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1. Introduction 

 Industrial robots took a long way to reach their current form and the new 

era of collaborative robots is currently rising. On the contrary of what people 

believed with the appearance of industrial robots, workers are still essential 

elements in the factories thus a stronger human-robot cooperation is started to 

emerge. Robots are able to cooperate even better with humans, taking their 

presence into account and cooperate with caution. 

 My goal is to extend the abilities of an autonomous mobile robot (AMR) 

for manoeuvring among people by taking into account their projected 

movement. With this safety feature AMRs could distinguish between people and 

static or other dynamic objects. It is expected to navigate in narrow corridors 

among human workers without impending production. 

 In this work I present a novel approach for sensor fusion where LiDAR 

and stereo camera information are combined in order to create a robust solution 

for human detection and avoidance. The implementation is based on the Robot 

Operating System (ROS) which gives the framework for modular development. 

The used sensors are an Intel RealSense depth camera, and an ydlidar 

laserscanner. These sensors are mounted on a custom built AMR platform.  

 In order to get accurate measurements, during development I test under 

real industrial conditions including narrow corridors, crowded workstations 

and dynamically changing lighting conditions. I compare and evaluate the 

sensory information both separately and with fusion, and also present its 

capabilities in real world. 
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2. Technological background 

 In this section I give an overview of the applied methods, and introduce 

the applied hardware elements. First, I take a look at existing technologies, how 

sensor fusion is implemented by both researchers and leading industrial 

companies, and show its typical use cases. 

2.1 Related work 

 Combining multiple sensors are widely used in industrial robotics for 

various tasks and processes such as inspection and quality control, robot 

guidance, safety of workers, assembly lines, etc. Sensor fusion brings the input 

from each of different sensor types together, using software algorithms to 

provide the most comprehensive mapping from an environment, which is not 

possible to get from a single sensor. Experimenting with more fusion technics is 

an active field of current research topics. 

 A typical combination is working with separate colour and depth image 

stream. This can be provided by a single RGBD camera, which contain colour 

features along with depth information. Jafari et al faced a similar problem with 

detecting and tracking people real time from RGBD camera, from a moving 

observer [1]. Their article also takes into account the computational cost, in order 

to be useful for mobile robotic applications. They take advantage from depth 

information, using it to extract region-of-inerest, and extrapolate scene 

geometry.  

 Another regularly used technique is a combination of RGBD camera and 

a laserscanner. Meanwhile the camera is able to produce a 3D point cloud in a 

limited field of view (FOV), laserscanner can give a planar point cloud in 360 

degrees. Cholakkal et al introduced a pipeline for more accurate depth 

estimation [2]. It projects lidar points into the camera frame, upsample the 

projection image with the help of depth map and applies a filter. Although their 

method is accurate, due to its cost effectiveness and GPU processing, on mobile 

robots this method is less applicable. 

 Among big companies, Amazon smart warehouses are famous for their 

automatization level, but still employs human workers for several tasks. To 

mention a fully automated warehouse, Ocado Smart Platform orchestrates 

swarms of bots in a giant storage grids with a clearance of just five millimetres 

between them [3]. It is also worth to mention that the smart parking systems, 
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which store cars without human operators, providing an eco-friendly 

solution [4]. 

2.2 ROS 

 Robot Operating System (ROS) [5] is an open-source set of libraries and 

tools aiming to simplify the creation of complex robotic systems. It has a flexible 

approach to modular robotic architecture and provides APIs for many popular 

programming languages with proper support of transitions. The communication 

scheme follows distributed network communication patterns like the 

publish-subscribe or the request-response model, and there is a master node 

with dedicated role of orchestrating connections among nodes. A ROS 

environment consists of several different nodes that are responsible for 

separated task execution controlled by a master node. 

 Nowadays leading companies realized the strength of the open-source 

community and they also started to contribute and provide ROS APIs for most 

of their robotic devices and accessories. This led ROS to be the de facto standard 

of distributed robotic application development toolkit. 

2.3 Lidar 

 Lidar stands for the acronym “light detection and ranging”, which is a 

sensing method using the reflection of pulsed laser to measure distances. It can 

generate precise two or three dimensional surface characteristics. For a 2D lidar, 

only one laser beam is required. With a spin movement, it can collect data on X 

and Y axes. These are suitable for performing accurate detection and ranging 

tasks, required by most of AMRs. 

2.4 RGBD camera 

 RGBD cameras provide depth information besides the RGB colour 

stream. While 2D lidars detect objects in a horizontal plane, depth cameras have 

more versatile functionality. Creating a point cloud from depth camera stream 

could cover the surroundings not only in planar but in a wider range of 

observation. 

 A typical usage is to project point cloud to 2D plane to be able to handle 

these data as it would have come from a laser scanner. Another example for 

using colour and depth stream is to use colour stream for object detection and 

the depth information remain for distance measurement. 
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2.5 Sensor fusion 

 Perception modules are constantly getting information about their 

changing environment. These are heavily used in autonomous robotic 

applications like self driving cars or industrial robotics. During real-time 

environment monitoring, it is a common method to use the combination of 

perceptive sensors like lidars, monocular or stereo cameras, ultrasonic sensors. 

 In terms of sensor data fusion, different levels of abstraction appears 

during the implementation process. Low level fusion means fusing the raw 

sensory information. Combining a stereo camera and a lidar could mean a 

common point cloud from both devices. Applying this method for object 

detection would result in projecting lidar points into the camera image, 

associating points with the pixels [6]. 

 Mid-level fusion used for object detection with independently captured 

sensor data. When both the lidar and the camera detect an obstacle, these 

positions will be fused in order to get accurate information about the 

environment. A typical approach is to implement a Kalman filter to alternate 

between prediction and update over and over again [7]. 

 The high level fusion relies on the processed information from different 

sensors, where only the results (e.g. trajectory, detection) are fused. The 

downside of this process is that significant information loss could occur, thus it 

needs an application specific interpretation with caution. 

2.6 Autonomous Mobile Robots 

Automated Guided Vehicle (AGV) systems were developed into the key 

component of organized modern intralogistics since the 1950s. AGVs were 

initially used by the automotive industry in America. With the rapid 

development of sensory and regulatory technology and microelectronics paved 

the way for AGVs [8]. 

The main roles of these mobile robots are repetitive commissioning while 

carrying objects from A to B. They lack of on-board intelligence and obey simple 

programming instructions. In the past few years, a new kind of internal logistic 

system is started to take over from AGVs to Autonomous Mobile Robots 

(AMRs). 

An AMR is equipped with a large variety of sensors and a powerful 

on-board computer to help understand its operating environment. Unlike the 



- 7 - 

AGVs which are limited to fixed route following along embedded wires or 

magnets, AMRs can adapt to environmental changes with processing sensor 

information real-time. They can safely perform the given task even in busy 

environment. 
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3. System design 

 This chapter introduces my method of sensor fusion, the steps of the high 

level design, and later the components are examined. It shows, how I formed 

different sensor inputs to fulfill my concept, and how I intended to test and 

demonstrate its usability and accuracy. 

3.1 System architecture 

 ROS based systems fit well into the concepts of distributed robotic 

architecture. Ordering the processing tasks into different nodes gives a clear 

structure with transparent elements. Figure 3.1. introduces the high level 

architecture of how a sensor fusion worked out in the current setup, and shows 

the steps of applying mid-level fusion during realization. 

 

Figure 3.1. – Sensor fusion graph of camera and lidar 

 From the camera, I extracted both colour and depth stream 

simultaneously. On the colour stream I used a pretrained YOLO network [9] 

which detects and tracks people. The depth stream is then used for distance 

measurements. From the centre of the region of interest (ROI) coordinates, I 

calculate the spatial distance from the camera which later can be used in 3D 

location adjustments. 

 Another used sensor is a lidar, from the information is processed to detect 

human legs. It uses both legs to track instead of individual legs separately. I use 

a modified version of the available ROS leg detector package [10], which returns 

an angle of view where the feet can be seen. 
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 After getting all the required data in the requested form from the camera 

and the lidar, the sensor fusion takes part. The idea is to validate the YOLO 

detector with the leg detector, in order to eliminate false positive detections, and 

increase the confidentiality level. With this metod, computational effort could be 

also reduced, because only those image regions are evaluated that are most likely 

to contain people. 

3.2 Preprocessing sensor data  

 To implement a mid level sensor fusion, at first, sensory information 

needs to be preprocessed. The expected data from the camera is a colour and a 

depth image. An important aspect of camera images is that both stream needs to 

be aligned to each other. Because of the structure of stereo cameras, there are two 

lens responsible for depth recognition, and another separate lens is for colour 

streaming. These frames needs to be aligned in the beginning.  

 For synchronization and delay measurement between frames and other 

sensor inputs, timestamping is also required. The resolution of the image frames 

is also an important factor. Large network transport could exceed the actual 

bandwith capacity that results in delays and other unwanted effects. For 

prevention, several compression methods are available. 

 Laserscan points from the lidar comes unmodified. These are lightweight 

messages, not reaching average network bandwith limit. Timestamping here 

also necessary in order to be synchronized with other sensory information. 

3.3 Navigation integration 

 To help the implementation of a robot navigation, ROS provides a 

metapackage called Navigation Stack [11] containing all the main elements 

required for a generic robot navigation in various environment. The components 

can be tailor made to work with various sensors and actuators like lidars, 

cameras, gps sensors, etc. 

 To be able to integrate detected people into the ROS navigation stack, a 

predefined people_msgs/People [12] message needs to be filled up with the 

appropriate parameters. After examination of the people message type, it 

contains the following fields: name, position, velocity, reliability, tagnames, tags. 

All the values can be computed from the sensor fusion. 

 Generally, right-hand rule could be a convential approach of AMR 

navigation. This would provide easy implementation by increasing the cost of 
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moving left hand side, thus forcing robots to keep themselves in the right lane. 

In terms of AMRs, navigating in an industrial environment is not that simple. 

Workers take place everywhere in the corridors where machines need to be 

handled. Most of the cases, occupancy of corridors does not follow a pattern to 

AMRs scheduled and routed by. These circumstances necessitate AMRs to 

confidently yet safely handle these situations and navigate among humans. 

 With integrating the available sensory information into the navigation 

stack, mobile robots could be able to detect and track human workers and see 

wether they interfere with its planned trajectory. When required, a possible 

rerouting should be applied with respect to the extrapolated trajectory of the 

workers. 

3.4 Demonstration scenario 

 The goal of my system setup is to present a robust sensor fusion for person 

detection and aviodance, that could provide easy integration into a robotic 

navigation stack. To achieve my objectives, a stereo camera and a laserscanner 

were mounted to an existing AMR platform. 

 To present its strengths and weaknesses, I show how it can detect and 

track people in different situations. The main goal is to combine the strength of 

both detection method, thus providing the current position of the people in sight 

for further actions. 

 My idea is to create a measurement area where the sensor accuracy could 

be recorded and compared each other. It makes possible to make modifications 

based on measurements. 
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4. Implementation 

 In this chapter I introduce how the previously mentioned methods took 

form through real word scenarios. The sensors take their final position, and 

ready to provide sensory information. I describe the processing methods both 

for stereo camera and for the lidar input, then the fuzed realization is introduced 

with example illustrations. 

4.1 AMR platform 

 The previously introduced sensors are mounted to a custom built mobile 

robot, which is running on 4 holonomic wheels, each driven by separate servo 

motors. The camera is mounted to the front bumper of the AMR, meanwhile 

lidar takes place on the top of the vehicle where it can freely look around in 360 

degrees. In order to get the best FOV from the camera, it is adjusted in such angle 

that it detect less floor, and give place for the upper content. 

 

Figure 4.1. – Custom built AMR 

 The different coordinate systems of the sensors are adjusted in a universal 

robot description file (URDF) which is a conventional ROS robot representation. 

Here I defined the exact coordinate transformations of the camera and lidar 

related to the basis of the AMR. These transformations are an integral part of the 
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ROS ecosystem, it faciliates the handling of different sensor location, and the 

integration into the navigation stack. 

 In my case, these are only static transformations, because its position is 

fixed to another coordinate frame. The ROS tf package [13] also allows dynamic 

transformations which are useful at robots with  dynamically moveable elements 

like robotic joints or end effectors. 

4.2 Camera input 

 The mounted camera is an Intel RealSense D455 depth camera, which 

supports colour, depth and infrared image streams. To this camera Intel 

provides a RealSense SDK 2.0 [14] which is an extensive development kit 

supporting ROS wrappers, OpenCV, Point Cloud Library (PCL) etc. In my case 

the up to date and open source ROS wrapper is an important advantage from 

the aspect of integration.  

 After configuring the ROS environment, I compiled the camera driver and 

the ROS packages thus I could reach the various image sources from ROS 

framework. The input stream coming from the Realsense camera went through 

a compression. Instead of sensing the raw image data, JPEG compression is 

applied in order to prevent network bandwidth from overloading. The lossy 

compression results in significantly lower data while the content will not be 

deteriorated to negatively effect the object detection. This stream is then 

extracted and converted to an OpenCV image format, and then passed to the 

YOLO detector. 

4.3 Object detection with camera 

 To detect and track humans from a real-time colour stream, I used 

Darknet, which is a high performance open source deep neural network 

framework written in C [15]. Besides other popular frameworks like PyTorch or 

Tensorflow, Darknet seemed ideal in this project, because it satisfied several 

constraints of ROS Melodic installation and it also include You Only Look Once 

(YOLO) implementation for real-time object detection and tracking [9]. 

 YOLO is one of the most powerful method of real-time object detection 

with integration of advanced deep learning. It makes use of convolutional neural 

networks for the prediction of objects by using advanced mathematical 

formulations of image processing. I used and customized a pre-trained model 

on COCO and VOC dataset [16]. 
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Figure 4.2. – Detection testing with camera in general environment 

 In order to demonstrate the abilities of the pretrained neural network, I 

tested it first in a general environment where I performed casual tasks not facing 

to the camera. In these situation I tried to act like people at factories whom the 

AMR could meet with, replacing items from A to B, working in different poses 

rearward facing to the camera, etc. but as Figure 4.2 shows, no matter how hard 

I tried, it does not effect the detection significantly. 

 To mention the downsides of these datasets, after cherry picking images 

from the training set, I met with images containing tagged persons from TV or 

other picture-in-picture scenes. On the left image of Figure 4.3, I could also face 

with false positive results. I placed a wooden mock-up model which has some 

3D expansion, and I also placed a screen showing a person. Athough this can be 

very useful in various situations, according to my use case, these are unwanted 

tags that will have to be filtered out with sensor fusion. 

 At the right side of Figure 4.3, the depth image is presented. This 

information serves as the basis of distance measurement, and it makes possible 

to place the detected objects in a 3D map thus integrating obsctacles into the 

AMR navigation. After getting the coordinates of the purple bounding boxes, 

the distance value will be extracted from the centre of the ROI areas. In this case, 

without sensor fusion, it would contain two false coordinate with the mock-up 

and the screen coordinates. 
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Figure 4.3. – Person detection based on colour image and the 

corresponding depth image 

4.4 Object detection with lidar 

 To process laserscan data from the lidar, I relied on the introduced 

method by Leigh et al [17], where a person detector is implemented based on a 

planar laser information. The presented solution is an extended modification of 

the official ROS leg detector package [10]. It uses a machine-learning-trained 

classifier to detect groups of laser readings as possible legs. 

 In my case, an ydlidar x4 2D lidar was available as presented on the top 

of the AMR in Figure 4.1, which has a detection range of 10 metres. Following 

the implementation, I provided the required topics for lidar data input, and the 

transformation coordinates. Then, I could extract the laserscan information, and 

visualized it in a ROS utility called rviz [18]. Rviz is a customizable 3D viewer 

where several imput sources can be visualized simultaneously. 

 The left part of Figure 4.4 shows the processed lidar data. The black dots 

are represented by the laser ray hitting and get reflected on an obstacle. As a 

result, the contours of the room become cleary visible. 

 The two straight lines which are forming an angle mark the leg positions 

of the detected person. This angle will limitate the detection area during fusion 

in regard to the colour image. The silhouette of the sceen is also visible by the 

small straight line on the top right part of the image. I attached the color frame 

next to the lidar representation for comparison purposes. 
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Figure 4.4. – Person detection based on lidar and the corresponding 

colour image 

4.5 Sensor fusion realization 

 During my work I used a 2D lidar and a stereo depth camera to get 

information from the environment. Although the lidar has a 360 degrees field of 

view and the camera has only 87° vertical FOV, it is still an appropriate angle for 

my use case. As I experienced, this range is optimal for corridors, where mobile 

robots could encounter with people and forced to maneuvre.  

 During the first cases of fusion testing, several problems occurred that 

have to be solved. The most important is the time synchronization. Without time 

synchronization, separately recognised poses from the camera and the lidar 

could alter in time, wich would end up in inaccurate fusion. To avoid errors 

coming from mismatched timestamps, I regularly compare the header 

information of the lidar and camera information. The conventional ROS message 

types are in case of the camera is sensor_msgs/Image, and the lidar message 

type is sensor_msgs/LaserScan [19]. According to their description, both 

starts with a header, containing this timestamp. 

 Another issue was the stream size coming from the camera node. By 

default, ROS operates with uncompressed image stream which can easily 

overload the network bandwidth. For comparison, I created and summarized 

bandwith measurements in Table 1, showing the applied compression and 

quality parameters. 
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Source Quality Bandwidth 

raw colour image bgr8 222,24 Mbps 

raw depth image mono16 110,48 Mbps 

compressed colour image 100% JPEG 32,32 Mbps 

compressed colour image 15% JPEG 1,686 Mbps 

compressed depth image 100% JPEG 11,84 Mbps 

compressed depth image 15% JPEG 2,074 Mbps 

Table 1.– Measured transmission parameters 

 I find a 15% JPEG quality a good trade-off between image size and quality. 

As a result, transferring a compressed JPEG frame results in such a small size 

that could be transferred without difficulties. Therefore I applied JPEG 

compression with 15% quality for both colour and depth stream. With these 

modifications, timestamps can be matched without significant delay. 

 After facing all the issues, the fusion worked correctly, as Figure 4.5 

illustrates. The before image have been cut as a result of the leg detector, and 

YOLO detector run only on the remained snippet. Important to mention that 

cutting the image only modifies the width of the image, height remain 

unchanged.  

 
a) 

 
b) 

Figure 4.5. – Example result of the sensor fusion with before a) and after b) 

comparison 
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5. Experimental results 

 This chapter contains the achieved results and gives an insight to the 

measurements. First, the measurement validation method is explained, how I 

tested the sensor fusion. After collecting enough information, I summarize and 

evaluate the retrieved data, and I share my experiences. 

5.1 Measurement arrangement 

 To get more accurate measurement results I set up a test environment 

with annotations that can be recognised during lidar and depth measurements. 

The test setup was a 2m long line where people can walk, as on Figure 5.1 shows. 

The distance of the mounted sensors of the mobile robot are also accurately 

arranged to the scenario. 

 

Figure 5.1. – Measurement setup with annotations 

 My goal with this scenario is to collect relevant data about scenarios that 

are easy to understand and evaluate. Thus I can show separately the detection 
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accuracy of the yolo and the leg detector, then compare their results. Based on 

these charts,  weighting can be modified for the mutual benefit of the fusion. 

When a detector seems to be more robust and accurate, it can be counted with  

greater weigh than the other. 

5.2 Results and evaluation 

  To accomplish validation I used the introduced test scenario to check how 

the detector could follow a person while walking. This challenges both person 

and leg detectors.  

 I created a script that matches timestamps and extract x and y coordinates 

from both detectors. I plot these data into a coordinate system to examine the 

accuracy of the separate detectors. 

 

a) 

 
b) 
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c) 

Figure 5.2. – Measurement viewed from camera a), b) and from lidar c) 

 Figure 5.2 shows how my measurement setup looks like from a ROS 

environment, to measure linear walking detection accuracy. The red line on c) 

represents the expected trajectory of the straight walking. The red X represents 

the middle position of the sensors.  

 The results are collected to separate charts as Figure 5.3 shows. YOLO 

detector seems accurate for line following. At the starting point and at the end 

there are some inaccurate measurements, but it could be caused by the 

turnovers. The scattering of the x,y coordinates seems homogen, which provide 

reliable base of measurement. 
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Figure 5.3. – Results of linear movement captured by camera (up) 

and lidar (down) 

 For experiment purposes I run detection during walking in a circle. At 

first sight it is clearly visible that the leg detection is more shaky than the person 

detector. This waving caused by its calculation method. The coordinate of the 

separate legs is calculated by averaging. Acording to this, walking in a straight 

line would also look like a wavy line. 

 Distance measurement from YOLO detector takes the median depth 

value of the ROI to calculate with, and extract the exact distance. This results in 

a much normalised trajectory as the orange line shows in Figure 5.4. Instead of a 

more round trajectory, these waves are caused by multiple factors. It consists of 

the uncertainty of walking around, the leg measurement, which could contain 

such inaccuracy at overlapping legs, and in case of YOLO detector, the loose 
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outfit that does not follow the exact shapes of the human body. It also visible 

that yolo detection could contains a constant error. 

 

Figure 5.4. – Comparing detector trajectories 

5.3 General experience 

 I was more than satisfied with the results during the on-site 

measurements. Contrary to my concerns, it turned out that wearing an ESD 

protective overall covering my full body combined with a face mask still provide 

enough feature for human detection. as the images on Figure 5.5 show. The leg 

detector had to follow overlapping legs, with sightly bigger diameter as usual. 

Both detectors could recognise people in the same way as they do in a regular 

environment.  

 However, the cleanroom was really clear and organised, the different 

structure of machines and equipments are able to form such a way that it could 

be interpreted as human feature. This is presented on image b) of Figure 5.5. This 

is also a good representation of relying on only the YOLO detector. Applying the 

fusion with lidar saved the scenario, and found the human legs correctly. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 5.5. – Detection testing in industrial environment1 

 
1 Although the detection could be performed in industrial environment, I had to blur the 

background of these images because of company request. 
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6. Summary, future work 

 Throughout this project I introduced a sensor fusion method that 

combines the advantages of RGBD cameras and lidars to provide a safe yet 

robust solution for person detection in an industrial environment. 

 I created a mid-level sensor fusion architecture which contain a person 

detector based on colour camera stream, and a leg detector based on lidar 

measurements. After mounting the sensors to a custom built AMR, I integrated 

the processing nodes to be able to communicate each other. I successfuly faced 

the challenges of preprocessing and conditioning sensor input for the required 

format, and then extract the requested information, namely the coordinates of 

the detected objects in a common coordinate system. With all the calculated and 

matched coordinates, the social layer can be integrated to extend ROS navigation 

capabilities. 

 For future development, not just the current position but an extrapolated 

trajectory of a detected object or objects could help the trajectory planning and 

rerouting. The navigation also can be extended with locating the other working 

mobile robots to be able to calculate at trajectory planning. 
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