
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Interactive Learning for Model-Based Software
Engineering

Scientific Students’ Association Report

Authors:

Áron Barcsa-Szabó
Balázs Várady

Advisors:

Rebeka Farkas
dr. Vince Molnár
dr. András Vörös

2020

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3

2.1 Model-Based Engineering . 3

2.2 Foundations of Automata Theory . 4

2.2.1 Fundamentals of Formal Language Theory 4

2.2.2 Properties of Deterministic Automata 5

2.2.3 Relations of Formal Languages and Automata 8

2.2.4 Minimization of Automata . 11

2.3 Automata Learning . 12

2.3.1 Direct Hypothesis Construction[25] 16

2.4 Specifying Requirements . 17

2.4.1 Requirements . 17

2.4.2 Linear-Time Temporal Logic . 17

3 Overview of the Approach 20

3.1 Overview of the Methodology . 20

3.1.1 Component and Interface Definition 21

3.1.2 Requirement Types . 22

3.1.3 Conflicting Requirements . 25

3.1.4 Checking the Correctness of the Synthesized Model 26

3.1.5 The Resulting System Model . 27

3.2 Overview of the Architecture . 28

3.2.1 The Cost of Interaction . 28

3.2.2 The Oracle . 29

3.2.3 The Learning Algorithm . 32

3.2.4 Caching . 34

4 Implementation 36

4.1 Tooling . 36

4.1.1 Eclipse Environment . 36

4.1.2 Xtext Framework . 36

4.1.3 Sirius . 37

4.1.4 Owl . 37

4.1.5 LearnLib . 37

4.1.6 Automata Learning Framework . 37

4.2 Interactive Learning Entity . 38

4.2.1 The Oracle . 39

4.2.2 The Learning Algorithm . 40

4.2.3 Caching . 40

5 Case Study: Pedestrian Crossing 42

5.1 Introduction . 42

5.2 Component Design . 43

5.3 Synthesizing the Components . 44

5.4 The Learned Models . 45

6 Evaluation 49

6.1 The Oracle . 49

6.2 The Learning Algorithm . 50

6.3 Caching . 51

7 Conclusion 52

7.1 Contribution . 52

7.2 Future Work . 53

Bibliography 54

A LTL Expressions 57

A.1 The Syntax of the LTL Expressions . 57

B Implementation Details 58

C Pedestrian Crossing 60

Kivonat

A modell alapú technológiák növelik az IT rendszerek tervezésének hatékonyságát az-
által, hogy lehetvé teszik a verifikáció, kódgenerálás és rendszeranalízis automatizálását
egy formális modellen keresztül. Az informatikai rendszerek viselkedésének leírására nyílik
egyszeren lehetségünk az úgynevezett állapot alapú modellezés segítségével, ahol - kö-
szönheten a formális módszerek fejldésének az utóbbi években - a modellek széleskören
és hatékonyan alkalmazhatóak a rendszer tulajdonságainak vizsgálatára. Ilyen modellek
létrehozásának egy lehetséges módja az aktív automatatanuló algoritmusok alkalmazása.

Egy rendszer formális modelljének elállítása több okból is kihívást jelenthet. Egyrészt,
a modellezést végz mérnöknek nehéz az elképzelt rendszer minden tulajdonságát észben
tartania részben a rendszer komplexitása, részben a lehetséges rejtett implikációk és el-
lentmondások miatt. Másfell léteznek teljesen automatizált megoldások, mint például az
aktív automatatanulás, ahol a modell építését végz algoritmust két komponens karakte-
rizálja: egy tanító - amely ismeri a tanulni kívánt rendszer teljes viselkedését - továbbá
egy tanuló - mely a tanítóhoz intézett kérdések alapján szintetizálja a modellt. Azon-
ban gyakorlati határt jelent ezen megoldásoknál a rendszer következtetett viselkedésének
validációja. Munkánkban egy olyan, részben automatizált megoldást javaslunk, mely az
automatatanulást interaktív környezetben használja fel a modellezés elsegítése érdekében.

Ezen dolgozat célja, hogy támogassa az informatikai rendszertervezést az alapoktól
fölfelé InterAktív automatatanulás segítségével. Ez a technika kihasználja a tervez mér-
nökök gyakori közremködését - akik az algoritmus tanító komponensének felelnek meg
- ugyanakkor automatizált technikákat is alkalmaz, ezzel orvosolva az automatizált ek-
vivalencia lekérdezések jelents nehézségeit. Az ilyen módon elálló részben automatizált
koncepció lehetvé teszi a mérnökök számára, hogy a rendszer elvárt viselkedésére kon-
centrálhassanak a viselkedési követelmények deklaratív megadásán és az algoritmus által
javasolt modellek kiértékelésén keresztül.

Ebben a dolgozatban bemutatunk egy adaptív, állapot alapú modellez keretrendszert,
melybe megterveztük és integráltuk az interaktív algoritmust. Az ez által elállt keretrend-
szer egyesíti a manuális és automatizált megoldások elnyeit. Ezen felül kiterjesztettük a
keretrendszert, hogy képes legyen különböz formalizmusok kezelésére és összeegyeztetésére
is, elsegítve a modellvezérelt tervezést támogató interaktív automatatanuló algoritmusok
fejlesztését és elemzését kiterjesztett alkalmazási területen.

i

Abstract

Model-based technologies improve the efficiency of designing and developing IT systems by
making it possible to automate verification, code generation and system analysis based on a
formal model. A simple way of describing the behavior of systems is state-based modeling,
which - due to the advancements of formal analysis techniques in recent years - can be
widely and effectively utilized when analyzing systems. A possible way of synthesizing
such models is to apply active automata learning algorithms.

Acquiring a correct formal model of a system can be challenging. On one hand, it is difficult
for the designing engineer to keep every property of the envisioned system in mind at a
given time, partly because of the complexity of the system, and because of possible hidden
implications and contradictions. On the other hand, there are fully automated solutions,
for instance, active automata learning, where the model construction is characterised by
a teacher component - which is familiar with the extensive behavior of the system under
learning - and a learner component - which synthesises the model via queries to the
teacher component. However, such solutions have practical boundaries when validating
the inferred behavior of the system. We propose a semi-automated solution, that applies
automata learning to provide an interactive environment for model development.

The objective of this work is to support the design of systems and components from the
ground up through InterActive automata learning. It utilizes the frequent input of design-
ing engineers - who themselves are regarded as the teaching component of the algorithm
- along with automated techniques, resolving the infeasibility of automated equivalence
validation. The resulting semi-automated concept allows the engineer to focus on the ex-
pected behavior of the system, specifying its behavioral requirements in a declarative way
and evaluating the model proposed by the algorithm.

This thesis presents an adaptive state-based modeling framework, into which we designed
and integrated the interactive algorithm. The thus created framework combines the ad-
vantages of manual and automated solutions. Additionally, we extended the framework
to handle and reconcile different formalisms, allowing the analysis and development of
interactive automata learning algorithms to support model-driven development with an
extended scope.

ii

Chapter 1

Introduction

Context Model-based engineering is the formalized application of modeling during system
design and development. It improves the efficiency of designing and developing IT systems
by formalizing verification, code generation and system analysis, and in certain cases
enables their automation as well. Such models can be designed both manually and in
automated ways – by applying various model synthesis techniques. In case of behavioral
models, a straightforward way of representation is state-based modeling, which - due to the
advancements of formal analysis techniques in recent years - can be widely and effectively
utilized when analyzing systems. A possible way of synthesizing such models is to apply
active automata learning algorithms.

Problem Statement Acquiring a correct model of a system can be challenging. On one
hand, it is difficult for the designing engineer to keep every property of the envisioned
system in mind at a given time, partly because of the complexity of the system, and
because of possible hidden implications and contradictions. Additionally, to conveniently
specify requirements, different scopes, abstractions and formalisms may be applied, which
may be difficult to reconcile. On the other hand, there are fully automated solutions –
usually stricter in these aspects –, for instance, active automata learning, where the model
construction is characterised by a teacher component - which is familiar with the extensive
behavior of the system under learning - and a learner component - which synthesises
the model via queries to the teacher component. However, such solutions have practical
boundaries when validating the inferred behavior of the system.

Objective The objective of our work is to support the design of systems and components
from the ground up through a semi-automated solution – InterActive automata learning –
which utilizes both the frequent input of the designing engineers and automated techniques.
As a result of this approach, the users themselves are regarded as the teacher component of
the algorithm, resolving the infeasibility of automated equivalence validation. This results
in a semi-automated solution driven by declarative behavioral requirement specification,
which allows the designing engineers to focus on the exptected behavior of the system and
on evaluating the model proposed by the algorithm.

Contribution The thesis presents an adaptive state-based modeling framework combining
the advantages of manual and automated solutions, into which we designed and integrated
the interactive algorithm. We created a proof of concept implementation of the approach,
allowing system design through different formalisms, and the analysis and development of
interactive automata learning algorithms to support model-driven development with an
extended scope.

1

Related Work There are multiple automata learning frameworks in the literature, includ-
ing LearnLib[19] that provides a Java framework for active and passive automata learning,
libalf, which provides learning techniques for finite automata implemented in C++ and
Tomte[3], a framework utilizing LearnLib for counterexample driven abstraction refine-
ment of real software components modeled in a restricted class of finite automata.

In [6] Dana Angluin et al. predict strongly unambiguous Büchi-automata using automata
learning. Cobleigh et al. use active automata learning through multiple oracles to learn
assumptions for compositional verification[10]. Groce et al. utilize model checking as an
equivalence oracle of active automata learning to automatically handle inconsistent models
through Adaptive Model Checking[14]. Giannakopoulou et al. utilize active automata
learning and symbolic execution to learn temporal component interfaces[13].

In [20], Kahani et al. synthesize real-time embedded systems by taking certain properties
of the system to reduce the synthesis of models to the solution of quantifier-free first-
order logic formulas, generate appropriate solutions using the LTS formalism, extend and
minimize it and transform it to UML-RT state machines. Kupferman et al. introduce
extensions of the LTL formalism to transform the model synthesis problem into an opti-
mization problem based on various quality metrics. They assume a stochastic setting and
propose a solution which is 2EXPTIME-complete in [4].

Molnar et al. introduce the Gamma Statechart Composition Framework to facilitate
the design, verification, validation and code generation for component-based reactive
systems[26].

Outline The thesis is organized as follows. Chapter 2 provides an outline of the necessary
theoretical background. Chapter 3 gives an overview of our approach, first in methodology,
then in architecture. Chapter 4 describes the tools and steps taken to create a proof
of concept implementation to validate our approach. Chapter 5 presents a case study
to demonstrate the capabilities and limitations of the implementation and the approach.
Chapter 6 evaluates the components of the implementation. Chapter 7 provides concluding
remarks and possibilities for further improvement.

2

Chapter 2

Background

This chapter provides the necessary theoretical background of the thesis. First, we in-
troduce model-based engineering, then discuss the foundations of automata theory and
automata learning, finally we elaborate upon specifying requirements.

2.1 Model-Based Engineering

Due to the application of the modeling concept in several completely different domains,
first of all, we need to define the meaning of model.

Definition 1 (Model). A model is the simplified image of an element of the real or a
hypothetical world (the system), that replaces the the system in certain considerations. �

For a model to be interpretable, executable or formally verifiable, it must be described
according to predefined rules in the given domain. This set of rules is provided by modeling
languages.

Definition 2 (Modeling Language). A modeling language consists of the following el-
ements:

• Metamodel: a model defining the building blocks of the modeling language as well
as their relationships.

• Concrete syntax: a set of rules defining a graphical or textual notation for the element
and connection types defined in the metamodel.

• Well-formedness constraints: a set of constraints that models have to meet in order
to be deemed valid in the modeling language.

• Semantics: a set of rules that define the meaning of the element and connection types
defined in the metamodel. Semantics can be either operational (what should hap-
pen during execution) or denotational (given by translating concepts in a modeling
language to another modeling language with well-defined semantics). �

Models can grasp various aspects of a system. Structural models describe the structure of
the system, representing knowledge regarding the parts of the system and the properties
and connections of these parts. This means that the model describes static knowledge
and not temporal change. On the other hand, behavioral models describe the change

3

of the system over time through its changing of states and execution of processes. These
categories do not cover every aspect of a system, and usually cannot be separated this well
in practical applications. For instance, action languages of state-based models describe
the behavior of the system in a procedural way. There are several possible formalisms for
both kinds of models, some of which are discussed in Section 2.2.

The process of deriving design artifacts is called model transformation.

Definition 3 (Model Transformation). Model transformation is the process of gener-
ating the target model from the source model. This process is described by by a trans-
formation definition consisting of transformation rules, and a transformation tool that
executes them. A transformation rule is the mapping of elements of the source model to
the elements of the target model. [21] �

Model transformations can be categorized based on the types of the source and target
models: model-to-model (M2M), model-to-text (M2T), text-to-model (T2M) and text-
to-text (T2T). These categories fundamentally define the tools required and usable for
handling the different models.

There are also two important factors to consider when designing a model transformation:

• Consistency: the same structure or behavior is described by the source and the
target models (in their respective domains).

• Traceability: the images of the original elements of the source model can be traced
back to the original elements, from which they were generated.

Model-Based Systems Engineering (MBSE) is the formalized application of model-
ing to support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and
later life cycle phases[12]. This concept can also be applied to software engineering. Note,
that the models may be the primary artifact of the development process, in which case
precisely defined formal models are required. When the models are the primary artifacts,
the process is called Model-Driven Engineering.

2.2 Foundations of Automata Theory

In order to provide the theoretical background of behavioral modeling, this section dis-
cusses the necessary basics of formal language and automata theory.

First, we introduce the fundamentals of formal language theory, on which automaton
theory is based.

2.2.1 Fundamentals of Formal Language Theory

Atomic elements of formal languages are alphabets, characters and words.

Definition 4 (Alphabet). Let Σ be a finite, non-empty set. Σ is an alphabet, its ele-
ments are symbols or characters. �

Definition 5 (Word). If Σ is an alphabet, then any finite sequence comprised of the
symbols of Σ are words (or Strings). Σn represents the set of every n length word consisting

4

of symbols in Σ: Σn : w1w2 . . . wn, where ∀0 ≤ i ≤ n : wi ∈ Σ. The set of every word
under an alphabet, formally

∪
n>0

Σn is denoted by Σ∗. The empty word is denoted by ϵ. �

Words can be constructed using other words. The following definition defines these rela-
tions.

Definition 6 (Prefixes, Substrings and Suffixes). Let an arbitrary w = uvs, where
w, u, v, s ∈ Σ∗. u is the prefix, v is the substring, and s is the suffix of w. Formally:

• w ∈ Σ∗ is a prefix of u ∈ Σ∗ iff ∃s ∈ Σ∗ : s = wu,

• w ∈ Σ∗ is a suffix of u ∈ Σ∗ iff ∃s ∈ Σ∗ : s = uw,

• w ∈ Σ∗ is a substring of u, v ∈ Σ∗ iff u is the prefix and v is the suffix of w. �

Using these atomic elements of formal language theory, formal languages can be defined.

Definition 7 (Formal Language). An arbitrary set of words under an Alphabet Σ is
a Language. Formally: L ⊆ Σ∗. �

Definition 8 (Prefix-closure). Let L ⊆ Σ∗ and L′ = {u ∈ Σ∗, v ∈ Σ∗ : uv ∈ L}. In
other words, L’ is the set containing all the prefixes of every word of L. L is prefix-closed
if L = L′. �

Formal language theory is closely linked with automata theory, which we will introduce
in the following subsection.

2.2.2 Properties of Deterministic Automata

Informally, automata are mathematical constructs which read characters from an input
and classify them into "accepted" and "rejected" categories. A bit more precisely, automata
consist of states, one of which is always active. Starting from an initial state, based on
the inputs received, the automaton changes, transitions between states. Essentially, for
each of the inputs, the automaton determines whether to keep, or change its current state.
In order to determine if an input sequence should be accepted or not, some states are
distinguished, accepting states. If after processing a sequence of inputs, the final state of
the automaton is an accepting state, the input sequence is accepted. If not, the input is
rejected.

One of the simplest automata is the Deterministic Finite Automaton.

Definition 9 (Deterministic Finite Automaton). A Deterministic Finite Automa-
ton is a Tuple of DFA = (S, s0, Σ, δ, F), where:

• S is a finite, non-epty set containing the states of the automaton,

• s0 ∈ S is the initial state,

• Σ is a finite Alphabet,

• δ : S × Σ → S is a transition function,

• F ⊆ S is a set of the accepting states of the automaton. �

5

The deterministic in the name refers to a property of every state having exactly one
transition for every input. In other words, every state must have every member of Σ listed
in its transitions, meaning every state behaves deterministically for every possible input.

An example of a DFA (Deterministic Finite Automaton) from[30] can be seen in Example
1.

Example 1. See Figure 2.1. This example has four states, S = {q0, q1, q2, q3} (hence
|S| = 4). The initial state is marked by the start arrow, so s0 = q0. The alphabet can
be inferred as Σ = {a, b}. Transitions are visualized as q0

a−→ q1 given by the transition
function (in this example) δ(q0, a) = q1. The complete transition function in a table form
can be seen in Table 2.1. Finally, the accepting states, or in this case, accepting state of
the automaton is F = {q3}.

The semantics of automata are defined via runs. A run of an automaton is to test for a
certain input (word), if it is accepted or rejected. See Example 2.

Example 2. In accordance with the transition function, a run of Figure 2.1 with an input
of {a, a, a} would end in state q3 meaning the input is accepted. A rejected input could be
{a, b, b}, which would stop at state q1, a non-accepting state. On deeper examination, one
can see, that this automaton only accepts runs with inputs containing 4i + 3a.

q0start q1

q2 q3

a

b
a

b

a

b

a

b

Figure 2.1: A simple DFA from [18].

δ q0 q1 q2 q3
a q1 q2 q3 q0
b q0 q1 q2 q3

Table 2.1: The transition function of the automaton seen in Figure 2.1

A slightly different formalism can be defined for cases where the acceptance of the input
(word) is not necessary to consider, called Labeled Transition System.

Definition 10 (Labeled Transition System). A Labeled Transition System is a Tuple
LTS = (S, Act, →), where:

• S = q0, q1, ..., qn the finite, non-empty set of states, q0 being the initial state,

• Act = a, b, c, ... the finite set of actions,

• →⊆ S × Act × S the labeled transitions between the states.

In the beginning, the initial state is active. The active state may change after each
transition.

6

The path of an LTS is the π = (q0, a1, q1, a2, ...) alternating sequence of states and actions,
where q0 is the initial state and the subsequent states are the results of the transitions
labeled with the actions of the same index, starting from the state with the previous
index. �

Example 3. See Figure 2.2. This example has three states, S = {q0, q1, q2} (hence |S| =
3). The initial state is q0, also marked by the start arrow. The set of actions is Act =
{money, coffee, tea}. Transitions are visualized as q0

money−−−−→ q1 given by the transition
(in this example) (q0, money, q1). The set of transitions (→) also contains (q1, coffee, q2)
and (q1, tea, q3).

q0start

q1q2 q3

money

coffee tea

Figure 2.2: A simple LTS

DFAs and LTSs are useful to model system behavior based on inputs, but in order to work
with reactive systems, we also need to handle outputs. Mealy machines are automata
designed to communicate with output symbols instead of accepting and rejecting states.

Definition 11 (Mealy machine). A Mealy machine or Mealy automaton is a Tuple of
M = (S, s0, Σ, Ω, δ, λ), where:

• S is a finite, non-empty set containing the states of the automaton,

• s0 ∈ S is the initial state,

• Σ is the input alphabet of the automaton,

• Ω is the output alphabet of the automaton,

• δ : Q × Σ → Q is the transition function and

• λ : Q × Σ → Ω is the output function. �

Mealy machines can be regarded as deterministic finite automata over the union of the
input alphabet and an output alphabet with just one rejection state, which is a sink, or
more elegantly, with a partially defined transition relation.[30]

An example of a deterministic Mealy machine can be seen in Example 4.

Example 4. An example of a deterministic Mealy machine can be seen in Figure 2.3.
The formal definition of the automaton can be seen below.

• S = {a, b, c, d, d′, e, f}

• s0 = a

7

• Σ = {water, pod, button, clean}

• Ω = {X, K, ⋆}

The transitions, as seen in Figure 2.3 are visualized as s0
input/output−−−−−−−−→ s1, which denotes the

machine moving from state s0 to state s1 on the specified input, while causing the specified
output. Also, some simplifications are done, e.g. in this transition: d {water,pod}/X−−−−−−−−−→ d we
see a visual simplification of having both transitions merged to one arrow, this is only for
visual convenience. Figure 2.3 is also a great example of sinks, as seen in state f, the
machine accepts anything, and never changes. This is a variation of the accepting state
seen in DFAs.

Figure 2.3: Mealy machine representing the functionality of a coffee machine.[30]

Since automaton-based formalisms deal with alphabets, formal language theory is essential
not only to define them, but to construct them in a way that is efficient in practical
applications. Often automata are used to design and analyze real-life systems. Naturally,
questions of efficiency and correctness arise, which is why the relations of automatons and
formal languages are discussed more in-depth in the following subsection.

2.2.3 Relations of Formal Languages and Automata

Definition 12 (Recognized language of automata). The language L ⊆ Σ contain-
ing all the accepted words by an automaton M is called the recognized language of the
automaton. It is denoted by L(M) = L. �
Definition 13 (Regular language). A formal language L is regular, iff there is a De-
terministic Finite Automaton M, for which L(M) = L, in other words, iff there is a DFA
with the recognized language of L. �

Let us now introduce a semantic helper δ∗ for both DFAs and Mealy machines. δ∗ is an
extension of the δ transition function, as δ∗ : S × Σ∗ → S defined by δ∗(s, ϵ) = s and
δ∗(s, αw) = δ∗(δ(s, α), w), essentially providing the state of the automaton after running
an input sequence from a specified state.

8

Definition 14 (Myhill-Nerode relation). A DFA M = (S, s0, Σ, δ, F) induces the fol-
lowing equivalence relation ≡M on Σ∗ (when L(M) = Σ):

x ≡M y ⇐⇒ δ∗(s, x) = δ∗(s, y)
where x, y ∈ Σ∗. This means, that x and y are equivalent with respect to ≡M .[22]. �

In words, the Myhill-Nerode relation states, that two words are equivalent wrt. ≡M iff
runs of both words would end in the same state on the automaton M. The Myhill-Nerode
relation is an equivalence relation with some additional properties[22], which can be seen
in the following.

• The properties of equivalence relations:

– Reflexivity: x ≡M x.
– Symmetry: x ≡M y =⇒ y ≡M x.
– Transitivity: if (x ≡M y and y ≡M z) =⇒ x ≡M z.

• Right congruence: ∀x, y ∈ Σ∗ : (x ≡M y =⇒ ∀a ∈ Σ : xa ≡M ya)
also, by induction, this can be extended to:
∀x, y ∈ Σ∗ : (x ≡M y =⇒ ∀w ∈ Σ∗ : xw ≡M yw).

• It respects membership wrt. R:
∀x, y ∈ Σ∗ : x ≡M y =⇒ (x ∈ R ⇐⇒ y ∈ R).

• ≡M is of finite index, has finitely many equivalency classes. Since for every state
s ∈ S, the sequences which end up in s are in the same equivalence class, the number
of these classes is exactly |S|, which is a finite set.

Using this relation, we can introduce the Myhill-Nerode theorem, which neatly ties to-
gether the previous definitions.

Theorem 1 (Myhill-Nerode theorem[22][28]). Let L ⊆ Σ∗. The following three
statements are equivalent:

• L is regular.

• there exists a Myhill-Nerode relation for L.

• the relation ≡L is of finite index.

For proof, see [22][28]. �

The same concepts can be applied to Mealy machines, which are somewhat more complex
in this regard. As before, a semantic helper is needed similar to δ∗, but considering the
output function of Mealy machines. λ∗ : S × Σ∗ → Ω, defined by λ∗(s, ϵ) = ∅ and
λ∗(s, wα) = λ(δ∗(s, w), α).

When monitoring the behavior of Mealy machines, one of the most important metrics given
an input is the specific output given by the input. The behavior of a Mealy machine, a
specific run of it, has a pattern of i1, o1, i2, o2, .., in, on, where i are inputs and o are
outputs. In order to characterize these runs, we actually do not need every output from
this pattern, we only need the final one. Also note, that essentially the final output of a
run is given by λ∗(s0, inputs). Let us introduce a JMK: Σ∗ → Ω semantic functional asJMK(w) = λ∗(s0, w). This provides the final output given by a run of an automaton for
an input sequence w. Using JMK, the behavior of Mealy machines can be captured, as
discussed in the following.

9

Example 5. Given the Mealy machine M coffeemachine in Figure 2.3, the runs:
<clean, X>,
<pod water button, K>

are in JM coffeemachineK, since the given input words cause the corresponding outputs, while
the runs

<clean, K> and
<water button button, X>

are not, since these input sequences do not produce those outputs.

Similarly to the Myhill-Nerode relations in DFAs, equivalence relations over the P : Σ∗ →
Ω functional can be introduced, where P is an abstraction of JMK that can be applied to
any state, rather than just the initial state.

Definition 15 (Equivalence of words wrt. ≡P [30]). Given a Mealy machine M =
(S, s0, Σ, Ω, δ, λ), two words, u, u′ ∈ Σ∗ are equivalent with respect to ≡P :
u ≡P u′ ⇐⇒ (∀v ∈ Σ∗ : P (s, uv) = P (s, u′v)).
We write [u] to denote the equivalence class of u wrt. ≡P . �

This definition is more along the lines of the right congruence property observed in the
Myhill-Nerode relations. The original formalism: u ≡P u′ ⇐⇒ P (s, u) = P (s, u′) of the
Myhill-Nerode relation still stands as a special case of the above definition: if v = ϵ and
v′ = ϵ, P (s, uv) = P (s, u) and P (s, u′v) = P (s, u′).

Example 6. Taking Figure 2.3 as an example, the following words are equivalent wrt.
≡JMK:

water, pod
≡JMK water, water, pod
≡JMK pod, pod, water.

The first two of ≡JMK are straightforward, since both words lead to the same state, d′, while
the third input ends in state d. Observably, state d and d′ wrt. outputs operate exactly the
same regardless of continuation, hence the equivalence holds.

Theorem 2 (Characterization theorem[30]). Iff mapping P : Σ∗ → Ω ≡P has
finitely many equivalence classes, there exists a Mealy machine M, for which P is a
semantic functional.

Proof (⇐=): As seen in the case of the Myhill-Nerode finite index property for
DFAs, same states in Mealy machines will obviously be in same equivalence classes. This
implies, that the number of classes in (or in other words, the index of) ≡P is at most the
number of states the Mealy machine contains, which is finite by definition.
Proof (=⇒): Consider the following Mealy machine: MP = (S, s0, Σ, Ω, δ, λ):

-S is given by the equivalence classes of ≡P .
-s0 is given by [ϵ].
-δ is defined by δ([u], α) = [uα].
-λ is defined by λ([u], α) = o, where P (uα) = o.

A Mealy machine constructed this way fulfills what the theorem states, P is a semantic
functional of it, in other words, JMK = P. �

With this theorem, regularity for mappings P : Σ∗ → Ω can be defined. A P : Σ∗ → Ω
mapping is regular, iff there is a corresponding Mealy machine for which JMK = P, or
equivalently, if P has a finite number of equivalence classes, analogously to the previously
seen "classical" regularity.

10

Figure 2.4: Minimal version of the Mealy machine seen in 2.3

2.2.4 Minimization of Automata

The introduction of regularity is useful in the construction of automata, specifically, the
construction of canonical automata.

Definition 16 (Canonical automaton (Minimal automaton)). An automaton M is
canonical (i.e. minimal) iff:

• every state is reachable: ∀s ∈ S : ∃w ∈ Σ∗ : δ∗(s0, w) = s,

• all states are pairwisely separable, in other words behaviorally distinguishable. For
Mealy machines, this is formalized as: ∀s1, s2 ∈ S : ∃w ∈ Σ∗ : λ(s1, w) ̸= λ(s2, w) �

The minimal version of the Mealy machine in Figure 2.3 can be seen in Figure 2.4.

Constructing automata to be canonical, especially in the case of Mealy machines is im-
portant with regards to efficiency and is the backbone of automata learning. The next
proposition comes straightforward from the previously presented characterization theorem.

Proposition (Bounded reachability[30]): Every state of a minimal Mealy machine
with n states has an access sequence, i.e., a path from the initial state to the given state,
of length at most n-1. Every transition of the model can be covered by a sequence of
length at most n from the initial state.

The process of constructing automata uses the concept of partition refinement. It works
based on distinguishing suffixes, suffixes of words which mark, witness the difference be-
tween two access sequences. The following notion is introduced to formalize this.

Definition 17 (k-distinguishability[30]). Two states, s, s′ ∈ S are k-distinguishable
iff there is a word w ∈ Σ∗ of length k or shorter, for which λ∗(s, w) ̸= λ∗(s′, w). �

Definition 18 (exact k-distinguishability). Two states, s, s′ ∈ S are exact k-
distinguishable, denoted by k= iff s and s’ are k-distinguishable, but not (k-1)-
distinguishable �

11

Essentially, if two states, s and s’ are k-distinguishable, then when processing the same
input sequence, from some suffix of the word w with length at most k, they will produce
differing outputs. Using this, we can observe, that whenever two states, s1, s2 ∈ S are
(k+1)-distinguishable, then they each have a successor s′

1 and s′
2 reached by some α ∈ Σ,

such that s′
1 and s′

2 are k-distinguishable. These successors are called α-successors. This
suggests, that:

• no states are 0-distinguishable and

• two states s1 and s2 are (k+1)-distinguishable iff there exists an input symbol α ∈ Σ,
such that λ(s1, α) ̸= λ(s2, α) or δ(s1, α) and δ(s2, α) are k-distinguishable.[30]

This way, if we have an automaton M, we can construct its minimal version, by iteratively
computing k-distinguishability for increasing k, until stability, that is until the set of
exactly k-distinguishable states is empty.
Example 7. Given the Mealy machine seen in Figure 2.3, we can use k-distinguishability
to refine its partitions. The initial state, the initial partition would be:
P1 = {a, b, c}, {d, d′}, {e}, {f}
since when k=1, a, b and c are not 1-distinguishable, but d and d’ separate on the behavior
of the button input, while e and f are separated by the suffix clean. Let’s see the k=2
scenario.
P2 = {a}, {b}, {c}, {d, d′}, {e}, {f}
Here, water and pod separate a, b and c, while d and d’ can still no longer be separated.
If observed, even if k is increased, d and d’ can not be refined. This means, that they are
indistinguishable, they can be merged together without altering behavior. This shows the
process of acquiring the minimal machine seen in Figure 2.4.

The process explained in Example 7 is partition refinement, the exact algorithm and proof
of its validity can be seen in [30]. Partition refinement is a version of the minimization
algorithm for DFAs proposed by Hopcroft[16].

Let us define one last relation which will be useful in the next section to compare automata
minimization and automata learning.
Definition 19 (k-epimorphisms). Let M = (S, s0, Σ, Ω, δ, λ) and M ′ =
(S′, s′

0, Σ, Ω, δ′, λ′) be two Mealy machines with shared alphabets. We call a sur-
jective function fk : S → S′ existential k-epimorphism between M and M ′, if for all
s′ ∈ S′, s ∈ S where fk(s) = s′ and with any α ∈ Σ, we have: fk(δ(s, α)) = δ′(s′, α), and
all states, that are mapped by fk to the same state of M ′ are not k-distinguishable. �

It is straightforward to establish that all intermediate models arising during the partition
refinement process are images of the considered Mealy machine under a k-epimorphism,
where k is the number of times all transitions have been investigated.[30] Essentially this
establishes P1 and P2 from Example 7 as images of the Mealy machine seen in Figure 4
under k-epimorphisms where k=1 and k=2 respectively.

Active automata learning algorithms operate in a similar way, but they do not have access
to the automata they are learning.

2.3 Automata Learning

Automata Learning is a way of modeling a system without having specific knowledge
of its internal behavior. To accomplish this, the external behavior of the system needs to

12

be observed. This learned model is, as the name suggests, an automaton.
Formally: Automata learning is concerned with the problem of inferring an automaton
model for an unknown formal language L over some alphabet Σ[17].

In order to monitor a system, access to its behavioral information is required.
There are two approaches, which separate the two types of automata learning.

Passive Automata Learning In case of passive automata learning, the gathering of
information is not part of the learning process, but rather a prerequisite to it. The learning
is performed on a pre-gathered positive an/or negative example set of the systems behavior.
In passive automata learning, the success of the process is determined not only by the
efficiency of the algorithm, but the methodology and time used to gather the data.

Active Automata Learning In case of active automata learning, the behavioral in-
formation is gathered by the learning algorithm via queries. In order to accomplish this,
learning is separated to two components: the learner, which learns, and the teacher, which
can answer questions about the system under learning.

Active automata learning follows the MAT, or the Minimally Adequate Teacher model
proposed by Dana Angluin[5]. It defines the separation of the algorithm to a teacher and
a learner component in a way, where the teacher can only answer the minimally adequate
questions needed to learn the system. These two questions, or queries are are follows:

Membership query Given a w ∈ Σ∗ word, the query return the o ∈ Ω output o
corresponding to it, treating the word as a string of inputs. We write mq(w) = o to denote
that executing the query w on the system under learning (SUL) leads to the output o:JSULK(w) = o or λ∗(s0, w) = o.

Equivalence query Given a hypothesis automaton M , the query attempts to determine
if the hypothesis is behaviorally equivalent to the SUL, and if not, finding the diverging
behavior, and return with an example. We write eq(H) = c, where c ∈ Σ∗, to denote an
equivalence query on hypothesis H, returning a counterexample c. The counter example
provided is the sequence of inputs for which the output of system under learning and the
output of the hypothesis differ: JHK(c) ̸= mq(c).

The learner component uses membership queries to construct a hypothesis automaton,
then refines this hypothesis by the counterexamples provided by equivalence queries. Once
counterexamples can not be found this way, the learners hypothesis is behaviorally equiv-
alent to the SUL. The learning can terminate and the output of the learning is the current
hypothesis.

As seen on Figure 2.5, the learning proceeds in rounds, generating and refining hypoth-
esis models by exploring the SUL via membership queries. As the equivalence checks
produce counterexamples, the next round of this hypothesis refinement is driven by the
counterexamples produced.

Using an analogous strategy to the minimization of automata seen in the previous section,
starting only with a one state hypothesis automaton, all words are explored in the alphabet
in order to refine and extend this hypothesis. Here, there is a dual way of characterizing
(and distinguishing) between states[30]:

13

Learner component

Teacher component

mq(w)

o

eq(H)

c

counterexample found?

Yes No

Analyze counterexample

Setup learning algorithm

Refine hypothesis
Process membership

query

Process equivalence
query

Test equivalence

Return result

Figure 2.5: Active automata learning

• By words reaching them. A prefix-closed set Sp of words, reaching each state exactly
once, defines a spanning tree of the automaton. This characterization aims at pro-
viding exactly one representative element from each class of ≡P on the SUL. Active
learning algorithms incrementally construct such a set Sp.
This prefix-closedness is necessary for Sp to be a "spanning tree" of the Mealy ma-
chine. Extending Sp with all the one-letter continuations of words in Sp will result
in the tree covering all the transitions of the Mealy machine. Lp will denote all the
one-letter continuations that are not already contained in Sp.

• By their future behavior with respect to an increasing vector of words of Σ∗. This
vector < d1, d2, ..., dk > will be denoted by D, and contains the "distinguishing suf-
fixes". The corresponding future behavior of a state, here given in terms of its access
sequence u ∈ Sp, is the output vector< mq(u∗d1), ..., mq(u∗dk) >∈ Ωk, which leads
to an upper approximation of the classes of ≡JSULK. Active learning incrementally
refines this approximation by extending the vector until the approximation is precise.

While the second characterization defines the states of the automaton, where each output
vector corresponds to one state, the spanning tree on Lp is used to determine the transitions
of these states. In order to characterize the relation between the SUL M = (S, s0, Σ, Ω, δ, λ)

14

and the hypothesis model M ′ = (S′, s′
0, Σ, Ω, δ′, λ′) (note, that M and M ′ only share

alphabets), the following definition is introduced.

Definition 20 (D-epimorphism). Let D ⊆ Σ∗. We call a surjective function fD : S →
S′ existential D-epimorphism (surjective homomorphism) between M and M ′ if, for all
s′ ∈ S′ there exists an s ∈ S with fD(s) = s′ such that for all α ∈ Σ and all d ∈ D:
fD(δ(s, α)) = δ′(s′, α), and λ∗(s, d) = λ∗(s′, d). �

Note, that active learning deals with canonical Mealy machines, in other words, the canon-
ical form of SUL, and not, the perhaps much larger Mealy machine of SUL itself.

Since active learning algorithms maintain an incrementally growing extended spanning
tree for H = (SH , h0, Σ, Ω, δH , λH), i.e., a prefix-closed set of words reaching all its states
and covering all transitions, it is straightforward to establish that these hypothesis models
are images of the canonical version of SUL under a canonical existential D-epimorphism,
where D is the set of distinctive futures underlying the hypothesis construction[30]

• define fD : SSUL → SH by fD(s) = h as following: if ∃w ∈ Sp ∪Lp, where δ(s0, w) =
s, then h = δH(h0, w). Otherwise h may be chosen arbitrarily.

• It suffices to consider the states reached by words in the spanning tree to establish
the defining properties of fD. This straightforwardly yields:

– fD(δ(s, α)) = δH(h, α) for all α ∈ Σ, which reflects the characterization from
below.

– λ∗(s, d) = λ∗
H(h, d) for all d ∈ D, which follows from the maintained character-

ization from above.[30]

In basic logic, D-epimorphisms and k-epimorphisms do not differ, they both deal with
establishing constructed models being images of the model they are based on. D-
epimorphisms could replace k-epimorphisms where D = Σk, it can be suggested, that
there is no need to differentiate. However, there is in important difference of complexity
between the two. While k-distinguishability supports polynomial time, black-box systems
do not. Also, the "existential" in existential D-epimorphism is important: fD must deal
with unknown states, ones that haven’t been encountered yet. This implies that charac-
terization can only be valid for already encountered states.

Active learning algorithms can be proven correct using the following three-step pattern:

• Invariance: The number of states of each hypothesis has an upper bound of ≡JSULK.
• Progress: Before the final partition is reached, an equivalence query will provide a

counterexample, where an input word leads to a different output on the SUL and on
the hypothesis. This difference can only be resolved by splitting at least one state,
which increases the state count.

• Termination: The refinement terminates after at most the index of ≡JSULK many
steps, caused directly by the described invariance and progress properties.

The following subsection introduces the first active automata learning algorithm this thesis
covers.

15

2.3.1 Direct Hypothesis Construction[25]

The Direct Hypothesis Construction algorithm, which hypothesis construction can be seen
in Algorithm 1 follows the idea of the breath-first search of graph theory. It constructs
the hypothesis using a queue of states, which is initialized with the states of the spanning
tree to be maintained. Explored states are removed from this queue, while the discovered
successors are enqueued, if they are provably new states. The algorithm starts with a
one-state hypothesis, including only the initial state, reached by ϵ and D = Σ. It then
tries to complete the hypothesis: for every state, the algorithm determines the behavior of
the state under D. This behavior is called the extended signature of said state. States with
a new extended signatures are provably new states, so to guarantee further investigation,
all their successors are enqueued. Initially, D = Σ, so only the 1=-distinguishable states
are revealed during the first iteration. This is extended straightforwardly to comprise a
prefix closed set of access sequences. [30][25]

Algorithm 1: Hypothesis construction of the Direct Hypothesis Construction
algorithm as seen in [30].

Input: Sp: a set of access sequences, D: a set of suffixes, an input alphabet Σ
Output: A Mealy machine H = (S, s0, Σ, Ω, δ, λ)

1 initialize hypothesis H, create a state for all elements of Sp

2 initialize a queue Q with the states of H
3 while Q is not empty do
4 s = dequeue state from Q
5 u = access sequence from s0 to s
6 for d ∈ D do
7 o = mq(ud)
8 set λ(s, d) = o

9 end
10 if exists an s′ ∈ S, where the output signature of s′ is the same as s then
11 reroute transitions of s to s′ in H
12 remove s from H
13 else
14 create and enqueue successors of s for every input in Σ into Q, if not

already in Sp

15 end
16 end
17 Remove entries of D \ Σ from λ
18 return H

After the execution of the Hypothesis construction seen in Algorithm 1, the output au-
tomaton H is used in an equivalence query eq(H) = c, to find if a counterexample c exists.
If no counteraxamle can be found, the learning terminates, H is the learned automaton.
Else, if a counterexample c is found, for which λH(s0, c) ̸= mq(c), c is used to enlarge the
suffixes in D and a new iteration of Algorithm 1 begins, using the now extended set D and
all the access sequences found in the previous iteration (the current spanning tree Sp).

The DHC algorithm is a straightforward implementation of active automata learning. It
terminates after at most n3mk + n2k2 membership queries, and n equivalence queries,
where n is the number of states in the final hypothesis, k is the longest set of inputs, and
m is the length of the longest counterexample[25].

16

2.4 Specifying Requirements

The previous sections introduced different modeling types and techniques. We now discuss
the requirements used in model-based engineering which the models need to satisfy.

2.4.1 Requirements

Throughout this thesis, the concept of requirements is used widely, therefore, it is essential
to define it precisely.

Definition 21 (Requirement[1]).

1. A condition or capability needed by the user to solve a problem or achieve an ob-
jective.

2. A condition or capability that must be met or possessed by a system component to
satisfy a contract, standard, specification or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2). �

Requirements are important, as the specification is present at both the beginning and
the end of the software development process: the design can only start, if there are some
requirements formulated, and acceptance tests are only possible in the presence of require-
ments.

Requirements can be specified in many different ways, the most common being textual
requirements in traditional feature lists. This method is an informal way of requirements
specification, as the structure of this format is hard to analyze due to it lacking a precise
definition. Attempts were made to formalize this type of requirements by defining patterns
and mapping the individual patterns to formal semantics, however, there are also more
abstract approaches, such as temporal logics.

The rationale behind the precise formalization of requirements is the wide range of auto-
mated applications, especially in formal methods – such as validation, formal verification,
test oracle generation and requirement documentation generation.

2.4.2 Linear-Time Temporal Logic

Linear-Time Temporal Logic (LTL), also called Propositional Linear-Time Temporal Logic
(PLTL) is the extension of propositional logic with temporal connectives over paths of a
base model, e.g. an LTS. There exist also definitions using Kripke-structures [24] as base
models. The syntax of LTL expressions over paths of LTSs is defined as follows:

Definition 22 (Syntax of LTL Expressions [9]). Let π = (s0, a1, s1, a2, ...) be a path
of an LTS. Then the valid LTL expressions can be derived using the following production
rules:

• L1: if a ∈ Act, then (a) is an LTL expression.

• L2: if p and q are LTL expressions, then p ∧ q and ¬p are LTL expressions.

• L3: if p and q are LTL expressions, then pUq and Xp are LTL expressions.

With the operator precedence: ↔<→< ∧ < ¬ < X, U �

17

Additional operators can also be defined using the already defined ones:

• true holds for every state,

• false does not hold for any state,

• p ∨ q as ¬((¬p) ∧ (¬q)),

• p → q as (¬p) ∨ q,

• p ↔ q as (p → q) ∧ (q → p),

• Fp as trueUp,

• Gp as ¬F (¬p),

• pWBq as ¬((¬p)Uq),

• pBq as ¬((¬p)Uq) ∧ Fq

The semantics of LTL expressions are defined as follows:

Definition 23 (Semantics of LTL Expressions[9]). Let π = (s0, a1, s1, a2, ...) be a
path of an LTS model M. Then the formal semantics to the LTL expression P is given
recursively, with regard to syntactic production rules as:

• L1: M, π � (a) ↔ a1 = a

• L2: M, π � p ∧ q ↔ M, π � p and M, π � q;
M, π � ¬q ↔ not M, π � q

• L3: M, π � (pUq) ↔ ∃j ≥ 0 : πj � q and ∀0 ≤ k ≤ j : πk � p;
M, π � Xp ↔ π1 � p

Where � is te logical entailment operator, M, π � q denoting: for path π of model M , q
holds. �

Figure 2.6 shows examples for the intuitive meanings of different LTL operators.

p

(a) Fp

p p p p

(b) Gp

p

(c) Xp

p p q

(d) pUq

Figure 2.6: Intuitive examples for the meanings of different LTL operators

18

LTL expressions over paths of LTS models can be used to formulate requirements for
systems interpretable as LTSs in a formalized way resembling conventional propositional
logic – which is widely used among engineers. LTL is a well-researched area of mathemat-
ics, and has an extensive tooling available for different purposes. One such application
is the transformation to Büchi-automata (or in general ω-automata), which then can be
executed parallel with the modeled system to verify its behavior.

Büchi-automata are the nondeterministic extension of the already introduced finite au-
tomata to infinite input words, which can be defined in the following way.

Definition 24 (Büchi-automaton [9]). A Büchi-automaton is a tuple A =
(S, s0, Σ, δ, F), where:

• S is a finite, non-empty set containing the states of the automaton,

• s0 ⊆ S is the set of initial states,

• Σ is a finite alphabet,

• ρ : S × Σ → 2S is the nondeterministic transition function,

• F ⊆ S is a set of the accepting states of the automaton.

A run of the Büchi-automaton A is the r = (s0, s1, s2, ...) infinite series of states as a result
of an a0, a1, a2, ... infinite input (word), where s0 ∈ S0 and ∀si+1 = ρ(si, ai).

The characteristic of an infinite run is the set of s ∈ S states, which occur infinitely many
times during the run. Formally: lim(r) = {s|@j ≥ 0 : ∀k > j : s ̸= sk}.

A run of the Büchi-automaton is accepting, if lim(r)∩F ̸= ∅. A w infinite word is accepted
by the automaton, if there exists a run of the automaton that accepts w. �

Example 8. Figure 2.7 shows a Büchi automaton generated from the expression (GFa) →
(GFb). Notice the nondeterminism and how the automaton accepts (only) infinite runs
which satisfy the original LTL expression.

q0start q1 q2

q3

true ¬a

¬a

b¬b
true ¬a

b¬b

Figure 2.7: A Büchi automaton for the LTL expression (GFa) → (GFb)

19

Chapter 3

Overview of the Approach

In this chapter, the various aspects of the proposed approach are detailed. In Section 3.1,
the application of this methodology is presented from the users’ point of view: how to use
the interactive automata learning framework – also called Interactive Learning Entity or
ILE - and how they can utilize it to design reactive systems in a declarative way. Then, in
Section 3.2, the applied software architecture, software components, algorithms and data
structures are presented: first, the components concerned with the automata learning
algorithm, then those responsible for its interaction with the oracle component, then the
possible interactions of the oracle with the engineer.

3.1 Overview of the Methodology

Figure 3.1: Interaction types between the engineer and the ILE

20

Our methodology is heavily based on the interaction of the user with the ILE. The different
types of interacitons are summarized on Figure 3.1 and are elaborated on in Subsection
3.1.2. These interactions take place in a predefined order – the proposed workflow, illus-
trated on Figure 3.2, the individual steps of which are explained in detail in the following
subsections. This workflow consists of two phases: first, an offline one, and then an online
one, and ends with the serialization of the models. During the offline phase, the ILE of-
fers little assistance, the designing engineer must determine the required details by other
means. The interactive system design happens during the online phase.

The input formalisms of individual steps in both the offline and the online phases have
a predefined syntax with the corresponding, precisely defined semantics. Their common
feature is the declarative way of describing the system components, which allows the
engineer to focus solely on the expected behavior and acquire a minimal model exhibiting
the specified functionality.

Figure 3.2: The Proposed Workflow

3.1.1 Component and Interface Definition

The first step of the workflow is the definition of the system components. This happens in
the offline phase, as the determination of the system components, their exact boundaries
and interfaces is part of the architecture, not the behavior. The engineer must provide
the names of the system components, along with their interfaces – in other words their
input- and output alphabets – before the workflow can proceed to the next step.

Users are encouraged to specify input and output characters qualified with port names
in the format ’Port.character’, as this supplies the subsequent steps with essential
information about the connections of the individual system components.

The components are handled as independent systems in every other aspect. This results
- among others - in the arbitrary ordering of the online behavior-learning phases, and the
behavioral faults being limited to their components of origin (although this does not limit
the propagation of errors through messages resulting from incorrect behavior). The syntax
of component and interface declarations is quite simple, as illustrated in Listing 3.1.

Please provide the system components (space-separated):
>TrafficLight
Please provide the input alphabet for component TrafficLight (space-separated):
>TrafficControl.interrupt TrafficControl.toggle
Please provide the output alphabet for component TrafficLight (space-separated):
>TrafficDisplay.red TrafficDisplay.yellow TrafficDisplay.green TrafficDisplay.blinkingYellow

Listing 3.1: Example of a component declaration along with its interfaces

21

3.1.2 Requirement Types

During the workflow, the engineers can provide requirements in both phases. These re-
quirements can vary greatly in their scope – from being specific to individual runs to being
generally valid for the whole component – in addition to the differences in the formalism
the user defines them through.

In the offline phase, this means that the users add requirements they have formulated
in advance. This is useful for more general requirements, with the scope of the whole
component, easily formulated as program logic expressions, or long and complex traces.

In the online phase, adding requirements means answering the questions formulated by
the algorithm about a yet unspecified behavior at a specific place in the trace currently
being examined. This too can be answered through program logic - e.g. when the engineer
realizes a general property during the model construction - but also through traces and
through giving the corresponding output directly.

The currently supported requirement types can be seen on Figure 3.3.

Figure 3.3: The supported requirement types

Corresponding Output

This is the simplest way of specifying the behavior of the system, also containing the
least amount of information among the different model types. To put simply, this means
giving the output for a given input sequence, without any additional information. This
supposedly answers the question of the ILE at one given point, and that is the end of its
scope.

Examples of corresponding output specification can be seen in Listing 3.2. The alphabets
of the component are the ones defined in in Listing 3.1.

Offline:
// choosing the type of the requirement omitted
>TrafficControl.toggle TrafficControl.toggle TrafficControl.toggle/TrafficDisplay.yellow

Online:
Unknown output for input sequence [TrafficControl.toggle TrafficControl.toggle TrafficControl.

toggle]:

22

// choosing the type of the requirement omitted
>TrafficDisplay.yellow

Listing 3.2: Examples of corresponding output specification

Valid Trace

Valid traces contain information about multiple related input sequences, as they provide
the corresponding output for any prefix of the contained input sequence. This can be
useful, as the engineers often take the whole output sequence into consideration when
determining the output for some inputs. Thus, the ILE can obtain multiple answers con-
cerning the behaviors in question by automated means, saving on the number of required
interactions with the user.

Examples can be seen in Listing 3.3, assuming the previously used alphabets.

Offline:
// choosing the type of the requirement omitted
>TrafficControl.toggle/TrafficDisplay.red TrafficControl.toggle/TrafficDisplay.green TrafficControl

.toggle/TrafficDisplay.yellow

Online:
Unknown output for input sequence [TrafficControl.interrupt]:
// choosing the type of the requirement omitted
>TrafficControl.interrupt/TrafficDisplay.blinkingYellow TrafficControl.interrupt/TrafficDisplay.red

TrafficControl.interrupt/TrafficDisplay.blinkingYellow

Listing 3.3: Examples of a valid trace specifications

Invalid Trace

Invalid traces are similar to valid traces, with the difference that the contained behavior
must not appear in the resulting model – thus defining traces to exclude. They are most
useful for small output alphabets, or when the range of possible behaviors is otherwise
contained - e.g. through program logic expressions or several other excluded traces.

They can also be used to check the hidden implications of other requirements: trace-based
models are easy to construct and the ILE will signal any conflicts with other, more complex
requirements of which the engineer may not see the hidden implications.

Examples for invalid traces can be seen in Listing 3.4. Notice, that invalid traces have the
same syntax as valid traces, the difference is in their semantics.

Offline:
// choosing the type of the requirement omitted
>TrafficControl.interrupt/TrafficDisplay.green TrafficControl.interrupt/TrafficDisplay.yellow

Online:
Unknown output for input sequence [TrafficControl.interrupt]:
// choosing the type of the requirement omitted
>TrafficControl.interrupt/TrafficDisplay.green TrafficControl.interrupt/TrafficDisplay.yellow

TrafficControl.interrupt/TrafficDisplay.red

Listing 3.4: Example of a trace to exclude

Sequence Diagram

UML-like sequence diagrams are trace-based models that can contain multiple traces, due
to them having various combined fragments for branching the behavior - like alt and opt
- and for referencing behaviors specified elsewhere - like ref.

Sequence diagrams can also be used to model arbitrarily long, possibly looping behavior,
thereby containing plenty of information, which results in possibly answering numerous
questions formulated by the ILE.

23

We introduce our own sequence diagram formalism specifically designed to model system
components. An example for their syntax can be seen on Figure 3.4. The ’systemCom-
ponent’ is the component the behavior of which is being modeled, the ’inputComponent’
and ’outputComponent’ are symbolizing the sources and targets of the inputs and outputs.
The textboxes marked with stars are the port qualifications.

Figure 3.4: Example for the syntax of the sequence diagrams

It is important to note, that the specification and integration of sequence diagrams into
this framework is not yet complete.

LTL Expression

LTL expressions are able to contain infinitely many traces through program logic-based
requirement specification: they can be used to formulate propositional logic expressions
with temporal connectives over paths of a base model, as described in Subsection 2.4.2.

They can be used to formulate requirements that must hold for the whole component,
during the whole execution. Thus – depending on their interpretation – they contain lots
of information, which may result in answering numerous questions posed by the ILE.

For our application, we introduce our own LTL expression language with its own syntax
and semantics - although attempting to keep it similar to other generally known variants,
especially that of SPOT [11]. The full syntax of the LTL expressions – also determining
the operator precedence – can be seen in Listing A.1 in the Appendix.

The base model of the LTL expressions is the LTS interpretation of the component under
learning. This means, that the set of atomic propositions that can be used in these
expressions are the possible labels of the transitions, which are the elements of the input
and the output alphabets of the component. The model synthesis takes place assuming
event semantics – exactly one input and one output event happening at any given step
during the execution of the system. We introduced these semantics to the LTL expressions:

24

the conjunction of exactly one input and one output character must hold at any given point
for it to be considered correct – and every other character must be negated at the same
point. This also entails, that given another character not explicitly negated at that point,
it is automatically negated, and in case that no proposition is declared explicitly, either
one of the non-explicitly negated characters hold.

The semantics of the supported temporal connectives, and other aspects of the LTL se-
mantics in general, are similar to those described in Subsection 2.4.2.

Examples for LTL expressions can be seen in Listing 3.5.

Offline:
// choosing the type of the requirement omitted
>F(TrafficControl.interrupt -> X(G(TrafficControl.toggle) -> G(TrafficDisplay.blinkingYellow)))

Online:
Unknown output for input sequence [TrafficControl.interrupt TrafficControl.toggle]:
// choosing the type of the requirement omitted
>F(TrafficControl.interrupt -> X(G(TrafficControl.toggle) -> G(TrafficDisplay.blinkingYellow)))

Equivalent as a result of the event semantics (omitting port qualifications for simplicity):
>F(interrupt&!toggle -> X(G(toggle&!interrupt) -> G(blinkingYellow&!red&!green&!yellow)))

Listing 3.5: Examples of LTL expressions

It is important to note, that the specification of our LTL variant is not yet finished.

3.1.3 Conflicting Requirements

The requirements provided by the designing engineer to the ILE may easily be conflicting,
especially in case of LTL expressions and invalid traces that describe arbitrarily long sets
of behaviors. This is expected, as during system design, when the engineer refines the
models and reaches lower levels of abstraction, certain scenarios may conflict with some
oversimplified conditions. At that point, those too must be refined, thus replaced. This
is why it is essential for the system to provide some kind of conflict handling within the
practical boundaries of the available resources.

This problem is a difficult and resource intensive task for algorithmic reasons elaborated
later. Consequently, the ILE only guarantees to handle the conflict, when it also interferes
with the model synthesis, in which case, the user is asked to remove one of the conflicting
models, before the analysis of the behavior can proceed – as shown on Figure 3.5.

25

Figure 3.5: The process of adding a requirement

As conflicts only become apparent during the online phase of the workflow, that is where
the conflicts have to be handled. However, conflicts that were introduced earlier are also
discovered and resolved in that phase. An example of a requirement conflict handling can
be seen in Listing 3.6.

Models 1) IO Pair Model: [TraffiControl.interrupt]/TrafficDisplay.red and 0) Invalid Trace Model:
TrafficControl.interrupt/TrafficDisplay.red are conflicting.

Please choose which model to remove:
>1 //this removes the I/O pair model

Listing 3.6: Example of a requirement conflict handling

3.1.4 Checking the Correctness of the Synthesized Model

During the online phase, whenever the ILE assumes that it has gathered enough informa-
tion to construct a model for the given component, the engineer if offered with a model
representing the current state of the model synthesis – the equivalent of an equivalence
query in automata learning algorithms. The user can either approve this model – in which
case the automata learning and therefore the designing of the behaviour is complete –
or provide a counterexample where the model does not meet the – not yet specified –
requirements.

The proposed equivalence model is a deterministic automaton, which, based on the infor-
mation provided by the user, can be incomplete in multiple ways. The behavior of the
desired model can differ from that of the learned system because of lacking information,
in which case the user (acting as the equivalence oracle of the learning) needs to pro-
vide the separating behavior. Another reason for incompleteness can be newly discovered
states, whose behavior is unknown based on their input signatures. This case prompts the
user to evaluate the validity of state separation and to provide the lacking information.
If, for some reason the hypothesized behavior is contradicting that of the desired system
(by the users oversight in providing requirements), the actual, conflicting requirement can
be provided to guide the learning algorithm through the process described in Subsection
3.1.3.

26

If the model is accepted, the design phase is complete and the model is serialized. If a
counterexample is provided, the online phase resumes and the system design continues
until the next possible model is reached.

Examples of models offered in equivalence queries can be seen on Figure 3.6.

Figure 3.6: Equivalence query for an incomplete model (left) and the final model (right)

3.1.5 The Resulting System Model

When each of the component models declared during the first step of the workflow are
completed, the resulting system model can be serialized and handed over to the engineer
for further extensions or usage, e.g. for code generation. The serialization can happen in
various formalisms.

A possible formalism is the Gamma statechart, introduced in [26]. Gamma statecharts are
high-level state-based models, to which every functionality offered by the Gamma Stat-
echart Composition Framework can be applied. Our framework offers full-scale Gamma
serialization: when choosing this formalism, a whole project will be created, along with
interface definitions, component definitions - for each of the previously declared compo-
nents, with the synthesized behavior - and a composite system definition, connecting the
components based on the names of their ports.

Another possibility is the serialization to the Mealy machine formalism of the framework
- as presented when checking the correctness of the model. This results in a lower-level
set of independent models, with a completely different set of applications.

27

3.2 Overview of the Architecture

The architecture of the ILE consists of two main components: the learning algorithm -
which is responsible for the model synthesis procedure, thus the course of the learning -
and the interactive oracle - investigating the membership of the given input sequences in
the languages of the models given by the user on one side and interacting with the user
on the other. A functional overview of this architecture is depicted on Figure 3.7. The
following subsections elaborate on the connections and details of these components.

Figure 3.7: High-level architecture of the components of the ILE

In the case of the learning algorithm, active automata learning algorithms were chosen as
a design direction. Active automata learning enables complete separation of the learner
algorithm and the system under learning through a teacher component – enabling the
system under learning to be made from multiple, separate requirement-models provided
by the user. Since active automata learning works through queries, the query can go
through arbitrary layers of logic – allowing the proposed oracle-based interactive learning.

As discussed in Chapter 2, active automata learning algorithms work through a teacher
and a learner component. While traditionally, the queries asked through the teacher are
automated - by known or derived information and equivalence algorithms - in order to
achieve an interactive algorithm, we created a new approach. Figure 3.7 shows the Learn-
ing Algorithm delegating its queries through the oracle, which delegates the questions to
the user. The abstract approach presented in Figure 3.7 does enable interactive learning,
but implementing it using traditional approaches (by delegating every single query to the
user) proves to be infeasible in practical use cases because of the overwhelming amount of
queries needed to learn a model. In order to overcome this boundary, we made optimiza-
tions to the ILE to automate a subset of queries, and we designed a new, adaptive active
automata learning approach to heuristically control the design space.

3.2.1 The Cost of Interaction

As discussed in the previous subsection, one of the most important cost metrics of the
presented interactive learning architecture is the number of questions that reach the user.
In order to minimize this, we propose a heuristic by which a decision can be made regarding
which queries provide valuable information – based on the currently defined requirements.
Since active automata learning algorithms aren’t equipped for such adaptive learning, we
created a new approach.

Active learning algorithms generally assume that the information they require is readily
available, and thus follow a "greedy" approach of querying. While this is appropriate for

28

fully automated solutions, greedily exploring the design space can result in several mag-
nitudes larger amount of previously unexplored queries, which do not necessarily provide
new information, resulting in longer learning rounds (with more membership queries) ex-
ploring a larger amount of the behavior, and conversely less equivalence queries. To allow
the designing engineer to validate the hypothesized model more frequently, and control of
which unexplored behavior should be explored, a less greedy approach is required.

To solve the above issue, we introduce the concept of adaptive active automata learning,
which uses types of behaviors - as illustrated in Figure 3.8 - as a heuristic to adaptively
decide if and where a greedy approach should be taken. Already explored behaviors (e.g.
previously queried, cached) as well as behaviors contained in the defined requirements can
be answered in an automated way, allowing greediness. On the other hand, not specified
behaviors should be explored in a more reserved manner, controlled by the user - not the
automata learning algorithm. Based on the requirements outlined above, we defined three
commands to control the adaption of such an algorithm.

• OPTIMISTIC (greedy) heuristic is used if the algorithm should follow a greedy
approach in the next steps.

• PESSIMISTIC (reserved) heuristic is used if the algorithm should not query the
investigated behavior further.

• RESET is used to re-start the learning if necessary.

Figure 3.8: Types of behaviors during the learning process with two defined requirements

3.2.2 The Oracle

The architecture of the oracle component can be seen on Figure 3.9.

The oracle is responsible for interacting with the user, managing the provided requirements
and extracting information based on the queries posed by the learning algorithm. It
consists of two main components: the parser and the interactive learnable.

The parser is responsible for handling the input of the user and transforming it to a
formalism interpretable by the interactive learnable. This is necessary for enabling event
semantics in requirements, separating the input formalism from that of the possible de-
pendencies, and enabling feedback on the input of the user. This is realized through the
conventional architecture of compilers: creating a language for the requirements, gener-
ating a parser which creates an abstract syntax tree, then a DOM (Document Object

29

Figure 3.9: Architecture of the Oracle

Model) from the input and provides feedback, applying M2M or M2T transformations to
the desired formalisms.

The interactive learnable stores the requirements received from the parser in the form
of partial models and answers the queries of the learning algorithm. The architecture of
of the interactive learnable can be seen on Figure 3.10.

Figure 3.10: Architecture of the interactive learnable component

Partial models have two responsibilities: providing the set of possible outputs to the given
input sequences based on the information contained within, and providing information
about the proximity of the input sequence. The intersection of these possible outputs
provides the output based on the given requirements, and also reveals conflicting require-
ments without additional overhead. In the current approach, the inconclusive outputs are
delegated to the user, creating the loop on Figure 3.5.

Telling whether partial models contain additional information enables the interactive learn-
able to track the easly explorable parts of the design space, thus facilitating significant
optimization opportunities for the entire workflow through attaching one of the proposed
adaption commands to the answer to each query. For instance, when a given valid trace is
queried for an output somewhere in the middle of its contained sequence, the exploration
of the rest of its contained behaviors can be automatically queried without requiring the
input of the user.

30

Preserving the requirements in separate partial models has several advantages. First of
all, it ensures the traceability between the user input and the learning algorithm, which is
essential, as the user may not understand feedback or questions about information derived
from their input. Also, translating each requirement to a common formalism and merging
these models might be possible, but the addition and removal of models - which is a
frequent operation in the workflow - would be severely ineffective. Additionally, in this
manner the exploration of the individual models may be adjusted to their own internal
logic.

Supporting model conflict handling – as proposed in Subsection 3.1.3 – introduces two
serious problems: models have to be able to be removed just as easily as they can be
added, and inconsistencies need to be handled when removing a model. The first problem
is solved by our partial model pattern, but the other one requires further consideration.
Model inconsistency arises, when a model has been used to answer behavior-related queries,
then it is removed. In this case, the already extracted information remains in the system,
but its source disappears. Our solution to this problem, is to restart the automata learning
– retaining the models already provided by the user, thus hiding this restart – by attaching
a RESET command to the answer to the queries of the adaptive learning algorithm.

Currently, there are two main types of partial models - corresponding to the two main
types of requirements: trace-based models, which store valid or invalid scenarios for an
execution of a model, and LTL models, containing high-level behavioral properties which
must be fulfilled by the resulting model. The following two subsections elaborate on these
models.

Trace-based models correspond to trace-based requirements and store a arbitrarily
long finite sequence of input-output pairs. The corresponding requirement types include:
corresponding outputs to input sequences, valid and invalid traces and sequence diagrams.

The common property of these models is that they can be represented via conventional in-
complete finite automata. The automata contain information about a given input sequence
if they reach an accepting state at the end of the word. They contain more information
when other accepting states are reachable from that point.

Trace-based requirement types are mapped to a specific kind of partial model representing
the corresponding automaton. Although each of these automata is a finite automaton,
they vary greatly in their complexity of execution, thus the complexity of their provided
behavior. The number of these models can be huge with very frequent execution.

For instance, in case of IOPairModels (corresponding output-type requirements), it is
enough to check if the accepting state can be reached and they surely contain no additional
information. However, sequence diagrams can contain branching and loops in the behavior,
thus require more complex algorithms.

LTL models on the other hand correspond to LTL requirements: program logic based
requirements that describe the behavior for infinite input/output sequences.

They correspond to nondeterministic ω-automata. As the acceptance condition of Büchi-
automata is closest to that of finite automata – as shown in Chapter 2 –, we chose them
for the target of the mapping of the corresponding requirements. It should be noted, that
any of the automata classes recognizing the ω-regular languages could have been chosen
with an appropriate interpretation.

As Büchi automata accept only infinitely long words over the given input alphabet, the
process of the determination of the possible outputs - the condition of a character being
marked a possible output - was adopted accordingly.

31

In our interpretation, a Büchi automaton has information about a given finite input se-
quence, if at the end of the input the automaton reaches an accepting state. Then the
possible outputs are the elements of the output alphabet on the last edge taken. As the
automaton is nondeterministic (and cannot be determinized), there may be multiple ac-
cepting states, thus multiple edges, and even one edge might contain multiple possible
outputs. In this case the conjunction of the possible outputs on the corresponding edges
is the possible output of the automaton.

There may be other interpretations of Büchi automata in this context. For instance, it
would be enough for an input sequence to reach a state from which an accepting state is
reachable. This would provide an answer in more cases, than our interpretation, but also
introduce faulty behavior which would have to be handled in the workflow. Also, it would
be possible to track impossible outputs when no accepting state can be reached.

A summarizing example of the different automaton types can be seen on figure 3.11.

Figure 3.11: Examples for attempting to model the requirement ’after toggle/red, for
toggle the output is green’ through I/O pair automaton (upper left), valid
trace automaton (upper right), sequence diagram automaton (lower left)
and a Büchi automaton (lower right).

3.2.3 The Learning Algorithm

There are a variety of approaches to active automata learning, differing in the number
of queries and the logical order in which they are asked. To fully utilize the proposed
interactive learning, the used automata learning algorithm is required to:

• allow the addition, removal and modification of requirements (and thus the learned
behavior), and

• to be easily extensible and open for modification, such that the adaptive considera-
tion of explorable and inferable behaviors - enabled through the proposed interactive
learnable - can be utilized.

32

To support the above requirements, we built upon and designed a variant of the Direct
Hypothesis Construction algorithm. The DHC algorithm learns through rounds of hy-
pothesis creation, in which every round starts from the ground-up. This approach has the
benefit of allowing the system under learning to behaviorally change through the run of
the algorithm, and - in the case of interactive learning - allows the designing engineer(s)
to add, remove and modify requirements during the online phase of the workflow. The
Direct Hypothesis Construction algorithm is also a straightforward and easily modifiable
algorithm, making the adaption to specific heuristics simple to design and implement. In
order to make adaption possible, the teacher component of automata learning needs to
handle not only the output of a query, but also the adaption heuristic the algorithm should
adapt to. This enables an adaptive learning algorithm, which receives both the desired
output and the learning heuristic to utilize from its teacher component - keeping an iden-
tical, but extended automata learning architecture, as shown in Figure 3.12. The resulting
algorithm can be seen in Algorithm 2. As line 7 shows, the membership query returns
both the output and the adaption heuristic. If the adaption command is RESET , the
learning round begins again while keeping the current inputs. The enqueueing of succes-
sors is only possible, if the received heuristic is OPTIMISTIC, allowing the fine-tuning
of exactly which states to explore greedily.

Figure 3.12: Architecture of the Learning Algorithm

33

Algorithm 2: Adaptive Direct Hypothesis Construction algorithm
Input: Sp: a set of access sequences, D: a set of suffixes, an input alphabet Σ
Output: A Mealy machine H = (S, s0, Σ, Ω, δ, λ)

1 initialize hypothesis H, create a state for all elements of Sp

2 initialize a queue Q with the states of H
3 while Q is not empty do
4 s = dequeue state from Q
5 u = access sequence from s0 to s
6 for d ∈ D do
7 output, adaptionCommand = mq(ud)
8 if adaptionCommand is RESET then
9 Go to 1

10 end
11 set λ(s, d) = output

12 end
13 if exists an s′ ∈ S, where the output signature of s′ is the same as s then
14 reroute transitions of s to s′ in H
15 remove s from H
16 else
17 if adaptionCommand is OPTIMISTIC then
18 create and enqueue successors of s for every input in Σ into Q, if not

already in Sp

19 end
20 end
21 end
22 Remove entries of D \ Σ from λ
23 return H

3.2.4 Caching

Caching the previous answers to queries can be a straightforward way of reducing the
number of questions the oracle has to answer, specifically in the case of the DHC algorithm,
where each learning round makes every single query that the previous did. Thus we
introduced a caching layer between the oracle and the learning algorithm, which controls
which questions are forwarded to the oracle, and conversely, which can be automatically
answered.

In case of the user providing conflicting requirements, as proposed in Subsection 3.1.3,
the user needs to remove one or more requirements, some of which might already have
corresponding entries in the cache. Since query responses inferred through some models
(such as LTL expressions) are not backwards traceable, there might not be a way to
specify exactly which cached entries became outdated. In order to solve this issue, while
still enabling the user to provide conflicting requirements, the cache is reset every time
a conflict arises, as illustrated on Figure 3.13. Since the oracle stores the requirements,
this does not create extra questions to the user and in most cases can happen in the
background through communication of the cache and the oracle. The overview of the
resulting framework can be seen in Figure 3.14.

34

Figure 3.13: Overview of cache reset logic

Figure 3.14: Architectural overview

35

Chapter 4

Implementation

In order to validate our approach, an implementation was created. Of the subsequent
sections, Section 4.1 discusses the utilized tools, and Section 4.2 elaborates on the steps
taken to provide a proof of concept implementation of the proposed Interactive Learning
Entity.

4.1 Tooling

4.1.1 Eclipse Environment

Eclipse is a popular, open-source integrated development environment (IDE). It is mainly
used for Java-related application development, but also supports several other program-
ming languages. It consists of a base workspace and an extensible plug-in system. Using
this plug-in system, the develpment environment is easily customizable for different pur-
poses, such as programming in different programming lanugages, modeling (using the
Gamma Framework or Yakindu), or testing.

Eclipse Modeling Framework

The Eclipse Modeling Framework is an Eclipse-based modeling framework and code gen-
eration facility. It defines its own structured data model – called Ecore – for describing
models and providing runtime support for the models. Models are defined using the XML
Metadata Interchange (XMI) format, which is supported by various Eclipse plugins devel-
oped specifically for this purpose, as EMF is fully integrated into the Eclipse platform. It
provides an environment to numerous technologies, including server solutions, persistence
frameworks, UI and transformation frameworks.

4.1.2 Xtext Framework

Xtext is an open-source framework for developing (mostly) domain-specific languages
(DSLs). It has its own syntax for the definition of textual languages, resembling a context-
free grammar extended with mappings to the in-memory representations. Unlike standard
parser generators, it generates not only a parser, but also the abstract syntax tree (AST)
of the grammar, and also supports several other features, such as validation rules and edit-
ing support. This is because Xtext is based on the EMF project – the metamodels of the
defined languages are Ecore models –, and it is integrated into the Eclipse environment.

36

Xtend

Xtend is a general-purpose, high-level programming language based on Java. It is statically
typed, object-oriented and uses the type system of Java. Xtend programs are compiled to
Java code, thus allowing seamless integration with existing Java libraries. It provides nu-
merous convenient extensions to Java, such as dispatch methods, type inference, operator
overloading and extension methods.

4.1.3 Sirius

Sirius is an open-source project for developing graphical modeling languages. It is in-
tegrated into the Eclipse environment, enabing the specification of viewpoints for EMF
models, thus the creation of graphical views. In a Sirius workbench (editor), the elements
of the viewpoint specification models are mapped to individual EMF model elements, thus
allowing their graphical interpretation and editing. The whole viewpoint definition pro-
cedure is declarative, using OCL [15] (or Acceleo Query Language, AQL) expressions for
the traversal of the diagram elements when needed.

Sirius supports various representation types. Traditional Sirius diagrams consist mainly of
nodes and edges between nodes, suitable for models in which the position of the diagram
elements carries no meaning - like several structural modeling languages. It also supports
table and tree representations, and also sequence diagrams for modeling behavior - in
which the position on the diagram is also part of the semantics.

4.1.4 Owl

Owl [23] is a tool collection for ω-words, ω-automata and linear temporal logic. It provides
several algorithms for automata and LTL, supporting - among others - LTL expression
parsing and simplification, reading and writing ω-automata using the HOA format [7],
translation of LTL formula to ω-automata with several possible acceptance conditions,
and operations over ω-automata, such as product, SCC decomposition emptiness checks
and acceptance-condition transformations.

Through providing these algorithms, the library supports easy development and fast pro-
totyping in the area of LTL and automata, thus also enabling rapid concept validation.

4.1.5 LearnLib

LearnLib[19] provides a Java framework for active and passive automata learning, with
the versatile AutomataLib framework acting as a backbone of it. Learnlib provides imple-
mentations of several automata learning algorithms, as well as multiple equivalence and
counterexample decomposition algorithms.

4.1.6 Automata Learning Framework

In order to give a foundation to the implementation described in this thesis, a previously
created automata learning framework in [8] was extended upon. Since the framework was
implemented using the Java programming language, the high-level view seen in Figure 4.1
is represented as an UML class diagram of the packages and the relations between them,
essentially being an overview of the modularization of the framework.

37

The Learnable package contains the input formalisms, and the Hypothesis package contains
the output formalisms. Both are used by the teacher (Teacher package) and the learner
(Algorithm package). The Adapter package is used as an abstraction layer to separate the
algorithm and the teacher from the input formalism. Since automata learning algorithms
have no direct access to the system under learning, and generally operate in a black-box
way, the adapter package provides flexibility on what inputs can be used. As Figure
4.1 illustrates, no such adapter is used on the output layer, since Hypotheses are directly
accessed by the learning algorithms, and are constructed during the learning. The relations
between the packages (modules) are straightforward. Composition is used, to indicate,
that there is no Algorithm (learner) without a Teacher, there is no Teacher without an
Adapter, and there is no Adapter without an input, a Learnable, to adapt.
The advantage of such architecture is that the automata learning algorithms implemented
within can be agnostic to the formalism of the input provided. This results in high re-
usability of the core algorithms, while being easily extensible and adaptable to arbitrary
systems to infer.
The Framework includes multiple supported in- and output formalisms, and has multiple
implemented active automata learning algorithms – one of which is the Direct Hypothesis
Construction algorithm.

Figure 4.1: Structure and relations of the packages comprising the Automata Learning
Framework[8]

4.2 Interactive Learning Entity

To achieve our goal, we designed and implemented extensions to the previously presented
Automata Learning Framework resulting in a proof of concept implementation of the
proposed Interactive Learning Entity, which utilizes automata learning algorithms, and
is capable of handling a multitude of user-provided requirements as an input formalism.
The designed architecture can be seen on Figure 4.2. It is important to note the exten-
sion of components shown in Figure 4.1, while still upholding the behavioral structure
of the framework. As illustrated, an Oracle, a Learning Algorithm, and a Cache compo-
nent outline the architecture of the ILE. The following subsections elaborate upon these
components.

38

Figure 4.2: The architecture of the ILE.

4.2.1 The Oracle

The interactive learnable is the main part of the oracle component, responsible for
storing models created from the provided reqirements and answering questions of the
learning algorithm. In case of adaptive learning algorithms, it also provides information
about its ability to automatically explore the design space, thus enabling the optimization
of the number of questions the user has to answer.

The current implementation provides three commands: OPTIMISTIC, PESSIMISTIC
and RESET. In the current implementation, RESET command is only given, when a
partial model (or the corresponding requirement) is removed from the oracle. The current
heuristics for the individual partial model types are summarized in Table 4.1, with the
oracle issuing the OPTIMISTIC command if and only if at least one partial model returns
OPTIMISTIC, otherwise it returns PESSIMISTIC.

Partial Model Type Applied Heuristics

I/O Pair Always PESSIMISTIC, as per its definition it
cannot contain more information than the current answer.

Valid Trace OPTIMISTIC whenever the input in question is is
applicable and the trace is longer than the given input.

Invalid Trace Always PESSIMISTIC, as this kind of model (in general)
carries no exact information

LTL Expression Always PESSIMISTIC, as the information content of
(Büchi automaton) Büchi-automata is a non-trivial question.

Table 4.1: The current heuristics of the individual partial models for the OPTIMISTIC
and PESSIMISTIC adaption commands

The LTL parser is a simple parser implemented using the Xtext framework and an Ecore
metamodel. It is responsible for the introduction of the event semantics into the provided
expressions, as described in Subsection 3.1.2. It is also able to serialize these expressions
to different formats using Xtend-based M2T transformations for reasons such as possible

39

feedback to the user – especially operator precedence clarification – and operator reordering
– for compatibility with other LTL variants, especially that of Owl [23].

4.2.2 The Learning Algorithm

The Adaptive Learning Algorithm is an extension of an active automata learning algo-
rithm with the presented adaption commands. In our implementation, we extended upon
the framework’s DHC algorithm (working analogously to the one presented in Chapter 2),
and created the algorithm seen in Algorithm 2.

The Teacher and Adapter components were only extended so they can handle not only
outputs and counterexamples, but adaption commands as well, allowing the formalism-
agnostic interchange of information between the Oracle and the Learning Algorithm.

The implemented Adaptive Learning Algorithm depends on LearnLib[19] to decompose the
counter examples provided by the Teacher component utilizing the approach proposed by
Rivest and Schapire in [29].

The current implementation of the Adaptive Learning Algorithm infers a Mealy machine
as the hypothesized model, utilizing an Ecore metamodel of Mealy machines shown in
Figure B.1 and the Xtext grammar shown in in Listing B.1 in the Appendix.

4.2.3 Caching

The Memoizing Learnable is such a Learnable, that wraps around another Learnable
and memoizes its behavior. The caching is done via a radix tree, an example of which is
shown on Figure 4.3. The Memoizing Learnable monitors the adaption command given
by the Interactive Learnable, and on RESET deletes the current cache, re-iterates every
query to the oracle – except for the one causing the RESET – re-building the radix tree
so no conflicting information remains. It passes every command it receives through the
Adapter (and the Teacher) component to the Learning Algorithm.

40

Figure 4.3: Radix tree containing the input/output sequences of the Mealy machine
shown in Figure B.2 in the Appendix.

41

Chapter 5

Case Study: Pedestrian Crossing

This section demonstrates the capabilities and limitations of the framework. It presents
a problem commonly modeled using state-based models, which is complex enough to
demonstrate all aspects of the designed Interactive Learning Entity, but also simple enough
to solve - thus verify - only using some background knowledge and common sense. The
case study was inspired by the example seen in [27].

5.1 Introduction

The problem to solve is modeling a pedestrian crossing with a standard traffic light and a
pedestrian light as illustrated on Figre 5.1. As the traffic lights and the pedestrian lights
on the opposite sides of the crossing behave identically, we are going to model only one
instance of each device.

The traffic light is looping through the red-green-yellow-red sequence. As an extra, there
is an interrupted mode that may be triggered by the police, which results in blinking
yellow light. The pedestrian light loops through the red-green-red sequence, and turns
black when an interrupt arrives. A subsequent interrupt turns the lights back on, also
considering that the sytem must always be in a safe state - i.e. the lights must not allow
passage for both the pedestrians and the road vehicles at the same time.

Figure 5.1: Possible states of the system: normal operation (three from the left) and the
interrupted state (right)

42

5.2 Component Design

The previous subsection mentioned two components of the composite system: a traffic
light and a pedestrian light. To realize the safe state of the system, the components must
synchronize their behavior, justificating the existence of a third, controller component.
The traffic and pedestrian light components should have one input and one output port
– they are relatively simple – and the controller should have an input port for the police
and two output ports for the components.

The traffic light component has two possible inputs on its input port (TrafficControl)
- toggle and interrupt - and four outputs on its output port (TrafficDisplay) - red, green,
yellow and blinking yellow - as it appeared in the problem description.

The pedestrian light component has the same two inputs on its input port (Pedestrian-
Control) - toggle and interrupt - and three outputs on its output port (PedestrianDisplay)
- red, green, and black - as it appeared in the problem description.

The controller component controls the rhythm of the change of states and also in-
terrupts the other components when the police interrupt arrives. It has an input port
(’Police’) for the police interrupt and two output ports (’TrafficControl’ and ’Pedestrian-
Control’) - matching the input ports of the other components.

The described components and their connections are illustrated on Figure 5.2.

Figure 5.2: Components of the modeled system and their connections

The Expected Behavior of the Components

The components have been separated and their interfaces precisely defined, thus, we can
proceed to formulating behavior-related requirements. For instance, the traffic light com-
ponent must conform to the following – not exhaustive – list:

• The traffic light must loop through the sequence ’toggle/red toggle/green toggle/yel-
low toggle/red’ during normal operation.

• The traffic light must display blinking yellow signal when a police interrupt arrives
during normal operation.

• The traffic light must return to normal operation when a second interrupt arrives.

43

• The traffic light must display red signal when returning to normal operation.

• The traffic light must always display blinking yellow when interrupted.

A very similar list can be constructed for the pedestrian light component. The controller
component is slightly more complicated, as it may toggle or interrupt the other components
at the same time, so its alphabet shall contain separate elements for these cases.

5.3 Synthesizing the Components

Now we add the previously formulated requirements to the ILE, in formalisms that it is
able to interpret. In the following examples for the interaction of the user with the ILE,
’◦’ symbolizes the ILE and ’◃’ symbolizes the user (interface qualifications are omitted for
shorter and simpler expressions).

◦ Provide the requirements for component ’TrafficLight’:

◃ Valid Trace: toggle/red toggle/green toggle/yellow toggle/red

◃ LTL Expression: F(interrupt -> X(G(toggle) -> G(blinkingYellow)))

◃ Invalid Trace: interrupt/red interrupt/blinkingYellow

◃ LTL Expression: F(G(interrupt -> (blinkingYellow | red)))

... other components ...

After adding these requirements during the offline phase, the synthesis of the components
can proceed to the online, interactive phase. A possible run of the learning process can
be seen below.

44

◦ Learning component ’TrafficLight’

◦ Provide the output for sequence [toggle, interrupt]:

◃ Corresponding Output: blinkingYellow

◦ Provide the output for sequence [toggle, interrupt, interrupt]:

◃ Corresponding Output: red

◦ Provide the output for sequence [toggle, toggle, interrupt]:

◃ Corresponding Output: blinkingYellow

◦ Provide the output for sequence [toggle, toggle, interrupt, interrupt]:

◃ Corresponding Output: red

◦ Provide the output for sequence [toggle, toggle, toggle, interrupt]:

◃ Corresponding Output: blinkingYellow

◦ Equivalence Query (Figure C.1 in the Appendix)

◃ Counterexample: interrupt interrupt

◦ Provide the output for sequence [interrupt, interrupt, interrupt]:

◃ Valid Trace: interrupt/blinkingYellow interrupt/red interrupt/blinkingYellow inter-
rupt/red

◦ Provide the output for sequence [interrupt, interrupt, toggle]:

◃ Corresponding Output: green

◦ Provide the output for sequence [interrupt, toggle, interrupt]:

◃ Corresponding Output: red

◦ Equivalence Query (Figure 5.3b)

◃ Approved.

... other components ...

The same learning process can be seen on Listing C.1 in the Appendix, which presents
the inputs and outputs as they appeara on the command line interface.

5.4 The Learned Models

Now we can examine any differences between the expected and the learned models. Figure
5.3 presents the expected and the synthesized traffic light models.

45

(a) Expected

(b) Learned

Figure 5.3: The expected and the learned traffic light models

The structure of the models is clearly different, notably:

• The expected models contain hierarchical states, while the learned ones are ’flat’.

• The expected models also contain entry and exit actions, while the learned models
only contain actions on transitions.

• The expected models contain meaningful state names, while the learned ones only
have generated ones.

However, the models are behaviorally equivalent. Both models meet the requirements
stated in Subsection 5.2, and after careful examination, it is obvious that the only initial
states are different – as no entry actions are used in the learned models – and the transition
starting from the hierarchical state is separated into three different transitions.

The differences between the expected and learned pedestrian light components can be seen
on Figure 5.4. The differences are the similar to those of the traffic light models, as the
modeled behavior is also very similar.

The behavior of the controller component can be learned similarly. The expected and
the synthesized models can be seen on Figure 5.5. Note, that in addition to ’Po-
lice.interrupt’, the component also has an unqualified t input word. This represents
a timeout event the engineer must extend the serialized model with – but acts as a regular
input event during the learning.

After learning every component, the collection of the models is serialized as a Gamma
project, with the following files and contents:

• TrafficLight.gcd (the learned traffic light component)

46

(a) Expected

(b) Learned

Figure 5.4: The expected and the learned pedestrian light models

• PedestrianLight.gcd (the learned pedestrian light component)

• Controller.gcd (the learned controller component)

• CompositeSystem.gcd (connections between the component ports, as illustrated on
Figure 5.2)

• Interfaces.gcd (the interface definitions based on the ports of the components)

After extending the controller with statechart-specific elements (namely the timeout
event), the engineer can use the Gamma Framework[26] to check the correctness of the
system model or even generate implementation code.

47

(a) Expected

(b) Learned

Figure 5.5: The expected and the learned controller models

48

Chapter 6

Evaluation

This chapter presents the applicability of the designed framework, evaluates its current
capabilities and points out improvement possibilities. The main evaluation metric is the
number of queries each component makes - and how many of these reaches the user.

6.1 The Oracle

The main metric of the oracle is the number of behavior-related questions the engineer
has to answer during the course of the model synthesis (including the offline phase). This
is really difficult to measure, as the exact number of these questions depends on several
parameters: the complexity of the desired model, as well as the order, formalism, com-
plexity and skillful construction of the requirements formulated by the designing engineer.
Some of these parameters are difficult to measure by themselves, thus, the following com-
parison of the supported formalisms is rather an illustration of the current capabilities of
the framework through a realistic example.

For this demonstration, the traffic light component from the case study in Chapter 5 is
going to be used. We assume, that the user only adds requirements he perceives con-
ducive to the model synthesis and tries to formulate realistic – not unnecessarily complex
– requirements. We also assume, that the requirements the user provides cannot be con-
flicting.

The baseline of this experiment is the number of questions the user has to answer by always
providing the corresponding outputs to the questions of the ILE, as higher numbers are the
result of redundant requirements. We examine the cases when valid traces are also allowed
(and at least one must be used), then add (and require the use of) LTL expressions and
finally invalid traces. Sequence diagrams are excluded from this comparison. The results
can be seen on Figure 6.1.

49

Figure 6.1: Number of required interactions for modelling the traffic light component
gradually extending the set of allowed formalisms

The smallest number of queries was measured when both valid traces and LTL expressions
were used. The addition of invalid traces resulted in a slightly higher number, demon-
strating that this formalism is difficult to apply and useful mostly for its other benefits.

6.2 The Learning Algorithm

The runtime of the Adaptive Learning Algorithm depends on the adaption commands
provided.

The Direct Hypothesis Construction algorithm, which, as theorized and proved in [30]
and [25], terminates after at most n3mk + n2k2 membership, and n equivalence queries,
where n is the number of states of the canonical acceptor of the system under learning, k
is the size of the input alphabet and m is the longest counterexample. The utilized suffix
handling proposed by Rivest and Schapir[29], adds only one suffix to the set of suffixes
in each learning round, so m = 1[30]. As opposed to the traditional DHC, the Adaptive
DHC can have more than n learning rounds (but not more than n equivalence queries)
as a result of the RESET command. Let r be the total number of reset commands the
algorithm receives. As seen in [30], the set of suffixes is bound by k + mn, or in this case,
k+1∗(n+r). Since the number of transitions needed to consider never exceed nk[30], and
the maximum number of equivalence queries is n, the maximum number of membership
queries of the Adaptive Learning Algorithm is (k + n + r) ∗ nk ∗ n =n2k2 + n3k + n2kr.

When PESSIMISTIC commands are used, the number of equivalence queries get closer
to n, but the number of new membership queries only increase by k. Conversely, OP-
TIMISTIC commands reduce the number of equivalence queries needed, but increase the
membership queries in a single learning round.

50

6.3 Caching

The implemented memoization prevents the redundant queries – seen in Section 6.2 –
reach the oracle by caching each new query in a radix tree. If the cache contains the
outputs received for c number of input sequences, the cache reset induced by the RESET
command creates c − 1 queries to the oracle (one for every sequence except for the one
that induced the RESET).

51

Chapter 7

Conclusion

This chapter provides concluding remarks and possibilities for further improvement.

7.1 Contribution

The achieved results of this thesis can be seen in the following.

• We designed a new, semi-automated methodology to support system design.

– We defined a multi-phase workflow to implement this methodology.
– We defined formalisms for declarative requirement types: corresponding out-

puts, valid and invalid traces, sequence diagrams and LTL expressions.
– We enabled refinement-based requirement specification by introducing conflict

handling among conflicting requirements.
– We proposed a solution to the infeasibility of equivalence validation.

• We designed an architecture to support the proposed methodology.

– We created the approach of adaptive learning using heuristics to determine
inferable information.

– We reconciled different modeling formalisms using an automata theory based
approach.

– We designed an adaptive variant of the Direct Hypothesis Construction algo-
rithm.

– We introduced caching to tackle the ineffectiveness of automatized information
extraction.

• We created a proof of concept implementation of the proposed architecture in order
to validate our approach.

• We demonstrated the capabilities and limitations of the implementation and the
approach through a case study.

• We evaluated the components of the implementation.

52

7.2 Future Work

The possible future work opportunities are discussed in the following.

The proposed interactive learning approach and its proof of concept implementation re-
quires further analysis in practical model-driven applications. To support further analysis
a graphical user interface could also be implemented to enable the convenient design of
systems and system components.

Additional features can be introduced to the model synthesis, such as onboarding further
requirement formalisms to the framework, such as CTL expressions and invalid correspond-
ing outputs for extended flexibility in design, introducing high-level statechart elements,
such as timeout events, hierarchical states etc. into the learning, allowing the specifica-
tion of initial models and patterns to guide the result of the model synthesis and adding
priorities and scopes to requirements to facilitate refinement-based modeling.

New model synthesis approaches can be integrated through introducing extensions to the
LTL formalism in order to support model quality optimization as seen in [4].

To optimize the learning and to evaluate different approaches, different automata learning
algorithms, such as L*[5] and TTT[18] could be re-designed to support adaption.

53

Bibliography

[1] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-
1990, pages 1–84, 1990. DOI: 10.1109/IEEESTD.1990.101064.

[2] ISO/IEC 14977:1996 Information Technology - Syntactic Metalanguage - Extended
BNF, 1996.

[3] Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen, and Frits Vaandrager.
Automata learning through counterexample guided abstraction refinement. In Inter-
national Symposium on Formal Methods, pages 10–27. Springer, 2012.

[4] Shaull Almagor and Orna Kupferman. High-quality synthesis against stochastic envi-
ronments. CoRR, abs/1608.06567, 2016. URL http://arxiv.org/abs/1608.06567.

[5] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87 – 106, 1987. ISSN 0890-5401. URL https://doi.org/
10.1016/0890-5401(87)90052-6.

[6] Dana Angluin, Timos Antonopoulos, and Dana Fisman. Strongly unambiguous büchi
automata are polynomially predictable with membership queries. In 28th EACSL An-
nual Conference on Computer Science Logic (CSL 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[7] Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan
Křetínský, David Müller, David Parker, and Jan Strejček. The hanoi omega-automata
format. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided Ver-
ification, pages 479–486, Cham, 2015. Springer International Publishing.

[8] Aron Cs. Barcsa-Szabo. Supporting system design with automaton learn-
ing algorithms, 2019. URL https://diplomaterv.vik.bme.hu/en/Theses/
Automatatanulo-algoritmusok-vizsgalata.

[9] Majzik István Bartha Tamás. Biztonságra tervezés és biztonságigazolás for-
mális módszerei. Akadémiai Kiadó, 2019. ISBN 978 963 454 291 9. DOI:
10.1556/9789634542919. URL https://mersz.hu/kiadvany/534.

[10] Jamieson M Cobleigh, Dimitra Giannakopoulou, and Corina S Păsăreanu. Learning
assumptions for compositional verification. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 331–346. Springer,
2003.

[11] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud,
Etienne Renault, and Laurent Xu. Spot 2.0 — a framework for LTL and ω-
automata manipulation. In Proceedings of the 14th International Symposium on
Automated Technology for Verification and Analysis (ATVA’16), volume 9938 of

54

http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://arxiv.org/abs/1608.06567
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://diplomaterv.vik.bme.hu/en/Theses/Automatatanulo-algoritmusok-vizsgalata
https://diplomaterv.vik.bme.hu/en/Theses/Automatatanulo-algoritmusok-vizsgalata
http://dx.doi.org/10.1556/9789634542919
https://mersz.hu/kiadvany/534

Lecture Notes in Computer Science, pages 122–129. Springer, October 2016. DOI:
10.1007/978-3-319-46520-3_8.

[12] Sanford Friedenthal, Regina Griego, and Mark Sampson. Incose model based systems
engineering (mbse) initiative. 01 2009.

[13] Dimitra Giannakopoulou, Zvonimir Rakamarić, and Vishwanath Raman. Symbolic
learning of component interfaces. In International Static Analysis Symposium, pages
248–264. Springer, 2012.

[14] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive model checking. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 357–370. Springer, 2002.

[15] Object Management Group. Object Constraint Language – Version 2.4. Technical
report, Object Management Group, 2014.

[16] John Hopcroft. An n log n algorithm for minimizing states in a finite automa-
ton. In Zvi Kohavi and Azaria Paz, editors, Theory of Machines and Com-
putations, pages 189 – 196. Academic Press, 1971. ISBN 978-0-12-417750-5.
DOI: https://doi.org/10.1016/B978-0-12-417750-5.50022-1. URL http://
www.sciencedirect.com/science/article/pii/B9780124177505500221.

[17] Falk Howar and Bernhard Steffen. Active Automata Learning in Practice, pages
123–148. Springer International Publishing, Cham, 2018. ISBN 978-3-319-
96562-8. DOI: 10.1007/978-3-319-96562-8_5. URL https://doi.org/10.1007/
978-3-319-96562-8_5.

[18] Malte Isberner, Falk Howar, and Bernhard Steffen. The ttt algorithm: A redundancy-
free approach to active automata learning. In Borzoo Bonakdarpour and Scott A.
Smolka, editors, Runtime Verification, pages 307–322, Cham, 2014. Springer Interna-
tional Publishing. ISBN 978-3-319-11164-3.

[19] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learnlib. In
Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided Verification,
pages 487–495, Cham, 2015. Springer International Publishing. ISBN 978-3-319-
21690-4.

[20] Nafiseh Kahani, Mojtaba Bagherzadeh, and James R. Cordy. Synthesis of state
machine models. In Proceedings of the 23rd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS ’20, page
274284, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450370196. DOI: 10.1145/3365438.3410936. URL https://doi.org/10.
1145/3365438.3410936.

[21] A.G. Kleppe, J. Warmer, J.B. Warmer, and W. Bast. MDA Explained: The
Model Driven Architecture : Practice and Promise. Object technology. Addison-
Wesley, 2003. ISBN 9780321194428. URL https://books.google.hu/books?id=
nC6oS5xQGukC.

[22] Dexter C. Kozen. Myhill—Nerode Relations, pages 89–94. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1977. ISBN 978-3-642-85706-5.
DOI: 10.1007/978-3-642-85706-5_16. URL https://doi.org/10.1007/
978-3-642-85706-5_16.

55

http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-417750-5.50022-1
http://www.sciencedirect.com/science/article/pii/B9780124177505500221
http://www.sciencedirect.com/science/article/pii/B9780124177505500221
http://dx.doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
http://dx.doi.org/10.1145/3365438.3410936
https://doi.org/10.1145/3365438.3410936
https://doi.org/10.1145/3365438.3410936
https://books.google.hu/books?id=nC6oS5xQGukC
https://books.google.hu/books?id=nC6oS5xQGukC
http://dx.doi.org/10.1007/978-3-642-85706-5_16
https://doi.org/10.1007/978-3-642-85706-5_16
https://doi.org/10.1007/978-3-642-85706-5_16

[23] Jan Kretínský, Tobias Meggendorfer, and Salomon Sickert. Owl: A Library for
ω-Words, Automata, and LTL. In Shuvendu K. Lahiri and Chao Wang, edi-
tors, Automated Technology for Verification and Analysis - 16th International Sym-
posium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings,
volume 11138 of Lecture Notes in Computer Science, pages 543–550. Springer,
2018. DOI: 10.1007/978-3-030-01090-4_34. URL https://doi.org/10.1007/
978-3-030-01090-4_34.

[24] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16(1963):83–94, 1963.

[25] Maik Merten, Falk Howar, Bernhard Steffen, and Tiziana Margaria. Automata learn-
ing with on-the-fly direct hypothesis construction. In Reiner Hähnle, Jens Knoop,
Tiziana Margaria, Dietmar Schreiner, and Bernhard Steffen, editors, Leveraging Ap-
plications of Formal Methods, Verification, and Validation, pages 248–260, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-34781-8.

[26] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró.
The gamma statechart composition framework: design, verification and code gen-
eration for component-based reactive systems. In Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion Proceeedings, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 113–116, 2018. DOI:
10.1145/3183440.3183489.

[27] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
gamma statechart composition framework: Design, verification and code generation
for component-based reactive systems. In 2018 IEEE/ACM 40th International Con-
ference on Software Engineering: Companion (ICSE-Companion), pages 113–116.
IEEE, 2018.

[28] A. Nerode. Linear automaton transformations. Proceedings of the American Math-
ematical Society, 9(4):541–544, 1958. ISSN 00029939, 10886826. URL http:
//www.jstor.org/stable/2033204.

[29] Ronald L Rivest and Robert E Schapire. Inference of finite automata using homing
sequences. Information and Computation, 103(2):299–347, 1993.

[30] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active
Automata Learning from a Practical Perspective, pages 256–296. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-21455-4.
DOI: 10.1007/978-3-642-21455-4_8. URL https://doi.org/10.1007/
978-3-642-21455-4_8.

56

http://dx.doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4_34
http://dx.doi.org/10.1145/3183440.3183489
http://www.jstor.org/stable/2033204
http://www.jstor.org/stable/2033204
http://dx.doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8

Appendix A

LTL Expressions

A.1 The Syntax of the LTL Expressions

LTLExpression = ArrowExpression;
ArrowExpression = (OrExpression ’->’ ArrowExpression) |

(OrExpression ’<->’ ArrowExpression) |
OrExpression;

OrExpression = (OrExpression ’|’ AndExpression) |
AndExpression;

AndExpression = (AndExpression ’&’ UntilExpression) |
UntilExpression;

UntilExpression = (FutureGloballyExpression ’U’ UntilExpression) |
FutureGloballyExpression;

FutureGloballyExpression = (’F’ NextExpression) |
(’G’ NextExpression) |
NextExpression;

NextExpression = (’X’ PrimaryExpression) |
PrimaryExpression;

PrimaryExpression = (’(’ LTLExpression ’)’) |
(’!’ PrimaryExpression) |
LiteralExpression;

LiteralExpression = AtomicProposition |
’true’ |
’false’;

AtomicProposition = ’^’?(’a-z’|’A-Z’|’_’) (’a-z’|’A-Z’|’_’|’.’|’0-9’)*;

Listing A.1: Full syntax of the LTL expressions using the EBNF notation [2]

57

Appendix B

Implementation Details

Figure B.1: Ecore metamodel describing Mealy machines

State 0 State 1

ack0/send1

null/send0

ack1/send0 ack0/send1

null/send1

ack1/send0

Figure B.2: Mealy machine describing the behavior of the alternating bit protocol

58

MealyMachine returns MealyMachine:
’MealyMachine’
’{’
’initialState’ initialState=State
’states’ ’{’ states+=State ("," states+=State)* ’}’
’inputAlphabet’ inputAlphabet=Alphabet
’outputAlphabet’ outputAlphabet=Alphabet
’transitions’ ’{’ transitions+=Transition ("," transitions+=Transition)* ’}’
’}’;

State returns State:
{State}
’State’
name=EString;

Alphabet returns Alphabet:
’Alphabet’
’{’
’characters’ ’{’ characters+=EString ("," characters+=EString)* ’}’
’}’;

Transition returns Transition:
’Transition’
’{’
’input’ input=EString
’output’ output=EString
’sourceState’ sourceState=[State|EString]
’targetState’ targetState=[State|EString]
’}’;

EString returns ecore::EString:
STRING | ID;

Listing B.1: Xtext grammar describing Mealy machines.

59

Appendix C

Pedestrian Crossing

Unknown output for input sequence: [control_toggle, control_interrupt]
Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>I
Please provide the expected output:
>TrafficDisplay.blinkingYellow

Unknown output for input sequence: [control_toggle, control_interrupt, control_interrupt]
Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>I
Please provide the expected output:
>TrafficDisplay.red

Unknown output for input sequence: [control_toggle, control_toggle, control_interrupt]
Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>I
Please provide the expected output:
>TrafficDisplay.blinkingYellow

Unknown output for input sequence: [control_toggle, control_toggle, control_interrupt, control_
interrupt]

Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>I
Please provide the expected output:
>TrafficDisplay.red

Unknown output for input sequence: [control_toggle, control_toggle, control_toggle, control_
interrupt]

Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>I
Please provide the expected output:
>TrafficDisplay.blinkingYellow

Equivalence Query. Please provide a counterexamle:
Control.interrupt Control.interrupt

Unknown output for input sequence: [control_interrupt, control_interrupt, control_interrupt]
Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>V
Please provide a valid trace:

60

>Control.interrupt/TrafficDisplay.blinkingYellow Control.interrupt/TrafficDisplay.red Control.
interrupt/TrafficDisplay.blinkingYellow Control.interrupt/TrafficDisplay.red

Unknown output for input sequence: [control_interrupt, control_interrupt, control_toggle]
Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red, trafficDisplay_yellow,

trafficDisplay_green]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>I
Please provide the expected output:
>TrafficDisplay.green

Unknown output for input sequence: [control_interrupt, control_toggle, control_interrupt]
Ambiguous output: [trafficDisplay_blinkingYellow, trafficDisplay_red]
Would you like to specify the output through an (I)O pair, an (L)TL expression, a (V)alid Trace or

an I(N)valid Trace?
>I
Please provide the expected output:
>TrafficDisplay.red

Equivalence Query. Please provide a counterexamle:
>

Listing C.1: A possible run of the learning process

Figure C.1: Equivalence query of the incomplete traffic light component

61

	Kivonat
	Abstract
	Introduction
	Background
	Model-Based Engineering
	Foundations of Automata Theory
	Fundamentals of Formal Language Theory
	Properties of Deterministic Automata
	Relations of Formal Languages and Automata
	Minimization of Automata

	Automata Learning
	Direct Hypothesis Construction10.1007/978-3-642-34781-819

	Specifying Requirements
	Requirements
	Linear-Time Temporal Logic

	Overview of the Approach
	Overview of the Methodology
	Component and Interface Definition
	Requirement Types
	Conflicting Requirements
	Checking the Correctness of the Synthesized Model
	The Resulting System Model

	Overview of the Architecture
	The Cost of Interaction
	The Oracle
	The Learning Algorithm
	Caching

	Implementation
	Tooling
	Eclipse Environment
	Xtext Framework
	Sirius
	Owl
	LearnLib
	Automata Learning Framework

	Interactive Learning Entity
	The Oracle
	The Learning Algorithm
	Caching

	Case Study: Pedestrian Crossing
	Introduction
	Component Design
	Synthesizing the Components
	The Learned Models

	Evaluation
	The Oracle
	The Learning Algorithm
	Caching

	Conclusion
	Contribution
	Future Work

	Bibliography
	LTL Expressions
	The Syntax of the LTL Expressions

	Implementation Details
	Pedestrian Crossing

