

In [14], the movement of the camera provides information about the distances using
unsupervised learning. Left an right camera images are utilized in paper [11] and [13] in
an unsupervised manner.

Generating right image from left image and using a neural network with stereo input is
the key idea in paper [26]. For further reading on unsupervised approaches, see [12] [23]
[3] [2].

There are a huge number of other useful papers published on the topic of self-driving
related tasks, which has been solved using deep learning. For such examples, see [30] and
[4] for object detection, and [36] for semantic segmentation.

Although there are some papers [19] which combine both depth estimation and semantic
segmentation task, I could not find any papers similar to the novel idea of weight mask
for loss calculation based on the annotated semantic segmentation.
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Chapter 4

Proposed work

In this chapter, important details about the proposed work will be introduced. There
are some components that had to be implemented for all of the presumably working
approaches. These parts are the dataset, the loss calculation and the neural network
itself. Three main methods are going to be introduced and compared with each other.
These are the depth estimation based on a monocular camera, stereo cameras, and weight
mask for loss calculation with a monocular camera. The latter is a novel idea, which is
intended to balance the size of the pedestrians and cars on a camera image compared to
huge areas that are less relevant, such as the sky and buildings.

4.1 Dataset

In this work, the dataset in use is called Synthia [31], which is a set of synthetic images
exported from a simulated driving environment. The reason behind the utilization of
generated data is the density of the lidar measurements. As explained in section 2.4.3 real-
life lidar sensors provide relatively sparse measurements, but in a simulated environment,
the exportation of the z-buffer is relatively easy, so fully dense depth maps are usually
provided.

Fully dense depth maps are required to train neural networks in a supervised way, and
other metrics, such as the structural similarity explained in the losses section 4.2 can be
calculated only on dense measurements as well.

Another advantage of the simulated dataset is the precision of semantic segmentation.
For real-life datasets, the frames are annotated manually or estimated from other, neigh-
boring frames. Because of human error, the precision of these manual annotations is not
on the same level as the computer-generated semantic segmentation.

Before the RGB images and depth maps could be fed to the network, the values are
normalized in between 0 and 1 in order to help the training process. In order to make
the training process even faster and the video memory requirement smaller, the RGB,
depth and segmentation images have been resized to 1204 by 576. This resolution is a
little smaller than the HD resolution and it is really close to the resolution provided in
the Kitti dataset, which has 1242 by 375. The scaling algorithm for this process was the
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nearest neighbor, as in terms of the semantic segmentation images, no interpolation can
be used.

For every further example, the RGB image on figure 4.1 will be used with the corre-
sponding depth map and semantic segmentation.

Figure 4.1: An example of the left RGB camera from the Synthia dataset [31]

For the visualization of the depth images, I used the jet 4.3 colormap from the matplotlib
package, which provides a colorful depth map with high contrast for better visibility. The
coloring follows the color order of the rainbow, the objects closer to the camera are colored
blue and the objects far away are red. The sky, which basically does not have any distance
value is colored claret. For even better visual results, the depth maps are equalized even
more based on their histograms. On figure 4.2 the histograms of the original and equalized
depth maps can be seen. On the original image, it is really hard to identify the cars on
the left, for example. The original distances on the depth image were between 0 and 1000
meters, which scales to the interval of [0, 1] after normalization.

Preprocessing of the semantic segmentation was needed as well. As it is basically classi-
fication, onehot encoding has been used with 23 different classes, and the predicted results
have been converted back to RGB images for visualization 4.4.

4.2 Loss functions

For the previously introduced depth map estimation, the following losses are summed
up throughout the training process: mean squared error (MSE) and mean absolute error
(MAE) are in use to lower the differences between the real and the predicted distance
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(a) Original depth map (b) Equalized depth map

(c) Histogram of the original depth map (d) Histogram of the equalized depth map

Figure 4.2: Comparison of the original and equalized depth maps

Figure 4.3: The jet colormap from the Matplotlib package

Figure 4.4: An example semantic segmentation from the Synthia dataset [31]
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values. If the difference is relatively large (>1), MSE scales really good, as it returns the
square of this difference. The problem with squaring is that it does not scale well between
0 and 1, so MAE is utilized for this reason. A loss function called Huber loss also solves
this problem using MAE and MSE depending on the interval of the difference.

In some unsupervised approaches [39], the first derivative of the predicted image was
also taken into the calculation in the loss function, as it can result in a smoother prediction.
In a supervised manner, the first derivative of the ground truth can also be calculated, so
it will not be simply minimized, but the absolute difference between the first derivative
of the prediction and the ground truth will be minimized.

With the help of structural similarity (SSIM) [37], the difference of structure, contrast
and luminance can also be introduced in the loss function. This helps to ensure to keep
the shapes and contrasts for the different objects in the prediction image.

4.3 Model architecture

As the goal during this work was to compare a few methods of distance estimation, I tried
to limit the amount of factors that influences the performance of the different solutions.
The biggest factor is the model itself.

For this paper, I aimed to use only one general model architecture, which will be
introduced in this section.

For this research project, the base of a previously proposed model is utilized from the
publication of High Quality Monocular Depth Estimation via Transfer Learning [1], for
every proposed solution of depth estimation.

The model is a convolutional neural network, which consists of an encoder and a de-
coder. The encoder part is used for feature extraction, which is a DenseNet [16] encoder,
that has been pretrained on ImageNet [6]. As the output image size is equivalent to the
input size, and the encoder is downscaling the image, the decoder part is used for upscal-
ing. As the model itself contains a lot of layers and a lot of skip connections deriving from
DenseNet, the detailed model architecture would be too big to include in this document.
The detailed parameters of the used DenseNet-169 can be found in the paper [16], in table
1. A simplified model architecture with monocamera input and depth map output can be
seen on figure 4.5.

4.4 Implemented methods

4.4.1 Single camera image as input for depth prediction

The simplest possible input for a neural network for the proposed problem is a single image
from a monocamera. For the utilized dataset, both the left and right camera images and
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(a) Input RGB image (b) Neural network (c) Output depth map

Figure 4.5: The convolutional neural network has an encoder-decoder architecture with additional skip
connections

the corresponding ground truth values were given, which made it possible to utilize both
measurements throughout this type of training. This technique can be seen as some kind
of augmentation because there are only small differences in the two measurements. None
of the image pairs of a single measurement was used for both the training and testing set,
so the presented results are representative for this dataset.

In the case of a monocamera, there is no traditional method for calculating the distance
values for each pixel. As a traditional method, the distance of a car could be estimated
based on its size and solid angle, but this method has not been implemented, as it can
be used only for some objects in some circumstances. As the only input is a single image,
the neural network can only learn or extract some kind of features for each object, and
the distance values - which is only another feature - can be predicted.

4.4.2 Stereo camera as input for depth prediction

Another intuitive solution for the input is the stereo camera setup. In this case, the
number of input channels is 6, as the left and right RGB images are concatenated together.
The traditional method for calculating the distances from stereo images (SGM) has been
introduced in section 2.4.2.

4.4.3 Semantic segmentation for loss calculation

On the camera images, some objects are represented using only a really small amount of
pixels compared to the full image resolution, but this property does not mean that an
object is further away or is less relevant. A great example of this effect is pedestrians:
they are highly involved in the traffic scenes and they are also really fragile, so the precise
distance detection for them is a necessity. The following method provides a solution to
compensate for the size of the relatively small objects. With the help of the semantic
segmentation data, the loss function for some classes - pedestrians and vehicles - are
taken into account with a bigger weight. For other unimportant classes, such as the sky
or trees, the loss is reduced. And example of a weight mask can be seen on figure 4.6,
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where the black areas are the less important parts and the loss is calculated mostly on
the white areas.

Figure 4.6: An example weight mask for the cars and pedestrians in the scene
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Chapter 5

Results

5.1 Monocamera as input

The results of the monocamera setup can be seen in figure 5.1. Visually, the results seem
really good, but some details are missing from the prediction. Most importantly, the
outlines of the cars on the left are barely visible, which means that the network failed
to differentiate them from the background. Interestingly, the network is able to estimate
the distances of the buildings far away. Notice the window on the top left corner image.
On the input RGB image 4.1, the color and the position of the window would suggest it
to be a part of the sky and the network has failed to identify it correctly. Some parts of
the image contains noise similar to salt and pepper noise, but its amount is much smaller
compared to the SGM 2.13. Also, the SGM failed to calculate correct distances for the
sky on the top right region.

On figure 5.2, the error images of the prediction can be seen. These images were pretty
useful determining the performance of a given model independently from calculated eval-
uation metrics. On the absolute error image 5.2a, the absolute difference of the ground
truth and the prediction have been calculated for each pixel and the image has been
equalized based on its histogram in order to improve visibility of some regions. Just like
the other images, this one has been visualized with the help of the jet colormap from
matplotlib. The biggest error can be easily noticed, as the previously mentioned windows
are red in the top left corner. There are some important effects that should be noted: the
cars, pedestrians and poles are easily identifiable on the error image. This means, that
either the estimation for the background or for the object is not valid. On the prediction
image, this effect can be seen as the objects are blurred into the background.

The error of the first derivative of the prediction can be seen on figure 5.2b. The same
objects are easily identifiable, meaning that the edges for these objects contain high error
values. The cause of this is the previously explained blurring.
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(a) Predicted depth map

(b) Ground truth depth map

Figure 5.1: Comparison of the predicted and ground truth depth maps for the monocamera input
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(a) Absolute error image

(b) Error of the first derivatives

Figure 5.2: Equalized error images for the monocamera input
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5.2 Stereo cameras as input

The neural network with stereo input images performs a little better than the monocamera
used as input. The prediction can be seen on figure 5.3. For example, the error for the
window in the top left corner is much smaller, as more spacial information was available
to the network. Currently, these results are not reflecting my expectations about stereo
input, further exploration of this method is needed.

Figure 5.3: Prediction of the network with stereo input images

5.3 Masked loss calculation

With the use of the weight mask for loss calculation, the prediction contains some areas,
where the improvement is noticeable. On figure 5.5, an example prediction can be seen.
For instance, the cars on the left appear to have better distance values than on figure 5.1b
or 5.3. Overall, the result seems still blurry, generally speaking, the edges of the objects
are hardly visible.

5.4 Comparison of the result

As all of the proposed methods use the same model, a comparison between them is
reasonable. All three proposed method approximates the ground truth depth map quite
well. Both in the case of the stereo input and the weighted loss, some improvement can
be seen on the predictions compared to the monocamera approach. In table 5.1, the

35



(a) Absolute error image

(b) Error of the first derivatives

Figure 5.4: Equalized error images for the stereo camera input
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Figure 5.5: An example prediction from the weight mask method

comparison of the losses can be seen: as expected, the validation losses are higher than
the train losses. Compared to the monocamera method, both the stereo and weight mask
approaches are better. These little differences can also be seen on the previously introduced
visual results. Interestingly, both losses in the weight mask method are significantly lower,
but the validation losses are just a little lower than in the other tasks. This could be an
indication of faster convergence to the train set.

MAE on the
train set

MAE on the
validation set

SSIM loss on
the train set

SSIM loss on
the validation

set
Monocamera setup 4.731 · 10−3 7.853 · 10−3 3.359 · 10−5 1.333 · 10−4
Stereo cameras
setup

3.299 · 10−3 6.477 · 10−3 3.748 · 10−5 1.244 · 10−4

Monocamera with
weighted loss

2.3 · 10−3 7.275 · 10−3 1.697 · 10−5 1.248 · 10−4

Table 5.1: Comparison of some losses from the different methods
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Chapter 6

Implementation details

6.1 Hardware and software environment

During my work, I was able to access one of the machines owned by the Department of
Telecommunications and Media Informatics. This made it possible to use a GTX Titan X
GPU, which made it possible to train the neural networks within a relatively short time.
Usually, overfitting was achieved within 20-28 hours. Later on, the department received
a DGX Station with a really high-end hardware setup. This machine contains a 20-core
CPU, 256 GB of RAM and features four Nvidia Tesla V100 GPUs with 32 GB VRAM
each, which made it possible to run multiple trains with different configurations and finish
them in around 15 hours. I cannot wait to test the training time improvement using all
GPUs for a single train.

The software prerequisites were already satisfied, as I was working on another deep
learning project on the same machine in the previous semester and my Docker setup
made it possible to start the project quickly, but currently, I also miss some features and
performance improvements because of the already outdated libraries. I implemented every
part of the project in Python, and the mainly utilized deep learning library was the Keras
API with TensorFlow backend. A future work is to update my Docker environment and
use the recently released TensorFlow version 2.0 package.

The current stage of the project can be found at https://github.com/ffabi/Project_TDK

6.2 Training parameters

During the period of creation of this work, most of the training parameters were fixed in
order to reduce the difference between the various results. The number of parameter in
the model with stereo images as input and both depth map and semantic segmentation
as output was around 29 million. The optimizer was the widely used Adam [22] with
a learning rate of 0,0001. For the learning rate decay, the ReduceLROnPlateau Keras
callback was used with a patience of 5 epochs and a factor of 0,7. Other Keras callbacks,
such as ModelCheckpoint and EarlyStopping were pretty useful as well. During training
early stopping was in use with a patience of 16 epochs. During training, after each epoch
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the weights of the model has been saved if the validation loss has improved significantly.
After training, the saved model has been loaded and evaluated. Tensorboard was really
useful in order to keep track of the losses of the trainings. The same goes for the saving
of the predicted images after each epoch, in order to visualize the current results of the
network during training.
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Chapter 7

Future works

With the collected experience of this project, I would be able to test some other methods
that could improve the performance of the depth estimation. One of the method that I am
currently curious about is multitask learning, which could help to achieve higher accuracy
in several different tasks [20]. This could be implemented by using several convolutional
decoders for each task. In this manner, the network would learn faster and would achieve
better performance in the depth estimation than the single task version.
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Chapter 8

Summary

As self-driving is going to be part of everyday life, safety has to be guaranteed in every
possible driving condition. In this work, the task of depth estimation has been introduced
and implemented.

Depth estimation appears to be a problem that can be solved using a monocular camera
which is quite promising and appealing. My assumption is that with some improvements
the proposed approaches could be utilized in the automotive industry. The novel idea of
weighting the loss according to the semantic segmentation appears to be helpful. Although
the results of the stereo camera setup and the weighted loss calculation do not reflect my
expectations, the visual differences are noticeable. The utilization of a more robust and
more varied dataset would be required in order to validate the proposed results.
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