
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Incremental Graph Queries in the Cloud

SCIENTIFIC STUDENTS’ ASSOCIATIONS REPORT

Author Supervisors

Gábor Szárnyas Dr. István Ráth

Benedek Izsó

Dr. Dániel Varró

October 25, 2013

2

Kivonat

A lekérdezések központi szerepet játszanak az adatvezérelt alkalmazásokban. A model-

lvezérelt szoftvertervezés (model-driven engineering, MDE) eszközei és transzformá-

ciói erősen támaszkodnak a modellekérdezések hatékony kiértékelésére. A szoftver-

modellek mérete és komplexitása intenzíven nő, ezért a jelenlegi MDE eszközökkel

gyakran komoly skálázhatósági problémák merülnek fel, amelyek csökkentik a fe-

jlesztés hatékonyságát és növelik annak költségeit.

A skálázhatósági kérdések központi témája az adatbázis-kezelés területén végzett

kutatásoknak. A NoSQL rendszerek részben megoldást kínálnak erre a problémára,

de cserébe le kell mondanunk az SQL rendszerek által biztosított deklaratív ad-

hoc lekérdezések erejéről. A NoSQL rendszerek modellvezérelt alkalmazásokban

történő közvetlen alkalmazása jelenleg is nyitott kutatási kérdés, az ezekben futtatott

lekérdezések ugyanis jelentősen bonyolultabbak, mint az általános adatbázis-kezelő

alkalmazásokban használtak.

Dolgozatom célja, hogy az EMF-INCQUERY-ben alkalmazott inkrementális

gráfmintaillesztő technikákat elosztott, felhőalapú infrastruktúrára implemen-

táljam. Bemutatok egy olyan újszerű architektúrát, amely elosztott, skálázható

módon alkalmas lekérdezések inkrementális kiértékelésére. Az architektúra prototí-

pusa, az INCQUERY-D rendszer képes egyetlen számítógéptől egy többgépes fürtig

skálázódni, így képes nagy modelleken komplex lekérdezések hatékony futtatására. Az

INCQUERY-D további előnye, hogy a lekérdezőmotor független a mögöttes adatbázis

adatmodelljétől.

Az elképzelés működőképességét mérési eredményekkel igazoltam egy RDF- és egy

gráfalapú adatbázis rendszerrel. Az eredmények bizonyítják, hogy az inkrementális

lekérdezési technikák képesek hatékonyan működni elosztott környezetben is.

3

Abstract

Queries are the foundations of data intensive applications. In model-driven software

engineering (MDE), model queries are core technologies of tools and transformations.

As software models are rapidly increasing in size and complexity, traditional MDE tools

frequently exhibit scalability issues that decrease productivity and increase costs.

While such scalability challenges are a constantly hot topic in the database commu-

nity and recent efforts of the NoSQL movement have partially addressed many short-

comings, this happened at the cost of sacrificing the powerful declarative ad-hoc query

capabilities of SQL. Unfortunately, this is a critical problem for MDE applications, as

their queries can be significantly more complex than in general database applications.

The applicability of NoSQL databases in MDE applications is subject for future re-

search.

In this report, I aim to address this challenge by adapting incremental graph search

techniques, known from the EMF-INCQUERY framework, to a distributed cloud in-

frastructure. I present a novel architecture for distributed, scalable incremental query

evaluation. INCQUERY-D, the prototype system can scale up from a single node to

a cluster of nodes that can handle very large models and complex queries efficiently.

INCQUERY-D is a backend-agnostic system, meaning that its query engine is indepen-

dent from the data model of the underlying database.

The feasibility of the approach is supported by early experimental results with both

an RDF and a graph database backend. The results prove that incremental query eval-

uation techniques can work efficiently in a distributed environment as well.

4

Contents

1 Introduction 8

1.1 Context . 8

1.2 Problem Statement and Requirements . 8

1.3 Objectives and Contributions . 9

1.4 Structure of the Report . 10

2 Background Technologies 11

2.1 Big Data and the NoSQL Movement . 11

2.2 Concepts . 12

2.2.1 Graph Data Models . 12

2.2.2 Sharding . 16

2.2.3 Query Languages and Evaluation Strategies 16

2.3 Graph Storage Technologies . 17

2.3.1 EMF Technologies . 17

2.3.2 Neo4j . 19

2.3.3 Titan . 19

2.3.4 4store . 22

2.3.5 Overview and Evaluation of Graph Storage Technologies 23

2.4 Building Scalable Asynchronous Distributed Systems: Akka 24

3 Overview of the Approach 25

3.1 Incremental Query Evaluation . 25

3.1.1 Incremental Pattern Matching Algorithms 26

3.1.2 The Rete Algorithm . 26

3.2 Incremental Pattern Matching on a Single Workstation: EMF-INCQUERY . 27

3.2.1 Architecture . 27

3.2.2 Indexing and Initialization . 28

3.2.3 Data Representation and Storage . 28

3.2.4 Notification Mechanisms . 28

3.2.5 Termination Protocol . 29

5

3.2.6 Configuration and Performance Optimization 29

3.3 Extensions for Distributed Scalability: INCQUERY-D 29

3.3.1 Architecture . 30

3.3.2 Indexing and Initialization . 30

3.3.3 Data Representation and Storage . 30

3.3.4 Notification Mechanisms . 31

3.3.5 Termination Protocol . 31

3.3.6 Configuration and Performance Optimization 31

3.4 Workflow . 32

3.4.1 Workflow of EMF-INCQUERY . 32

3.4.2 Workflow of INCQUERY-D . 33

3.5 Tooling for INCQUERY-D . 33

3.6 Elaboration of the Example . 34

3.6.1 Case Study: Railroad System Design 34

3.6.2 Workflow of the Example . 37

4 Evaluation of Performance and Scalability 41

4.1 Dimensions of Scalability . 41

4.2 Foundations: the Train Benchmark . 41

4.2.1 Benchmark Goals . 42

4.2.2 Generating Instance Models . 43

4.2.3 Original Results for Non-distributed Tools 43

4.3 Distributed Train Benchmark . 44

4.3.1 Distributed Architecture . 44

4.3.2 Benchmark Limitations . 44

4.3.3 Generating Instance Models . 45

4.4 Benchmark Environment . 45

4.4.1 Benchmark Setup . 45

4.4.2 Hardware and Software Ecosystem 45

4.4.3 Benchmark Methodology and Data Processing 46

4.5 Benchmark Results with Neo4j . 47

4.6 Benchmark Results with 4store and Titan . 47

4.7 Result Analysis . 50

4.8 Threats to Validity . 51

4.9 Summary . 52

5 Related Work 53

5.1 Eclipse-based Tools . 53

5.2 Rete Implementations . 53

6

5.3 Benchmarks . 54

5.3.1 RDF Benchmarks . 54

5.3.2 Model Transformation and Graph Transformation Benchmarks . . 55

6 Conclusions 56

6.1 Summary of Contributions . 56

6.1.1 Scientific Contributions . 56

6.1.2 Practical Accomplishments . 57

6.2 Limitations . 58

6.3 Future work . 58

6.4 Acknowledgements . 59

Bibliography 61

A Graph Formats 68

A.1 Property Graph Formats . 68

A.1.1 GraphML . 68

A.1.2 Blueprints GraphSON . 69

A.1.3 Faunus GraphSON . 70

A.2 Semantic Graph Formats . 70

A.2.1 RDF/XML . 70

A.3 Mapping Ecore to Property Graphs . 72

7

Chapter 1

Introduction

1.1 Context

Nowadays, model-driven software engineering (MDE) plays an important role in the

development processes of critical embedded systems1. Advanced modeling tools pro-

vide support for a wide range of development tasks such as requirements and trace-

ability management, system modeling, early design validation, automated code gen-

eration, model-based testing and other validation and verification tasks.

Models representing sensor data, reverse engineered software models (e.g. abstract

syntax trees of existing source code) and geospatial models can contain well over 109

modeling elements [70]. The dramatic increase in complexity is also affecting critical

embedded systems in recent years. Modeling toolchains are facing scalability chal-

lenges as the size of design models constantly increases, and automated tool features

become more sophisticated.

1.2 Problem Statement and Requirements

Many scalability issues can be addressed by improving query performance. Incremen-

tal evaluation of model queries aims to reduce query response time by limiting the

impact of model modifications to query result calculation. Such algorithms work by

either (i) building a cache of interim query results and keeping it up-to-date as mod-

els change (e.g. EMF-INCQUERY [34]) or (ii) applying impact analysis techniques and

re-evaluating queries only in contexts that are affected by a change (e.g. the Eclipse

OCL Impact Analyzer [46]). This technique has been proven to improve performance

dramatically in several scenarios (e.g. on-the-fly well-formedness validation or model

synchronization), at the cost of increasing memory consumption. Unfortunately, this

1Section 1.1 and Section 1.2 are based on our earlier publication [52]. The current report builds on
the foundations of [52] and significantly extends them in both theory and practice, as detailed at the end
of Section 6.1.

8

overhead is combined with the increase in model sizes due to in-memory representa-

tion (found in state-of-the-art frameworks such as EMF [74]).

A trivial solution would be to increase the memory. However, the Garbage Collec-

tor (GC) cannot handle heap sizes larger than 10 GB efficiently, thus introducing long

pauses in the application [25]. Of course, this problem is well-known in the Java com-

munity. There are alternative Java Virtual Machines (JVMs) with specialized Garbage

Collectors, like Azul Systems’ JVM. However, the Azul JVM is a proprietary product and

has specific hardware requirements. Also, this does not solve the scaling problem en-

tirely – the model size is still limited by the total amount memory in a single computer.

An alternative approach to tackling MDE scalability issues is to make use of advances

in persistence technology. As the majority of model-based tools uses a graph-oriented

data model, recent results of the NoSQL and Linked Data movement [62, 1, 2] are

straightforward candidates for adaptation to MDE purposes. Unfortunately, this idea

poses difficult conceptual and technological challenges: (i) property graph databases

lack strong metamodeling support and their query features are simplistic compared to

MDE needs, and (ii) the underlying data representation format of semantic databases

(RDF [47]) has crucial conceptual and technological differences to traditional meta-

modeling languages such as Ecore [74]. Additionally, while there are initial efforts to

overcome the mapping issues between the MDE and Linked Data worlds [51], even the

most sophisticated NoSQL storage technologies lack efficient and mature support for

executing expressive queries incrementally.

1.3 Objectives and Contributions

We aimed to address the scalability challenge of MDE by adapting incremental graph

search techniques from EMF-INCQUERY to the cloud infrastructure—instead of ver-

tical scaling (putting more resources to the same workstation), we decided to opt for

horizontal scaling (using multiple computers).

On the theoretical side, we adopted EMF-INCQUERY’s exiting incremental pattern

matching algorithm. We extended the algorithm to work in a distributed environment

and present a novel architecture, which is capable of loading, transforming and incre-

mentally querying models, while utilizing the total amount of memory in the cluster.

To build a scalable incremental query engine, we needed a distributed software

stack. This included a distributed database management system and a messaging

framework. We defined the evaluation criteria for these systems and evaluated them

accordingly. Based on the architecture and the pattern matcher algorithm, we built a

system prototype and compared its performance to existing tools.

We extended an existing benchmark environment to evaluate the scalability charac-

9

teristics of the system. We conducted benchmarks with different storage backends and

query engines.

1.4 Structure of the Report

The report is structured as follows. Chapter 2 introduces the background technolo-

gies and the motivation for building a distributed, incremental graph pattern matcher.

Chapter 3 provides an overview of current a single-node incremental pattern macher,

EMF-INCQUERY. Chapter 4 shows an initial performance evaluation in the context of

on-the-fly well-formedness validation of software design models. Chapter 5 discusses

the related work. Chapter 6 concludes the report and presents our future plans.

10

Chapter 2

Background Technologies

Developing a scalable graph pattern matcher requires a wide range of technologies.

Careful selection of the technologies is critical to the success of the project. For

INCQUERY-D, we looked for technologies that can form the building blocks of a dis-

tributed, scalable model repository and pattern matcher. These technologies must

been designed with scalability in mind and deployed in large-scale distributed systems

successfully.

Usually, instance models are graph-like data structures. Therefore, we looked for

scalable graph databases. In this context, scalability requires distributed storage and

querying capabilities.

During the early phase of the research, we studied the architecture and limitations of

the candidate systems. For databases, we inspected the data sharding strategies, con-

sistency guarantees and transaction capabilities, along with the API and query meth-

ods. We also checked the support for asynchronous processing, notification and mes-

saging mechanisms.

In this chapter, we introduce the concepts and technologies that can form the basis

of a scalable, distributed, asynchronous system.

2.1 Big Data and the NoSQL Movement

Since the 1980s, database management systems based on the relational data

model [36] dominated the database market. Relational databases have a number of

important advantages: precise mathematical background, understandibility, mature

tooling and so on. However, due to their rich feature set and the strongly connected

nature of their data model, relational databases often have scalability issues [56, 73].

They are typically optimized for transaction processing, instead of data analsysis (see

data warehouses for an exception). In practice, these render them impractical for a

number of use cases, e.g. running complex queries on large data sets.

11

In the last decade, large organizations struggled to store and process the huge

amounts of data they produced. This problem introduces a diverse palette of scien-

tific and engineering challenges, called Big Data challenges.

Big Data challenges spawned dozens of new database management systems. Typi-

cally, these systems broke with the strictness of the relational data model and utilized

simpler, more scalable data models. These systems dropped support for the SQL query

language used in relational databases and hence were called NoSQL databases1 [18].

Because relational databases are not suitble for large-scale model-driven applications,

we experimented with numerous NoSQL databases.

2.2 Concepts

This section introduces the most important concepts used in this report.

2.2.1 Graph Data Models

Along the well-known and widely used relational data model, there are many other

data models. NoSQL databases are often categorized based on their data model (e.g.

key–value stores, document stores, column families). In this report, we focus on graph

data models.

The graph is a well-known mathematical concept widely used in computer science.

For our work, it is important to distinguish between different graph data models.

Directed graph

Labeled graph

Semantic graphTyped graph Property graph

Add edge labels

Simple graph

Add directionality

Add propertiesAdd types Make

labels URIs

Figure 2.1: Different graph data models (based on [68])

The most basic graph model is the simple graph, formally defined as G = (V ,E),

where V is the set of vertices and E ⊆ V ×V is the set of edges. Simple graphs are

1The community now mostly interprets NoSQL as ”not only SQL”.

12

sometimes referred as textbook-style graphs because they are an integral part of aca-

demic literature. Simple graphs are useful for modeling homogeneous systems and

have plenty of algorithms for processing.

Simple graphs can be extended in several different ways (Figure 2.1). To describe

the connections in more detail, we may add directionality to edges (directed graph). To

allow different connections, we may label the edges (labeled graph).

Typed graphs introduces types for vertices. Property graphs (sometimes called at-

tributed graphs) add even more possibilites by introducing properties. Each graph el-

ement, both vertices and edges can be described with a collection of properties. The

properties are key–value pairs, e.g. type = ’Person’, name = ’John’, age = 34. Se-

mantic graphs use URIs (Uniform Resource Identifiers) instead of labels, otherwise

they have similar expressive power as labeled graphs.

Graph models are found in many languages and environments. In the following,

we will present the ones most important for this report: the Ecore metamodeling lan-

guage, the TinkerPop framework and the Resource Description Framework (RDF).

Metamodeling

Metamodeling is a methodology for the definition of modeling languages. A meta-

model specifies the abstract syntax (structure) of a modeling language. Metamodels

are expressed using a metamodeling language that itself is a modeling language. The

metamodel can also be interpreted as the object-oriented data model of the language

under design. Metamodeling can be viewed as the grammar for a typed property graph,

so the created models are both typed graphs and property graphs.

Ecore

name : String
containment : boolean
lowerBound : int
upperBound : int

EReference
name : String

EClass
name : String
EAttribute

name : String
EDataType

eAttributes

0..*

0..*

eReferences

eSuperTypes

0..*

0..1

1

1

eReferenceType

eAttributeType

eOpposite

Figure 2.2: The Ecore kernel, a simplified subset of the Ecore metamodel

Ecore is the metamodeling language used by EMF. It has been developed in order

to provide an approach for metamodel definition that supports the direct implemen-

tation of models using a programming language. The main rationale in introducing

13

Ecore separately that it is the de facto standard metamodeling environment of the in-

dustry, and several domain-specific languages are defined using this formalism.

Figure 2.2 illustrates the core elements of the Ecore approach. The full metamodel

can be found in the EMF documentation [38]. The most important elements are the

following.

• EClass models classes (or concepts). EClasses are identified by name and can

have several attributes and references. To support inheritance, a class can refer

to a number of supertype classes.

• EAttribute models attributes, that contain data elements of a class. They are

identified by name and have a data type.

• EDataType is used to represent simple data types that are treated as atomic (their

internal structure is not modeled). Data types are also identified by their name.

• EReference represents a unidirectional association between EClasses and as

identified by a name. Lower and upper multiplicities can be specified. It is also

possible to mark a reference as a containment that represents composition re-

lation between elements. If a bidirectional association is needed, it should be

modeled as two EReference instances that are mutually connected via their op-

posite references.

The rest of the details of Ecore has been ommitted for the sake of clarity, see [38] for

further reference.

TinkerPop framework

The TinkerPop framework is an open-source software stack for graph storage and

processing [27]. TinkerPop includes Blueprints, a property graph model interface.

Blueprints fulfills the same role for graph databases as JDBC does for relational

databases. Most NoSQL graph databases implement the property graph interface pro-

vided by Blueprints, including Neo4j (Section 2.3.2), Titan (Section 2.3.3), DEX [23],

InfiniteGraph [19] and OrientDB [20].

TinkerPop also introduces a graph query language, Gremlin. Gremlin is a domain-

specific language based on Groovy, a Java-like dynamic language which runs on the

Java Virtual Machine. Unlike most query languages, Gremlin is an imperative language

with a strong focus on graph traversals.

Gremlin is based on Pipes, TinkerPop’s dataflow processing framework. Besides

traversing, Gremlin is capable of analyzing and manipulating the graph as well.

14

Figure 2.3: The TinkerPop software stack [11]

TinkerPop also provides a graph server (Rexster), a set of graph algorithms tailored

for property graphs (Furnace) and an object-graph mapper (Frames). The TinkerPop

software stack is shown on Figure 2.3.

Resource Description Framework

The Resource Description Framework (RDF) is a family of W3C (World Wide Web Con-

sortium) specifications originally designed as a metadata data model.

The RDF data model is based on the idea of making statements about resources in

the form of triples. A triple is a data entity composed of a subject, a predicate and an

object, e.g. ”John instanceof Person”, ”John is 34”.

Triples are typically stored in triplestores, specialized databases tailored to store and

process triples efficiently. Also, some triplestores are capable of reasoning, i.e. inferring

logical consequences from a set of facts or axioms. Triplestores are mostly used in

semantic technology projects.

Triplestores are usually queried via the RDF format’s query language, SPARQL (re-

cursive acronym for SPARQL Protocol and RDF Query Language).

The RDF data model is capable of expressing semantic graphs. Although the seman-

tic graph data model has less expressive power than the property graph data model,

by introducing additional resources for each property, a property graph can be easily

mapped to RDF.

15

Mapping Ecore to Other Data Models

Our intention to reuse EMF-INCQUERY for building INCQUERY-D required us to map

EMF’s metamodel, Ecore to the domain of property graphs and RDF models.

Ecore concept Property graph concept RDF concept

EClass instance nodes’ type property rdfs:Resource
EAttribute instance nodes’ property names rdf:Property
EReference instance edge label rdf:Property
EDataType instance Java primitive types rdfs:Datatype

Table 2.1: Mapping Ecore to property graphs and RDF

2.2.2 Sharding

To provide scalable persistence and processing for large amounts of data, the data has

to be split between multiple computers. This process is known as data sharding. Graph

sharding is a particularly difficult problem due to the strongly connected and mutable

nature of graphs. Efficient sharding of graphs is still an open research area [57].

Server 1 Server 2 Server 3Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

1 2 3

Figure 2.4: Different partitionings of the same graph

To illustrate the problem, Figure 2.4 shows different partitionings of the same graph

in a three-node cluster. In case 1©most edges run between servers and are therefore ex-

pensive to traverse. In case 2©, Server 2 is overloaded, taking more than three quarters

of the total load. Case 3© presents a more balanced sharding of the graph. Unfortu-

nately, for large graphs, balanced sharding is hard to achieve in practice.

Most graph partition problems NP-hard and practical solutions to these problems

could be derived using heuristics and approximation algorithms [42]. Unfortunately,

open-source database implementations lack support for such algorithms.

2.2.3 Query Languages and Evaluation Strategies

In the context of this report, a query defines a graph pattern. The result of the query is a

set of subgraphs of the original graph. Graph patterns are useful for identifying patterns

16

in a set of connected data elements. They are especially widely used in the context

of model-driven engineering for defining well-formedness validation constraints and

graph transformations.

Query Language

Queries can be defined in both imperative and declarative languages. The theoretical

basis for most declarative query languages is first order logic. Both tuple relational

calculus and relational algebra (widely used in query processing) are offshoots of first-

order logic.

As mentioned earlier, unlike most query languages, Gremlin is an imperative query

languages describing graph traversals. For example, if John’s father is Jack and Jack’s

father is Scott, we may run the traversals shown on Listing 2.1.

1 gremlin > g.V(’name ’, ’John ’).out(’father ’)

2 ==>Jack

3 gremlin > g.V(’name ’, ’John ’).out(’father ’).out(’father ’)

4 ==>Scott

Listing 2.1: Simple Gremlin queries

Query Evaluation Strategies

Query engines can be divided into two core categories: search-based and incremental

engines. The main difference between these approaches is the way they reevaluate

queries. While search-based engines process the whole data set (i.e. not just the data

elements affected by the change), incremental engines utilize some data structures to

be able to reevaluate the query based on the change set.

2.3 Graph Storage Technologies

In this section, we compare different graph storage technologies by systematically dis-

cussing their architecture and data model. We inspect their sharding strategies for dis-

tributed storage. We also present their query languages and evaluation strategies, with

particular emphasis on the support of distributed operations.

2.3.1 EMF Technologies

Eclipse is a free, open-source software development environment and a platform for

plug-in development. Eclipse comes with its own modeling technologies called EMF

(Eclipse Modeling Framework). EMF’s primary goals are application design and code

generation.

17

Architecture

EMF models can be persisted as XMI (XML Metadata Interchange) documents. By de-

sign, EMF models cannot be fragmented, i.e. they can only be used if they fit to a com-

puter’s main memory. There are different model repositories and persistence frame-

works which can handle large EMF models [71].

• CDO (Connected Data Objects), a distributed shared model framework for EMF

models and metamodels [40]. CDO provides an object-relational mapping from

Ecore to databases.

• Morsa [63] is a distributed model repository based on MongoDB [16], a popular

NoSQL database management system.

Data Model

EMF uses the Ecore data model, discussed in Section 2.2.1.

Sharding

Due to the nature of XML documents, EMF models serialized to a single XMI document

cannot be sharded. CDO does not support automatic sharding, however Morsa does

so by using MongoDB’s sharding mechanism.

Query Language and Evaluation

OCL OCL (Object Constraint Language) is a declarative query language to describe

well-formedness constraints on UML models. These expressions typically specify in-

variant conditions that must hold for the system being modeled or queries over objects

described in a model.

EMF-INCQUERY EMF-INCQUERY [33] is an Eclipse project developed by the Fault

Tolerant Systems Research Group in the Budapest University of Technology and Eco-

nomics. It provides IQPL (INCQUERY Pattern Language), a declarative language to ex-

press queries over EMF models in the form of graph patterns. With the language the

user can express combined queries, negative patterns, checking property conditions,

simple calculations, calculate disjunctions and transitive closures, etc. on top of the

models. The goal of EMF-INCQUERY is to provide incremental query evaluation.

Our research work builds on EMF-INCQUERY, both in theory and practice. We used

the Rete algorithm (Section 3.1.2) which allowed us to reuse some of the existing code

base. We also utilized the methodology and environment, originally used to bench-

mark EMF-INCQUERY (Section 4.2).

18

2.3.2 Neo4j

Neo4j, developed by Neo Technology, is the most popular NoSQL graph database.

Neo4j is one of the most mature NoSQL databases. It is well documented and provides

ample tooling, including an Eclipse-based visualization application, Neoclipse [17].

Architecture

Neo4j can be deployed in two scenarios. In embedded mode, it runs in the same JVM

(Java Virtual Machine), as the client application. In this setup, the database cannot be

accessed by other applications. In server mode, the database can serve requests from

multiple clients over a REST (Representational State Transfer) interface.

Data Model

Neo4j implements the TinkerPop framework’s Blueprints property graph data model.

Neo4j is capable of loading graphs from GraphML [24] and Blueprints GraphSON [13]

formats (see Section A.1 for examples).

Sharding

Instead of sharding, Neo4j only supports replication of data to create a highly available

cluster. This implies serious scalability limitations to the system. Neo4j’s developers

make serious efforts to improve the scalability of the database in an ongoing project

called Rassilon [3].

Query Language and Evaluation

Neo4j can be queried in various ways. When deployed in embedded mode, the appli-

cation can use its Java-based core API. In both embedded and server mode, Neo4j pro-

vides two query languages. The first is the TinkerPop framework’s imperative Gremlin

language, primarily targeted for graph traversals. The second is Neo4j’s own declarative

query language for graph pattern matching, Cypher.

2.3.3 Titan

Titan is a distributed, scalable graph database from Aurelius, the creators of the Tinker-

Pop framework. To understand Titan’s complex architecture, we present two additional

concepts: the MapReduce paradigm and the column family data model.

Asynchronous Parallel Processing with MapReduce The MapReduce paradigm de-

fines a parallel, asynchronous way of processing the data. As the name implies, MapRe-

19

duce consists of two phases: the map function processes each item of a list. The re-

sulted list is then aggregated by the reduce function. MapReduce is often used for sort-

ing, filtering and aggregating data sets. It is also used for fault-tolerant, distributed task

execution.

The Column Family Data Model A column family is similar to a table of a relational

database: it consists of rows and columns. However, unlike in a relational database’s

table, the rows do not have to have the same fixed set of columns. Instead, each row

can have a different set of columns. This makes the data structure more dynamic and

avoids the problems associated with NULL values.

Architecture

Titan is not a standalone database, instead, it builds on top of existing NoSQL database

technologies and leverages Hadoop’s MapReduce capabilities. Titan supports various

storage backends, including Cassandra and HBase. In the following, we shortly cover

the technologies Titan builds upon. Both Titan and its dependencies are open-source

software, written in Java.

Hadoop Hadoop is a distributed data processing framework inspired by Google’s

publications about MapReduce [37] and the Google File System [45]. Originally devel-

oped at Yahoo!, Hadoop is now an Apache project [7]. Like Google’s systems, Hadoop

is designed to run on commodity hardware, i.e. server clusters built from commercial

off-the-shelf products. Hadoop provides a distributed file system (HDFS) and a col-

umn family database (HBase). A typical Hadoop cluster consists of a single master

node which is responsible for the coordination of the cluster and worker nodes which

deal with the data processing. The MapReduce job is coordinated by the master’s job

tracker and processed by the slave nodes’ task tracker modules (Figure 2.5).

HDFS The Hadoop Distributed File System (HDFS) is an distributed file system, in-

spired by the Google File System and written specifically for Hadoop [7]. Unlike other

distributed file systems (e.g. Lustre [15]), which require expensive hardware com-

ponents, HDFS was designed to run on commodity hardware. HDFS tightly inte-

grates with Hadoop’s architecture (Figure 2.5).The NameNode is responsible for stor-

ing the metadata of the files and the location of the replicas. The data is stored by the

DataNodes.

HBase HBase [8] is an distributed column family database. It is developed as part of

the Hadoop project and runs on top of HDFS. The tables in an HBase database can

20

Figure 2.5: Hadoop’s architecture [59]

serve as the input and the output for MapReduce jobs run in Hadoop.

Cassandra Cassandra is one of the most widely used NoSQL databases [6]. Origi-

nally developed by Facebook [58], Cassandra is now an Apache project. Cassandra’s

a column family database with advanced fault-tolerance mechanisms. It allows the

application to balance between availability and consistency by allowing it to tune the

consistency constraints. Cassandra is used mainly by Web 2.0 companies, including

Digg, Netflix, Reddit, SoundCloud and Twitter. It is also used for research purposes at

CERN and NASA [21].

Data Model

To store the graph, Titan maps each vertex to a row of a column family (Figure 2.6). The

row stores the identifer and the properties of the vertex, along both the incoming and

outgoing edges’ identifiers, labels and properties.

Sharding

Titan uses the storage backend’s partitioner, e.g. Cassandra’s hash-based RandomPar-

titioner to shard the data. A more sophisticated partitioning system that will allow for

partitioning based on the graph’s static and dynamic properties (its domain and con-

nectivity, respectively) is under implementation as of October 2013, but not yet avail-

able.

21

Figure 2.6: Graph vertex mapped by Titan to a row in a Cassandra database

Query Language and Evaluation

Titan supports the TinkerPop framework’s Gremlin query language. Gremlin/Pipes uti-

lizes a depth-first search algorithm.

Faunus Although Titan was designed with scalability in mind, its query engine does

not work in a parallel way. Also, it is unable to cope with queries resulting in millions

of graph elements. To address this shortcoming, Aurelius developed a Hadoop-based

graph analytics engine, Faunus. Faunus has its own format called Faunus GraphSON.

The Faunus GraphSON format is vertex-centric: each row represents a vertex of the

graph. This way, Hadoop is able to efficiently split the input file and parallelize the

load process. See Section A.1.3 for an example. Unlike the Gremlin implementation

in Neo4j and Titan, the implementation in Faunus is based on breadth-first search. It

is important to note that Faunus always traverses the whole graph and does not use

its indices. This makes retrieving nodes or edges by type very slow (see our typical

workload in Section 3.3.2).

2.3.4 4store

4store is an open-source, distributed triplestore created by Garlik [4]. Unlike the other

tools discussed earlier, 4store is written in C. 4store is primarily applied for semantic

web projects.

22

Architecture

4store was designed to work in a cluster with high-speed networks. 4store server in-

stances are capable of discovering each other using the Avahi configuration protocol

[10]. 4store offers a command-line and a HTTP server interface.

Data Model

4store’s data model is an RDF graph. It supports RDF/XML input format, which is pro-

cessed using the Raptor RDF Syntax Library [65].

Sharding

Similar to Titan’s partitioning, 4store’s segmenting mechanism distributes the RDF re-

sources evenly across the cluster. 4store also supports replication by mirroring tuples

across the cluster.

Query Language and Evaluation

4store supports SPARQL queries with the Rasqal RDF Query Library [66].

2.3.5 Overview and Evaluation of Graph Storage Technologies

Technology Data model
Distributed
operation

Sharding Queries
Identifier
generation

EMF Ecore Differs Differs OCL, IQPL Automatic
4store RDF Manual Automatic SPARQL Manual
Neo4j Property graph Manual Manual Cypher Manual
Titan Property graph Automatic Automatic Gremlin Automatic

Table 2.2: Overview of database technologies

Table 2.2 summarizes the relevant characteristics of the aforementioned database

management systems. These characteristics are crucial for building a distributed pat-

tern matcher. According to these, Titan provides the most complete feature set. 4store

and Neo4j lack important features like automatic identifier generation, which has to be

implemented in the client application. Neo4j also misses automatic sharding, which

seriously hinders its scalability potential. EMF’s distributed operation and sharding

capabilities depend on the actual model repository and database backend being used.

23

2.4 Building Scalable Asynchronous Distributed Systems: Akka

Most distributed, concurrent systems use a messaging framework or message queue

service. The INCQUERY-D system also requires a distributed, asynchronous messaging

framework. For this purpose, we used the Akka framework.

Akka is an open-source, fault-tolerant, distributed, asynchronous messaging frame-

work developed by Typesafe [5]. Akka is implemented in Scala, a functional and object-

oriented programming language which runs on the Java Virtual Machine. Akka pro-

vides language bindings for both Java and Scala.

Figure 2.7: Deploying a remote actor in Akka [5]

Akka is based on the actor model [50] and provides built-in support for remoting.

Unlike traditional remoting solutions, e.g. Java RMI (Remote Method Invocation) and

CORBA (Common Object Request Broker Architecture), the remote and local interface

is the same for each actor. Actors have both a logical and a physical path (Figure 2.7).

This way, they can be transparently moved between machines on the network.

As of October 2013, the latest version (Akka 2.2) also supports pluggable transport

to use various transports to communicate with remote systems [5]. For serializing the

messages, Akka supports different frameworks, including Java’s built-in serialization,

Google Protobuf [22] and Apache Thrift [9].

24

Chapter 3

Overview of the Approach

The primary goal of INCQUERY-D is to provide a scalable architecture for execut-

ing incremental queries over large models. Our approach is based on the follow-

ing foundations: (i) a distributed model storage system that (ii) supports a graph-

oriented data representation format, and (iii) a graph query language adapted from the

EMF-INCQUERY framework. The novel contribution of this report is an architecture

that consists of a (i) distributed model management middleware, and a (ii) distributed

and stateful pattern matcher network based on the Rete algorithm.

INCQUERY-D provides incremental query execution by indexing model contents and

capturing model manipulation operations in the middleware layer, and propagating

change tokens along the pattern matcher network to produce query results and query

result changes (corresponding to model manipulation transactions) efficiently. As the

primary sources of memory consumption, i.e. both the indexing and intermediate Rete

nodes can be distributed in a cloud infrastructure, the system is expected to scale well

beyond the limitations of the traditional single workstation setup.

3.1 Incremental Query Evaluation

Some queries, e.g. well-formedness constraints in MDE are evaluated many times,

while the data set they are evaluated on only changes to a small degree. In these

cases, the idea of incremental query evaluation arises naturally: to speed up queries,

we should not start the evaluation all over again. Instead, we should rely on the (par-

tial) results derived during the previous executions of the query and process only the

changes that occured.

In practice, incremental query evaluation algorithms typically use data structures

for caching the interim results. This means that they usually consume more memory,

in other words, they trade memory consumption for execution speed. This approach,

called space–time tradeoff, is well-known and widely used in computer science.

25

In the following, we provide an overview of the Rete algorithm, which forms the the-

oretical basis of EMF-INCQUERY and INCQUERY-D.

3.1.1 Incremental Pattern Matching Algorithms

Numerous algorithms were invented for the purpose of incremental pattern matching.

Mostly, these algorithms originate from the field of rule-based expert systems.

One of the most well-known is the Rete algorithm, which creates a propagation net-

work. The network stores the partial matches found in the graph1. TREAT [60] aims at

minimizing memory usage by using only indexers and dropping partial results, while

having the same algorithmic complexity as Rete. Another candidate is the LEAPS [29]

algorithm, which is claimed to provide better space–time complexity. However, we

found that LEAPS is difficult to understand and implement even on a single worksta-

tion, not to mention the distributed case.

Rete has many improved versions (e.g. Rete II, Rete III, Rete-NT), however, unlike the

original algorithm, these are not publicly available. Because the original Rete algorithm

is well-understood by the EMF-INCQUERY team, we decided to build INCQUERY-D

on the same foundation. Experimenting with improved versions or alternative ap-

proaches is subject to future work.

3.1.2 The Rete Algorithm

The algorithm was originally created by Charles Forgy [43] for rule-based expert sys-

tems. Gábor Bergmann adapted the algorithm for EMF models and added many

tweaks and improvements to it [30].

The Rete algorithm defines an asynchronous network of communicating nodes (Fig-

ure 3.1). This is essentially a dataflow network, with two types of nodes. Change no-

tification objects (tokens) are propagated to intermediate worker nodes that perform

operations known from relational algebra, like projection (π), selection (σ), join (BC)

and antijoin (B) operations. The worker nodes store partial query results in their own

memory. In contrast, production nodes are terminators that provide an interface for

fetching query results and also their change sets (deltas).

The Rete network is built on top of type-specific indexers, which are reponsible for

providing quick lookups and generating notifications for the worker nodes.

1Rete is Latin for net.

26

w
o

r
k

e
r

n
o

d
e

s

p
r

o
d

u
c

ti
o

n

n
o

d
e

s

in
d

e
x

e
rs

R
e

te
 n

e
tw

o
rk

Worker node

Production node

Indexer

Worker node

IndexerIndexer

Worker node

Production node Production node

Worker node

Figure 3.1: The structure of the Rete propagation network

3.2 Incremental Pattern Matching on a Single Workstation:

EMF-INCQUERY

In the following, we will overview the architecture of a single-node incremental pattern

matcher, specifically EMF-INCQUERY.

3.2.1 Architecture

The Rete algorithm forms the foundation of EMF-INCQUERY’s query engine. Figure 3.2

shows the architecture of EMF-INCQUERY and the role of the Rete network in the sys-

tem.

EMF instance

model

EMF-IncQuery

base indexer

Notifications2

Results5

Rete network

Query evaluation

interface

Query engine

Tuples4

Tuples3

EMF modeling application

Model manipulations1

Figure 3.2: EMF-INCQUERY’s architecture

A typical model transformation sequence is the following. The modeling applica-

27

tion manipulates the EMF instance model 1©. Upon modification, the model sends

notifications to EMF-INCQUERY’s base indexer 2©. The indexer propagates the mod-

ified tuples to the Rete network as update messages 3©, which processes the updates

and sends the resulting tuples to the query evaluation interface 4©. The modeling ap-

plication can retrieve the results from the interface 5©.

3.2.2 Indexing and Initialization

Indexing is a common technique for decreasing the execution time of database

queries. In MDE, model indexing has a key role to high performance model queries.

As MDE primarily uses a metamodeling infrastructure, all queries utilize some type

attribute. Typical elementary queries are listed below.

• Retrieving all node instances of a given type (e.g. get all nodes with the type

Person).

• Retrieving all edge instances of a given label (e.g. get all edges with the label

child).

• Retrieving a given node’s all incoming and/or outgoing edges of a given type (e.g.

get all outgoing child edges of a given node).

• Reverse navigation: retrieving the node on the other end of an edge (e.g. the

child relation is identical to the inverse of the parent relation).

EMF-INCQUERY uses the EMF API to run these queries efficiently.

3.2.3 Data Representation and Storage

EMF-INCQUERY works on in-memory EMF models. The Rete network represents the

data in tuples. Basically, the network’s tuples can contain two sorts of values: (i) point-

ers to an EMF model, (ii) Ecore scalar values (EString, EInt, etc. instances). This data

representation principle intends to keep the Rete network’s size as small as possible,

while allowing efficient processing. Because of the tuple representation, various oper-

ations, e.g. projection (π) and join (BC), can be simply defined using tuple masks [30].

3.2.4 Notification Mechanisms

Model change notifications are required by incremental query evaluation, thus model

changes are captured and their effects are propagated in the form of notification objects

(NOs). The notifications generate tokens that keep the Rete network’s state consistent

with the model.

28

3.2.5 Termination Protocol

As the Rete algorithm’s change propagation is asynchronous, the system must also im-

plement a termination protocol to ensure that the query results can be retrieved consis-

tently with the model state after a given transaction (i.e. by signaling when the update

propagation has been terminated). The correctness of the protocol is proved in [30].

3.2.6 Configuration and Performance Optimization

For a given model, the system’s performance for a query is mainly determined by the

layout of the generated Rete network. Similarly to relational query optimization, we

can also optimize the Rete network’s layout. Currently, EMF-INCQUERY supports basic

optimizations. It utilizes node sharing, i.e. it detects if two Rete nodes would store the

same partial matches and merges them to a single node. More details are available in

[31].

3.3 Extensions for Distributed Scalability: INCQUERY-D

Developing a distributed, scalable, incremental pattern matcher introduces numerous

challenges. In the following, we will cover the INCQUERY-D’s architecture and our main

extensions to EMF-INCQUERY.

Server 0

Database

shard 0

Transaction

Server 1

Database

shard 1

Server 2

Database

shard 2

Server 3

Database

shard 3

Rete net

IncQuery-D middleware

Notifications3

Results

1

Transformation Elementary queries

and modifications
2

4

Figure 3.3: INCQUERY-D’s architecture on a four-node cluster

29

3.3.1 Architecture

The INCQUERY-D architecture in an example configuration is shown in Figure 3.3.

INCQUERY-D’s architecture consists of three layers: the storage layer, the middleware

and the production network. The storage layer is a distributed database which is re-

sponsible for persisting the model (Section 3.3.3). The client application communi-

cates with the middleware 1©. The middleware provides a unified API for accessing the

database 2©. It also sends change notifications 3© (Section 3.2.4) to the production net-

work and retrieves the query results from the production network 4©. The production

network is implemented with a distributed Rete network which provides incremental

query evaluation (Section 3.1.2).

3.3.2 Indexing and Initialization

To process the queries requires for indexing efficiently, the INCQUERY-D middleware

maintains type-instance indexes so that all instances of a given type (both edges and

graph nodes) can be enumerated quickly. These indexers form the bottom layer of

the Rete production network. During initialization, these indexers are filled from the

database backend (Figure 3.3 2©). In order to reduce the initialization time, the under-

lying storage layer must be able to process these queries efficiently.

3.3.3 Data Representation and Storage

Conceptually, the architecture of INCQUERY-D allows the usage of a wide scale of

model representation formats. Our prototype has been evaluated in the context of

the property graph and the RDF data model, but other mainstream metamodeling

and knowledge representation languages such as relational databases’ SQL dumps

and Ecore instance models (Section 2.2.1) could be supported, as long as they can be

mapped to an efficient and distributed storage backend.

For the storage layer, the most important issue from an incremental query evalua-

tion perspective is that the indexers of the middleware should be filled as quickly as

possible. This favors technologies where model sharding can be performed appropri-

ately (i.e. with balanced shards in terms of type-instance relationships), and elemen-

tary queries can be executed efficiently.

INCQUERY-D’s middleware exposes an API that provides methods to manipulate the

graph. By allowing graph-like data manipulation we allow the user to focus on the

domain-specific challenges, thus increasing her productivity. The middleware trans-

lates the user’s operation to the backend’s query language and forwards it to the un-

derlying data storage.

In order to allow the Rete algorithm to work, each model element has to have a

30

unique identifier. Issuing a unique identifier in a distributed system is a non-trivial

task and is subject to future work (Section 6.3).

To support different data models, we only have to supply the appropriate connector

class to INCQUERY-D’s middleware. The current prototype supports 4store, Neo4j and

Titan.

3.3.4 Notification Mechanisms

While relational databases usually provide triggers for generating notifications, most

triplestores and graph databases lack this feature. Among our primary database back-

ends, 4store provides no triggers at all. Titan and Neo4j incorporate Blueprints, which

provides an EventGraph class capable of generating notification events, but the events

are only propagated in a single JVM (Java Virtual Machine). Implementing distributed

notifications would require us to extend the EventGraph class and use a messaging

framework. This is subject to future work (see Section 6.3).

Because the lack of support for distributed notifications, in INCQUERY-D’s proto-

type, notifications are controlled by the middleware by providing a facade for all model

manipulation operations (Figure 3.3 3©). The notification messages are propagated

through the Rete network using the Akka messaging framework.

3.3.5 Termination Protocol

INCQUERY-D’s termination protocol works by adding a stack to the message. The stack

registers each Rete node the message passes through. After the message reaches the

production node, the termination protocol starts. Based on the content of the stack,

acknowledgement messages are propagated back on the network. When all relevant

indexer nodes (where the original notification token(s) started from) receive the ac-

knowledge messages, the termination protocol finishes.

3.3.6 Configuration and Performance Optimization

The Rete algorithm (Section 3.1.2) utilizes both indexing and caching to provide fast

incremental query evaluation. INCQUERY-D’s horizontal scalability is supported by the

distribution of the pattern matcher’s Rete network. To enable this, the system must be

able to allocate the Rete nodes to different hosts in a cloud computing infrastructure.

The deployment and configuration of a distributed pattern matcher involves many

degrees of freedom and design decisions. The overall performance of the system is

influenced by a number of factors.

• For the storage layer, we may choose different database implementations due to

31

INCQUERY-D’s backend-agnostic nature. In this report, we used property graph

databases (Neo4j, Titan) and triplestores (4store).

• We may use different database sharding strategies (e.g. random partitioners or

more sophisticated sharding methods based on domain-specific knowledge).

• Using query optimization methods, we can derive Rete networks with different

layouts for the same query. The most efficient layout can be choosen based on

both query and instance model characteristics, e.g. to keep the resource require-

ment of intermediate join operations to a minimum. [31] discusses the possible

optimizations in detail.

• We may choose different strategies to allocate the Rete nodes in the distributed

system. The optimization strategy may choose to optimize local resource usage,

or to minimize the amount of remote network communication. Note that in the-

ory, this is orthogonal to the database’s sharding strategy, i.e. these are two dis-

tinct levels of distribution that do not directly depend upon each other. However,

we expect that keeping the Rete network’s type indexer nodes and the instances

of the given type on the same server would improve the speed of the initialization

and modification tasks significantly.

• We may implement dynamic adaptability to changing conditions. For example,

when the model size and thus query result size grows rapidly, the Rete network

may require dynamic reallocation or node sharding due to local resource limita-

tions.

3.4 Workflow

In the following, we will describe the workflow behind the pattern matching process.

Starting from a metamodel, an instance model and a graph pattern, we will cover the

problem pieces that need to be solved for setting up an incremental, distributed pat-

tern matcher. The workflow is shown on Figure 3.4. First, we describe the workflow of

EMF-INCQUERY and then compare it to the workflow of INCQUERY-D.

3.4.1 Workflow of EMF-INCQUERY

Based on the metamodel and the query specification, EMF-INCQUERY first constructs

a Rete network 1© and deploys it 2©. It loads the model (from the persistent storage)

to an in-memory storage 3© and traverses it to initialize the Rete network’s indexers.

The Rete network evaluates the query by processing the incoming tuples 4©. If the

modeling application modifies the model (through the EMF API), the modifications

32

1 2 3 4

Serialized

model

Metamodel

specification

Query

specification

5

6

Construct Rete

Model

Load model,

initialize Rete

Maintain

query results
Evaluate queryDeploy Rete

Modeling API

Modeling

application

Figure 3.4: The general workflow of incremental pattern matching with the
Rete algorithm

are propagated through the Rete network, hence keeping it in a consistent state 5©.

The query results can be retrieved from the Rete network 6©. The modeling application

may modify the model and reevaluate the query again.

3.4.2 Workflow of INCQUERY-D

By design, the workflow steps of INCQUERY-D are similar to EMF-INCQUERY’s, dis-

cussed in Section 3.4.1. However, due to the system’s distributed nature, they are more

difficult to design and implement.

The main differences are the following. In INCQUERY-D, deploying the Rete net-

work 2© requires the deployment of remote actors (Section 2.4) on the servers. Both

the Rete indexers and the database are distributed across the cluster. Hence, loading

the model and initializing the Rete network needs network communication 3©. The

Rete network works using Akka’s remote messaging feature. The query results can be

retrieved from the Rete network (this may also require network communication) 4©.

The database shards can only be accessed through the middleware, which is reponsi-

ble for sending notifications to the Rete network’s appropriate indexers. After the no-

tifications are processed and the distributed termination algorithm finishes, the Rete

network is in a consistent state 5©. The results can be retieved by the client and it may

modify the model an reevaluate the query again 6©.

3.5 Tooling for INCQUERY-D

As mentioned earlier, we aimed to build INCQUERY-D on top of EMF-INCQUERY’s pat-

tern language (IQPL) and its Rete network generator. Because EMF-INCQUERY has

33

an Eclipse-based user interface for defining and executing queries, we plan to provide

the same tooling environment. Also, for the allocation of Rete nodes, we created an

Eclipse-based editor and viewer.

To aid the system’s dynamic capabilities, we plan to develop a runtime model-based

dashboard to monitor the state of INCQUERY-D’s nodes. Currently, the INCQUERY-D

tooling generates an architecture file (arch), which is used for deploying the dis-

tributed pattern matcher.

This file contains the Rete network’s layout and its allocation in the cloud (as of now,

the latter is defined manually). INCQUERY-D uses the architecture description for in-

stantiating the Rete network and initializing the middleware (Figure 3.5).

Server nServer 0

Database

shard 0

Transaction

Database

shard n

Rete net

IncQuery-D middleware

Architecture

model

Rete

Cloud

IncQuery-D

Tooling

Figure 3.5: Architecture of INCQUERY-D with a runtime dashboard

To provide live feedback, we will adopt a live architecture model. The live model will

provide real-time details about the system’s current state, including the local resources

on each server, the Rete nodes’ memory consumption and so on.

3.6 Elaboration of the Example

To demonstrate INCQUERY-D’s approach, we elaborate an example in detail. We in-

troduce a case study, then formulate a query and show the workflow that executes the

distributed, incremental evaluation of the pattern defined by query.

3.6.1 Case Study: Railroad System Design

The example is built around an imaginary railroad system defined in the MOGENTES

EU FP7 [75] project. The system’s network is composed of typical railroad items, in-

34

Segment

Segment_lengthA:AEInt

Trackelement

Switch

Switch_actualStateA:ASwitchStateKind

RouteSignal

Signal_actualStateA:ASignalStateKind

SwitchPosition

SwitchPosition_switchStateA:ASwitchStateKind

Sensor

<<enumeration>>
SignalStateKind

SignalStateKind_STOP
SignalStateKind_FAILURE
SignalStateKind_GO

<<enumeration>>
SwitchStateKind

PointStateKind_FAILURE
PointStateKind_LEFT
PointStateKind_RIGHT
PointStateKind_STRAIGHT

TrackElement_sensor 0..x

Switch_switchPosition0..x

Route_entry1

Route_switchPosition0..x

Route_exit1
Route_routeDefinition

2..x

SwitchPosition_switch 1

SwitchPosition_route1

Sensor_trackElement
0..x

TrackElement_connectsTo

0..x

Figure 3.6: The EMF metamodel of the railroad system

Figure 3.7: A subgraph of a railroad system visualized

cluding signals, segments, switches and sensors. The complete EMF metamodel is

shown on Figure 3.6. A subgraph of an instance model is shown on Figure 3.7.

We used a query that resembles a typical MDE application’s workload. The query,

called RouteSensor, looks for violations of a well-formedness constraint in the model.

RouteSensor

ROUTE_SWITCHPOSITION

SWITCHPOSITION_SWITCH

TRACKELEMENT_SENSOR

ROUTE_ROUTEDEFINITION

Sensor

Route SwitchPosition

Switch

Figure 3.8: Graphical representation of the RouteSensor query’s pattern. The
dashed red arrow defines a negative application condition.

35

The RouteSensor query looks for Sensors that are connected to a Switch, but the

Sensor and the Switch are not connected to the same Route. In other words, all sen-

sors that are associated with a switch that belongs to a route must also be associated

directly with the same route.

The graphical representation of the query is shown on Figure 3.8. Basically, the query

binds the type of the vertices, defines three edges and one negative edge, called NAC

(negative application condition).

1 package hu.bme.mit.train.constraintcheck.incquery

2

3 import "http ://www.semanticweb.org/ontologies /2011/1/ TrainRequirementOntology.owl"

4

5 pattern routeSensor(Sen , Sw, Sp, R) = {

6 Route(R);

7 SwitchPosition(Sp);

8 Switch(Sw);

9 Sensor(Sen);

10

11 Route.Route_switchPosition(R, Sp);

12 SwitchPosition.SwitchPosition_switch(Sp, Sw);

13 Trackelement.TrackElement_sensor(Sw, Sen);

14

15 neg find head(Sen , R);

16 }

17

18 pattern head(Sen , R) = {

19 Route.Route_routeDefinition(R, Sen);

20 }

Listing 3.1: The RouteSensor query in IQPL

The RouteSensor query in IQPL (INCQUERY Pattern Language) is shown on List-

ing 3.1. This query binds the variables (Sen, Sw, Sp, R) to the appropriate type. It defines

the three edges as relationships between the variables and defines the negative appli-

cation condition as a negative pattern (neg find).

For comparison, we also present the RouteSensor query in SPARQL (RDF’s query lan-

guage) on Listing 3.2. Here, the types are defined with the rdf:type predicate, while

the edges are defined with base predicates. The negative application condition is de-

fined with the FILTER NOT EXISTS construction2.

1 PREFIX base: <http ://www.semanticweb.org/ontologies /2011/1/ TrainRequirementOntology.owl#>

2 PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>

3 PREFIX owl: <http ://www.w3.org /2002/07/ owl#>

4 PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

5

6 SELECT DISTINCT ?xSensor

7 WHERE

8 {

9 ?xRoute rdf:type base:Route .

10 ?xSwitchPosition rdf:type base:SwitchPosition .

2Note that the two queries are slightly different: the SPARQL query returns only a set of Sensors, while
the IQPL query returns a set of (Sensor, Switch, SwitchPosition, Route) tuples.

36

11 ?xSwitch rdf:type base:Switch .

12 ?xSensor rdf:type base:Sensor .

13 ?xRoute base:Route_switchPosition ?xSwitchPosition .

14 ?xSwitchPosition base:SwitchPosition_switch ?xSwitch .

15 ?xSwitch base:TrackElement_sensor ?xSensor .

16

17 FILTER NOT EXISTS {

18 ?xRoute ?Route_routeDefinition ?xSensor .

19 } .

20 }

Listing 3.2: The RouteSensor query in SPARQL

Add infrastructure

mapping

Initialize

Deploy Rete

RouteSensor

Pattern

RouteSensor

PSystem

RouteSensor

runtime Rete

RouteSensor

Recipe

CSP-based graph

pattern matching

Rete-specific

pattern matching

Railroad

model

1

5

4

INCQUERY pattern

routeSensor.eiq

Rete architecture

routeSensor.arch

Railroad metamodel

specification

railroad.ecore

6

7

2

3

Figure 3.9: INCQUERY-D’s workflow

3.6.2 Workflow of the Example

Following the workflow defined in Section 3.4, we will cover the steps for deploying

and operating a distributed pattern matcher. The actual workflow for the RouteSensor

query is shown on Figure 3.9.

Constructing a Rete network

First, using EMF-INCQUERY’s tooling, the query (routeSensor.iqpl, see Listing 3.1) is

analyzed and parsed to an EMF model 1©. The metamodel (railroad.ecore) is shown

on Figure 3.6. Based on the query 2© and the metamodel 3© EMF-INCQUERY builds a

pattern system (PSystem). The PSystem is translated to a Rete recipe, which defines a

37

Rete layout 4©, that guarantees the satisfaction of the constraints. The Rete layout is

shown on Figure 3.10.

SWITCHPOSITION_

SWITCH

ROUTE_

ROUTEDEFINITION

TRACKELEMENT_

SENSOR

ROUTE_

SWITCHPOSITION

IX

Join node

IX

IX IX

Production node

IX IX

Join node

Antijoin node

Figure 3.10: The RouteSensor query’s layout

Deploying the Rete network

The Rete nodes are allocated to the cluster’s servers by providing the infrastructure

mapping 5©. In INCQUERY-D’s prototype, the Rete nodes defined in the recipe are allo-

cated manually on the cloud servers (called Machines). The Rete nodes are associated

with the machines with infrastructure mapping relationships. INCQUERY-D’s tooling

currently provides an Eclipse-based tree editor to define machines and the the infras-

tructure mapping relationships.

The tooling is capable of visualizing the Rete network and its mapping to the ma-

chines (see Figure 3.11). The Rete network is deployed to the Akka instances running

on the servers 6©.

Evaluating Query

The query is evaluated by initializing the Rete network 7© and reading the results from

its production node.

Maintaining the Query Results

In order to provide query results that are consistent with the model, we need main-

tain the Rete network’s state. Suppose we have the graph shown on the left side

of Figure 3.12 loaded to the Rete network and we decide to delete the ROUTE_-

ROUTEDEFINITION edge between vertices 2 and 1.

38

Cluster

Machine 10.6.21.197Machine 10.6.21.195Machine 10.6.21.193 Machine 10.6.21.191

Rete Recipe

ExistenceNode
<Sw; Sen; Sp; R; >

TrimmerNode
<Sen; Sw; Sp; R; >

SwitchPosition_switch

TrimmerNode
<Sen; R; >

JoinNode
<Sw; Sen; Sp; R; > DefaultProductionNode [1728]

TrackElement_sensor

DefaultProductionNode [41]

Route_routeDefinition

Route_switchPosition

JoinNode
<Sp; Sw; R; >

GenericProjectionIndexer [1728 => 1728]

GenericProjectionIndexer [403 => 403]

GenericProjectionIndexer [403 => 403]GenericProjectionIndexer [403 => 403]

GenericProjectionIndexer [1769 => 1769]

GenericProjectionIndexer [9385 => 10789]

mapping

parent

mapping

mapping
parents

mapping
parents

mapping

input mapping

mapping

mapping

parent
right

parent

right

input

left

input

right

parent

left

input

left

Figure 3.11: The yFiles viewer in INCQUERY-D’s tooling

tr
a
n
s
fo
rm

a
ti
o
n

Figure 3.12: A modification on a Train Benchmark instance model

Figure 3.13 shows the distributed Rete network containing the partial matches of

the original graph. When we delete the edge between vertices 2 and 1, the ROUTE_-

ROUTEDEFINITION type indexer receives a notification from the middleware and sends

a negative update 1© with the tuple (2,1). The antijoin node processes the negative up-

date and propagates a negative update 2© with the tuple (3,4,2,1). This is received by

the production node, which initiates the termination protocol 3©, 4©. After the termi-

nation protocol finishes, the indexer signals the client about the successful update. The

client can now retrieve the results from the production node. The client may choose to

retrieve only the deltas, i.e. only the the tuples that have been added or deleted since

the last modification.

39

Server 0 Server 1 Server 2 Server 3

SWITCHPOSITION_

SWITCH

ROUTE_

ROUTEDEFINITION

TRACKELEMENT_

SENSOR

ROUTE_

SWITCHPOSITION

IX

Join node

IX

IX IX

Production node

IX IX

Join node

Antijoin node

(3, 4) (2, 3) (4, 1) (2, 1)

(3, 4, 2)

(3, 4, 2, 1)

(3, 4, 2, 1)

negative

update

(3, 4, 2, 1)

negative

update

(2, 1)

update propagation

finished

update

propagation

finished

3

2

1

4

Figure 3.13: Operation sequence on a distributed Rete network

40

Chapter 4

Evaluation of Performance and

Scalability

We developed a prototype of INCQUERY-D to evaluate the feasibility of the approach.

In the following chapter, based on the work for EMF-INCQUERY, we introduce a dis-

tributed performance benchmark. We present the benchmark environment and ana-

lyze the results, with particular emphasis on the scalability of our approach.

The prototype of INCQUERY-D is based on the architecture presented in Chapter 3.

A working prototype is beneficial for a number of reasons. First, it serves as a proof

concept by demonstrating that a distributed, incremental pattern matcher is feasible

with the technologies currently available. On the other hand, it gives us the opportu-

nity to define and run benchmarks, so that we can evaluate the scalability aspects of

the system.

4.1 Dimensions of Scalability

A distributed system’s scalability has multiple dimensions. Usually, when aiming for

horizontal scalability, the most emphasized dimension is the number of processing

nodes (computers) in the system. However, there are other important aspects that in-

clude local resources of the servers, network communication overhead, etc. The main

goals of our benchmark was to measure the scalability of INCQUERY-D with respect to

the model size and compare it to other non-incremental query technologies.

4.2 Foundations: the Train Benchmark

The Train Benchmark was designed at the Fault Tolerant Systems Research Group

[55, 53] to measure the efficiency of model queries and manipulation operations in

different tools. The Train Benchmark is primarily targeted for typical MDE workloads,

41

more specifically for well-formedness validations.

4.2.1 Benchmark Goals

The Train Benchmark measures the response time of the system under load. The

benchmark models a ”real-world” MDE workload by simulating a user’s interaction

with the model. In this sequence, the user loads the model and validates it against a

set queries (defining well-formedness constraints). The user edits the model in small

steps. The user’s work is more productive and less error-prone if she receives the re-

sults of the validation instantly after each edit. Therefore, the user would like to run

re-evaluate well-formedness queries quickly.

Model

Load Transformation

Instance model

Metamodel

Query specification

Result set

Revalidation

Result set

First validation

Query engine

1

2 3

2

3

4

4

Figure 4.1: The Train Benchmark’s sequence

The benchmark defines four distinct phases, also shown on Figure 4.1.

1. Load: load the serialized instance model to the database 1©.

2. First validation: execute the well-formedness query on the model 2©.

3. Transformation: modify the model 3©.

4. Revalidation: execute the well-formedness query again 4©.

To assess the scalability of the tools, the benchmark uses instance models of grow-

ing sizes, each model containing about twice as many model elements as the previous

one (Section 4.2.2). Running the same validation sequence on different model sizes

highlighted the limitations of the tested query engines.

Scalability is also evaluated against the complexity of the queries. The benchmark

defines different queries, each testing different aspects of the query engine (filtering,

join and antijoin operations, etc.). To achieve a successful run, the tested tool is ex-

pected to evaluate the query and return the identifiers of the model elements in the

result set.

42

4.2.2 Generating Instance Models

Due to both confidentiality and technical reasons, it is difficult to obtain real-world

industrial models and queries. Also, using confidential data sets hinders the repro-

ducibility of the conducted benchmarks. Therefore, a generator was developed which

creates instance models which mimic real-world models.

We used the railway system metamodel, defined in Section 3.6. The instance models

are generated pseudorandomly, with pre-defined structural constraints and a regular

fan-out structure (i.e. nodes of a given type have similar indegree and outdegree) [53].

The generator is capable of generating models of different sizes and formats, including

EMF, OWL, RDF and SQL. We also developed a generator for the property graph data

model. In Section A.3, we provide some examples about mapping the EMF metamodel

to the framework of property graphs.

4.2.3 Original Results for Non-distributed Tools

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.050

0.257

1.311

6.689

34.135

174.204

889.025

4537.000

30k 61k 113k 213k 435k 867k 1M 3M 6M 13M
Model size [#nodes + #edges]

T
im

e
[m

s]

Tools

●

●

Allegro Graph
Drools
Eclipse OCL+IA
4store
EMF−IncQuery
Java Refactored
Pellet
Neo4j
Eclipse OCL
Sesame
MySQL
Stardog
OpenVirtuoso

Figure 4.2: Train Benchmark: reponse times for incremental query evalua-
tion, measured on a single node [69]

The Train Benchmark was designed to work with different tools originating from var-

ious technological spaces, e.g. EMF-based tools (EMF-INCQUERY, Eclipse OCL), se-

mantic web technologies (AllegroGraph, Sesame), NoSQL databases (Neo4j), etc.

Figure 4.2 shows the incremental transformation and validation time for the Route-

Sensor query, discussed in Section 3.6.1. The results clearly show the advantage of

incremental query engines. Both Eclipse OCL Impact Analyzer and EMF-INCQUERY

scale very well (their characteristic is almost constant to the model size and linear to

the size of the result set), while non-incremental tools scale linearly at best, which ren-

ders them inefficient for lange models.

Figure 4.3 shows the memory consumption of the diffent tools. It is apparent that

incremental tools space–time tradeoff causes them to consume more memory.

43

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

4788.000

11713.619

28656.823

70107.581

171514.931

419603.287

1026539.888

2511382.000

30k 61k 113k 213k 435k 867k 1M 3M 6M 13M
Model size [#nodes + #edges]

M
em

o
ry

 [
k
B

y
te

s]

Tools

●

●

Allegro Graph
Drools
Eclipse OCL+IA
4store
EMF−IncQuery
Java Refactored
Pellet
Neo4j
Eclipse OCL
Sesame
MySQL
Stardog
OpenVirtuoso

Figure 4.3: Train Benchmark: memory consumption of the tools [69]

4.3 Distributed Train Benchmark

Based on the Train Benchmark, discussed in Section 4.2, we created an extended ver-

sion for distributed systems. The main goal of the distributed Train Benchmark is the

same as the original’s: measure the reponse time and inspect the scalability of differ-

ent tools. Specifically, the main goal was to compare INCQUERY-D’s performance to

distributed, non-incremental query technologies.

4.3.1 Distributed Architecture

The distributed benchmark defines the same phases as the original Train Benchmark

(Figure 4.1). The benchmark is controlled by a distinguished node of the system, called

the coordinator. The coordinator delegates the operations (e.g. loading the graph) to

the distributed system. The queries and the model manipulation operations are han-

dled by the database management system which runs them distributedly and waits for

the distributed operation to finish (effectively creating a synchronization point after

each operation).

4.3.2 Benchmark Limitations

It is possible that the incoming data sets lack a globally unique identifier. In this case,

we need to automatically generate unique identifiers. While some systems (e.g. Ti-

tan) support this, other systems (e.g. 4store) do not have such feature. For these sys-

tems, the INCQUERY-D middleware should be able to generate unique identifiers. This

feature is subject to future work (Section 6.3). In the current benchmark, we worked

around this by enforcing the generator to create models with numeric unique identi-

fiers1.
1Unlike for property graphs, numeric unique identifiers are not required by the RDF data model.

44

A common reason for designing and implementing distributed systems is that they

are capable of handling a large number of concurrent requests. This way, more users

can use the system at the same time. In the distributed Train Benchmark, the system is

only used by a single user. Simulating multiple users and issuing concurrent requests

is subject to future work (Section 6.3).

4.3.3 Generating Instance Models

For Neo4j, we already expanded the the generator with a property graph generator

module. The generator creates a graph in a Neo4j database and uses the Blueprints

library’s GraphMLWriter and GraphSONWriter classes to serialize it to GraphML (Sec-

tion A.1.1) and Blueprints GraphSON (Section A.1.2) formats.

Titan’s Faunus framework requires a specific format called Faunus GraphSON (Sec-

tion A.1.3). To use Faunus, we extended the property graph generator to generate

Faunus GraphSON files as well.

4.4 Benchmark Environment

We used the distributed Train Benchmark (Section 4.3) to evaluate INCQUERY-D’s per-

formance and compare it to non-incremental solutions. In the following section, we

will discuss the benchmark setup and the environment in detail.

4.4.1 Benchmark Setup

We tested INCQUERY-D with three storage backends: first with Neo4j, then with 4store

(Section 2.3.4) and Titan (Section 2.3.3). In both cases, the system was deployed on a

four-node cluster.

As a non-incremental baseline, we used Neo4j’s and 4store’s own query engines.

While we also planned to use Titan’s query engine, our experiments showed that even

for medium-sized graphs, the system was unable to run even the elementary queries

(e.g. retrieving vertices by type), not to mention the more complex ones.

The benchmark follows the phases defined in the distributed Train Benchmark. Note

that the main difference between the batch and incremental scenarios is that the latter

maintain a distributed Rete network, which allows efficient query (re)evaluation.

4.4.2 Hardware and Software Ecosystem

As the testbed, we deployed our system to a private cloud. The cloud is managed by

Apache VCL (Virtual Computing Lab) and is also used for educational purposes. There-

45

fore, during the benchmark, the network and the host machines could be under load

from other users as well. We consider the effect of these in Section 4.8.

The detailed configuration of the servers are provided below.

Hardware

Each virtual machine used two cores of an Intel Xeon L5420 CPU running at 2.5 GHz

and had 8 GBs of RAM. The host machines were connected with gigabit Ethernet net-

work connection.

Software

For the benchmarks, we used the following software stack. The technologies are dis-

cussed in Chapter 2.

• Ubuntu 12.10 64-bit

• Oracle Java 7 64-bit

• Neo4j 1.8

• 4store 1.1.5

• Titan 0.3.2

• Faunus 0.3.2

• Hadoop 1.1.2

• Cassandra 1.2.2

• Akka 2.1.2

4.4.3 Benchmark Methodology and Data Processing

Both during the development and in runtime we ensured the functional equivalence of

the measured tools. During the development, we followed the Train Benchmark’s well-

defined specification [53]. This precisely defines the steps for each phase, e.g. the num-

ber of elements to modify in each transformation and the amount of transformation–

validation cycles. In runtime, we checked the result set for correctness against the ref-

erence implementation.

The benchmark coordinator software used the Train Benchmark’s framework to col-

lect data about the results of the benchmark. We measured the execution time of the

predefined phases. The execution time includes the time required for the coordina-

tor’s operation, the computation and IO operations of the cluster’s computers and the

network communication (to both directions). The execution times were determined

using Java’s System.nanoTime() method.

The results were processed by an R script [26] capable of aggregating and visualizing

the results.

46

4.5 Benchmark Results with Neo4j

During the earlier phases of the research, we conducted measurement using only

Neo4j. These results were published in [54]. The benchmark’s setup was slightly dif-

ferent, with the main difference being that due to the lack of sharding in Neo4j, we

sharded the graph manually. This had some important implications.

• The batch queries were ran on all shards separately and their results were aggre-

gated by the coordinator. The transformations also ran separately.

• The incremental queries were evaluated with a distributed Rete network. The

elementary model queries (for filling the indexers) were ran on all shards sepa-

rately and aggregated by the indexers. The transformations also ran separately.

Because the graph was sharded to disjoint partitions with no edges between them,

this can be viewed as an ideal case of graph sharding. Therefore, we can use the results

to inspect the an ”ideal” sharding strategy’s impact on the performance. We present

the most important results of the benchmark.

42.11

146.49

509.62

1772.94

6168.00

113k
76

d=200

213k
164

d=200

435k
272

d=200

867k
560

d=200

1M
1056
d=200

3M
2k

d=200

6M
4k

d=200

13M
8k

d=200

27M
16k

d=200

55M
34k

d=200

Model size [#nodes + #edges]
Result set size [#records], number of modified elements

T
im

e
[s

] Tools
IncQuery−D with Neo4j

Batch Neo4j

Incrementality
IncQuery−D
Batch

Figure 4.4: Total execution times for 50 validations

Figure 4.4 shows that INCQUERY-D with Neo4j consistently outperforms Neo4j’s

query engine.

Figure 4.5 shows that for transformation and revaliation, INCQUERY-D with Neo4j is

about two orders of magnitude faster than Neo4j’s query engine.

4.6 Benchmark Results with 4store and Titan

This section presents the benchmark results with 4store and Titan. Unlike the bench-

mark with Neo4j (Section 4.5), this benchmark used truly distributed storage backends.

47

0.06

0.17

0.47

1.31

3.70

10.38

29.18

82.00

113k
76

d=200

213k
164

d=200

435k
272

d=200

867k
560

d=200

1M
1056
d=200

3M
2k

d=200

6M
4k

d=200

13M
8k

d=200

27M
16k

d=200

55M
34k

d=200

Model size [#nodes + #edges]
Result set size [#records], number of modified elements

T
im

e
[s

] Tools
IncQuery−D with Neo4j

Batch Neo4j

Incrementality
IncQuery−D
Batch

Figure 4.5: Execution times for transformation and revalidation

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

1.00

2.99

8.96

26.84

80.36

240.61

720.42

2157.00

30k
19

61k
41

113k
68

213k
140

435k
264

867k
510

1M
1048

3M
2k

6M
4k

13M
8k

27M
16k

55M
34k

Model size [#nodes + #edges]
 Result set size [#records]

T
im

e
[s

]

Tools

●
●

IncQuery−D with Titan
Batch 4store

IncQuery−D with 4store

Incrementality
IncQuery−D
Batch

Figure 4.6: Execution times for load and first validation

The execution times for the load and first validation phases are shown on Figure 4.6.

As expected, due to the overhead of the Rete network’s construction, the batch tool is

faster for small models. However, it is important to observe that even for medium-

sized models (with a couple of million elements), the INCQUERY-D tools start to edge

ahead. This shows that the Rete network’s construction overhead already pays off for

the first validation.

The execution times for the transformation phase are shown on Figure 4.7. The

incremental tools provide faster transformation times due to the fact that instead of

querying the database, the modeling application can rely on the query layer’s index-

ers. Even for medium-sized models, the INCQUERY-D tools are more than two orders

48

● ● ● ●
●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●
●

2.16

4.66

10.07

21.75

46.96

101.41

219.00

30k
19

d=490

61k
41

d=490

113k
68

d=490

213k
140

d=490

435k
264

d=490

867k
510

d=490

1M
1048

d=490

3M
2k

d=490

6M
4k

d=490

13M
8k

d=490

27M
16k

d=490

55M
34k

d=490

Model size [#nodes + #edges]
Result set size [#records], number of modified elements

T
im

e
[s

]

Tools

●
●

IncQuery−D with Titan
Batch 4store

IncQuery−D with 4store

Incrementality
IncQuery−D
Batch

Figure 4.7: Execution times for transformation

of magnitude faster than the batch tool.

● ● ●
●

●

●

●

●

●

● ● ● ● ● ●
●

●
●

●
●

●

0.01

0.04

0.15

0.65

2.75

11.75

50.14

214.00

30k
19

d=490

61k
41

d=490

113k
68

d=490

213k
140

d=490

435k
264

d=490

867k
510

d=490

1M
1048

d=490

3M
2k

d=490

6M
4k

d=490

13M
8k

d=490

27M
16k

d=490

55M
34k

d=490

Model size [#nodes + #edges]
Result set size [#records], number of modified elements

T
im

e
[s

]

Tools

●
●

IncQuery−D with Titan
Batch 4store

IncQuery−D with 4store

Incrementality
IncQuery−D
Batch

Figure 4.8: Execution times of the revalidation

The incremental tools have an even greater advantage for revalidation times, shown

on Figure 4.8. For medium-sized models, they are more than three orders of magnitude

faster than the batch tool.

This shows that INCQUERY-D is not just capable of processing models with tens of

millions of elements (well beyond the capabilities of single-node tools), but also, it

provides sub-second revalidation times.

Figure 4.9 shows the total execution time for a sequence: loading the model, then

running transformations and revalidations 50 times. Due to the large number of trans-

formations and revalidations, incremental tools are significantly faster. For example,

49

● ● ● ●
●

●

●

●

●

● ●

● ● ● ●
● ●

●
●

●

●

4.16

17.31

72.04

299.78

1247.37

5190.32

21597.00

30k
19

d=490

61k
41

d=490

113k
68

d=490

213k
140

d=490

435k
264

d=490

867k
510

d=490

1M
1048

d=490

3M
2k

d=490

6M
4k

d=490

13M
8k

d=490

27M
16k

d=490

55M
34k

d=490

Model size [#nodes + #edges]
Result set size [#records], number of modified elements

T
im

e
[s

]

Tools

●
●

IncQuery−D with Titan
Batch 4store

IncQuery−D with 4store

Incrementality
IncQuery−D
Batch

Figure 4.9: Total execution times for 50 validations

for a model with 6 million elements, the batch tool took almost 6 hours, while the

4store-based incremental tool took less than 5 minutes.

4.7 Result Analysis

The results clearly show that the initialization of the Rete network adds some overhead

during the load and first validation phases. However, even for medium-sized models,

this is easily outweighed by the high query performance of the Rete network.

The almost constant characteristic of the execution times of the INCQUERY-D tools’

transformation and validation phases confirm that a distributed, scalable, incremen-

tal pattern matcher is feasible with current technologies. Based on the results, we can

conclude that while network latency is present, the distributed Rete network still allows

sub-second on-the-fly model validation operations. It is also important to observe the

similar characteristic of INCQUERY-D’s and EMF-INCQUERY’s transformation and val-

idation times (Figure 4.2).

Another important observation is that for INCQUERY-D tools, the execution time is

approximately proportional to the size of the change. For batch tools, it is proportional

to the size of the model.

Note that these results and scalability characteristics do not apply for every workload

profile. For example, if the user modifies large chunks of the model and issues queries

infrequently, batch query evaluation methods can be faster.

The high memory consumption of the Rete algorithm was one of our main mo-

tivations to build a distributed system. For very large models (beyond 108 model

elements, we ran into cases where the Java Virtual Machine ran out of or had

50

just enough memory. This resulted in OutOfMemoryError: Java heap space and

OutOfMemoryError: GC overhead limit exceeded exceptions, respectively. Intro-

ducing a Rete node sharding or other fault-tolerance mechanisms for these cases is

subject to future work (Section 6.3).

The results show that the 4store-based INCQUERY-D prototype is consistently faster

in the load phase than the Titan-based one. This is due to 4store’s simpler architec-

ture and different data model, which is better suited to the INCQUERY-D middleware’s

elementary model queries.

In accordance with the original Train Benchmark’s results, the distributed Train

Benchmark proved that incremental tools have an advantage for transformation and

well-formedness validation sequences. Compared to the Train Benchmark, we man-

aged to work with significantly larger models with more than 50 million model ele-

ments. Based on the results, we expect INCQUERY-D to also perform well on different

data sets and queries.

4.8 Threats to Validity

To guarantee the correctness of our benchmarks, we laid out some rules to ensure the

precision of the results.

First, to start each benchmark sequence independently, we turned the operating sys-

tem’s caching mechanisms off. The execution time of the validation and transforma-

tion phases were determined by running them 50 times and taking the median values

(we decided to take the median instead of the mean value, because the former is less

sensitive to transient effects). This way, we could measure the Java Virtual Machine’s

warmup effect, which would also occur in a real-world model query engine running

for several hours or even longer.

As discussed in Section 4.4.2, our servers could be influenced from the workload

caused by other users of the same cloud. To minimalize the effect of this and other

transient loads, we ran the benchmark five times and took the minimum value for each

phase. We also disabled file caching in the operating system, so that the serialized

model always must be read from the disk.

Despite our efforts, transient effects could still be present in the results. However,

their effect is only a threat for smaller model sizes, where the measured execution times

are low. For larger models, which are the main targets of our work, due to longer exe-

cution times, the transient effects do not threat the validity of the benchmark results.

51

4.9 Summary

Our benchmarks proved that the proposed architecture is capable of provid-

ing scalable, incremental query evaluation. INCQUERY-D’s scalability characteris-

tics confirmed that despite the additional network latency, it is possible to keep

EMF-INCQUERY’s almost constant performance characteristics in a distributed envi-

ronment. The results show the model size barrier, primarily caused by limitations of

memory, can be pushed further using a horizontal scaling approach.

It is important to note that our benchmark did not cover all aspects of distributed

scalability. For example, simulating multiple users, measuring the exact memory con-

sumption and network traffic of each server is subject to future work.

52

Chapter 5

Related Work

A wide range of special languages have been developed to support graph-based rep-

resentation and querying of computer data. This chapter collects the research and

development works that are related to INCQUERY-D.

5.1 Eclipse-based Tools

A class-diagram like modeling language is Ecore of the EMF (Eclipse Modeling Frame-

work, discussed in Section 2.3.1), where classes, references between them and at-

tributes of classes describe the domain. Extensive tooling helps the creation and trans-

formation of such domain models. For EMF models, OCL (Object Constraint Lan-

guage) is a declarative constraint description and query language that can be evaluated

with the local-search based Eclipse OCL [39] engine. To address scalability issues, in-

cremental impact analysis tools [46] have been developed as extensions or alternatives

to Eclipse OCL.

5.2 Rete Implementations

As a very recent development, Rete-based caching approaches have been proposed

for the processing of Linked Data (bearing the closest similarity of our approach).

INSTANS [67] uses this algorithm to perform complex event processing (formulated

in SPARQL) on RDF data, gathered from distributed sensors.

Diamond [61] uses a distributed Rete network to evaluate SPARQL queries on Linked

Data, but it lacks an indexing middleware layer so their main challenge is efficient data

traversal.

The conceptual foundations of our approach as based on EMF-INCQUERY [34],

a tool that evaluates graph patterns over EMF models using Rete. Up to our best

knowledge, INCQUERY-D is the first approach to promote distributed scalability by dis-

53

tributed incremental query evaluation in the context of model-driven engineering. As

the architecture of INCQUERY-D separates the data store from the query engine, we be-

lieve that the scalable processing of RDF and property graphs can open up interesting

applications outside of the MDE world.

Acharya et al. described a Rete network mapping for fine-grained and medium-

grained message-passing computers [28]. The medium-grained computer connected

processors in a crossbar architecture, while our approach use computers connected

by gigabit Ethernet. The paper published benchmark results of the medium-grained

solution, but these are based only on simulations.

5.3 Benchmarks

This section is based on [53]. Benchmarks have been proposed earlier, mainly to track

improvements of a query engine, or to compare tool performance for a given use case.

5.3.1 RDF Benchmarks

SP2Bench [72] is a SPARQL benchmark that measures only query throughput. The goal

of this benchmark is to measure query evaluating performance of different tools for

a single set of SPARQL queries that contain most language elements. The artificially

generated data is based on the real world DBLP bibliography; this way instance models

of different sizes reflect the structure and complexity of the original real world dataset.

However, other model element distributions or queries were not considered, and the

complexity of queries were not analyzed.

The Berlin SPARQL Benchmark (BSBM) [35] measures SPARQL query evaluation

throughput for an e-commerce case study modeled in RDF. The benchmark uses a sin-

gle dataset, but recognizes several use cases with their own query mix. The dataset

scales in model size (10M-150B), but does not vary in structure.

SPLODGE [48] is an approach, where SPARQL queries were generated systemati-

cally, based on metrics for a predefined dataset. The method supports distributed

SPARQL queries (via the SERVICE keyword), however the implementation scaled only

up to three steps of navigation, due to the resource consumption of the generator. The

paper did not mention instance model complexity, and only the adequacy of the ap-

proach was demonstrated with the RDF3X engine, the effect of queries with different

metrics combinations to different engines was not tested.

54

5.3.2 Model Transformation and Graph Transformation Bench-

marks

There are numerous graph transformation benchmarks that do not focus specifically

on query performance. However [32] aims to design and evaluate graph transfor-

mation benchmark cases corresponding to three usage patterns for the purpose of

measuring the performance of incremental approaches on different model sizes and

workloads. These scenarios are conceptual continuations of the comprehensive graph

transformation benchmark library proposed earlier in [76], which gave an overview

on typical application scenarios of graph transformation together with their charac-

teristic features. [44] suggested some improvements to the benchmarks described

in [76] and reported measurement results for many graph transformation tools. As

model validation is an important use case of incremental model queries, several model

query and/or validation tools have been measured in incremental constraint valida-

tion benchmarks [64, 41, 34].

55

Chapter 6

Conclusions

This chapter summarizes the contributions presented in the report.

6.1 Summary of Contributions

We presented INCQUERY-D, a novel approach to adapt distributed incremental query

techniques to large and complex model driven software engineering scenarios. Our

proposal is based on a distributed Rete network that is decoupled from sharded graph

databases by a middleware layer. The feasibility of the approach has been evaluated

using a benchmarking scenario of on-the-fly well-formedness validation of software

design models. The results are promising as they show nearly instantaneous query

re-evaluation as model sizes grow well beyond 50 million elements.

During the research and development of INCQUERY-D so far, I achieved the follow-

ing results.

6.1.1 Scientific Contributions

I achieved the following scientific contributions:

• I proposed a novel architecture for building a distributed, scalable, incremental

graph query engine over different storage backends. The architecture was pub-

lished in [52].

• I designed and implemented a distributed, asynchronous version of the Rete al-

gorithm.

• I extended the termination protocol used EMF-INCQUERY to work in a dis-

tributed environment.

• I extended the Train Benchmark to work in a distributed environment.

56

• I conducted a benchmark to measure INCQUERY-D’s response time and scala-

bility characteristics. For the benchmark’s baseline, I created distributed non-

incremental benchmark scenarios.

6.1.2 Practical Accomplishments

I achieved the following practical accomplishements:

• Based on the Rete algorithm, I created a distributed incremental query engine’s

prototype, which is not only detached from the data storage backend, but also

agnostic to the storage backend’s data model. To prove this, the query engine

was tested with both property graphs and RDF graphs.

• I extended the Train Benchmark with a new instance model generator, which

can produce property graphs and serialize them in various formats: GraphML,

Blueprints GraphSON and Faunus GraphSON.

• I developed INCQUERY-D’s prototype, including the query layer, the middleware

and the integration to different storage technologies. I wrote more than 3000

lines of Java code and approximately 500 lines of configuration and deployment

scripts.

• I elaborated automated deployment tools based on EMF-INCQUERY’s existing

technologies.

• I experimented with modern non-relational database management systems with

a focus on NoSQL graph databases and triple stores. For the purpose of bench-

marking different tools, I created scripts to install various graph storages.

– I deployed a manually sharded Neo4j cluster. I formulated the appropriate

Cypher queries and created the connector class in INCQUERY-D’s middle-

ware to access Neo4j.

– I implemented scripts to install the Titan graph database and its ecosystem

on a cluster. Titan’s ecosystem includes technologies on different matu-

rity levels, including the Apache Cassandra database, the Apache Hadoop

MapReduce framework with the HDFS distributed file system, the Tinker-

Pop graph framework and the Faunus graph analytics engine. I formu-

lated the necessary the Gremlin queries and created the connector class in

INCQUERY-D’s middleware.

– I implemented scripts to install the 4store triplestore on a cluster. I formu-

lated the necessary the SPARQL queries and created the connector class in

INCQUERY-D’s middleware.

57

• The analysis of the results confirmed the feasibility of the approach and showed

its superiority to current open-source graph query engines.

• I implemented scripts for automating the benchmark and operating a cluster of

Akka microkernels.

The current paper significantly extends the contributions of our earlier results [52].

This report discusses the theoretical background and practical difficulties, including

the detailed presentation of the architecture (Chapter 3). The benchmark evaluation

has been extended to include truly distributed graph database backends (Chapter 4)

as INCQUERY-D, as presented here, features backends with automatic sharding, auto-

matic deployment of the Rete nodes and an Eclipse-based tooling environment.

6.2 Limitations

INCQUERY-D’s current implementation has some limitations, the most important ones

are the following.

1. The Rete nodes are allocated manually. The user has to define the mapping be-

tween the Rete network and the infrastructure. However, given a mapping, the

system is capable of automatically deploying the Rete network.

2. Only a subset of the nodes defined in the Rete algorithm are implemented.

For example, the current implementation does not support recursive patterns,

checking property conditions and transitive closures.

3. The Eclipse-based tooling does not cover the whole workflow. The user is re-

quired to do some manual work, e.g. running scripts manually.

6.3 Future work

For future work, we plan to address the aforementioned limitations.

1. The allocation of the Rete nodes will be supported using techniques like CSP

(Constraint Satisfaction Problem) solvers and DSE (Design Space Exploration)

[49]. We plan to further explore advanced optimization challenges such as dy-

namic reconfiguration and fault tolerance.

2. We will complete the implementation of the nodes defined in Rete algorithm.

3. The tooling in under active development with plans for a live monitoring feature.

58

We also plan to extend the distributed Train Benchmark to model different real-

world workloads, e.g. simulating multiple users issuing concurrent requests. We will

add a unique identifier generator to the middleware, which will allow us to use multi-

ple data sources (which may have different element with the same identifiers).

Another direction is experimenting with programming languages that are better

suited to asynchronous algorithms, e.g. Erlang and Scala, a Java-based functional

object-oriented programming language. For our storage layer, we plan to test dis-

tributed in-memory databases, e.g. Hazelcast [14] and to extend proven solutions, like

Titan, with a distributed notification layer. Also, we are constantly looking for alterna-

tive scalable persistent graph database technologies.

6.4 Acknowledgements

I would like to thank my supervisors Dr. István Ráth, Benedek Izsó and Dr. Dániel Varró

for their advice and enthusiasm. I would also like to thank Dr. Gábor Bergmann and

Dr. Ákos Horváth.

59

List of Figures

2.1 Different graph data models (based on [68]) 12

2.2 The Ecore kernel, a simplified subset of the Ecore metamodel 13

2.3 The TinkerPop software stack [11] . 15

2.4 Different partitionings of the same graph . 16

2.5 Hadoop’s architecture [59] . 21

2.6 Graph vertex mapped by Titan to a row in a Cassandra database 22

2.7 Deploying a remote actor in Akka [5] . 24

3.1 The structure of the Rete propagation network 27

3.2 EMF-INCQUERY’s architecture . 27

3.3 INCQUERY-D’s architecture on a four-node cluster 29

3.4 The general workflow of incremental pattern matching with the Rete al-

gorithm . 33

3.5 Architecture of INCQUERY-D with a runtime dashboard 34

3.6 The EMF metamodel of the railroad system 35

3.7 A subgraph of a railroad system visualized 35

3.8 Graphical representation of the RouteSensor query’s pattern. The dashed

red arrow defines a negative application condition. 35

3.9 INCQUERY-D’s workflow . 37

3.10 The RouteSensor query’s layout . 38

3.11 The yFiles viewer in INCQUERY-D’s tooling 39

3.12 A modification on a Train Benchmark instance model 39

3.13 Operation sequence on a distributed Rete network 40

4.1 The Train Benchmark’s sequence . 42

4.2 Train Benchmark: reponse times for incremental query evaluation, mea-

sured on a single node [69] . 43

4.3 Train Benchmark: memory consumption of the tools [69] 44

4.4 Total execution times for 50 validations . 47

4.5 Execution times for transformation and revalidation 48

4.6 Execution times for load and first validation 48

60

4.7 Execution times for transformation . 49

4.8 Execution times of the revalidation . 49

4.9 Total execution times for 50 validations . 50

A.1 An example graph based on the railway system metamodel 68

61

Bibliography

[1] OpenLink Software: Virtuoso Universal Server. http://virtuoso.openlinksw.

com/.

[2] Sesame: RDF API and Query Engine. http://www.openrdf.org/.

[3] 2013: What’s Coming Next in Neo4j! http://blog.neo4j.org/2013/01/

2013-whats-coming-next-in-neo4j.html, January 2013.

[4] 4store. http://4store.org/, October 2013.

[5] Akka. http://akka.io/, May 2013.

[6] Apache Cassandra. http://cassandra.apache.org/, May 2013.

[7] Apache Hadoop. http://hadoop.apache.org/, May 2013.

[8] Apache HBase. http://hbase.apache.org/, May 2013.

[9] Apache Thrift. http://thrift.apache.org/, October 2013.

[10] Avahi. http://www.avahi.org/, October 2013.

[11] Blueprints. http://blueprints.tinkerpop.com/, May 2013.

[12] GraphSON Format. https://github.com/thinkaurelius/faunus/wiki/

GraphSON-Format, October 2013.

[13] GraphSON Reader and Writer Library. https://github.com/tinkerpop/

blueprints/wiki/GraphSON-Reader-and-Writer-Library, October 2013.

[14] In-Memory Data Grid – Hazelcast. http://www.hazelcast.com/index.jsp, Oc-

tober 2013.

[15] Lustre. http://lustre.org/, October 2013.

[16] MongoDB. http://www.mongodb.org/, October 2013.

[17] Neoclipse. https://github.com/neo4j/neoclipse, May 2013.

62

http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/
http://www.openrdf.org/
http://blog.neo4j.org/2013/01/2013-whats-coming-next-in-neo4j.html
http://blog.neo4j.org/2013/01/2013-whats-coming-next-in-neo4j.html
http://4store.org/
http://akka.io/
http://cassandra.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://thrift.apache.org/
http://www.avahi.org/
http://blueprints.tinkerpop.com/
https://github.com/thinkaurelius/faunus/wiki/GraphSON-Format
https://github.com/thinkaurelius/faunus/wiki/GraphSON-Format
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
http://www.hazelcast.com/index.jsp
http://lustre.org/
http://www.mongodb.org/
https://github.com/neo4j/neoclipse

[18] NoSQL Databases. http://nosql-database.org/, May 2013.

[19] Objectivity – InfiniteGraph. http://www.objectivity.com/infinitegraph, Oc-

tober 2013.

[20] OrientDB Graph-Document NoSQL DBMS. http://www.orientdb.org/, Octo-

ber 2013.

[21] Planet Cassandra – Companies. http://planetcassandra.org/Company/

ViewCompany, October 2013.

[22] Protocol Buffers – Google’s data interchange format. https://code.google.com/

p/protobuf/, October 2013.

[23] Sparsity-technologies: DEX high-performance graph database. http://www.

sparsity-technologies.com/dex, October 2013.

[24] The GraphML File Format. http://graphml.graphdrawing.org/, October 2013.

[25] The Innovative Zing JVM. http://www.azulsystems.com/sites/default/

files/images/Innovative_Zing_JVM_v2.pdf, August 2013.

[26] The R Project for Statistical Computing. http://www.r-project.org/, October

2013.

[27] TinkerPop. http://www.tinkerpop.com/, May 2013.

[28] Acharya, A. et al. Implementation of production systems on message-passing

computers. IEEE Trans. Parallel Distr. Syst., 3(4):477–487, July 1992.

[29] Don Batory. The LEAPS Algorithm. Technical report, Austin, TX, USA, 1994.

[30] Gábor Bergmann. Incremental graph pattern matching and applications. Master’s

thesis, Budapest University of Technology and Economics, http://mit.bme.hu/

~rath/pub/theses/diploma_bergmann.pdf, 2008.

[31] Gábor Bergmann. Incremental Model Queries in Model-Driven Design. Ph.D. dis-

sertation, Budapest University of Technology and Economics, Budapest, 10/2013

2013.

[32] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. A benchmark

evaluation of incremental pattern matching in graph transformation. In Hartmut

Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors, Proc.

4th International Conference on Graph Transformations, ICGT 2008, volume 5214

of Lecture Notes in Computer Science, pages 396–410. Springer, Springer, 2008. Ac-

ceptance rate: 40%.

63

http://nosql-database.org/
http://www.objectivity.com/infinitegraph
http://www.orientdb.org/
http://planetcassandra.org/Company/ViewCompany
http://planetcassandra.org/Company/ViewCompany
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
http://www.sparsity-technologies.com/dex
http://www.sparsity-technologies.com/dex
http://graphml.graphdrawing.org/
http://www.azulsystems.com/sites/default/files/images/Innovative_Zing_JVM_v2.pdf
http://www.azulsystems.com/sites/default/files/images/Innovative_Zing_JVM_v2.pdf
http://www.r-project.org/
http://www.tinkerpop.com/
http://mit.bme.hu/~rath/pub/theses/diploma_bergmann.pdf
http://mit.bme.hu/~rath/pub/theses/diploma_bergmann.pdf

[33] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. Incremental Eval-

uation of Model Queries over EMF Models: A Tutorial on EMF-IncQuery, volume

6698 of Lecture Notes in Computer Science, pages 389–390. Springer Berlin / Hei-

delberg, 2011. 10.1007/978-3-642-21470-7_32.

[34] Bergmann, Gábor et al. Incremental evaluation of model queries over EMF mod-

els. In MODELS, volume 6394 of LNCS. Springer, 2010.

[35] Christian Bizer and Andreas Schultz. The Berlin SPARQL Benchmark. Interna-

tional Journal On Semantic Web and Information Systems, 5(2), 2009.

[36] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

13(6):377–387, June 1970.

[37] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008.

[38] EMF documentation. Package org.eclipse.emf.ecore. http://download.

eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/

package-summary.html, October 2013.

[39] Eclipse MDT Project. Eclispe OCL, 2011. http://eclipse.org/modeling/mdt/

?project=ocl.

[40] Eclipsepedia. CDO. http://wiki.eclipse.org/CDO, October 2013.

[41] Jean-Rémy Falleri, Xavier Blanc, Reda Bendraou, Marcos Aurélio, Almeida

da Silva, and Cédric Teyton. Incremental inconsistencies detection with low

memory overhead. Software: Practice and Experience, 43, 2013.

[42] Andreas Emil Feldmann and Luca Foschini. Balanced partitions of trees and ap-

plications. In Christoph Dürr and Thomas Wilke, editors, STACS, volume 14 of

LIPIcs, pages 100–111. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[43] Charles Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligences, 19(1):17–37, 1982.

[44] Rubino Geiß and Moritz Kroll. On improvements of the Varro benchmark for

graph transformation tools. Technical Report 2007-7, Universität Karlsruhe, IPD

Goos, 12 2007. ISSN 1432-7864.

[45] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.

In Proceedings of the nineteenth ACM symposium on Operating systems principles,

SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

64

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://eclipse.org/modeling/mdt/?project=ocl
http://eclipse.org/modeling/mdt/?project=ocl
http://wiki.eclipse.org/CDO

[46] Thomas Goldschmidt and Axel Uhl. Efficient OCL impact analysis, 2011.

[47] RDF Core Working Group. Resource Description Framework (RDF). http://www.

w3.org/RDF/, 2004.

[48] Olaf Görlitz, Matthias Thimm, and Steffen Staab. SPLODGE: Systematic gener-

ation of SPARQL benchmark queries for Linked Open Data. In Philippe Cudré-

Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred

Hauswirth, JosianeXavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bern-

stein, and Eva Blomqvist, editors, The Semantic Web – ISWC 2012, volume 7649

of Lecture Notes in Computer Science, pages 116–132. Springer Berlin Heidelberg,

2012.

[49] Ábel Hegedüs, Ákos Horváth, István Ráth, and Dániel Varró. A Model-driven

Framework for Guided Design Space Exploration. In 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2011), Lawrence, Kansas,

USA, 11/2011 2011. IEEE Computer Society, IEEE Computer Society. ACM Dis-

tinguished Paper Award, Acceptance rate: 15%.

[50] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-

ism for artificial intelligence. In Proceedings of the 3rd international joint confer-

ence on Artificial intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA,

1973. Morgan Kaufmann Publishers Inc.

[51] Guillaume Hillairet, Frédéric Bertrand, Jean Yves Lafaye, et al. Bridging EMF ap-

plications and RDF data sources. In Proceedings of the 4th International Workshop

on Semantic Web Enabled Software Engineering, SWESE, 2008.

[52] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. IncQuery-D: incre-

mental graph search in the cloud. In Proceedings of the Workshop on Scalability in

Model Driven Engineering, BigMDE ’13, pages 4:1–4:4, New York, NY, USA, 2013.

ACM.

[53] Benedek Izsó, Zoltán Szatmári, Gábor Bergmann, Ákos Horváth, and István

Ráth. Towards Precise Metrics for Predicting Graph Query Performance. In

28th IEEE/ACM International Conference on Automated Software Engineering (ASE

2013), 2013. Accepted.

[54] Benedek Izsó, Zoltán Szatmári, Gábor Bergmann, Ákos Horváth, István Ráth, and

Varro Daniel. Ontology driven design of EMF metamodels and well-formedness

constraints. In Proceedings of the 12th Workshop on OCL and Textual Modelling,

OCL ’12, page 37–42, New York, NY, USA, 2012. ACM, ACM.

65

http://www.w3.org/RDF/
http://www.w3.org/RDF/

[55] Benedek Izsó, Zoltán Szatmári, and István Ráth. High performance queries and

their novel applications, 2012.

[56] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August

2009.

[57] Jim Webber. On Sharding Graph Databases. http://jim.webber.name/2011/

02/on-sharding-graph-databases/, February 2011.

[58] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured

storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[59] Michael G. Noll. Running Hadoop on Ubuntu Linux (Multi-

Node Cluster). http://www.michael-noll.com/tutorials/

running-hadoop-on-ubuntu-linux-multi-node-cluster/, October 2013.

[60] D. P. Miranker and B. J. Lofaso. The Organization and Performance of a TREAT-

Based Production System Compiler. IEEE Trans. on Knowl. and Data Eng., 3(1):3–

10, March 1991.

[61] Miranker, Daniel P et al. Diamond: A SPARQL query engine, for linked data based

on the Rete match. AImWD, 2012.

[62] Neo Technology. Neo4j. http://neo4j.org/, 2013.

[63] Javier Espinazo Pagán, Jesús Sánchez Cuadrado, and Jesús García Molina. Morsa:

a scalable approach for persisting and accessing large models. In Proceedings of

the 14th international conference on Model driven engineering languages and sys-

tems, MODELS’11, pages 77–92, Berlin, Heidelberg, 2011. Springer-Verlag.

[64] Alexander Reder and Alexander Egyed. Incremental consistency checking for

complex design rules and larger model changes. In MODELS’12. Springer-Verlag,

2012.

[65] Redland RDF Libraries. Raptor RDF Syntax Library. http://librdf.org/

raptor/, October 2013.

[66] Redland RDF Libraries. Rasqal RDF Query Library. http://librdf.org/rasqal/,

October 2013.

[67] Mikko Rinne. SPARQL update for complex event processing. In ISWC’12, volume

7650 of LNCS. 2012.

[68] Marko A. Rodriguez and Peter Neubauer. Constructions from dots and lines.

CoRR, abs/1006.2361, 2010.

66

http://jim.webber.name/2011/02/on-sharding-graph-databases/
http://jim.webber.name/2011/02/on-sharding-graph-databases/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://neo4j.org/
http://librdf.org/raptor/
http://librdf.org/raptor/
http://librdf.org/rasqal/

[69] István Ráth. High performance queries and their novel applications. http:

//incquery.net/publications/trainbenchmark/full-results, 2012. OMG

Workshop.

[70] Markus Scheidgen. How Big are Models – An Estimation. Technical report, De-

partment of Computer Science, Humboldt Universität zu Berlin, 2012.

[71] Markus Scheidgen, Anatolij Zubow, Joachim Fischer, and Thomas H. Kolbe. Au-

tomated and transparent model fragmentation for persisting large models. In

Proceedings of the 15th international conference on Model Driven Engineering

Languages and Systems, MODELS’12, pages 102–118, Berlin, Heidelberg, 2012.

Springer-Verlag.

[72] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.

SP2Bench: A SPARQL performance benchmark. In Proc. of the 25th International

Conference on Data Engineering, pages 222–233, Shanghai, China, 2009. IEEE.

[73] Sherif Sakr. Supply cloud-level data scalability with NoSQL databases.

http://www.ibm.com/developerworks/cloud/library/cl-nosqldatabase/

index.html, March 2013.

[74] The Eclipse Project. Eclipse Modeling Framework. http://www.eclipse.org/

emf, October 2012.

[75] The MOGENTES project. Model-Based Generation of Tests for Dependable Em-

bedded Systems. http://www.mogentes.eu/.

[76] Gergely Varró, Andy Schürr, and Dániel Varró. Benchmarking for graph trans-

formation. In Proc. IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC 05), pages 79–88, Dallas, Texas, USA, September 2005. IEEE

Press.

67

http://incquery.net/publications/trainbenchmark/full-results
http://incquery.net/publications/trainbenchmark/full-results
http://www.ibm.com/developerworks/cloud/library/cl-nosqldatabase/index.html
http://www.ibm.com/developerworks/cloud/library/cl-nosqldatabase/index.html
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.mogentes.eu/

Appendix A

Graph Formats

In this chapter, we provide examples for the different graph serialization formats, in-

cluding property graphs and RDF graphs. The examples describe a small instance

model based on the railway system metamodel, shown on Figure A.1.

Figure A.1: An example graph based on the railway system metamodel

A.1 Property Graph Formats

A.1.1 GraphML

The GraphML format [24] is the most widely used graph representation format, based

on XML (Extensible Markup Language). It has strong tooling support between graph

databases and graph visualizing tools.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <graphml xmlns="http:// graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org

/2001/ XMLSchema -instance" xsi:schemaLocation="http:// graphml.graphdrawing.org/xmlns

http: // graphml.graphdrawing.org/xmlns /1.1/ graphml.xsd">

3 <key id="type" for="node" attr.name="type" attr.type="string" />

4 <graph id="G" edgedefault="directed">

5 <node id="1">

6 <data key="type">Sensor </data>

7 </node>

8 <node id="2">

9 <data key="type">Route</data>

10 </node>

68

11 <node id="3">

12 <data key="type">SwitchPosition </data>

13 </node>

14 <node id="4">

15 <data key="type">Switch </data>

16 </node>

17 <edge id="0" source="2" target="1" label="ROUTE_ROUTEDEFINITION" />

18 <edge id="1" source="2" target="3" label="ROUTE_SWITCHPOSITION" />

19 <edge id="2" source="3" target="4" label="SWITCHPOSITION_SWITCH" />

20 <edge id="3" source="4" target="1" label="TRACKELEMENT_SENSOR" />

21 </graph>

22 </graphml >

Listing A.1: A graph based on the railway system metamodel stored in GraphML format

A.1.2 Blueprints GraphSON

Blueprints GraphSON [13] is a JSON-based (JavaScript Object Notation) format. It is

not as well supported as the GraphML format (Section A.1.1), but it is less verbose and

more readable.

1 {

2 "vertices":[

3 {

4 "type":"Sensor",

5 "_id":1,

6 "_type":"vertex"

7 },

8 {

9 "type":"Route",

10 "_id":2,

11 "_type":"vertex"

12 },

13 {

14 "type":"SwitchPosition",

15 "_id":3,

16 "_type":"vertex"

17 },

18 {

19 "type":"Switch",

20 "_id":4,

21 "_type":"vertex"

22 }

23],

24 "edges":[

25 {

26 "_id":0,

27 "_type":"edge",

28 "_outV":2,

29 "_inV":1,

30 "_label":"ROUTE_ROUTEDEFINITION"

31 },

32 {

33 "_id":1,

34 "_type":"edge",

35 "_outV":2,

69

36 "_inV":3,

37 "_label":"ROUTE_SWITCHPOSITION"

38 },

39 {

40 "_id":2,

41 "_type":"edge",

42 "_outV":3,

43 "_inV":4,

44 "_label":"SWITCHPOSITION_SWITCH"

45 },

46 {

47 "_id":3,

48 "_type":"edge",

49 "_outV":4,

50 "_inV":1,

51 "_label":"TRACKELEMENT_SENSOR"

52 }

53]

54 }

Listing A.2: A graph based on the railway system metamodel stored in Blueprints GraphSON format

A.1.3 Faunus GraphSON

In the Faunus GraphSON format [12], each line is a separate JSON (JavaScript Object

Notation) document representing a vertex in the graph. This way, the file can be split-

ted to blocks efficiently and processed on Hadoop nodes in a parallel way.

1 {"type":"Sensor","_id":1,"_outE":[],"_inE":[{"_id":0,"_outV":2,"_label":"

ROUTE_ROUTEDEFINITION"},{"_id":3,"_outV":4,"_label":"TRACKELEMENT_SENSOR"}]}

2 {"type":"Route","_id":2,"_outE":[{"_id":0,"_inV":1,"_label":"ROUTE_ROUTEDEFINITION"},{"

_id":1,"_inV":3,"_label":"ROUTE_SWITCHPOSITION"}],"_inE":[]}

3 {"type":"SwitchPosition","_id":3,"_outE":[{"_id":2,"_inV":4,"_label":"

SWITCHPOSITION_SWITCH"}],"_inE":[{"_id":1,"_outV":2,"_label":"ROUTE_SWITCHPOSITION"}

]}

4 {"type":"Switch","_id":4,"_outE":[{"_id":3,"_inV":1,"_label":"TRACKELEMENT_SENSOR"}],"

_inE":[{"_id":2,"_outV":3,"_label":"SWITCHPOSITION_SWITCH"}]}

Listing A.3: A graph based on the railway system metamodel stored in Faunus GraphSON format

A.2 Semantic Graph Formats

A.2.1 RDF/XML

RDF/XML is an XML-based (Extensible Markup Language) format for serializing RDF

triples.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <rdf:RDF

3 xmlns="http://www.semanticweb.org/ontologies /2011/1/ TrainRequirementOntology.owl#"

4 xmlns:rdfs="http://www.w3.org /2000/01/rdf -schema#"

5 xmlns:swrl="http://www.w3.org /2003/11/ swrl#"

6 xmlns:swrlb="http://www.w3.org /2003/11/ swrlb#"

70

7 xmlns:xsd="http://www.w3.org /2001/ XMLSchema#"

8 xmlns:owl="http://www.w3.org /2002/07/ owl#"

9 xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#">

10

11 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl">

12 <rdf:type rdf:resource="http://www.w3.org /2002/07/ owl#Ontology"/>

13 </rdf:Description >

14

15 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#Segment">

16 <rdf:type rdf:resource="http://www.w3.org /2002/07/ owl#Class"/>

17 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#Trackelement"/>

18 </rdf:Description >

19

20 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#Switch">

21 <rdf:type rdf:resource="http://www.w3.org /2002/07/ owl#Class"/>

22 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#Trackelement"/>

23 </rdf:Description >

24

25 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#1">

26 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#Sensor"/>

27 </rdf:Description >

28

29 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#2">

30 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#Route"/>

31 </rdf:Description >

32

33 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#3">

34 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#Switch"/>

35 </rdf:Description >

36

37 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#4">

38 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#SwitchPosition"/>

39 </rdf:Description >

40

41 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#3">

42 <TrackElement_sensor rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#1"/>

43 </rdf:Description >

44

45 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#4">

46 <SwitchPosition_switch rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#3"/>

47 </rdf:Description >

71

48

49 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#2">

50 <Route_routeDefinition rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#1"/>

51 <Route_switchPosition rdf:resource="http://www.semanticweb.org/ontologies /2011/1/

TrainRequirementOntology.owl#4"/>

52 </rdf:Description >

53

54 </rdf:RDF>

Listing A.4: A graph based on the railway system metamodel stored in RDF format

A.3 Mapping Ecore to Property Graphs

Mapping the Ecore kernel’s concepts to property graphs is not a trivial task. We devel-

oped the property graph generator module for the Train Benchmark based on the rail-

road system’s Ecore metamodel (Section 3.6.1), which meant the Ecore concepts had

to be mapped to property graphs. Following the mapping defined in Section 2.2.1, we

created the equivalent instance models for property graphs as well. Below, we provide

some examples about the mapping:

• Segment is an EClass instance. In a property graph, types cannot be represented

explicitly. Instead, for each node representing a Segment instance, we add a type

property with the value Segment.

• Segment_length is an EAttribute instance. For each graph node representing a

Segment, we define a property with the value Segment_length.

• TrackElement_Sensor is an EReference instance. For each edge representing a

TrackElement_Sensor instance, we add the TRACKELEMENT_SENSOR label.

• EInt in an EDataType instance. Each attribute with this type, e.g. the Sensor

class’ Segment_length attribute, is defined with the Java primitive type int.

72

	Introduction
	Context
	Problem Statement and Requirements
	Objectives and Contributions
	Structure of the Report

	Background Technologies
	Big Data and the NoSQL Movement
	Concepts
	Graph Data Models
	Sharding
	Query Languages and Evaluation Strategies

	Graph Storage Technologies
	EMF Technologies
	Neo4j
	Titan
	4store
	Overview and Evaluation of Graph Storage Technologies

	Building Scalable Asynchronous Distributed Systems: Akka

	Overview of the Approach
	Incremental Query Evaluation
	Incremental Pattern Matching Algorithms
	The Rete Algorithm

	Incremental Pattern Matching on a Single Workstation: EMF-IncQuery
	Architecture
	Indexing and Initialization
	Data Representation and Storage
	Notification Mechanisms
	Termination Protocol
	Configuration and Performance Optimization

	Extensions for Distributed Scalability: IncQuery-D
	Architecture
	Indexing and Initialization
	Data Representation and Storage
	Notification Mechanisms
	Termination Protocol
	Configuration and Performance Optimization

	Workflow
	Workflow of EMF-IncQuery
	Workflow of IncQuery-D

	Tooling for IncQuery-D
	Elaboration of the Example
	Case Study: Railroad System Design
	Workflow of the Example

	Evaluation of Performance and Scalability
	Dimensions of Scalability
	Foundations: the Train Benchmark
	Benchmark Goals
	Generating Instance Models
	Original Results for Non-distributed Tools

	Distributed Train Benchmark
	Distributed Architecture
	Benchmark Limitations
	Generating Instance Models

	Benchmark Environment
	Benchmark Setup
	Hardware and Software Ecosystem
	Benchmark Methodology and Data Processing

	Benchmark Results with Neo4j
	Benchmark Results with 4store and Titan
	Result Analysis
	Threats to Validity
	Summary

	Related Work
	Eclipse-based Tools
	Rete Implementations
	Benchmarks
	RDF Benchmarks
	Model Transformation and Graph Transformation Benchmarks

	Conclusions
	Summary of Contributions
	Scientific Contributions
	Practical Accomplishments

	Limitations
	Future work
	Acknowledgements

	Bibliography
	Graph Formats
	Property Graph Formats
	GraphML
	Blueprints GraphSON
	Faunus GraphSON

	Semantic Graph Formats
	RDF/XML

	Mapping Ecore to Property Graphs

