
Budapest University of Technoloy and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Optimization of Incremental Queries in the Cloud

Scientific Student’s Association Report

Author:

József Makai

Advisors:

Gábor Szárnyas
dr. István Ráth

dr. Ákos Horváth

2014

Contents

Kivonat 3

Abstract 4

1 Introduction 5
1.1 Context . 5
1.2 Problem Statement and Requirements . 5
1.3 Objectives and Contributions . 6
1.4 Structure of the Report . 7

2 Background and Related Work 8
2.1 A Motivating Case Study, the Train Benchmark 8
2.2 4store . 10
2.3 The Rete Algorithm . 11

2.3.1 Overview of the Rete Algorithm . 11
2.3.2 Data Representation in the Rete Algorithm 12
2.3.3 Worker Nodes of the Rete Algorithm 12

2.4 IncQuery-D . 14
2.4.1 Architecture . 14
2.4.2 The Coordinator . 15
2.4.3 Remote Message Sending with Akka 15

2.5 Query Optimization for the Rete Algorithm 15
2.5.1 Rete Layout Optimization . 16
2.5.2 Rete Allocation Optimization . 16

2.6 Related Work . 17

3 Overview 19
3.1 Allocation in Distributed Query Optimization 19

3.1.1 Allocation Challenges . 20
3.1.2 Multi-Dimensional Optimization . 23

3.2 The IncQuery-D Allocator . 23
3.2.1 Extended IncQuery-D Architecture 24
3.2.2 The Allocation Optimizer Subsystem 25
3.2.3 Runtime Monitoring Subsystem . 31
3.2.4 Heuristics in the Optimization . 34

4 Formalization of the
Allocation Optimization Problems 38
4.1 The Communication Minimization Problem 38

4.1.1 Formalization of the Communication Minimization Problem 39
4.1.2 The Complexity of the Communication Minimization Problem . . . 40

1

4.2 The Cost Minimization Problem . 44
4.2.1 Formalization of the Cost Minimization Problem 44
4.2.2 The Complexity of the Cost Minimization Problem 45

5 Elaboration 47
5.1 Algorithms for the Problems . 47

5.1.1 OR-Tools API . 47
5.2 Case Study: Evaluation of the SwitchSensor Query 49

5.2.1 The Query . 49
5.2.2 Communication Minimization . 50
5.2.3 Cost Minimization . 55

5.3 IncQuery-D IDE . 57
5.3.1 The Allocation Optimizer Subsystem 58
5.3.2 IncQuery-D IDE Lifecycle Operations 60

6 Evaluation of the Optimization 63
6.1 Purpose of the Benchmark . 63
6.2 Results and Analysis . 64

6.2.1 Expected Results . 64
6.2.2 Measurement Results . 64
6.2.3 Result analysis . 65

6.3 Threats to Validity . 67

7 Conclusion 68
7.1 Summary of Contributions . 68

7.1.1 Scientific Contributions . 68
7.1.2 Practical Accomplishments . 68

7.2 Achieved Results . 69
7.3 Limitations and Future Work . 69

Acknowledgement 70

Bibliography 73

2

Kivonat

Az adatbázis- illetve modell-lekérdezések alapvető szerepet játszanak az adatvezérelt alkal-
mazásokban. Hatékony kiértékelésük kulcsa a végrehajtás optimalizációja. A modellvezé-
relt szoftvertervezés (model-driven engineering, MDE) folyamatai nagymértékben támasz-
kodnak a modellek hatékony lekérdezésére. Azonban a modellezendő rendszerek komple-
xitásának növekedése a modellek több 10-100 milliós méretűre növekedését okozta, így a
modell-lekérdezések és transzformációk komplexitása gyakran jelentős skálázhatósági ki-
hívást jelent a jelenlegi MDE eszközök számára.

A skálázhatósági problémára megoldást nyújtanak az elosztott, felhőalapú modell-
lekérdező rendszerek. Ilyen rendszer a Hibatűrő Rendszerek Kutatócsoport által fejlesztett
IncQuery-D inkrementális gráf lekérdező keretrendszer, melynek célja, hogy biztosítsa a
nagy modellek feletti közel lineárisan skálázódó lekérdezéseket. Az elosztott környezetben
történő lekérdezés optimalizáció a klasszikus egygépes adatbázis kezelő és modell-lekérdező
rendszerekhez képest új aspektusokat és kihívásokat rejt az egyes erőforrások korlátai, az
adatok hálózaton történő átvitele és az elosztott rendszer költségei miatt.

Dolgozatom célja, hogy bemutassak és az IncQuery-D elosztott modell és gráf lekérdező
rendszerhez kidolgozzak olyan optimalizációs módszereket, amelyek a modellek mérete és a
lekérdezések jellege alapján heurisztikák segítségével képesek allokálni a rendszer számítási
csomópontjait a rendelkezésre álló erőforrásokra úgy, hogy az több különböző szempont
szerint optimalizált végrehajtást eredményezzen.

Az optimalizáció rendszer teljesítményére gyakorolt hatását mérési eredményekkel kí-
vánom igazolni, melyek áttekintésében segítséget nyújt az általam készített monitorozó
rendszer. A dolgozat további fontos eredménye, hogy mind a monitorozó, mind az optima-
lizáló módszerek az IncQuery-D rendszerhez tartozó fejlesztői környezetbe teljes mértékben
integráltak.

3

Abstract

Database and model queries are the foundations of data-driven applications and query
optimization is essential for their efficient evaluation. Fast model queries are of primary
importance in the workflows of model-driven software engineering (MDE). As modelled
systems are significantly increasing in complexity, big software models have already reached
and in many cases exceeded 10-100 million model elements in size, therefore traditional
MDE tools often encounter scalability issues because of the complexity of queries and
transformations. These issues limit the efficiency of the development process.

Distributed, cloud-based model query engines aim to solve the scalability issues.
IncQuery-D is an incremental graph query framework which aims to provide scalable
queries over large graph models and is developed by the Fault Tolerant Systems Research
Group. However these systems require query optimization in order to evaluate queries effi-
ciently. Query optimization in distributed environments brings new aspects and challenges
– including the capacity limit of resources, network communication between computers and
the cost of the infrastructure – compared to the traditional single workstation model and
database query engines.

In this report, we aim to address the challenges and provide a implementation in the
IncQuery-D distributed model and graph query engine. These methods take account of
the model size and consider the nature of the query to use heuristics. These heuristics are
important in the allocation process of the computation nodes to the available resources in
order to provide optimized query evaluation by different aspects.

We wish to justify the impact of the optimization techniques on the query engine per-
formance by measurements. These results can be viewed by the IncQuery-D monitoring
system that we created for the query engine. Further achievement is that the monitor-
ing system and the optimization facilities are fully integrated to the IncQuery-D’s own
development environment.

4

Chapter 1

Introduction

1.1 Context

Model-driven software engineering (MDE) plays an important role in the development
processes of critical embedded systems. Advanced modeling tools provide support for
a wide range of development tasks such as requirements and traceability management,
system modeling, early design validation, automated code generation, model-based testing
and other validation and verification tasks.

Scalability issues in MDE However, models representing sensor data, reverse engi-
neered software models (e.g. abstract syntax trees of existing source code) and geospatial
models can contain well over 109 modeling elements [34]. Furthermore design and system
models (e.g. AUTOSAR [4]) are also exceeding the more millions elements in size. Mod-
eling toolchains are facing scalability challenges and these issues limit the efficiency of the
development process.

IncQuery-D: Incremental query evaluation in the cloud The scalability problems
originate from the facts that design models constantly increase in size and the complexity of
the adherent MDE tools has also evolved. The cloud infrastructure and big data databases
(“scaling out”) offers scalability solutions for the storage of big models. On the other hand
these technologies require an extending solution which supports the incremental evaluation
of complex queries with typical MDE workloads. To solve this challenge, IncQuery-D
[36] is an incremental graph and model query framework which aims to provide scalable
queries over large graph models. The contributions of this report are extensions of earlier
results, focused on the allocation optimization of the distributed system in order to provide
better resource utilization and runtime performance.

1.2 Problem Statement and Requirements

In the context of distributed systems, resource allocation is a persistent problem. Al-
location is basically a sizing problem of the distributed system, which aims to provide
resources for the different components in a feasible way. In many practical cases, it is
difficult to predict the amount of resources required for the system to work and to allocate
the components of the system the way to provide scalability. In today’s cloud computing
environments where computing resources are publically available, one may also wish to
consider other factors (such as cost) for the optimization. The problems discussed in this
report are related to the sizing and allocation problems of the IncQuery-D distributed
query engine.

5

Allocation problems in IncQuery-D The IncQuery-D distributed incremental
query system also holds several difficult allocation problems. The distributed compu-
tation nodes and processes of the system run memory intensive tasks and generate high
volume network traffic as they exchange data. Therefore we have to separate these tasks
efficiently in order to avoid the overuse of the available resources, but we also have to
ensure reasonable utilization to reduce the costs of the computation infrastructure.

Furthermore, the allocation can have serious impact on the runtime performance of the
system. We have to avoid the thrashing of the query evaluation due to memory exhaustion,
and minimize the amount of expensive network communication in order to maximize the
runtime performance of the system and reduce query processing time.

Our proposed solution In order to address these challenges, we propose a complex,
multi-dimensional optimization approach. Our proposal should provide stable and reli-
able allocation variants which avoid the overuse of the available resources. It also supports
optimization according to different aspects, like infrastructure cost and network communi-
cation. Finally, we strive to ensure that the optimization is automated as much as possible,
in order to reduce the amount of necessary human input to a minimum.

1.3 Objectives and Contributions

Heuristics-driven Combinatorial Optimization Methods We aim to provide com-
binatorial optimization based solutions for the allocation problems, which use heuristics-
driven methods for the estimation of process memory usage and network communication.
The provided algorithms can find solutions were the different optimization objective func-
tions (overall network communication, overall computation infrastructure cost) have op-
timum, while the resources (especially the memory) of the computers are not exhausted.
Therefore we solve multi-dimensional combinatorial optimization problems to take both
the network communication and overall cost into account in order to provide good runtime
performance for the system while the cost is kept as low as possible.

Telemetry Data for Resource Usage Estimation We recognized the importance of
system runtime observability in regards of the allocation optimization, since the heuris-
tics are based on system telemetry data such as memory usage and network connection
parameters. Therefore the creation of a runtime monitoring subsystem is a precondition
for the allocation optimization problems.

Contributions

∙ In order to reach the proposed objectives, the first task was the design and imple-
mentation of a runtime monitoring subsystem for IncQuery-D, which collects all
the relevant performance data from the system.

∙ We also created a web-based monitoring dashboard in order to visualize the system
components and their relevant metrics. With this facility, the engineer can precisely
observe the behaviour of the system in real time.

∙ As the optimization problems require estimations for the memory consumption of
processes and their network communication, we elaborated heuristics-based methods
for precise predictions.

∙ In order to be able to create algorithms for the allocation omptimization problems,
we created mathematical formalizations for the problems and analyzed them in terms

6

of computational complexity. Furthermore we provide formal proofs regarding their
complexity class, in order to justify the choice of constraint satisfaction-based [39]
methods (instead of dedicated algorithms). We also implemented these CSP-based
algorithms.

∙ As a further contribution, the runtime monitoring and allocation optimizer sub-
systems were fully integrated to the IncQuery-D framework and to its integrated
development environment.

∙ Finally, we tested the impacts of the solutions on the system performance with
benchmark measurements.

1.4 Structure of the Report

The report is structured as follows. Chapter 2 introduces the background technologies for
this report’s contributions and examines the related work. Chapter 3 provides an overview
of the problems and the motivation for allocation optimization. Furthermore it introduces
the new components of the IncQuery-D framework related to the allocation. Chapter 4
provides the formalization of the allocation optimization problems and proves their com-
putational complexity. Chapter 5 proposes the CSP-based solutions for the optimiaztion
problems. This chapter also brings case studies for the allocation optimization problems
and their solutions. Furthermore this chapter will introduce the integrated allocation opti-
mizer and runtime monitoring subsystem in regards of the case studies. Chapter 6 presents
measurement results about the effect of allocation optimization. Chapter 7 concludes the
report and presents our future plans.

7

Chapter 2

Background and Related Work

The purpose of this section is to introduce the background technologies and works of this
report’s contributions. Finally, we take a look at the related work.

2.1 A Motivating Case Study, the Train Benchmark

The Train Benchmark [30] was designed at the Fault Tolerant Systems Research Group
to measure the efficiency of model queries and manipulation operations in different tools.
The Train Benchmark is primarily targeted for typical MDE workloads, more specifically
for well-formedness validations.

In a typical MDE model validation workload, the user validates the model which contains
some errors. According to the results, the user tries to fix some (but typically not many)
of the errors by the modification of model elements and revalidates the model. The
revalidation determines the impact of the change and provides feedback to the user. The
Train Benchmark programatically simulates this typical workload with relatively small
changes.

The Train Benchmark is built around an imaginary railroad system. The system’s
network is composed of typical railroad items, including signals, segments, switches and
sensors. The complete metamodel is shown in Figure 2.1. A subgraph of an instance
model is shown in Figure 2.2.

Segment

Segment_lengthA:AEInt

Trackelement

Switch

Switch_actualStateA:ASwitchStateKind

RouteSignal

Signal_actualStateA:ASignalStateKind

SwitchPosition

SwitchPosition_switchStateA:ASwitchStateKind

Sensor

<<enumeration>>
SignalStateKind

SignalStateKind_STOP
SignalStateKind_FAILURE
SignalStateKind_GO

<<enumeration>>
SwitchStateKind

PointStateKind_FAILURE
PointStateKind_LEFT
PointStateKind_RIGHT
PointStateKind_STRAIGHT

TrackElement_sensor 0..x

Switch_switchPosition0..x

Route_entry1

Route_switchPosition0..x

Route_exit1
Route_routeDefinition

2..x

SwitchPosition_switch 1

SwitchPosition_route1

Sensor_trackElement
0..x

TrackElement_connectsTo

0..x

Figure 2.1. Metamodel of Train Benchmark.

The benchmark defines four distinct phases, also shown in Figure 2.3.

8

Figure 2.2. A subgraph of a railroad system visualized.

1. Load: load the serialized instance model to the database.

2. First validation: execute the well-formedness query on the model.

3. Transformation: modify the model.

4. Revalidation: execute the well-formedness query again.

RouteSensor

Description. The RouteSensor well-formedness constraint requires that all sensors that
are associated with a switch that belongs to a route must also be associated directly with
the same route. Therefore, the query (Figure 2.4) looks for sensors that are connected to
a switch, but the sensor and the switch are not connected to the same route.

Goal. This pattern checks for the absence of circles, so the efficiency of the join and the
antijoin operations is tested.

Transformation. Randomly selected invalid sensors are disconnected from the switch,
which means that the constraint will no longer apply (Figure 2.6).

Read Check

Metamodel

Instance model

Query specification

Edit Recheck!

Batch validation Incremental validation

Figure 2.3. Workflow in Train Benchmark.

SwitchSensor

Description. The SwitchSensor well-formedness constraint requires that every switch
must have at least one sensor connected to it. Therefore, the query (Figure 2.5) checks
for switches that have no sensors associated with them.

9

TrackElement_sensor

route_routeDefinition SwitchPosition_switch

Route_switchPosition

switch: Switch

sp: SwitchPositionroute: Route

sensor: Sensor

Figure 2.4. Graph pattern of the RouteSensor Query.

Goal. This query checks whether an object is connected to a relation. This pattern is
common in more complex queries, e.g. it is used in the RouteSensor queries.

Transformation. Random elements are selected from the set of invalid switches and
are connected to newly created sensors (Figure 2.7).

TrackElement_sensor

switch: Switch

sensor: Sensor

Figure 2.5. Graph pattern of the SwitchSensor Query.

TrackElement_sensor

route_routeDefinition SwitchPosition_switch

Route_switchPosition

switch: Switch

sp: SwitchPositionroute: Route

sensor: Sensor
«del»

Figure 2.6. Modification in the RouteSensor Query.

2.2 4store

4store [1] [27] is an open-source, distributed triplestore [21] written in C. 4store is primarily
applied for semantic technology projects.

Architecture 4store was designed to work in a cluster with high-speed networks. 4store
server instances are capable of discovering each other using the Avahi configuration pro-
tocol [5]. 4store offers a command-line and an HTTP server interface.

Data Model 4store’s data model is an RDF [18] graph. It supports the RDF/XML [17]
input format.

Sharding 4store distributes the RDF resources evenly across the cluster. 4store also
supports replication by mirroring tuples across the cluster.

Query Language and Evaluation 4store uses the Rasqal RDF Query Library [16] to
supports SPARQL [20] queries.

10

TrackElement_sensor

sensor: Sensor

sensor: Sensor

TrackElement_sensor
«new»

«new»

switch: Switch

Figure 2.7. Modification in the SwitchSensor Query.

2.3 The Rete Algorithm

In the following, we provide an overview of the Rete algorithm [26]. The algorithm has pri-
mary importance in the context of this report as IncQuery-D is built on the foundations
of this algorithm.

Numerous algorithms were invented for the purpose of incremental pattern matching.
Mostly, these algorithms originate from the field of rule-based expert systems. One of the
most well-known is the Rete algorithm, which creates a propagation network. The network
stores the partial matches found in the graph.

2.3.1 Overview of the Rete Algorithm

The basis of the algorithm is an asynchronous network of communicating nodes, which is
shown in Figure 2.8. This is essentially a dataflow network. First, the network computes
the set of pattern matches in the graph. The main feature of the algorithm is that it is
capable of incrementally maintaining the match set by propagating update messages. In
order to do that, each network node stores the computed partial results in a cache and
will maintain this cache according to the changes. Creating new graph elements (vertices
or edges) results in positive update messages, while removing graph elements results in
negative update messages.

W
o
rk

e
r

n
o

d
e

s

P
ro

d
u

c
ti
o

n

n
o

d
e

s

In
p
u
t

n
o

d
e

s

Worker node

Production node

Input node

Worker node

Input nodeInput node

Worker node

Production node Production node

Worker node

Figure 2.8. The structure of the Rete propagation network.

11

There are three types of nodes in the network:

∙ Input nodes are responsible for indexing the model by type, they store the different
edge and vertex types of the graph. They are also responsible for creating and
propagating the update messages to the worker nodes.

∙ Worker nodes perform operations on the output of their parent node(s) and propa-
gate the results. The worker nodes store partial query results in their own memory.

∙ Production nodes are terminators that provide an interface for fetching the query
results.

2.3.2 Data Representation in the Rete Algorithm

Definition 1 (Tuple). A tuple is an ordered list of elements. It has arity, which is the
number of elements (attributes) in the tuple. The items in a tuple are referenced by their
index. The first element has an index of 0. Tuples can be ⟨16, 34, 8⟩ or ⟨1, ′hello′, true⟩. �

In order to use tuples for graph pattern matching, the vertices and edges in the graph
have to be mapped to tuples. We presume that each vertex in the graph has a unique
identifier.

Mapping Vertices to Tuples The following solution can be used to represent the
vertices with tuples. We create a tuple for each vertex with its identifier and its attributes
⟨𝑖𝑑, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒2, . . .⟩. We will store the tuples of each vertex type in different
relations. For example to store Route 2.1 typed vertices we can use the relation 𝑅𝑜𝑢𝑡𝑒 =
{⟨1⟩, ⟨3⟩, ⟨4⟩, . . .}

Mapping Edges to Tuples Edges are mapped in a straightforward way: each (di-
rected) edge is represented by a ⟨source vertex id, target vertex id⟩ tuple.

2.3.3 Worker Nodes of the Rete Algorithm

In the following we present some of the most important types of worker nodes and briefly
describe their operations. Their operations come from relational algebra, which can be
found in any computer science textbook related to relational databases [38]. However, we
do not discuss their relational algebraic form in detail here.

Alpha Nodes

Alpha nodes have one input slot. They usually filter the content of the parent node
according to some criteria. The incoming relation is denoted by r and the outgoing
relation is denoted by t. Hereby we present the most important Alpha nodes in regards of
this report.

Check Node The Check node implements the selection operation of the relational alge-
bra. It filters the incoming tuples which do not satisfy a certain condition. This condition
is usually one of the mathematic relations (=, ̸=, ≥, ≤, . . .). As an example we can use the
Check node to express that one attribute of a graph vertex should be equal with 20. This
node type does not require memory in order to work as it will only filter and propagate
the incremental changes. The notation of the Check node is shown in Figure 2.9.

12

σ

r

t

Figure 2.9. Rete Check node.

Trimmer Node The Trimmer node implements the projection operation of the rela-
tional algebra. It removes the appropriate attributes of the incoming tuples. It also filters
duplicate tuples because even if the incoming relation contained unique tuples, the new
relation with fewer attributes can contain duplicates. The notation of the Trimmer node
is shown in Figure 2.10.

π

r

t

Figure 2.10. Rete Trimmer node.

Beta Nodes

Beta nodes have two input slots, the primary (p) and the secondary (s). Beta node
implementations typically store the input relations in indexers. This will be required for
their incremental operations. The relation representing the result tuples is denoted with
t.

Join Node The Join node implements the theta join operation of the relational algebra.
It matches the corresponding tuples from its parent relations. In our context, the most
common use of this node is to match the source and target vertices of the edges. This
node type requires memory for its incremental operation as the new (or removed) tuples of
the changeset should be matched with all foregoing tuples in order to get correct results.
The notation of the Join node is shown in Figure 2.11.

p s

t

Figure 2.11. Rete Join node.

Antijoin Node The Antijoin node looks for tuples in its primary (p) relation which do
not have a matching pair in the secondary (s) relation. This operation is useful for finding

13

missing edges and other negative conditions in the graph. This node also stores its parent
relations for the incremental operation capability. The notation of the Antijoin node is
shown in Figure 2.12.

p s

t

Figure 2.12. Rete Antijoin node.

2.4 IncQuery-D

IncQuery-D [29] [36] is an incremental distributed graph and model query engine. Its
aim is to provide scalable query processing for large graphs and models with more 10 -
100 million elements. Here we give a brief introduction of the system.

2.4.1 Architecture

The high-level architecture of IncQuery-D is shown in Figure 2.13.

Database Cluster

DB Server 1

IncQuery-D Runtime

Server 1 Server n

Distributed Indexer
Model access adapter

Distributed query evaluation network

Database
shard 1

DB Server n

Database
shard n

Transaction
Results

Notifications

Data manipulation

Elementary queries and modifications

Figure 2.13. Architecture of IncQuery-D.

14

IncQuery-D’s architecture consists of three layers, the storage layer, the distributed
model indexer and adapter, the distributed query evaluation network (based on the Rete
propagation network).

The storage layer is a distributed database which is responsible for persisting the model.
The primary technology for storing the graph models is the 4store [1] triplestore.

The distributed model indexer and adapter layer is responsible for maintaining type-
instance indexes so that all instances of a given type (both edges and graph nodes) can
be enumerated quickly. It is also responsible for providing a unique identifier for each
model element. Finally, as model change notifications are required for incremental query
evaluation, this layer is also responsible for accepting change notifications and propagating
model changes to the query evaluation layer. This layer achieves this by providing a facade
for model manipulation operations.

The distributed query evaluation network is responsible for evaluating the query and
providing the results incrementally. To achieve this, this layer implements a distributed
version of the Rete propagation network (Section 2.3). The importance of the layer is
the capability of distributing the query evaluation to more processes and computers of a
cluster in order to provide scalability.

2.4.2 The Coordinator

It is a general concept for distributed systems to have a coordinator process which super-
vises, coordinates and controls the operations of the system.

In the IncQuery-D system the coordinator is responsible for the creation and super-
vision of the Rete network and its Rete nodes. It also helps in the coordination of the
distributed query evaluation. Finally, the query results can be retrieved with the help of
the coordinator from the Production nodes, once they are calculated.

2.4.3 Remote Message Sending with Akka

In distributed systems it is essential that the distributed processes communicate with
each other through the network. In the IncQuery-D system we use the Akka messaging
framework [2]. We present the most important relations between IncQuery-D and Akka
as the report will have closely related parts to the remote communication of the system.

The most important concept of Akka is the actor. Actors can communicate with each
other, both locally and remotely through the network. The distributed Rete nodes of
IncQuery-D will be implemented as (remote) communicating actors. The coordinator
will be an actor as well. The actors (except the coordinator) will run in so-called Akka
microkernels [3]. Basically, these are containers which run in a separate Java Virtual
Machine. The microkernel provides a convenient way for deploying and running actors. It
will be the responsibility of the coordinator to create the appropriate actors for the Rete
nodes in the microkernels.

2.5 Query Optimization for the Rete Algorithm

Query optimization is important part of every data query engine. Its aim is to provide
short query evaluation time as the user expects to see the results immediately. Therefore
it tries to predict the fastest possible execution plan for the queries.

15

2.5.1 Rete Layout Optimization

There are also several optimization opportunities in case of the Rete algorithm. One of
them is the layout optimization of the Rete network. Consider the following simple Rete
network with a Join and a Check node depicted in Figure 2.14. Suppose that the Check
node filters some mutual attributes used by the parent Join node. In that case the filtering
by the Check node could happen before the Join operation like it is shown in Figure 2.15.
This way the Join node should deal with fewer amount of data tuples causing faster query
evaluation.

Input Input

σ

100 000 200 000

Join 100 000 × 200 000
tuples

Figure 2.14. Rete layout without Optimization.

Input Input

σ
100 000 200 000

Join 10 000 × 50 000
tuples

σ
50 00010 000

Figure 2.15. Rete layout with Optimization.

Note that this was just a simple example for the Rete layout optimization opportunities.
There are sophisticated algorithms [40] created for that problem. However, this report will
not discuss this problem as we aim to solve orthogonals problems.

2.5.2 Rete Allocation Optimization

Optimization of the Rete algorithm has other aspects as well. If we think about the fact
that the Rete network will be distributed to different processes on different computers,
we can realize that the allocation problem is not trivial. By allocation we mean the
assignment of Rete nodes to processes and the mapping of processes to host computers as
it is depicted in Figure 2.16 and 2.17.

One could derive the conclusion that there are a lot of allocation variants available even
in case of a small Rete network. These different variants may cause different effects on the
performance of the system. So rather than doing the allocation in an ad-hoc way, there
is a valid motivation for creating optimized allocation. This allocation problem will be
proposed in details in Chapter 3.

16

Input Input

σ π

Production

Input σ Inputπ

Production

Process1 Process2

Process3

Process4Inter-process
communicatuion

Figure 2.16. Allocation of Rete nodes to processes.

Input σ Inputπ

Production

Process1 Process2

Process3

Process4

Machine1 Machine2
Inter-machine

communication

Figure 2.17. Allocation of processes to machines.

2.6 Related Work

The following paragraph with its references is based on the IncQuery-D paper [29].

A wide range of special languages have been developed to support graph based repre-
sentation and querying of computer data. The Resource Description Framework (RDF)
[18] is developed to support the description of instances of the semantic web, assuming
sparse, ever-growing and incomplete data. Semantic models are built up from triple state-
ments, which can be queried using the SPARQL [20] graph pattern language with tools
like Sesame [19] or Virtuoso [13]. Property graphs provide a more general way to describe

17

graphs by annotating vertices and edges with key-value properties. They can be stored in
graph databases like Neo4j [12] which provides the Cypher query language. Even though
big data storage (usually based on MapReduce [25]) provides fast object persistence and
retrieval, query engines realized directly on these data structures do not provide dedi-
cated support for incremental query evaluation. In the context of event-based systems,
distributed evaluation engines were proposed earlier, scaling up in the number of rules
rather than in the number of data elements. As a very recent development, Rete-based
caching approaches have been proposed for the processing of Linked Data (bearing the
closest similarity of our approach). INSTANS [33] uses this algorithm to perform complex
event processing (formulated in SPARQL) on RDF data, gathered from distributed sen-
sors. Diamond [32] evaluates SPARQL queries on Linked Data, but it lacks an indexing
middleware layer so their main challenge is efficient data traversal.

Up to our best knowledge, none of the aforementioned works had related work in regards
of the novel approach of the allocation optimization problem proposed in this report.

18

Chapter 3

Overview

Query optimization is of key importance for fast query evaluation and all mature query
engines must provide solutions for it. This especially applies for query engines that address
scalable query evaluation. However, optimization in a distributed environment has several
new aspects and challenges. In this chapter, we overview these challenges and also discuss
our proposed solution.

3.1 Allocation in Distributed Query Optimization

Distributed systems are built in order to distribute computation tasks and their resource
usage between computers of a cluster. It is usually not efficient or not possible to place all
computation task to one process on one machine. Therefore the computation tasks have
to be assigned to different processes and these processes have to be allocated to different
computers. However, the different allocation alternatives cause significant performance
difference compared to each other.

Process 1 Process 2 Process 3

fast network connection

slow network connection

heavy traffic heavy traffic

overuse

huge communication
overhead

A B

C

Figure 3.1. Overview of allocation challenges for distributed query
engines.

Figure 3.1 depicts the challenges of allocation in the distributed architecture of
IncQuery-D. In this particular scenario, we allocate process 1 and process 2 to ma-
chine 𝐴. It would make sense to allocate process 3 there as well, but this would exhaust
the resources of machine 𝐴. Therefore, we can allocate it to either machine 𝐵 or 𝐶. On
the other hand, we know that the communication link between 𝐴 and 𝐵 is faster than the

19

one between 𝐴 and 𝐶, and we expect intense traffic between process 2 and 3. Therefore,
we place process 3 to machine 𝐵 in order to avoid huge communication overhead.

The architecture of IncQuery-D is an asynchronous dataflow network where the nodes
of the network, the Rete nodes, run memory- and CPU-intensive computation tasks. The
purpose of the allocation optimization is the maximization of the dataflow network’s
throughput. In order to reach that, the possible bottlenecks of the processing should
be avoided by preventing significant resource overuse. On the other hand the expensive
remote communication between processes should be reduced as much as possible.

Distributed query engines generate intense network traffic as the distributed computa-
tion nodes and processes propagate the partial results of the query. This traffic can some-
times be very high, reaching 10-100 million bytes, depending on the size of the queried
database. If we think in the cloud environment then the computers may be in different
data centers or sometimes even on different continents. Furthermore, on public networks
the available bandwidth can be used by others as well. So if we send vast amount of data
on a slow connection link, then we can experience huge overhead in the query processing
time.

3.1.1 Allocation Challenges

The problems proposed above are important part of the IncQuery-D allocation process
as well. To better understand these problems in the allocation process of IncQuery-D,
it will be discussed in details with the following example.

Assume we have the following 3 machines with the given memory capacities to use for
the system.

Local server
in Budapest

Local server
in Budapest

Cloud server
in Dublin

2

5 51
1

1

4 GB Memory 3 GB Memory

5 GB Memory

Figure 3.2. Sample infrastructure.

The numbers on the edges describe the communication overhead of the connections
between the computers. Those will be taken into account as multipliers for the amount of
communication between processes.

Minimizing Network Traffic

In order to justify the rationale of using such an overhead multiplier number, we conducted
measurements with the messaging framework used in IncQuery-D, Akka [2]. We had two
machines in this measurement. Both machines were in Budapest, one was a local machine
and the other was created in a private cloud service. We measured the communication

20

time with increasing amount of tuples between processes on the same host machines and
between processes on different remote hosts.

Definition 2 (Process). In the context of IncQuery-D a process means the Java Vir-
tual Machine and all its corresponding utilities as the IncQuery-D system is implemented
on top of the Java platform. �

Definition 3 (Normalized tuple). Given a set tuples (with the same arity), normal-
ized tuple is defined as the product of the tuple arity and the number of tuples. Using
normalized tuple assumes that we have the same type of data in the tuples. We use the
concept of normalized tuple as a simplifying assumption. �

Example 1 (Normalized tuple). If we have 10000 tuples with two numbers (⟨1, 2⟩)
then normalized tuple will be 20000.

We have created a plot from the measurement results which are shown in Figure 3.3.
Next to the curves, we also put their linear regression approximations. The purpose of
this regression curve is to show that the transmission time can be extremely well approxi-
mated by the normalized tuples and a constant multiplier as the correlations between the
corresponding curves are very close to 1. Therefore the communication overheads between
machines can be indeed very well characterized by these numbers.

The importance of these overhead numbers lies in their ratio compared to each other.
This way, we can say that the local communication has 5.2 times better performance
parameters compared to the remote.

65.28 307.8 637.62
4017.16 8509.72

87382.28

771.44

3741.06 7695.2
38645.83 80466.14

447069.2

y = 0.0017x
R² = 0.9835

y = 0.0089x
R² = 0.9993

1

10

100

1000

10000

100000

1000000

50000 500000 5000000 50000000

Ti
m

e
 (

M
ill

is
e

co
n

d
s)

Normalized Tuples

Time to send large data

Same Host Remote Host Linear Regression (Same Host) Linear Regression (Remote Host)

Figure 3.3. Measurements of large volume data traffic.

This measurement also justifies another important fact: the communication between
remote machines has significant overhead compared to the communication on the local
interface of a machine.

Both axes of the above plot have logarithmic scale. One may observe that there is a
shift between the curves. This means that there is approximately one order of magnitude
difference (it lowers a bit as the number of normalized tuples increases) between them. It
can also be observed that at 5 millions of tuples the difference is already 34 seconds and it
increases dramatically after that. So it shows that network traffic minimization is indeed
a valid optimization target.

Note that above results contain data serialization time as well.

21

1.282

1.55 1.59 1.66

0

0.5

1

1.5

2

0 20000000 40000000 60000000 80000000 100000000Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Amount of Tuples

Time to send data in the same process

Same process

Figure 3.4. Time to send data in the same process.

We also measured the communication time in the same process.
As it is shown in Figure 3.4, it is fast as the communication happens through the mem-

ory and the data is not serialized. With this fact in mind we can ignore the overhead of
communication within the same process so we can focus on the inter-process communica-
tion. This will be an assumption from now on.

Avoiding Local Resource Exhaustion

The Problem The first problem of the allocation is the assignment of computation
nodes, the Rete nodes to JVMs. The input of the problem is the constructed Rete network
of the query. The purpose of this problem is the determination of the appropriate number
of processes the query will run in, and furthermore the allocation of Rete nodes to the
processes. The output of the problem will be the processes with their estimated memory
consumption and the Rete nodes assigned to them. Furthermore, we will have the inter-
process communication edges with their estimated intensity.

JVM Memory Properties As the Rete nodes run memory intensive computation
tasks we have to keep some facts in mind about the JVM memory in order to operate the
system efficiently. Most of the time it is not recommended to use too much (above 8–16
GB) heap space for one JVM. In case of such large heap space consumption the garbage
collector could run quite frequently in order to try free some space. However, when the
heap is large then the runtime of the garbage collection will take more time as it has to
scan larger object nets. As a conclusion if the heap consumption of a process gets close
to its limit then we can experience thrashing. This means that the garbage collector runs
in the biggest part of the time and finally the process will be shut down. Rete nodes of
IncQuery-D in case of big models can consume 8 GB heap space or more, so allocating
more of them to one JVM would case serious performance degradation.

22

3.1.2 Multi-Dimensional Optimization

So far we discussed the potential of network communication minimization in the con-
text of IncQuery-D allocation optimization. However, the optimization may have other
dimensions than the network communication.

For the IncQuery-D allocation optimization process we decided to support the cost of
the distributed system as another optimization dimension. The reason behind cost-based
optimization is that the system can be used in public cloud services as well, where we have
to pay for the used resources. Therefore, the user can decide between the optimization
targets but the other dimension will be taken into account as well.

If we have more than one optimization dimension, then the Pareto front [14] of the
solutions can be drawn. The Pareto front represents the characteristics of the solution
space considering the different optimization dimensions.

A sample Pareto front is shown in Figure 3.5. One can observe that the curve describes
a negative correlation between communication and the cost as if we want to improve on
one dimension the other has to be worse.

co
st

communication

Pareto front / characteristic of solutions

cost(x2) < cost(x1)

x1

x2

communication(x1) < communication(x2)

unreachable solution

least communication

least cost

Figure 3.5. Pareto front in IncQuery-D multi-dimensional opti-
mization.

Pareto front is interesting in the context of the IncQuery-D allocation because the
found solution is lexicographically further optimized in the other dimension as well. For
example if the user has chosen the communication as the primary optimization target, there
are possibly more optimal solutions with the particular value. Therefore the optimizer
looks further for a solution within that solution set where the cost is minimal. This
concept is shown in Figure 3.6.

In case of IncQuery-D allocation optimization the Pareto front does not always look
like as the above ones because there is no real negative correlation between the dimensions.
The allocation sometimes has a globally optimal solution which means that a solution is
feasible where both the communication and cost dimensions have minimum. Figure 3.7
illustrates such a scenario.

3.2 The IncQuery-D Allocator

The purpose of this section is to overview our proposed solution. We first discuss how
the IncQuery-D architecture had to be extended with the components, required by

23

communication

1. least communication

co
st

2. least communication
with least cost

Figure 3.6. Lexicographical optimization.

communication

co
st

Figure 3.7. Pareto front when the global optimum exists.

allocation optimization, including a new subsystem called Monitoring to gather telemetry
data necessary to drive the optimizer. Then we show the algorithmic approach to the
optimization problem. Finally we discuss the heuristical prediction methods used by the
optimization.

3.2.1 Extended IncQuery-D Architecture

The purpose of this section is to introduce the allocation related new components of the
IncQuery-D system.

Figure 3.8 shows the extended architecture. IncQuery-D Tooling is a bundle of tools
integrated into a development environment. The purpose of these tools is the convenient
usage of the IncQuery-D system by providing different administration facilities for con-
trol and monitoring, and development facilities for query evaluation. Tooling is a client
side component, and runs on the machine of the user.

One important part of the tooling is the query editor. IncQuery-D has a high-level
graph pattern language and the queries can be formulated above a metamodel. The
metamodel describes the structure of the data (e.g. the types of nodes and edges) and
is defined in RDF [18]. After the query is written, the compiler transforms it to a Rete
recipe. Basically, the Rete recipe is an abstract model of the query which describes the

24

Database Cluster

DB Server 1

IncQuery-D Runtime

Server 1 Server n

Indexer
Model access adapter

Distributed query evaluation network

IncQuery-D Tooling

Allocation

Infrastructure

Rete recipe

mapping

Lifecycle Operations

Installation, Deployment,
Shutdown

Monitoring Web UI

Control

Monitoring

Database
shard 1

DB Server n

Database
shard n

Transaction

IncQuery-D
Graph Pattern Language

Editor

Figure 3.8. Extended Architecture of IncQuery-D.

layout of the Rete network with the Rete nodes and their connections. This workflow is
illustrated in Figure 3.9.

query
(.rdfiq)

metamodel (.rdf)

recipe
(.recipe)

RDF-IncQuery Compiler

Figure 3.9. Compilation of the query.

The allocation component has the role of mapping the aforementioned Rete recipe to
the available infrastructure. The functionality of this component will be further discussed
in Section 3.2.2.

The Tooling component also provides commands for the lifecycle operations of the
system. The user can install the IncQuery-D system to the server machines, queries can
be deployed, their processing can be started, and finally the system can be shutdown.

The last important part of the tooling mentioned here is the Monitoring Web UI. This
user interface provides monitoring data about the runtime state of the system. The Mon-
itoring subsystem will be also discussed in more details in Section 3.2.3.

3.2.2 The Allocation Optimizer Subsystem

Allocation Strategy

Grouping of Rete Nodes From the perspective of allocation there are two groups of
Rete nodes. The first group consists of the Memory nodes, which possess memory caches
and are considered as memory-intensive nodes. The memory consumption of these nodes

25

can grow large with the rise of the model size. These node types are the Input node, the
Production node and the Beta nodes.

The other group contains the Non-Memory nodes, which do not require memory caches
in order to work and are not considered as memory-intensive nodes. These node types are
the Alpha nodes.

The purpose of this distinction is the separation of memory intensive computation nodes.

Rules of the Allocation The Rete node allocation is done by some simple rules. The
main guideline is that the memory intensive Rete nodes should be separated from each
other, therefore processes can contain only one Memory node. This way we avoid having
processes with too large memory space. The prediction of process memory consumption
will also be easier as we have to calculate with the possible memory increase (as the size
of the model can grow) of one node only. Therefore, we can create memory efficient and
good performance processes.

On the other hand, we want to minimize the number of processes used, therefore we
will create exactly as many processes as many Memory nodes we have, one for each node.

The other important rule considers the placement of Non-Memory Rete nodes. As
those do not consume much memory, they can be placed to processes with Memory nodes.
This is reasonable since we assumed that in-process communication is fast. The general
property of Non-Memory nodes is that they can produce less (or equal) data as output
than they got as input. Therefore those are allocated to the same processes as their parents
in order to reduce inter-process communication. If there are more of them in a sequence,
then the whole sequence – until a Memory node is found – is allocated to the same process
as this particular Memory node.

The application of these rules are shown in Figure 3.10.

Input Input

σ π

Production

Input σ Inputπ

Production

2000 MB 1600 MB

2200 MB

2000 1600

1000 1200

2000 MB

2000

1000 1200

2000

2000 MB 1600 MB

No memory No memory

2200 MB

2000 MB

Figure 3.10. Allocation of sample Rete net to processes.

26

Estimations In this allocation phase there is another critical problem. Once the pro-
cesses are given, we have to calculate the estimated memory consumption of the processes
and the estimated traffic volume for the inter-process communication edges as these are
important inputs for the next phase of the allocation. Therefore, we must try to predict
these values according to statistics about the data. The heuristic methods used for this
problem were discussed in Section 3.2.4. Now we assume that these parameters are already
given.

Process Allocation Problem

If the processes and inter-process communication edges are given, then the next phase
of the allocation is the mapping of processes to the available machines. However, the
allocation of processes has resource related constraints as it was mentioned before. The
expected memory usage of the processes on one machine should not exceed the memory
capacity of this particular machine. With the satisfaction of these constraints, usually
there are still a lot of allocation variants available for an allocation algorithm.

Figure 3.11 shows one possible solution with the deployment of processes to machines.
If the processes are mapped to machines then the weight of inter-process communication
edges can be determined by the multiplication factor coming from the communication
overhead of the concerned hosts. With all of these information given, the total weight of
communication in the system can be calculated.

Input σ Inputπ

Production

1000 1200

2000

2000 MB 1600 MB

2200 MB

2000 MB

Local server
in Budapest

Local server
in Budapest

Cloud server
in Dublin

4 GB

3 GB

5 GB

2 · 1000

2 · 1200

5 · 2000

 communication = 14400

Figure 3.11. Sample allocation to server machines.

Figure 3.12 shows another possible allocation alternative.
One may observe the differences between the two configurations. The first difference is

that in the latter, not all machines are used. The other difference is that the aggregate
weight of communication is less in the case of the second configuration.

As it was mentioned earlier, the allocation has the functionality of mapping the Rete
network to the available infrastructure. However, we saw in Section 3.1.1 that the allo-
cation entails important optimization opportunities. Therefore the Allocation Optimizer
subsystem has the role of providing an optimal allocation for a particular query.

27

Input σ Inputπ

Production

1000 1200

2000

2000 MB 1600 MB

2000 MB

1500 MB

Local server
in Budapest

Cloud server
in Dublin

4 GB

5 GB

5 · 1000

5 · 1200

1 · 2000

 communication = 13000

Figure 3.12. Better allocation of the configuration.

Inventories In order to create an allocation, the user has to provide information about
the available infrastructure besides the queries. In the IncQuery-D terminology this is
called inventory. The inventory is basically a resource description language and it has a
metamodel (Figure 3.13) defined in EMF (Eclipse Modeling Framework) [8].

Figure 3.13. Metamodel of inventory description language.

The main element of the metamodel is the Inventory class. It has a connection string
attribute which defines the database cluster IncQuery-D will work with. The Inventory
can contain 1 machine set that can be either an InstanceSet or a TemplateSet. The dif-
ference is that the InstanceSet can contain MachineInstance objects and the TemplateSet
can contain MachineTemplate objects. While MachineInstance represents an existing host
computer, the MachineTemplate is basically a template. These templates are supported
for user convenience as in a cloud infrastructure people can reserve more machines of
different types. This way the user can select the appropriate templates and can run the
allocation in order to find out how many instances should be reserved later.

The machines have different parameters like memory capacity and the number of CPUs.
The mentioned communication overhead numbers between machines can be defined in
this model as well. These numbers can be described with a matrix-style notation, the

28

convention being that the numbers have to be given for each machine in the order they
were defined in the model.

Figure 3.14 and Figure 3.15 show sample instance models with machines and templates.

inv : Inventory

connectionString = "fourstore://trainbenchmark_cluster"

: InstanceSet

m2 : Machine

cost=5
CPUs=2

identifier=1
ip="192.168.241.135"

memorySize=8000
memoryUnit=MB

overheads=1,2

m2 : Machine

cost=8
CPUs=2

identifier=2
ip="192.168.241.136"

memorySize=12
memoryUnit=GB
overheads=2,1

Figure 3.14. Inventory model with machines.

inv : Inventory

connectionString = "fourstore://trainbenchmark_cluster"

: TemplateSet

m1 : MachineTemplate

cost=5
CPUs=2

identifier=1
memorySize=8000
memoryUnit=MB

overheads=1,2

m2 : MachineTemplate

cost=8
CPUs=2

identifier=2
memorySize=12
memoryUnit=GB
overheads=2,1

Figure 3.15. Inventory model with machine templates.

IncQuery-D Tooling also provides an editor for an inventory model that is shown in
Figure 3.16.

If the user has provided the inventory model and has written the query then the al-
location can be invoked. The Allocation Optimizer component takes the generated Rete
recipe containing the structure of the Rete network and the inventory model containing
the available resources as inputs. On the other hand, we would like to optimize the al-
location, therefore the Allocation Optimizer also requires statistics about the data the
queries will be run against. The values of the statistics come from the model containing
databases. The statistics contain the cardinality of model elements coming from the Input
nodes in order to know the amount of data which will enter the system. According to
these statistics, the optimizer will use heuristics to estimate the memory consumption of
JVMs and the intensity of data propagation between the connected Rete nodes.

In the allocation process, the Allocation Optimizer has to decide according to its inputs,
which process a particular Rete node should belong to and which machine the processes will

29

Figure 3.16. Inventory model editor.

be started on in order to get an optimal layout of the system. Therefore this component
implements algorithms for the aforementioned allocation problems in order to solve them.
The elaboration of this component will be discussed in details and illustrated with case
studies in Chapter 5. The workflow can be inspected in Figure 3.17.

Allocation
Optimizer

+

Inventory
description Rete recipe

Architecture
description

Cloud infrastructure

Install/Deploy IncQuery-D to the Cloud

IncQuery-D allocation

Rete
node

Process

Process

?

?

Machine Machine

? ?

Data statistics

Figure 3.17. The Allocation Optimizer subsystem.

The output of the optimizer is an architecture description model. This model contains
the aforementioned Rete recipe and the mappings to processes and machines.

Once the architecture description is created, the system can be deployed to the host
computers, the processes will be started, the Rete nodes will be created in the appropriate
processes and the query processing can be started.

30

3.2.3 Runtime Monitoring Subsystem

The purpose of the Monitoring subsystem is to provide real-time performance data about
the IncQuery-D system as it can be extremely useful for us to see the runtime utilization
of the resources and the behaviour of processes. It had an important role in the creation
of heuristics (Section 3.2.4) for the allocation optimization problems.

The relation of the Monitoring subsystem to the IncQuery-D Runtime system is shown
in Figure 3.18.

IncQuery-D
Monitoring ServerREST/JSON

interface

IncQuery-D Runtime

Machine

Machine

OS agent

JVM

JVM

Coordinator

Rete

JVM agent

JVM

Rete

JVM agent

Rete

OS agent

JVM

Rete

JVM agent

Data collection
interface

JavaScript
Web Client

System Overview,
Monitoring data,

Query results

« monitoring data»

«monitoring data»

«query results»

«get data»

Figure 3.18. The IncQuery-D Monitoring subsystem.

The heart of the Monitoring subsystem is the central monitoring server. The task of
this server is to collect the monitoring data from all sources and make them available on a
convenient REST interface. The primary client of the server is the web based monitoring
dashboard. This is a thin client web application created for the human inspectors of the
system. This application and the related resources are hosted on the web server component
of the monitoring server as static contents.

Infrastructure monitoring One of the most important tasks of the monitoring is the
collection of host machine resource utilization and process behaviour data. The collected
metrics for a machine include CPU, memory utilization and disk, network usage. The
data is provided by an agent installed on each host. The collected metrics for Java Virtual
Machine processes are CPU, memory usage and garbage collection related data. This data
comes from a JVM agent created in each process. Figure 3.19 depicts what we can see on
the monitoring user interface.

31

Figure 3.19. The Infrastructure on the Web UI.

In the above picture only the most important metrics are shown in little gauges next
to the monitored components. The other metrics of the components become available in
a heatmap-like view if we click on their names. The heatmap view is designed in order to
be able to spot overused resources or high-intense resource usages easily. Figure 3.20 and
3.21 show these views.

Figure 3.20. Operating System metrics Heatmap on the Web UI.

32

Figure 3.21. Process(JVM) Heatmap on the Web UI.

Rete node monitoring The other important task is the monitoring of Rete nodes.
The most important characteristics of the Rete nodes are their memory usage including
their collection sizes (if they have any) and the data propagation they do during the query
evaluation. These characteristics are of key importance in the heuristics. The Rete layout
of a query and the related metrics are shown in Figure 3.22.

Figure 3.22. The Rete layout on the Web UI.

33

Query Results view The last important view on the monitoring web UI is the Query
Results view. This view shows the actual results of a query.

Figure 3.23. Query results on the Web UI.

3.2.4 Heuristics in the Optimization

As it was mentioned before, the Allocation Optimizer requires the memory consumption of
processes and the inter-process data traffic volume in order to be able to optimally allocate
the processes to the available machines. However, these values can not be known prior
to the runtime operation of the system. Therefore we have to use heuristic methods in
order to make predictions for them. As the good approximation of these values is critical
for the allocation optimization, we created measurements with the Runtime Monitoring
Subsystem and used statistical methods in order to find good heuristics for our purposes.
We will also use the Runtime Monitoring Subsystem in Chapter 5 to justify the correctness
of these heuristics with examples.

Estimation of Process Memory Consumption

The processes of the IncQuery-D system are Java Virtual Machines. In order to create
good heuristics for the memory consumption we have to keep some facts about the JVM
memory in mind. The largest part of the memory is the heap space for dynamic memory
allocations. Before the version 8 of Java, the maximum size of the JVM heap space must
be set when we start the process and the JVM will not be able to exceed this limit during
its lifetime. Therefore it is critical to allocate enough memory for the process. On the
other hand we can not allocate too much memory for one process because that way the
utilization of resources would be bad.

34

The JVM heap memory has two dominant parts, the so-called Old Gen Space and the
Eden Space. The Old Gen Space contains the long-living objects which are needed by
the process for a long period of time. For the processes of IncQuery-D these are the
tuples stored by the Rete nodes. The Eden Space contains the short-living objects. The
space of these objects is frequently freed by the Garbage Collector. These objects are the
temporary objects produced by the code.

The memory usage characteristics of a process can be analyzed by profiler tools. Figure
3.24 shows a sample profiling with the YourKit[23] profiler. The typical memory usage
of the JVM can be observed, the orange coloured space is the Old Gen Space. The blue
coloured space is the Eden Space, it has typical sawtooth characteristics as these objects
are created and destroyed frequently.

With the memory consumption heuristics we have to predict the size of the Old Gen
Space and the size of the Eden Space used by our processes.

Figure 3.24. Memory Profiling.

We have also made measurements with the Runtime Monitoring Subsystem of
IncQuery-D. We measured the heap memory consumption of the processes with dif-
ferent normalized tuples stored by their Rete nodes. We have created a scatterplot from
the results which is shown in Figure 3.25. In order to create heuristics for the memory con-
sumption, we fit a linear regression curve and determined a linear equation which will be
the base of our prediction. The equation of this particular curve is 𝑦 = 0.0003 · 𝑥 + 52.969.
Basically this means that we need 0.0003 megabytes memory to store each normalized tu-
ple, this will be the consumption of the Old Gen Space. The 52.969 shift is the estimated
size of the Eden Space.

As we can see, there are some points above the regression curve. On the other hand, we
also have to consider the increase of the model size. Therefore we allocate an additional
40% heap memory for the processes. As we do not want to have too small processes, the
minimum amount of heap memory we allocate is 128 megabytes.

Therefore, for estimating the memory consumption, the formula is:

35

y = 0.0003x + 52.969
R² = 0.7866

0

100

200

300

400

500

0 200000 400000 600000 800000 1000000 1200000

M
em

o
ry

 (
M

B
)

Normalized Tuples

Rete Node Memory Consumption

Figure 3.25. Memory Prediction for Rete Nodes.

max = {128, (0.0003 · 𝑥 + 52.969) · 1.4}

Estimation of Communication Intensity

We will use the expected normalized tuples sent between Rete nodes as the estimated
communication intensity between processes. As we have seen in Section 3.1.1, multiplying
the normalized tuples with the communication overhead approximated the communication
time very well. Therefore, the normalized tuples will be good heuristics for our purposes.

Fortunately, we know how many elements are in the model from each type by querying
the underlying database of IncQuery-D. This will give us how many tuples will enter
the system through the Input nodes.

In order to create the heuristics we have to predict how many tuples will leave the
different Rete nodes. The algorithm is simple, we have to go through the Rete network,
starting by the Input nodes and we have to predict the outgoing normalized tuples by the
incoming amount. We will also use the normal tuple definition here as Rete nodes work
with tuples. The estimation will be based on the behaviour of the different Rete nodes
and the fact that models are usually sparse graphs.

Estimation for Input Nodes The estimation for Input node communication is simple.
They will propagate all of their tuples with all of their attributes.

Estimation for Alpha Nodes

Estimation for Check Node We expect the Check node to filter 90% of the tuples.
The reason behind this is that we usually look for abnormal elements with such filter
expressions, and usually there are not many of them in big models. Therefore, we expect
to send the 10% of tuples and all of their attributes.

For example, if we have 10000 tuples with two attributes, then we expect to send 1000
tuples with both attributes and the normalized tuple amount will be 2000.

36

Estimation for Trimmer Node As we know which attributes of tuples will be
removed by the Trimmer node we can be sure that only the remaining attributes will be
propagated. As Trimmer node also removes the duplicate tuples after the trim, we expect
to propagate the 90% of the trimmed tuples.

For example, if we have 10000 tuples with two attributes and the second attribute will
be removed, then we expect to propagate 9000 tuples with the first attribute only and
therefore the sent normalized tuple amount will be 9000.

Estimation for Beta Nodes

Estimation for Join Node The upper bound for the tuple number produced by Join
node is the product of tuple number coming from its left parent and the tuple number
coming from the right parent. As we usually join nodes and edges this would mean that
all edges have all other nodes as endpoint which is not realistic. Because of this fact, and
considering sparse graphs we expect to propagate only 1% of the possible matches.

For example, if we join a node type – 500 tuples with one attribute – with an edge
type – 100 tuples with two attributes – and the first attribute of the edges must match
with the one attribute of the nodes, then we expect to propagate 500 tuples. However,
the propagated tuples will only have two attributes as we only use one of the matching
attributes (as those are the same), therefore the amount of propagated normalized tuples
will be 1000.

Estimation for Antijoin Node The upper bound for the tuple number produced
by Antijoin node is the tuple number coming from its left parent as it will only propagate
elements from there. The Antijoin node looks for graph elements that have no correspond-
ing element from the other set. As this usually checks for abnormal structure, we expect
to propagate only 10% of the tuples. The arity of the tuples will be the same.

For example, if we have 5000 tuples (with one attribute) coming from the left parent
and 10000 elements coming from the right parent, then we expect to propagate 500 tuples
with one attribute, therefore the amount of propagated normalized tuples will be 500.

Considering Incremental Behaviour As IncQuery-D is an incremental query en-
gine we have to keep in mind the incremental behaviour of the queries.

The heuristics mentioned before gave approximations for the first evaluation of the query
and not the incremental reevaluations. However, the possibility of modification is higher
where there are more model elements. Therefore, the communication characteristics of
Rete nodes usually remain similar compared to each other, just with a lower volume as the
evaluation of model modifications involve less data propagation than the first evaluation
of the query on the whole model. On the other hand we have to note that the incremental
behaviour fully depends on the particular workload, therefore it can not be estimated
precisely.

37

Chapter 4

Formalization of the
Allocation Optimization Problems

The purpose of this section is to describe the optimization problems of the IncQuery-D
allocation process. These problems are the Communication Minimization and the Cost
Minimization problem. Once the problems are formalized, they will be analyzed in terms
of computational complexity in order to find the proper way to solve them.

4.1 The Communication Minimization Problem

As it was shown in Figure 3.3 the transmission of large data between remote machines
can have significant time overhead compared to transmission between processes on the
same host. Since the communication overhead significantly differs between processes on
local and remote computers, minimizing the overall volume of remote communication in
the network is an important optimization target.

Fundamental assumptions The purpose of the allocation is the placement of processes
to the available computers since the mapping of Rete nodes (Section 2.3) to processes is
done in a preceding step. The fundamental rule is to place exactly one Rete node with
internal memory to one process because those can consume vast amount of memory in
case of big models. Rete nodes with no internal memory are placed to the same process
as their parent node since in-process communication is fast.

The computers as resources are characterized with their memory capacity but also other
parameters e.g. CPU usage could be taken into account. The parameters of communication
channels (e.g. link quality, distance) between computers are characterized with a scalar and
can be called overhead. This value represents the likelihood of communication between
two machines as if the value is large then this channel will not be preferred (especially for
large amount of data). The ratio of these numbers is more important than the numbers
themselves. For example if we wish to express that the connection between 𝑖th and 𝑗th
machines has 2 times better parameters than the connection between 𝑘th and 𝑗th machines
then we can write 𝑜𝑖,𝑗 = 𝑥 and 𝑜𝑘,𝑗 = 2𝑥, where 𝑜𝑖,𝑗 and 𝑜𝑘,𝑗 are the overhead values.

The resource consumption of processes is described by their memory requirements. This
is the amount of memory that is sufficient for the process to run. As Rete nodes in the
processes communicate with each other, there will be data transfer between processes.
This is represented with an edge between the processes which has a weight. This weight
describes the amount of data transfer between the processes and is measured in normalized
tuples (3). The memory usage and the communication volume of the processes can not be

38

determined exactly in allocation time. Therefore we use heuristics to predict these values
from the characteristics of the Rete net and nodes.

During the allocation, the capacity of the machines should not be overused by the
processes while the overall volume of communication in the network should me minimized.

4.1.1 Formalization of the Communication Minimization Problem

Input:

Memory requirements of processes

𝑆 = (𝑠1, 𝑠2, · · · , 𝑠𝑛) (4.1)

Predicted memory consumption of the processes measured in megabytes.

Memory capacity of machines

𝐶 = (𝑐1, 𝑐2, · · · , 𝑐𝑚) (4.2)

Memory capacity of machines that can be used by the processes measured in
megabytes.

Communication edges between processes

𝐸𝑛,𝑛 =

⎡⎢⎢⎢⎢⎣
𝑒1,1 𝑒1,2 · · · 𝑒1,𝑛

𝑒2,1 𝑒2,2 · · · 𝑒2,𝑛
...

...
𝑒𝑛,1 𝑒𝑛,2 · · · 𝑒𝑛,𝑛

⎤⎥⎥⎥⎥⎦ (4.3)

The matrix 𝐸 contains the amount of communication between processes measured in
normalized tuples. For the 𝑖th process the 𝑖th row describes these values. For exam-
ple, 50000 normalized tuples communication intensity between 𝑖th and 𝑗th processes
is described as 𝑒𝑖,𝑗 = 50000.

Communication overheads between machines

𝑂𝑚,𝑚 =

⎡⎢⎢⎢⎢⎣
𝑜1,1 𝑜1,2 · · · 𝑜1,𝑚

𝑜2,1 𝑜2,2 · · · 𝑜2,𝑚
...

...
𝑜𝑚,1 𝑜𝑚,2 · · · 𝑜𝑚,𝑚

⎤⎥⎥⎥⎥⎦ (4.4)

The matrix 𝑂 contains the overhead multipliers between machines. For the 𝑖th
machine the 𝑖th row describes these values. This matrix is usually symmetric to its
main diagonal.

The convention is that the 𝑖th row of 𝐸 and the 𝑠𝑖 (𝑖th element of 𝑆) weight belong to
the 𝑖th process and the 𝑗th row of 𝑂 and the 𝑐𝑗 (𝑗th element of 𝐶) capacity belong to the
𝑗th machine. This way the processes and machines can be identified by their number.

The following 𝑊 matrix contains the calculated communication weights between pro-
cesses.

39

𝑊𝑛,𝑛 =

⎡⎢⎢⎢⎢⎣
𝑤1,1 𝑤1,2 · · · 𝑤1,𝑛

𝑤2,1 𝑤2,2 · · · 𝑤2,𝑛
...

...
𝑤𝑛,1 𝑤𝑛,2 · · · 𝑤𝑛,𝑛

⎤⎥⎥⎥⎥⎦ (4.5)

The capacity constraints of the machines can be described with the following linear
inequality system.

𝑠1 · 𝑥1,1 + 𝑠2 · 𝑥1,2 + · · · + 𝑠𝑛 · 𝑥1,𝑛 ≤ 𝑐1

𝑠1 · 𝑥2,1 + 𝑠2 · 𝑥2,2 + · · · + 𝑠𝑛 · 𝑥2,𝑛 ≤ 𝑐2
...

𝑠1 · 𝑥𝑚,1 + 𝑠2 · 𝑥𝑚,2 + · · · + 𝑠𝑛 · 𝑥𝑚,𝑛 ≤ 𝑐𝑚

(4.6)

∀𝑗 :
𝑚∑︁

𝑖=1
𝑥𝑖,𝑗 = 1, 𝑥𝑖,𝑗 ∈ {0, 1} (4.7)

The first inequalities state for each machine that the memory capacity cannot be ex-
ceeded. The last equation states for each process that it must be allocated to exactly one
machine. So it is guaranteed that the resources of a machine will not be overused while all
processes will be allocated. The communication weights are calculated with the following
formula:

∀𝑖, 𝑗, 𝑘, 𝑙, 𝑘 ̸= 𝑙 : 𝑥𝑖,𝑘 + 𝑥𝑗,𝑙 ≥ 2 → 𝑤𝑘,𝑙 = 𝑒𝑘,𝑙 · 𝑜𝑖,𝑗 (4.8)

It tells that if two processes are being allocated to the 𝑖th and 𝑗th machines then the
communication volume between them has to be multiplied with the overhead expected
between these two machines.

Output:

weight = min

⎧⎪⎪⎨⎪⎪⎩
∑︁

1<𝑖<𝑛
1<𝑘<𝑛

𝑤𝑖,𝑘

⎫⎪⎪⎬⎪⎪⎭ , (4.9)

while we assume that 𝑤𝑖,𝑘 is 0 if there is no communication edge between the 𝑖th and
𝑘th processes. The computed optimal allocation can be extracted from the 𝑥𝑖,𝑗 variables
where the 1 value means that the 𝑗th process is allocated to the 𝑖th machine.

4.1.2 The Complexity of the Communication Minimization Problem

The Communication Minimization is a combinatorial optimization [7] problem because it
needs to find an optimal solution from a finite domain. Not only in algorithm theory, but
also in practice, it is a good idea to examine the complexity of the problem before trying
to find an effective algorithm to solve it. This rule especially applies for combinatorial
optimization problems where the problem often turns out to be 𝒩 𝒫-hard [37].

With the fact of 𝒩 𝒫-hardness in mind, the algorithm designer often has to decide be-
tween an optimal solution and an efficient algorithm. If the algorithm designer is satisfied
with feasible solutions then the use of approximation algorithms [28] might be a good
decision. However, if not, the designer can try to reduce the problem effectively to SAT
(Satisfiability) [6] or CSP (Constraint Satisfaction Problem) [39] problems. The advan-
tages of this idea are that efficient (though not polynomial time) solvers exist for these
problems and the problem can be described declaratively.

40

We now prove that the Communication Minimization problem is 𝒩 𝒫-hard. 𝒩 𝒫-
hardness can be proved by Karp-reduction [37]. The basic idea is to show that the input
of a well-known 𝒩 𝒫-hard problem can be transformed to the input of our problem and
the output vice versa so that a hypothetic or existing algorithm for our problem would
always give the correct solution for the other problem. The transformation of the inputs
and outputs must be done in polynomial time. This shows that our problem is at least as
hard as the well-known 𝒩 𝒫-hard problem because if we have an efficient algorithm for our
problem, then we have efficient algorithm for the other problem as well. This is usually
denoted as 𝑋 ≺ 𝑌 , which means that 𝑌 problem is at least as hard as the 𝑋.

Theorem 1. The Communication Minimization problem is 𝒩 𝒫-hard.

Proof 1. To prove this theorem we will reduce the well-known 𝒩 𝒫-hard Knapsack prob-
lem to the Communication Minimization, Knapsack ≺ Communication Minimization will
be shown.

The Knapsack Problem [11]

Input:

Knapsack capacity
𝑊 (4.10)

Item values
(𝑣1, 𝑣2, · · · , 𝑣𝑛) (4.11)

Item weights
(𝑤1, 𝑤2, · · · , 𝑤𝑛) (4.12)

Given the set of 𝑛 items, each with a weight and value, it has to be ensured that the
weights of the items will not exceed the capacity of the knapsack:

𝑛∑︁
𝑖=1

(𝑤𝑖 · 𝑥𝑖) ≤ 𝑊, 𝑥𝑖 ∈ {0, 1}, (4.13)

while the aggregate value of the items put into the knapsack should be maximized:

V = max
{︃

𝑛∑︁
𝑖=1

(𝑣𝑖 · 𝑥𝑖)
}︃

, (4.14)

where 𝑉 is the output, the 𝑥𝑖 = 1 means that the 𝑖th item is put into the knapsack and
𝑥𝑖 = 0 means that it is not.

Reduction of the Knapsack Problem

The first problem is the difference between the objective functions: in Knapsack it is
maximization, in Communication Minimization it is minimization. However, it is fairly
easy to create a minimization problem from a maximization one. Only the cost function
should be multiplied by −1, since if a solution had maximal value of the cost function
then its negative should have minimal.

The transformation of the inputs will be the following. In this context 𝑛 will be the
number of items in the Knapsack problem.

(𝑤1, 𝑤1, 𝑤2, 𝑤2, · · · , 𝑤𝑛, 𝑤𝑛) ↦→ (𝑠1, 𝑠2, · · · , 𝑠2𝑛−1, 𝑠2𝑛) (4.15)

41

This means that for each items in the Knapsack problem, the transformation will order
2 processes with the same weights. The 𝑖th item will be mapped to the (2𝑖th, 2𝑖 − 1th)
process pairs. (︃

𝑊, 𝑊, 2 ·
𝑛∑︁

𝑖=1
𝑤𝑖

)︃
↦→ (𝑐1, · · · , 𝑐𝑚) (4.16)

There will be 3 machines with the capacities (𝑊, 𝑊, 2 ·
∑︀𝑛

𝑖=1 𝑤𝑖). The last value is
2 times the total weight of items in the Knapsack problem to ensure that all processes
can be allocated to 1 machine as this is a constraint in the Communication Minimization
problem, otherwise the problem can not be satisfied.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · 2𝑖 − 1 2𝑖 · · · 2𝑛 − 1 2𝑛

1 0 −𝑣1 · · · 0 0 · · · 0 0
2 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

2𝑖 − 1 0 0 · · · 0 −𝑣𝑖 · · · 0 0
2𝑖 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

2𝑛 − 1 0 0 · · · 0 0 · · · 0 −𝑣𝑛

2𝑛 0 0 · · · 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
↦→ 𝐸2𝑛,2𝑛 =

⎡⎢⎢⎢⎢⎣
𝑒1,1 𝑒1,2 · · · 𝑒1,2𝑛

𝑒2,1 𝑒2,2 · · · 𝑒2,2𝑛
...

...
𝑒2𝑛,1 𝑒2𝑛,2 · · · 𝑒2𝑛,2𝑛

⎤⎥⎥⎥⎥⎦

(4.17)
There will be 𝑛 edges, 1–1 between each process pairs with the negative weight of the

item represented by the pair. So this means there will be −𝑣𝑖 weighted communication
edge between 2𝑖 − 1th and 2𝑖th processes, ∀𝑖 ∈ {1, · · · , 𝑛}. Using the negative of the
weight has an important role in mapping the maximization problem to a minimization
one. ⎡⎢⎣0 1 0

1 0 0
0 0 0

⎤⎥⎦ ↦→ 𝑂3,3 (4.18)

Between the 2 𝑊 capacity machines, the overhead will be 1, all the other overhead
values are 0.

We will show, that if we transform the input of the Knapsack problem like this then a
hypothetic algorithm for the Communication Minimization problem will solve it correctly.

Figure 4.1 helps to review how the algorithm operates on the aforementioned input.
Pick the 2𝑖−1th , ∀𝑖 ∈ 1, · · · , 𝑛 processes (one of each pair). The subsets of this process

set will fit into a 𝑊 capacity machine exactly when the knapsack item sets represented by
them fits into the knapsack. This is fairly obvious because of the same sizes and capacity.
The same is true for the other 𝑛 (2𝑖th, ∀𝑖 ∈ 1, · · · , 𝑛) processes and the other 𝑊 capacity
machine. It is also obvious that all 𝑛 communication edges go between these disjoint
process sets. However, the algorithm will prefer allocating the endpoints of the edges to
the 𝑊 machines because this way it can reduce the objective function, in every other case
the value of the edge would be multiplied by 0.

Note that in case of a positive edge value, the algorithm will allocate the two sides to
the “∞” machine because that way it counts with 0, but this is is not a problem because
a positive edge value would mean a negative item value for the knapsack problem. These
items can be trivially left out of the knapsack as well because they would reduce the total
value.

42

W W

0

0

00 0

1

1. 2.

2i-1

2i

Figure 4.1. Reducing Knapsack to Communication Minimization.

After these observations, we can make the following two statements. Mark the minimum
of the Communication Minimization problem with 𝐴 and the maximum of the reduced
Knapsack problem with 𝐵.

Statement. −𝐴 ≤ 𝐵 �

Proof 2. Indirect. Suppose that we have reduced the Knapsack problem to the Commu-
nication Minimization as described above and −𝐴 > 𝐵. −𝐴 = −(−𝑣𝑖 −· · ·−𝑣𝑗 −· · ·−𝑣𝑙),
because the minimum will be produced from some negative weighted edges multiplied by
1 as illustrated in Figure 4.2.

However, if such solution exists for the Communication Minimization it means that the
𝑖𝑡ℎ, · · · , 𝑗𝑡ℎ, · · · , 𝑙𝑡ℎ items with 𝑣𝑖, · · · , 𝑣𝑗 , · · · , 𝑣𝑙 values fit into knapsack. So there is a
solution for the Knapsack problem where the objective function takes the value −𝐴 =
(𝑣𝑖 + · · · + 𝑣𝑗 + · · · + 𝑣𝑙) which is contradiction, the statement is true.

Statement. −𝐴 ≥ 𝐵 �

Proof 3. If we can show a solution of the Communication Minimization where the objec-
tive function takes the value of −𝐵 then the statement is true.

Suppose that the Knapsack problem has maximum with the 𝑎th, 𝑏th, · · · , 𝑘th items.
Then 𝐵 = 𝑣𝑎 + 𝑣𝑏 + · · · + 𝑣𝑘.

But then the 2𝑎 − 1th, 2𝑏 − 1th, · · · , 2𝑘 − 1th processes in the transformed
Communication Minimization can be allocated to one 𝑊 capacity machine and
2𝑎th, 2𝑏th, · · · , 2𝑘th processes to the other 𝑊 machine. Between these process pairs

43

W W
1

2i-1 2i

2j-1 2j

2l-1 2l

...
...

...
...

Figure 4.2. Solution for the Communication Minimization.

there are −𝑣𝑎, · · · , −𝑣𝑏, · · · , −𝑣𝑘 weighted edges. If these process pairs are allocated to
the two 𝑊 machines then the objective function takes the −𝑣𝑎 − · · · − 𝑣𝑏 − · · · − 𝑣𝑘 =
−(𝑣𝑎 + 𝑣𝑏 + · · · + 𝑣𝑘) = −𝐵. That solution is exactly what we were looking for. �

If both −𝐴 ≤ 𝐵 and −𝐴 ≥ 𝐵 are true then −𝐴 = 𝐵. So if the output of the transformed
Communication Minimization problem is multiplied by −1 then it will give good solution
for the original Knapsack problem.

The last step to show is that the transformations have polynomial complexity. The
creation of the 𝑆 array (process memory requirements) has the complexity of Θ(𝑛). The
creation of the 𝐶 array (machine capacities) has the complexity Θ(𝑛). The creation of the
𝐸 matrix (process communication edges) has the complexity Θ(𝑛2) and it takes Θ(1) steps
to produce the 𝑂 matrix (machine communication overheads). The tra nsformation of the
output is Θ(1). So the overall complexity is Θ(𝑛) + Θ(𝑛) + Θ(𝑛2) + Θ(1) + Θ(1) = Θ(𝑛2).�

4.2 The Cost Minimization Problem

While in the previous section we formalized the communication minimization it is often an
important requirement to allocate our system with the least possible cost. Furthermore
as we saw in Figure 3.6, even if the system is primarily optimized for communication, it
can be further optimized lexicographically in the cost dimension. This section describes
the Cost Minimization problem if the costs of using the machines are given.

The same assumptions are made as in Section 4.1.

4.2.1 Formalization of the Cost Minimization Problem

Input:

Memory requirements of processes

𝑆 = (𝑠1, 𝑠2, · · · , 𝑠𝑛) (4.19)

44

Memory capacity of machines

𝐶 = (𝑐1, 𝑐2, · · · , 𝑐𝑚) (4.20)

Cost of machines
𝐵 = (𝑏1, 𝑏2, · · · , 𝑏𝑚) (4.21)

The monetary cost of each machines.

Given the vector 𝑤 which contains the cost of each machines in the system. Assume
that the vector 𝑤 contains the cost of the machine if it is used or 0 if it is not used.

𝑤𝑚 = [𝑤1, 𝑤2, · · · , 𝑤𝑚] (4.22)

We may establish the following constraints as in the Communication Minimization
problem:

𝑠1 · 𝑥1,1 + 𝑠2 · 𝑥1,2 + · · · + 𝑠𝑛 · 𝑥1,𝑛 ≤ 𝑐1

𝑠1 · 𝑥2,1 + 𝑠2 · 𝑥2,2 + · · · + 𝑠𝑛 · 𝑥2,𝑛 ≤ 𝑐2
...

𝑠1 · 𝑥𝑚,1 + 𝑠2 · 𝑥𝑚,2 + · · · + 𝑠𝑛 · 𝑥𝑚,𝑛 ≤ 𝑐𝑚

(4.23)

∀𝑗 :
𝑚∑︁

𝑖=1
𝑥𝑖,𝑗 = 1, 𝑥𝑖,𝑗 ∈ {0, 1} (4.24)

The cost of the machine is calculated with the following formula:

∀𝑖 ∈ {1, · · · , 𝑚} :
𝑛∑︁

𝑗=1
𝑥𝑖,𝑗 ≥ 1 → 𝑤𝑖 = 𝑏𝑖 (4.25)

This describes for each machine that if at least 1 process is allocated to it, then it should
be calculated with its cost. Otherwise the 𝑤𝑖 value will remain 0.

Output:

cost = min
{︃

𝑚∑︁
𝑖=1

𝑤𝑖

}︃
, (4.26)

while we assume that 𝑤𝑖 is 0 if the 𝑖th machine is not used. The computed optimal
allocation can be extracted from the 𝑥𝑖,𝑗 variables where the 1 value means that the 𝑗th
process is allocated to the 𝑖th machine.

4.2.2 The Complexity of the Cost Minimization Problem

Theorem 2. The Cost Minimization problem is 𝒩 𝒫-hard.

Proof 4. To prove this theorem we will reduce the well-known 𝒩 𝒫-hard Bin Packing
problem to the Cost Minimization, so formally Bin Packing ≺ Cost Minimization will be
shown.

The Bin Packing Problem [37]

Input: List of 𝑛 items with positive sizes (𝑎1, 𝑎2, · · · , 𝑎𝑛) to pack, and set 𝐵 = {1, · · · , 𝑚}
of bins with capacity 𝑉 .

45

𝑛∑︁
𝑗=1

(𝑎𝑗 · 𝑥𝑖,𝑗) ≤ 𝑉 · 𝑦𝑖, ∀𝑖 ∈ {1, · · · , 𝑚} (4.27)

This means that the capacity of the bins can not be exceeded with the sizes of items
packed into them.

𝑚∑︁
𝑖=1

𝑥𝑖,𝑗 = 1, ∀𝑗 ∈ {1, · · · , 𝑛} (4.28)

But all items should be packed into one bin.

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ {1, · · · , 𝑚} (4.29)

𝑥𝑖,𝑗 ∈ {0, 1}, ∀𝑖 ∈ {1, · · · , 𝑚} and ∀𝑗 ∈ {1, · · · , 𝑛}, (4.30)

where 𝑦𝑖 = 1, if bin 𝑖 is used and 𝑥𝑖,𝑗 = 1, if item 𝑗 is put into bin 𝑖.
Output:

C = min
{︃

𝑚∑︁
𝑖=1

𝑦𝑖

}︃
(4.31)

The number of bins used for the packing should be minimized.

The Reduction of the Bin Packing Problem

We give the transformations of inputs, outputs and show their correctness. The basic idea
is to map the items of Bin Packing to the processes of Cost Minimization with the same
weights. The machines in Cost Minimization will play the role of the bins. As the bins,
they also have uniform capacity, and have the cost of 1 as used bins count with 1 in the
objective function.

The sizes of 𝑛 items are mapped to the memory requirements of 𝑛 processes:

(𝑎1, 𝑎2, · · · , 𝑎𝑛) ↦→ (𝑠1, 𝑠2, · · · , 𝑠𝑛) (4.32)

The capacities of 𝑚 bins are mapped to the memory capacities of 𝑚 machines:

𝑉 ↦→ 𝑐𝑖, ∀𝑖 ∈ {1, · · · , 𝑚} (4.33)

The cost of each machine is 1:

1 ↦→ 𝑏𝑖, ∀𝑖 ∈ {1, · · · , 𝑚} (4.34)
�

If we run the hypothetic algorithm for the Cost Minimization problem with the afore-
mentioned input and map its output to the Bin Packing output (cost ↦→ 𝐶) then the
reduced problem will be solved as well. This can be easily seen as the items are mapped
to the processes with the same sizes and the bins are mapped to machines with the same
capacities. As the cost of each machine is 1 and the capacity is 𝑉 , the optimal solution
will give the amount of machines used for the allocation. This is exactly the number of
bins that the items could be packed into.

The last step is to show that the input and output transformations are computed in
polynomial time. This is also easy to see, we had to iterate through the items and bins
once while the outputs where the same. So the complexity of the transformations is
Θ(𝑛 + 𝑚) + Θ(1) = Θ(𝑛 + 𝑚).

46

Chapter 5

Elaboration

The purpose of this chapter is to illustrate the internal operations of the Allocation Op-
timizer (Section 3.2.2) subsystem of IncQuery-D with examples. For the sake of clarity
these examples will be simpler than the ones used in the benchmark (6).

5.1 Algorithms for the Problems

It was shown in Section 4.1.2 and Section 4.2.2 that the allocation problems of
IncQuery-D are 𝒩 𝒫-hard. Because of that we decided to use CSP [39] as an approach to
solve these problems. The advantage of this approach is that the problems can be stated
in a declarative manner. The formal description of the problems in Section 4.1.1 and
Section 4.2.1 are precise enough for a solver as those work with a system of mathematical
and logical formulas. In the IncQuery-D allocation process we use the Google OR-Tools
[10] solver.

So the allocation algorithm consists of the placement of Rete nodes to processes, calcu-
lating heuristics for process memory usage and communication volume, and transforming
the problem to a system of mathematical formulas in order to be able to give it to the
solver as an input. After the solver found the optimal solution, the allocation can be
extracted from the variables as it was shown.

5.1.1 OR-Tools API

The purpose of this section is to show the API of the OR-Tools and how the different
mathematical and logical formulas of our problems can be stated for the solver. OR-Tools
has an object-oriented style API, it basically works with solver, constraint and variable
objects, the statement of constraints happens with function calls. In order to be able to
state the constraints in a more declarative way, we created a functional style wrapper
API for the solver. The other advantage of this wrapper is that the solver will be easily
changeable for our algorithm as only these formulas should be written for the new solver.
The wrapper is written in the Xtend [22] functional language.

Statement of Mathematical and Logical Formulas

For the description of our problems we need variables. We use integer variables as OR-
Tools does not support real variables, fortunately integer numbers perfectly fit our re-
quirements. We can have bounded variables, it can take its value from a finite interval,
and we can have enumerated variables which can take its value from an enumerated list
of numbers.
def static bounded(String name, long lower, long upper, Solver solver){

return solver.makeIntVar(lower, upper, name);

47

}

def static enumerated(String name, long[] values, Solver solver){
return solver.makeIntVar(values, name);

}

We will need a contraint we can express that the sum of variables can not exceed the
value of a scalar (used to express (4.6), (4.23)).
def static SUM_LE(IntVar[] row, int scalar){

return solver.makeSumLessOrEqual(row, scalar);
}

We will need a constraint in order to express that the sum of variables should be equal
with the value of a scalar (used to express (4.7), (4.24)).
def static SUM_EQ(IntVar[] row, int scalar){

return solver.makeSumEquality(row, scalar);
}

We will need a constraint in order to express that the sum of variables should be greater
than or equal with the value of a scalar (used to express the preconditions for (4.8), (4.25)).
def static SUM_GE(IntVar[] row, int scalar){

return solver.makeSumGreaterOrEqual(row, scalar);
}

We will need to express that if a constraint is satisfied then a postcondition will be true.
The operator ⇒ will be used for that. Unfortuantely, OR-Tools does not offer support
for that directly. Therefore we have to reduce this problem to lower level mathematical
formulas. Fortunately, the logical value (satisfied or not) of the constraints can be used.
Mark with 𝑎 ∈ {0, 1} variable whether the constraint as a precondition is statisfied or not.
Mark with 𝑏 ∈ {0, 1} variable whether the postcondition can be true or not. We use the
𝑎 ≤ 𝑏 =⇒ 𝑎 − 𝑏 ≤ 0 formula to expess our requirements.

𝑎 𝑏 𝑎 − 𝑏 ≤ 0
0 0 1
0 1 1
1 0 0
1 1 1

As it can be seen, if the precondition is not satisfied (𝑎 = 0) then the postcondition
can be true or false. This means we allow the satisfaction of the postcondition by other
precondition constraints as well. On the other hand if the precondition is satisfied (𝑎 =
1) then the postcondition will be neccessarily true (used to express the postconditions
for (4.8), (4.25)).
// => operator
def static operator_doubleArrow(Constraint c, Pair<IntVar, Integer> pair){

return solver.makeLessOrEqual(c.^var, solver.makeEquality(pair.key, pair.value.intValue).^var);
}

Furthermore we will require the minimization of the sum of variables (used to ex-
press (4.9), (4.26)).
def static SUM_MIN(IntVar[] row){

var IntVar sumOfRow = solver.makeSum(row).^var()
return solver.makeMinimize(sumOfRow, 1)

}

Finally the constraints can be posted for the solver with the >> operator.
// >> operator, post constraint
def static operator_doubleGreaterThan(Solver s, Constraint c){

solver.addConstraint(c);
}

48

5.2 Case Study: Evaluation of the SwitchSensor Query

In this section we will discuss a case study of the allocation optimization for the Switch-
Sensor query. We will show in details what happens in the background of the allocation
optimization.

5.2.1 The Query

We have to write the query in the pattern language of IncQuery-D as the first step. The
syntax is the IQPL graph pattern language [24].
vocabulary <railway.rdf>

base <http://www.semanticweb.org/ontologies/2011/1/TrainRequirementOntology.owl#>

pattern switchSensor(aSwitch) = {
Switch(aSwitch);
neg find hasSensor(aSwitch);

}

pattern hasSensor(Trackelement) = {
TrackElement_sensor(Trackelement, Target);

}

We have to define the metamodel for the query. The metamodel is defined in RDF
format [18]. The Railway metamodel is publicly available [15].
vocabulary <railway.rdf>

The main pattern is the switchSensor pattern. The result contains those Switch graph
node elements in the model which do not satisfy the hasSensor pattern. The hasSensor
pattern checks whether a Switch node has a TrackElement_sensor outgoing edge or not.
This query looks for missing edges of Switch nodes. As a simplification we do not specify
that the endpoint of the TrackElement_sensor outgoing edge should be Sensor typed as
this comes from the structure of the metamodel.
pattern switchSensor(aSwitch) = {

Switch(aSwitch);
neg find hasSensor(aSwitch);

}

pattern hasSensor(Trackelement) = {
TrackElement_sensor(Trackelement, Target);

}

After we defined the query, a corresponding Rete recipe (see Section 3.2.1) will be
generated. The constructed Rete network can be seen in Figure 5.1. We get two Input
nodes as we used two different types in the query. As we look for those Switch nodes
which do not have TrackElement_sensor edges, we use an Antijoin node. However, we
only need the Switch end point of the edge so a Trimmer node will project to the first
attribute prior to the Antijoin operation.

After the Rete network is ready, the Rete nodes can be assigned to processes. In this
layout we have four Memory nodes and one Non-Memory node. Therefore we will have
four processes, each Memory node goes to one separate. The one Trimmer node will be
placed to the same process as its parent.

The other important task is the prediction of Rete node, process memory consump-
tion and the inter-process communication intensity. We will use the heuristic methods
introduced in Section 3.2.4.

49

Input

π

Production

Input

Switch TrackElement_Sensor

<0,1>

<0>

Figure 5.1. Rete Recipe of the SwitchSensor Query.

Prior to the allocation we gather statistics about the cardinality of different node and
edge types from the model containing databases. Currently there are 2604750 TrackEle-
ment_sensor edges in the model and there are 97442 Switch nodes.

From the Input nodes all tuples will be propagated. The Trimmer node will remove
one of the two attributes. As it also checks for duplicates (it means that those Switch
nodes has more then one TrackElement_sensor edges) it predicts that 10% of the tuples
(considering sparse graphs) will be removed. Finally the Antijoin node predicts that 10%
of Switch nodes will not have outgoing edges.

The estimated memory consumption of Rete nodes will be calculated from the incoming
amount of normalized tuples. The memory consumption of a process will be the memory
consumption of the contained Memory node with the 40% spare space.

The intensity of inter-process communication can be determined after we ignore the
in-process communication edges.

The estimated values calculated by the algorithm are shown in Figure 5.2.

The next step will be the allocation of processes to machines. This will be discussed in
regards of both communication and cost minimization.

5.2.2 Communication Minimization

The first allocation of the query will be optimized for minimal network communication.
In order to be able to allocate the query, we need an inventory model with the capacity
of the available machines and with their communication overhead multipliers. We created
two virtual machines with 3 GB memory capacity. The machines could communicate on
a local network, so the overhead between machines was predicted to be 3 times greater
than the overhead of the communication on the local interface of a machine. This layout
can is shown in Figure 5.3.

Computation of the Optimal Allocation

According to the constructed Rete network and the given Inventory model, the inputs of
the algorithm will be the following (the number of the processes can be seen in Figure 5.2
and the order of the machines is vm0, vm1):

50

Input

π

Production

Input

Switch TrackElement_Sensor

1616 MB83 MB

786 MB

56 MB

2604750 × 2

2344275 × 1

97442 × 1

9744 × 1

Inputπ Input

Production

9744

2344275 97442

2263 MB128 MB

1210 MB

128 MB

Process 1 Process 2

Process 3

Process 4

Figure 5.2. Rete Node Allocation of the SwitchSensor Query.

3

1 1

 vm1
 3 GB Memory

 vm0
 3 GB Memory

Figure 5.3. Inventory for the SwitchSensor Query Communication
Minimization.

𝑆 = (128, 2263, 1210, 128) (5.1)

𝐶 = (3072, 3072) (5.2)

𝐸4,4 =

⎡⎢⎢⎢⎣
0 0 97442 0
0 0 2344275 0
0 0 0 9744
0 0 0 0

⎤⎥⎥⎥⎦ (5.3)

𝑂2,2 =
[︃
1 3
3 1

]︃
(5.4)

51

We can create the constraint set according to the input. The memory usage constraints
will be the following:

128 · 𝑥1,1 + 2263 · 𝑥1,2 + 1210 · 𝑥1,3 + 128 · 𝑥1,4 ≤ 3072
128 · 𝑥2,1 + 2263 · 𝑥2,2 + 1210 · 𝑥2,3 + 128 · 𝑥2,4 ≤ 3072

(5.5)

The process placement costraints are as follows:

𝑥1,1 + 𝑥2,1 = 1
𝑥1,2 + 𝑥2,2 = 1
𝑥1,3 + 𝑥2,3 = 1
𝑥1,4 + 𝑥2,4 = 1

(5.6)

The wights of communication edges will be calculated with the formulas below. Only
non-zero communication edges should be taken into account as multiplying zero by any-
thing will be zero. These constraints determine the cost of the communication edges if
their endpoints are placed to different machines.

For the edge between 1st and 3rd processes:

𝑥1,1 + 𝑥1,3 ≥ 2 → 𝑤1,3 = 97442 · 1
𝑥1,1 + 𝑥2,3 ≥ 2 → 𝑤1,3 = 97442 · 3
𝑥2,1 + 𝑥1,3 ≥ 2 → 𝑤1,3 = 97442 · 3
𝑥2,1 + 𝑥2,3 ≥ 2 → 𝑤1,3 = 97442 · 1

(5.7)

For the edge between 2nd and 3rd processes:

𝑥1,2 + 𝑥1,3 ≥ 2 → 𝑤2,3 = 2344272 · 1
𝑥1,2 + 𝑥2,3 ≥ 2 → 𝑤2,3 = 2344272 · 3
𝑥2,2 + 𝑥1,3 ≥ 2 → 𝑤2,3 = 2344272 · 3
𝑥2,2 + 𝑥2,3 ≥ 2 → 𝑤2,3 = 2344272 · 1

(5.8)

For the edge between 3rd and 4th processes:

𝑥1,3 + 𝑥1,4 ≥ 2 → 𝑤3,4 = 9744 · 1
𝑥1,3 + 𝑥2,4 ≥ 2 → 𝑤3,4 = 9744 · 3
𝑥2,3 + 𝑥1,4 ≥ 2 → 𝑤3,4 = 9744 · 3
𝑥2,3 + 𝑥2,4 ≥ 2 → 𝑤3,4 = 9744 · 1

(5.9)

The objective function will be (as we can ignore the edges with 0 weight):

weight = min {𝑤1,3 + 𝑤2,3 + 𝑤3,4} (5.10)

The optimizer algorithm found that the objective function had optimum with the fol-
lowing variable values:

𝑥1,1 = 0 𝑥1,2 = 1 𝑥1,3 = 0 𝑥1,4 = 0
𝑥2,1 = 1 𝑥2,2 = 0 𝑥2,3 = 1 𝑥2,4 = 1

In that case

52

𝑥2,1 + 𝑥2,3 ≥ 2 → 𝑤1,3 = 97442
𝑥1,2 + 𝑥2,3 ≥ 2 → 𝑤2,3 = 7032816
𝑥2,3 + 𝑥2,4 ≥ 2 → 𝑤2,3 = 9744

(5.11)

will be true so weight = 97442 + 7032816 + 9744 = 7140002.
This means that 1st, 3rd and 4th processes will be started on the vm1 machine, while

2nd process will be started on the vm0 machine.

The allocation optimization procedure is continued in the cost dimension in order to
find the cheapest solution among the solutions with the least network communication.
However, this time we have to use both machines as the processes exceed one’s capacity.
Therefore the cost optimization is trivial in that case.

The optimal allocation determined by the optimizer is illustrated in Figure 5.4. We can
think of it as a visual interpretation of the architecture description model.

Inputπ Input

Production

9744

2344275
97442

2263 MB128 MB

1210 MB

128 MB

3 × 2344275

1 × 9744

1 × 97442

 communication = 7140011

 vm0
 3 GB Memory

 vm1
 3 GB Memory

Figure 5.4. Process Allocation of the SwitchSensor Query.

Running and Monitoring the Query

After the allocation has been computed and the architecture description is ready, we can
deploy the system and the query can be started. We will use the monitoring dashboard
to inspect the runtime behaviour of the query. We will check the utilization of resources,
the memory consumption and the communication intensity of Rete nodes and processes
in order to justify that the allocation is working as intended.

In Figures 5.5, 5.6, 5.7 we can see the utilization of machines and the resource usage of
each JVM. We can observe that the memory usage of JVMs was estimated very well. It is
also a good sign that the garbage collector was not run frequently. The memories of the
machines are also utilized well, though the memory of vm0 is a little overused.

We can also note that with the good allocation, IncQuery-D was able to run a query
on two machines that could not be run only on one of them.

We can check the consumed memory and communication intensity of the Rete nodes in
Figure 5.8. We can see that the traffic generated by the Input nodes could be estimated

53

Figure 5.5. SwitchSensor Query Infrastructure on the Dashboard.

Figure 5.6. Machine Heatmap for VM1 on the Dashboard.

precisely. We can also see incremental changes to the TrackElement_Sensor edges, as
10 new edges were added. The Trimmer node estimated that 10% of elements will be
duplicates, therefore 2344275 tuples will be propagated. We can see that this prediction
was quite close to the reality. The Antijoin node expects to propagate 10% of its left parent.
However, we can see much more tuples in the figure. This is because the tuples from the
left parent arrived first and all of them were propagated as none of those had a matching
pair among the tuples of the right parent (as it was empty). When the tuples from the
right parent arrived, the node found a matching pair for 87000 Switch tuples, therefore

54

Figure 5.7. JVM Heatmap on the Dashboard.

those were propagated as negative changes. However, the 10% is a good prediction for the
steady-state of the system.

Figure 5.8. Monitored Rete Network of SwitchSensor Query.

5.2.3 Cost Minimization

The second allocation of the query will be optimized for minimal cost.

55

This time we will use a different Inventory model. We will use two cheap, 10$ machines
with low capacities and one expensive 1000$ machine with very good parameters. The
layout of the infrastructure can be seen in Figure 5.9.

10

2 21
1

1

 3 GB Memory
 10$ Cost
 vm1

 3 GB Memory
 10$ Cost
 vm0

 32 GB Memory
 1000$ Cost
 vm2

Figure 5.9. Inventory for the SwitchSensor Query Cost Minimiza-
tion.

Computation of the Optimal Allocation

The inputs of the algorithm will be the following (the order of machines is vm0, vm1,
vm2):

𝑆 = (128, 2263, 1210, 128) (5.12)

𝐶 = (3072, 3072, 32768) (5.13)

𝐵 = (10, 10, 1000) (5.14)

The memory usage constraints will be the following:

128 · 𝑥1,1 + 2263 · 𝑥1,2 + 1210 · 𝑥1,3 + 128 · 𝑥1,4 ≤ 3072
128 · 𝑥2,1 + 2263 · 𝑥2,2 + 1210 · 𝑥2,3 + 128 · 𝑥2,4 ≤ 3072
128 · 𝑥3,1 + 2263 · 𝑥3,2 + 1210 · 𝑥3,3 + 128 · 𝑥3,4 ≤ 32768

(5.15)

The process placement constraints are the following:

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 1
𝑥1,2 + 𝑥2,2 + 𝑥3,2 = 1
𝑥1,3 + 𝑥2,3 + 𝑥3,3 = 1
𝑥1,4 + 𝑥2,4 + 𝑥3,4 = 1

(5.16)

The price of the machines will be determined with the following formulas:

𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 ≥ 1 → 𝑤1 = 10
𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 ≥ 1 → 𝑤2 = 10
𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 ≥ 1 → 𝑤3 = 1000

(5.17)

The objective function will be:

56

cost = min {𝑤1 + 𝑤2 + 𝑤3} (5.18)

The optimizer found an optimal solution with the following values:

𝑥1,1 = 1 𝑥1,2 = 1 𝑥1,3 = 0 𝑥1,4 = 1
𝑥2,1 = 0 𝑥2,2 = 0 𝑥2,3 = 1 𝑥2,4 = 0
𝑥3,1 = 0 𝑥3,2 = 0 𝑥3,3 = 0 𝑥3,4 = 0

In that case

0 + 1 + 0 + 0 ≥ 1 → 𝑤1 = 10
1 + 0 + 1 + 1 ≥ 1 → 𝑤2 = 10

(5.19)

will be true and

0 + 0 + 0 + 0 ≥ 1 → 𝑤3 = 1000 (5.20)

will not be true, the cost will be 20.
So the expensive machine, vm2 will not be used.

However, the algorithm will terminate as it does multi-dimensional optimization, there-
fore we will further optimize the solution in the communication dimension. On the other
hand, we know that the optimal allocation will not contain vm2 machine, because we
found a solution with only 20 cost.

We will invoke the Communication Optimization algorithm with the following inputs
(𝑆 and 𝐶 vectors will be the same):

𝐸4,4 =

⎡⎢⎢⎢⎣
0 0 97442 0
0 0 2344275 0
0 0 0 9744
0 0 0 0

⎤⎥⎥⎥⎦ (5.21)

𝑂2,2 =
[︃

1 10
10 1

]︃
(5.22)

The output of the algorithm is:

𝑥1,1 = 0 𝑥1,2 = 1 𝑥1,3 = 0 𝑥1,4 = 0
𝑥2,1 = 1 𝑥2,2 = 0 𝑥2,3 = 1 𝑥2,4 = 1

According to that solution, the provided Architecture of the query is shown in Figure
5.10.

This example shows that optimization for cost makes sense when we prefer using cheap,
off-the-shelf hardware instead of expensive server machines.

5.3 IncQuery-D IDE

In this section, we will show the IncQuery-D IDE and its functionalities in regards of
the allocation. The purpose is to illustrate the workflow of a query, that was introduced
in Section 3.2, with an example. We will see the main stages and artifacts of the work-
flow from the user’s point of view and will give an insight about how the workflow is
implemented in practice.

The IncQuery-D IDE is implemented on the Eclipse Platform [9].

57

Inputπ Input

Production

9744

2344275
97442

2263 MB128 MB

1210 MB

128 MB

10 × 2344275

1 × 9744

1 × 97442

 cost = 20

 3 GB Memory
 10$ Cost
 vm0

 3 GB Memory
 10$ Cost
 vm1

10$

10$

0$

 32 GB Memory
 1000$ Cost
 vm2

Figure 5.10. Process Allocation of the SwitchSensor Query.

The RouteSensor Query This time we will use a more complex query as an example,
the RouteSensor query. The query defined in the editor is shown in Figure 5.11. The
editor provides syntax highlight and content assist for query editing.

Figure 5.11. The RouteSensor Query in the Editor.

Once the query is written and compiled we get the generated Rete recipe defining the
Rete network for the query. The recipe file (with .recipe extension) and the Rete nodes
generated for the query are shown in Figure 5.12. This abstract model containing file of
the query will be one input for the Allocation Optimizer.

5.3.1 The Allocation Optimizer Subsystem

One other important input for the Allocation Optimizer is the inventory description model.
This model is contained in a file with .inventory extension.

58

Figure 5.12. Rete Recipe of the RouteSensor Query.

We have created a model (with Local.inventory name) in the Inventory editor of the IDE
which is shown in Figure 5.13. We have to specify a connection string for the database
which stores the model. In this example we use 4store clustered databases with the
fourstore://trainbenchmark_cluster connection string. Two virtual machines will run the
query in this example, both have 8 GBs of memory space. We also defined the communi-
cation overheads between the machines with a matrix-style notation (for each machine in
order).

Figure 5.13. Creating Inventory for the RouteSensor Query.

Once the Rete recipe, the inventory are created and the database has loaded the data,
we have all inputs for the allocation and the user can create an allocation for the query
from the IDE. In order to do that, the user has to right click on the recipe file and choose
the optimized allocation from the context menu as it is shown in Figure 5.14.

59

Figure 5.14. Optimized Allocation for the RouteSensor Query.

However, the allocator does not know which inventory file it should use for the allocation.
Therefore it offers to choose one from the file system of the local machine. The allocator
does not know either which objective function it should primarily optimize for, therefore
the user has to specify that, too.

Once all of the inputs were specified by the user, the allocation optimizer can start its
work.

It queries the database in order to determine how many data tuples the queries will run
against. After that it creates processes for the Rete nodes and calculates the heuristical
values for process memory consumption and inter-process communication. Finally, it will
assign the processes to machines optimally.

The output of the allocation will be the optimized architecture model. In this Route-
Sensor query example we optimized for the network communication. The generated ar-
chitecture file in the IDE is shown in Figure 5.15.

It contains the used machines with their IP addresses. The machines contain their
processes with their port numbers and estimated memory consumption. The processes
contained by one particular machine will be started on that machine.

The model also contains InfrastructureMapping elements. The role of this element is
the mapping of Rete nodes to processes. In Figure 5.15 we can see that the process
192.168.241.135:2552 (identified by IP and port number) will contain two Rete nodes.

5.3.2 IncQuery-D IDE Lifecycle Operations

In this section we will see how we can run the query and manage its lifecycle if we have
the architecture description prepared for it. The lifecycle operations for the query can be
reached from the context menu of an architecture file.

60

Figure 5.15. Optimized Architecture Model for the RouteSensor
Query.

Installing the IncQuery-D System The first step is to install the IncQuery-D
system to the computers which will run the query. A script will install all the binaries,
including the dependencies, and other resources needed by the IncQuery-D system to
the host machines used in the particular architecture description. The installation has two
variants, full and light. The difference between them is not relevant in the context of this
report.

The coordinator with its binaries will also be installed to one machine.
The installation will also include the monitoring components. The operating system

monitoring agents will be installed to all machines while the monitoring server will be
installed to one machine.

In this example the coordinator and the monitoring server will run on the machine with
the 192.168.241.135 IP address. These information are also described in the architecure
model.

This step can be skipped if the system is already installed to the hosts.

Deploying the Query Deployment is a preparation for the query processing. In this
phase we start the Rete node containing processes of the architecture file (these will be the
Akka microkernels) on the appropriate hosts with their estimated memory sizes and their
ports used for communication reserved for them.

We start the coordinator process as well, it also reserves its ports used for communica-
tion.

Finally the monitoring components will be started, the agents on each host contained
in the architecture and the monitoring server on the assigned host.

Starting the Query In this phase, we give a command for the coordinator and it
will start the processing of the query. The coordinator requires the prepared architecture
description for this operation. The coordinator will create the Rete actors for the Rete
nodes in the appropriate processes according to the architecture description.

61

The Input nodes will load the appropriate data from the database and the results will
be propagated through the Rete network.

In this phase, the Rete nodes can already be observed on the monitoring dashboard.
Figure 5.16 shows the network with the propagation for the RouteSensor query. We can
observe that 21107 tuples reached the Production node. These tuples are the recent results
of the query.

Figure 5.16. Rete Layout for the RouteSensor Query.

Check the Query Results With this command the coordinator gets the results from
the Production node. The results will be propagated to the monitoring server in order to
be able to visualize on the monitoring dashboard as we have seen in Section 3.2.3.

Stop the Query This command terminates the query by stopping all the running pro-
cesses mentioned previously.

Uninstall the IncQuery-D System This command removes all the aforementioned
binaries and resources used by the IncQuery-D system from the used machines.

62

Chapter 6

Evaluation of the Optimization

In this chapter we wish to evaluate the performance of the optimally allocated system with
benchmark measurements. We conducted multiple measurements on models of different
sizes and in various environments.

6.1 Purpose of the Benchmark

The purpose of the benchmark is to measure the impact of the allocation on the perfor-
mance of the system. In order to achieve this, we utilized the Train Benchmark framework,
introduced in Section 2.1. The Train Benchmark has been designed with the specific goal
of evaluating the performance of graph pattern matching tools. In previous work [35],
the Train Benchmark has been extended to accomodate performance measurements in a
distributed environment. We build on these results to evaluate the differences between
various allocation strategies.

Experiments To assess the impact of optimization, we designed two experiments. In
the first experiment, the impact of memory allocation optimization is assessed by com-
paring an optimized configuration to naïve setup that a) uses the default heap size for
the Java Virtual Machines, and b) assigns close to the maximum RAM available to the
JVMs. In the second experiment, we assess the impact of network traffic optimization
by comparing the optimized configuration to a counter-optimized setup that maximizes
communication along remote connections. To emphasize the effect of network communi-
cation on overall performance, we configured the cloud environment to use lower speed
(10 Mbit) connections that simulate a system under load. In both experiments, we follow
the Train Benchmark specification in the model transformation (Xform) scenarios and run
the RouteSensor query on instance models of increasing sizes, up to 2 million nodes and
11 million edges.

Hardware and software setup The benchmark software configuration consisted of an
extended Train Benchmark setup using the 4store (version 1.1.5) database in a clustered
environment. We ran three virtual machines (VMs) on a private cloud powered by Apache
VCL, each VM was running 64-bit Ubuntu Linux 14.04 on Intel Xeon 2.5GHz CPUs and
8GBs of RAM. We used Oracle 64-bit Java Virtual Machines (version 1.7.0_72), and
Akka 2.1.4. We integrated the Monitoring Subsystem into the benchmark environment in
order to record telemetry data at each execution stage of the benchmark. The benchmark
results were automatically processed by the R scripts provided by the Train Benchmark
framework.

63

6.2 Results and Analysis

For the sake of brewity, we present the most important aspects of the measurements,
focusing on 1) read and first check and 2) transformation phases of the Train Benchmark1.
The read and first check phase includes the combined execution time of loading data into
the IncQuery-D system and propagating update tokens corresponding to the initial data
to construct the complete Rete network. The transformation phase includes the combined
execution time of model manipulation sequences that involve propagating a smaller number
of update tokens through the Rete network.

6.2.1 Expected Results

As memory allocation primarily affects the JVMs ability to scale up with memory de-
mands, we expect the memory optimization to provide a more efficient configuration for
higher instance model sizes. In fact, it is foreseen that default heap size parameterization
(which corresponds to min(1 GB, 0.25 × RAM) according the Oracle specification2) will
not allow the measurements to execute successfully for larger model sizes.

For network traffic optimization, we foresee that the reduced amount of remote com-
munication will yield more efficient execution for the read and first check phase, as that
phase involves the (comparatively) large amount of updates propagating through the Rete
network.

6.2.2 Measurement Results

●

●

●
●

●

●

●

●

28.12

44.85

71.55

114.13

182.06

290.42

463.27

739.00

6k
24k
94

12k
49k
193

23k
90k
348

43k
170k
642

88k
347k
1301

176k
691k
2k

361k
1M
5k

715k
2M
10k

1M
5M
21k

2M
11M
41k

Nodes
Edges
Results

T
im

e
[s

] Tools

●

default heap
maximum heap
optimized allocation
unoptimized allocation

Batch validation time RouteSensor (x,y:logscale), XForm

Figure 6.1. Runtime of the read and first check phases on a slow
(10 Mbit) network.

Figure 6.1 shows combined measurement data from both experiments for the read and
first check phase. Note that both axes are scaled logarithmically. The x axis shows
model and query result sizes (number of nodes, number of edges, number of result entries
from top to bottom, respectively). The y axis shows execution time in seconds. The

1The complete measurement data is available from http://trainbenchmark.inf.mit.bme.hu
2http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#par_gc.

ergonomics.default_size

64

http://trainbenchmark.inf.mit.bme.hu
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#par_gc.ergonomics.default_size
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#par_gc.ergonomics.default_size

chart corresponds to a post-processed data set taking the minimum of five measurement
runs into account, in order to minimize noise stemming from load variations in the cloud
environment.

●

●

●

●

●

●

●

●

91.54

162.26

287.62

509.83

903.70

1601.87

2839.40

5033.00

6k
24k
94
−9

12k
49k
193
−19

23k
90k
348
−34

43k
170k
642
−64

88k
347k
1301
−130

176k
691k
2k

−260

361k
1M
5k

−532

715k
2M
10k

−1062

1M
5M
21k

−2109

2M
11M
41k

−4176

Nodes
Edges
Results

Change of result set size

T
im

e
[m

s]

Tools

●

default heap
maximum heap
optimized allocation
unoptimized allocation

Sum of Edit times for query RouteSensor (x,y:logscale), XForm

Figure 6.2. Runtime of the transformation phase on a slow
(10 Mbit) network.

Figure 6.2 shows combined measurement data from both experiments for the transfor-
mation phase. Note that both axes are scaled logarithmically, while the y axis now shows
execution time in milliseconds, and the bottom labels on the x axis now show changes
in the query result sets (which correspond to delta tuples received from the production
node).

6.2.3 Result analysis

Experiment 1: Memory optimization

As it can be seen in Figures 6.1 and 6.2, both the “default heap size” variant and the
“maximum heap size” variants failed to execute successfully for the largest instance model
sizes, both executions reporting out of heap space errors in the JVMs running one of the
Rete nodes.

These observations are explained by telemetry data recorded during the execution runs.
The memory measurements are illustrated in Figures 6.3 and 6.4, which show the system
state after the load and first check phase is complete for the 1M+5M instance model.
As it can be seen on the memory gauges (shown for VM processes in Figure 6.3 and for
Rete nodes in Figure 6.4), the memory usage for the memory intensive nodes have been
estimated correctly by the heuristics – all the join nodes indicate a memory usage within
the target range (orange color) close to 1GBs. As the “default heap size” variant uses
1GB heap limits, the JVM may get into a thrashing state under such loads and cause a
timeout during measurement which the Train Benchmark framework registers as a failed
run. Similarly, in the case of the “maximum heap size” variant, due to the lack of a
reasonable upper limit, the JVMs may interfere with each other’s memory allocations
resulting in a runtime error.

65

Figure 6.3. RouteSensor measurement infrastructure monitoring.

Figure 6.4. RouteSensor measurement Rete network monitoring.

Experiment 2: Network optimization

Figure 6.1 compares the optimized variant to a “counter-optimized” (shown as unopti-
mized) as described in Section 6.1. We may observe that while the overall characteristics

66

are similar, the optimized variant shows a constant-multiplier advantage, running approx-
imately 15-20% faster than the unoptimized variant.

Similar observations may be made by looking at Figure 6.2. As the numbers are compar-
atively small (which is consistent with the Train Benchmark specification), the optimized
variants advantage is within the measurement error range.

These observations are explained by telemetry data recorded by the Monitoring Sub-
system during the measurement runs. The network traffic measurements are summarized
in Figure 6.5, which compares the network traffic volume recorded for the “optimized”
and “unoptimized” variants. It can be seen that while the overall volume is practically
equivalent, its distribution between local and remote links is characteristically different
(i.e. in the “optimized” case, the overall remote volume is approximately 15% lower than
in the “unoptimized” case).

Traffic'[MBytes] vm0 vm1 vm2 vm0 vm1 vm2
Remote'RX+TX 300 349 371 248 280 347
Local'RX+TX 14 2 74 24 20 190
SUM'Remote
SUM'Local'
Total'traffic'

Unoptimized Optimized

1020
90
1110

875
234
1109

Figure 6.5. Network traffic statistics.

6.3 Threats to Validity

For our experiments, we considered the following internal and external threats to validity.

∙ Transient and unknown background load in the cloud environment. As a counter-
measure, we performed several execution runs and considered their minima for the
result plots.

∙ We strived to avoid systematic errors in the experiments (e.g. incorrect queries or
workloads) by cross-checking all results with the specification of the Train Bench-
mark.

∙ The validity of the analysis and especially the generalizability of the results to real-
world workloads has been thoroughly investigated in several academic papers on the
Train Benchmark (e.g. [36, 31]). We believe that our measurements are faithful
extensions of the Train Benchmark and thus the results of these previous works
apply to our contributions as well.

67

Chapter 7

Conclusion

This chapter summarizes the contributions presented in the report.

7.1 Summary of Contributions

We presented a novel approach for query optimization in the context of a distributed
incremental query engine, the IncQuery-D, and introduced the concept of allocation
optimization. We created a runtime monitoring subsystem and an allocation optimizer
component for the IncQuery-D framework, and we fully integrated our implementation
results to the Eclipse-based development tools for IncQuery-D.

7.1.1 Scientific Contributions

Hereby we summarize the scientific contributions of this report.

∙ We introduced the novel concept of allocation optimization in the context of dis-
tributed query optimization.

∙ We formalized the proposed allocation optimization problems as combinatorial op-
timization problems.

∙ We proved the 𝒩 𝒫-hardness of the formalized problems.

7.1.2 Practical Accomplishments

Hereby we summarize the practical accomplishments of this report.

∙ We implemented a new runtime monitoring subsystem for IncQuery-D, which col-
lects all the relevant performance metrics of the system. Furthermore, a web based
GUI has been created which visualizes all the important monitoring data, the com-
ponents of the system and the query results.

∙ We implemented allocation algorithms for the proposed problems, which are based
on CSP (Constraint Satisfaction Problem) solving.

∙ We integrated the allocation optimizer and monitoring components to IncQuery-D
runtime, and to the Eclipse-based development environment of IncQuery-D.

∙ We extended the Train Benchmark environment, by collecting and storing monitor-
ing data of the IncQuery-D system.

68

7.2 Achieved Results

Overall, we believe that the new IncQuery-D allocation optimizer shows very promising
results. We evaluated the effects of allocation optimization on the runtime performance
of the IncQuery-D system, and we found that the allocation optimizer has a critical role
in allocating memory for the processes.

We could provide efficient memory allocation solutions, where the processes had enough
memory to operate while the RAM resources of the computers were not overused. These
tasks are critical as a human user can not be realistically expected to perform similar
optimization for more complex configurations.

In our initial experiments, we realized that the communication optimization had little
effect on the runtime performance of the system in the case when we measured in a
private cloud with fast and dedicated Gigabit Ethernet connections for relatively small
models and simple queries. However, this is not surprising as sending relatively small
amount of data on a fast communication link has no significant overhead compared to the
other computations of the system.

However, we found that in an environment with lower speed network communication
(or where the network connections are not dedicated to the query engine but are under
load from outside the system), communication optimization caused significant performance
improvement in the query evaluation. Even for small models the evaluation time could
be 20% less than in an unoptimized case. Therefore this way of optimization has key
importance in providing scalable query evaluation in environments with worse conditions
(e.g. in a public cloud infrastructure).

On the other hand, we believe that in case of really large models and complex queries,
communication optimization will cause evident performance improvement even in case of
fast communication links. Furthermore, the overall idea behind network traffic optimiza-
tion can be extended to incorporate other optimization aspects such as CPU load and
multiple cores, providing a straightforward direction for future research.

7.3 Limitations and Future Work

The current implementations of the provided solutions has some known limitations:

∙ The performance of the allocation optimization algorithms is not yet capable of
solving problems with large models and complex queries efficiently.

∙ Our heuristics are based on certain assumptions that are specific to software mod-
eling (e.g. that the graphs have low edge density) that may not always hold.

For future work, we plan to address the following challenges:

∙ Providing performance improvements for the allocation algorithms, e. g. by trying
out alternative solvers or implementing different solution approaches.

∙ Providing precision improvements for the process memory consumption and network
communication heuristics.

∙ Creating dynamic reconfiguration and reallocation solutions for the IncQuery-D
system based on a feedback-loop coming from the runtime monitoring data and this
way making the system autonomous.

69

Acknowledgement

I would like to say huge thanks to my supervisors Gábor Szárnyas, Dr. István Ráth and
Dr. Ákos Horváth for their limitless help and enthusiasm. I am also grateful to Dr. Dániel
Varró, Benedek Izsó and Dr. Gábor Bergmann for their friendly advice in regards of my
work. Furthermore I would like to extend my appreciation to all other colleagues in the
Fault Tolerant Systems Research Group who provided numerous valuable suggestions and
help.

Last but not least, I would like to express my deep thankfulness to my family and friends
for their continuous support and appreciation which helped me all along the way.

70

Bibliography

[1] 4store. http://4store.org/. Accessed: 2014-10-22.

[2] Akka Framework. http://akka.io/. Accessed: 2014-10-14.

[3] Akka Microkernel. http://doc.akka.io/docs/akka/snapshot/scala/
microkernel.html. Accessed: 2014-10-22.

[4] AUTOSAR. http://www.autosar.org/. Accessed: 2014-10-22.

[5] Avahi protocol. http://avahi.org/. Accessed: 2014-10-22.

[6] Boolean Satisfiability Problem. http://en.wikipedia.org/wiki/Boolean_
satisfiability_problem. Accessed: 2014-10-10.

[7] Combinatorial Optimization. http://en.wikipedia.org/wiki/Combinatorial_
optimization. Accessed: 2014-10-10.

[8] Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/. Accessed:
2014-10-14.

[9] Eclipse Platform. https://www.eclipse.org/. Accessed: 2014-10-22.

[10] Google OR-Tools. https://code.google.com/p/or-tools/. Accessed: 2014-10-12.

[11] Knapsack Problem. http://www.cs.cmu.edu/afs/cs/academic/class/
15854-f05/www/scribe/lec10.pdf. Accessed: 2014-10-11.

[12] Neo Technology, Neo4j. http://neo4j.com/. Accessed: 2014-10-22.

[13] OpenLink Software: Virtuoso Universal Server. http://virtuoso.openlinksw.
com/. Accessed: 2014-10-22.

[14] Pareto Efficiency. http://en.wikipedia.org/wiki/Pareto_efficiency. Accessed:
2014-10-14.

[15] Railway RDF Metamodel. https://github.com/FTSRG/trainbenchmark-rdf/
blob/master/metamodel/railway.rdf. Accessed: 2014-10-22.

[16] Rasqal RDF Query Library. http://librdf.org/rasqal/. Accessed: 2014-10-22.

[17] RDF/XML. http://www.w3.org/TR/rdf-syntax-grammar/. Accessed: 2014-10-22.

[18] Resource Description Framework. http://www.w3.org/RDF/. Accessed: 2014-10-14.

[19] Sesame: RDF API and Query Engine. http://rdf4j.org/. Accessed: 2014-10-22.

[20] SPARQL Query Language. http://www.w3.org/TR/rdf-sparql-query/. Accessed:
2014-10-22.

71

http://4store.org/
http://akka.io/
http://doc.akka.io/docs/akka/snapshot/scala/microkernel.html
http://doc.akka.io/docs/akka/snapshot/scala/microkernel.html
http://www.autosar.org/
http://avahi.org/
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://www.eclipse.org/modeling/emf/
https://www.eclipse.org/
https://code.google.com/p/or-tools/
http://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec10.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec10.pdf
http://neo4j.com/
http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/
http://en.wikipedia.org/wiki/Pareto_efficiency
https://github.com/FTSRG/trainbenchmark-rdf/blob/master/metamodel/railway.rdf
https://github.com/FTSRG/trainbenchmark-rdf/blob/master/metamodel/railway.rdf
http://librdf.org/rasqal/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/RDF/
http://rdf4j.org/
http://www.w3.org/TR/rdf-sparql-query/

[21] Triplestore. http://en.wikipedia.org/wiki/Triplestore. Accessed: 2014-10-22.

[22] Xtend. http://www.eclipse.org/xtend/. Accessed: 2014-10-19.

[23] YourKit. http://www.yourkit.com/. Accessed: 2014-10-22.

[24] Gábor Bergmann, Zoltán Ujhelyi, István Ráth, and Dániel Varró. A Graph Query
Language for EMF models. In Jordi Cabot and Eelco Visser, editors, Theory and
Practice of Model Transformations, Fourth International Conference, ICMT 2011,
Zurich, Switzerland, June 27-28, 2011. Proceedings, volume 6707 of Lecture Notes in
Computer Science, pages 167–182. Springer, Springer, 2011. Acceptance rate: 27%.

[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107–113, January 2008.

[26] Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial intelligence, 19(1):17–37, 1982.

[27] Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and implementation
of a clustered RDF store. In 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009), pages 94–109, 2009.

[28] Dorit S Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing
Co., 1996.

[29] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. IncQuery-D: Incre-
mental Graph Search in the Cloud. In Proceedings of the Workshop on Scalability in
Model Driven Engineering, page 4, Budapest, Hungary, 2013. ACM, ACM.

[30] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. Train Benchmark
Technical Report. 2014.

[31] Benedek Izsó, Zoltán Szatmári, Gábor Bergmann, Ákos Horváth, and István
Ráth. Towards Precise Metrics for Predicting Graph Query Performance. In
2013 IEEE/ACM 28th International Conference on Automated Software Engineer-
ing (ASE), pages 412–431, Silicon Valley, CA, USA, 11/2013 2013. IEEE, IEEE.
Acceptance Rate: 23%.

[32] Daniel P Miranker, Rodolfo K Depena, Hyunjoon Jung, Juan F Sequeda, and Carlos
Reyna. Diamond: A SPARQL query engine, for linked data based on the rete match.
In Workshop on Artificial Intelligence meets the Web of Data, 2012.

[33] Mikko Rinne, Esko Nuutila, and Seppo Törmä. INSTANS: High-Performance Event
Processing with Standard RDF and SPARQL. In 11th International Semantic Web
Conference ISWC 2012, page 101. Citeseer, 2012.

[34] Markus Scheidgen, Anatolij Zubow, Joachim Fischer, and Thomas H Kolbe. Au-
tomated and transparent model fragmentation for persisting large models. Springer,
2012.

[35] Gábor Szárnyas. Superscalable Modeling. Master’s thesis, Budapest University of
Technology and Economics, Budapest, 12/2013 2013.

[36] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor Bergmann, and
Dániel Varró. IncQuery-D: A Distributed Incremental Model Query Framework in the
Cloud. In ACM/IEEE 17th International Conference on Model Driven Engineering

72

http://en.wikipedia.org/wiki/Triplestore
http://www.eclipse.org/xtend/
http://www.yourkit.com/

Languages and Systems, MODELS 2014, Valencia, Spain, 2014. Springer, Springer.
Acceptance rate: 26%.

[37] Ronald L. Rivest Clifford Stein Thomas H. Cormen, Charles E. Leiserson. In-
troduction to Algorithms. http://en.m.wikipedia.org/wiki/Introduction_to_
Algorithms. Accessed: 2014-10-11.

[38] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, Vol. I. Com-
puter Science Press, Inc., New York, NY, USA, 1988.

[39] Pascal Van Hentenryck, Helmut Simonis, and Mehmet Dincbas. Constraint satisfac-
tion using constraint logic programming. Artificial intelligence, 58(1):113–159, 1992.

[40] Gergely Varró and Frederik Deckwerth. A Rete Network Construction Algorithm for
Incremental Pattern Matching. In Keith Duddy and Gerti Kappel, editors, Theory
and Practice of Model Transformations, volume 7909 of Lecture Notes in Computer
Science, pages 125–140. Springer Berlin Heidelberg, 2013.

73

http://en.m.wikipedia.org/wiki/Introduction_to_Algorithms
http://en.m.wikipedia.org/wiki/Introduction_to_Algorithms

	Kivonat
	Abstract
	Introduction
	Context
	Problem Statement and Requirements
	Objectives and Contributions
	Structure of the Report

	Background and Related Work
	A Motivating Case Study, the Train Benchmark
	4store
	The Rete Algorithm
	Overview of the Rete Algorithm
	Data Representation in the Rete Algorithm
	Worker Nodes of the Rete Algorithm

	IncQuery-D
	Architecture
	The Coordinator
	Remote Message Sending with Akka

	Query Optimization for the Rete Algorithm
	Rete Layout Optimization
	Rete Allocation Optimization

	Related Work

	Overview
	Allocation in Distributed Query Optimization
	Allocation Challenges
	Multi-Dimensional Optimization

	The IncQuery-D Allocator
	Extended IncQuery-D Architecture
	The Allocation Optimizer Subsystem
	Runtime Monitoring Subsystem
	Heuristics in the Optimization

	Formalization of the Allocation Optimization Problems
	The Communication Minimization Problem
	Formalization of the Communication Minimization Problem
	The Complexity of the Communication Minimization Problem

	The Cost Minimization Problem
	Formalization of the Cost Minimization Problem
	The Complexity of the Cost Minimization Problem

	Elaboration
	Algorithms for the Problems
	OR-Tools API

	Case Study: Evaluation of the SwitchSensor Query
	The Query
	Communication Minimization
	Cost Minimization

	IncQuery-D IDE
	The Allocation Optimizer Subsystem
	IncQuery-D IDE Lifecycle Operations

	Evaluation of the Optimization
	Purpose of the Benchmark
	Results and Analysis
	Expected Results
	Measurement Results
	Result analysis

	Threats to Validity

	Conclusion
	Summary of Contributions
	Scientific Contributions
	Practical Accomplishments

	Achieved Results
	Limitations and Future Work

	Acknowledgement
	Bibliography

