
 

Budapesti Műszaki és Gazdaságtudományi Egyetem 

Villamosmérnöki és Informatikai Kar 
Hálózati Rendszerek és Szolgáltatások Tanszék 

 

 

 

 

 

 

 

Tanárki József 

PREDICTIVE ANALYTICS OF 

IP/MPLS NETWORKS 
 

 

KONZULENS 

Dr. Huszák Árpád 

BUDAPEST, 2017 



 2 

Table of contents 

Összefoglaló.............................................................................................................. 4 

Abstract.................................................................................................................... 5 

1 Introduction .......................................................................................................... 6 

2 Overview of IP/MPLS Networks ........................................................................... 7 

2.1 Internet Protocol ................................................................................................7 

2.1.1 IP communication types ..............................................................................7 

2.1.2 IP address-assignment strategies  ..................................................................8 

2.2 Dynamic Host Configuration Protocol ................................................................8 

2.2.1 Address allocation mechanisms  ...................................................................8 

2.2.2 Client-server interaction – allocating a network address................................9 

2.3 Routing Protocols  ............................................................................................ 10 

2.3.1 Static Versus Dynamic Routing ................................................................. 10 

2.3.2 Interior Versus Exterior RPs ...................................................................... 10 

2.3.3 Hierarchical Versus Flat RPs ..................................................................... 10 

2.3.4 OSPF........................................................................................................ 11 

2.3.5 Border Gateway Protocol .......................................................................... 11 

2.4 Multiprotocol Label Switching (MPLS)............................................................ 12 

2.4.1 Limitations of traditional IP routing and forwarding ................................... 12 

2.4.2 The MPLS architecture  ............................................................................. 12 

2.4.3 Label Switch Router.................................................................................. 13 

2.5 Network Management – Operating IP/MPLS networks ..................................... 14 

2.5.1 Simple Network Management Protocol (SNMP) ........................................ 15 

2.5.2 Management Information Base (MIB)........................................................ 16 

2.5.3 Other Technologies for Network Management  ........................................... 16 

3 Introduction to Machine Learning...................................................................... 17 

3.1 Machine Learning basics.................................................................................. 17 

3.1.1 Supervised learning ................................................................................... 17 

3.1.2 Classification for predicting class labels ..................................................... 17 

3.1.3 Regression for predicting continuous outcomes .......................................... 18 

3.1.4 Building machine learning systems  ............................................................ 18 

3.1.5 Using Python for machine learning ............................................................ 19 

3.2 The Perceptron, the Adaline, and Machine Learning algorithms based on them.. 19 

3.2.1 Artificial neurons and the early history of machine learning........................ 19 

3.2.2 Adaptive linear neurons............................................................................. 21 



 3 

3.2.3 Minimizing cost functions with gradient descent ........................................ 22 

3.2.4 A simple linear regression model ............................................................... 23 

3.2.5 The ordinary least squares linear regression model ..................................... 23 

3.2.6 Evaluating the performance of linear regression models  ............................. 24 

3.2.7 Polynomial regression ............................................................................... 25 

3.2.8 Decision tree regression ............................................................................ 25 

3.2.9 Random forests ......................................................................................... 26 

4 The simplified ISP network model ...................................................................... 27 

4.1 Planning, used tools and resources to build up the network................................ 27 

4.1.1 Hardware resources ................................................................................... 27 

4.1.2 Operation systems, applications, tools ........................................................ 27 

4.1.3 Simplification, Issues and Lessons Learned................................................ 29 

4.2 Describing the implementation of the ISP network............................................ 32 

4.2.1 The Final Topology................................................................................... 32 

4.2.2 Configuring the IP/MPLS Core with the DHCP server ............................... 33 

4.2.3 Verifying the network configuration .......................................................... 38 

4.2.4 End-to-end testing ..................................................................................... 40 

4.3 Measuring the Network.................................................................................... 42 

4.3.1 Testing the NMS ....................................................................................... 42 

4.3.2 Concepts of simulation and measurement................................................... 43 

4.3.3 The measured data .................................................................................... 43 

5 Using ML algorithms to predict continuous values in the ISP network.............. 45 

5.1 Exploring and visualizing the measured dataset ................................................ 45 

5.1.1 Visualizing the important characteristics of the dataset ............................... 46 

5.2 Applying ML algorithms on the measured networking data ............................... 52 

5.2.1 Implementing an Ordinary Least Squares linear regression model............... 52 

5.2.2 Using the Linear Regression model of Scikit-Learn .................................... 55 

5.2.3 Modelling nonlinear relationships  .............................................................. 58 

5.2.4 Using decision tree regression ................................................................... 59 

5.2.5 Random forest regression as the final solution............................................ 60 

Bibliography........................................................................................................... 63 

Appendix ................................................................................................................ 65 

 



 4 

Összefoglaló 

A 2000-es évek végén megjelent és mára szinte mindenki által használt 

okostelefonok nem csak a társadalmi berendezkedésünket és az internetezési 

szokásainkat változtatták meg. Az „always online” életmód a felhasználókon kívül a 

szolgáltatói szektorokra is nagy hatást gyakorolt. Ma már nem csak eszközökre, hanem 

komplett szolgáltatásokra van igényünk, amelyek a szolgáltatói környezetben mindennél 

előbbre helyezték a felhasználói élményt. 

Az internet eléréssel rendelkező eszközök száma folyamatosan nő és ez a trend 

úgy tűnik, hogy még jó néhány évig nem változik. Az IPv4 protokoll nyújtotta hálózati 

címzés határait már elértük, az IPv6 protokollt azonban globálisan még nem igazán 

használjuk. A megnövekedett ügyfélszámnak köszönhetően az Internet szolgáltatók 

hálózata is rendkívül gyors és komplex fejlődésen megy át, így a bekövetkező hibák 

lehetősége is jelentősen növekszik. Emberi erőforrásokkal a bekövetkező hibák az esetek 

többségében csak reaktív módon kezelhetők, így ha csak rövid időre is, de sokszor 

elkerülhetetlen, hogy a felhasználó ezeket ne vegye észre. 

A dolgozatom célja olyan adatelemzési módszer alkalmazása a hálózatokra, 

amelyekkel gépi tanulási algoritmusok segítségével képesek lehetünk előre jelezni a 

hálózatban valószínűsíthetően kialakuló hibákat, eseményeket. A módszer a tradícionális 

hálózatmonitorozási protokollok adatait használja, így szinte bármilyen jelenlegi 

IP/MPLS, de akár teljesen más protokollokat használó hálózatokra is alkalmazható. 

A fent megnevezett módszert egy egyszerűsített Internet szolgáltatói hálózati 

modellre alkalmaztam, amelyet virtuálisan, egy számítógép erőforrásait használva 

valósítottam meg. Dolgozatomban részletesen bemutatom a hálózat szimulációra használt 

eszközöket, alkalmazásokat és protokollokat, majd ismertetem a gépi tanulás alapjait, a 

legfontosabb gépi tanulási modelleket és algoritmusokat. Végül bemutatom, hogyan 

alkalmazhatóak különböző regressziós algoritmusok az IP cím kihasználtság prediktív 

analízisére. 



 5 

Abstract 

At the end of 2000s smartphones were introduced and so far they have been used 

by most of the people around the world. These devices have had radical effects on our 

social structure and the usage of the Internet. Being “always online” has changed the 

service providers from every aspect as well. Today, we are not just buying new smart 

equipments, we need complete services, which shifted the focus on the customer 

experience with the highest priority in a service provider environment. 

The number of customers, who are reaching the internet, is increasing 

continuously and it seem that this trend won’t change in the next couple of years. We 

have reached the limits of the IPv4 Addressing scheme, but IPv6 is still not used globally. 

Due to the increased number of customers, Internet Service Providers have to develop 

their networks in a really fast and that’s why complex way. In this kind of environment 

the possibility of the occurring failures are so high, that these can be managed by humans 

mostly reactively, and there is always a chance of the customer experience degradation 

can happen, even for a short time period.  

The aim of my dissertation is applying data analysis for networks, with which we 

can use machine learning algorithms to predict the possibility of failures or of the 

occurring events. The method uses data of traditional network management protocols and 

that’s why it is suitable for any kind of IP/MPLS networks, or for networks using any 

other protocols.  

I applied this method above for a simplified model of a typical Internet service 

provider’s network, which was realized by me in a virtual environment using the 

resources of a personal computer. In my document I give detailed description of the 

equipments, applications and protocols used for network simulation, then I expound the 

basics of machine learning, the most important models and machine learning algorithms. 

In the end, I explain how different kinds of regression algorithms can be used for the 

prediction of IP address utilization. 



 6 

1 Introduction 

Network management and operation is quite a hot topic today. Network operators 

have the proper management systems, departments and processes to monitor and maintain 

todays’ fast growing next generation networks. Network devices produce an enormous 

volume of data, which is filtered and visualized in the network operation centres.  

However the growing of customer needs leads to fast implementation and in most 

of the cases, documentations cannot cover everything which was deployed. The entropy 

of the networks strictly grows, resulting complexity and unmanageability. We reached a 

point which cannot be handled by humans without proper machine-based support. 

Networking engineers and experts are using self-developed scripts and tools to 

automate the hard and repetitive work, they have the deep knowledge of how the network 

behave, but this requires several years of experience in an Internet Service Provider 

network.  

The overall assumption is that this complexity can be controlled by machine 

learning techniques and the industry has to focus on developing machine learning based 

networking solutions to increase the customer experience and satisfaction. 

In the following chapters I go through the protocols which are necessary to build 

up an ISP network. I give a summarization of machine learning basics and algorithms. 

Then I show my basic ISP model which I implemented virtually and give a detailed 

description of how I refined the model step by step solving all the issues came up. The 

problems I met were based mostly on resource limitations, that is why I had to restart the 

network implementation process several times. Finally, I was able to establish a simple 

working model, which is still complex enough to show my results about applying the 

previously mentioned machine learning algorithms on a big amount of data produced by 

my network. With all this knowledge, I can predict the right values, which can describe 

the behaviour of the subscribers and the network also. 

On the following overview sections I tried to focus on the most important key-

points of the topics, because the literature seems to be endless, when we are talking about 

IP networks. 



 7 

2 Overview of IP/MPLS Networks 

2.1 Internet Protocol 

IP is the network layer protocol in TCP/IP described in RFC791 [1]. TCP/IP 

means the Internet protocol suite, a conceptual model and a set of communication 

protocols used in interconnected systems of packet-switched computer networks.  

IP is responsible for the logical addressing and information for routing packets 

throughout the network. Packets or datagrams are blocks of data, which are transported 

via the network from a source to a destination.  

The sources and destinations are hosts (workstations, servers etc.) or routers and 

these are identified by 32-bit IPv4 or 128-bit IPv6 addresses. IP also provides 

fragmentation and reassembly of long datagrams for transporting over the network with 

small maximum transition units (MTU). 

2.1.1 IP communication types 

IP uses the following types of addressing methods for communication between 

the network entities: 

Unicast addressing represents a one-to-one association between a source and a 

destination. Each address uniquely identifies the endpoints. 

Broadcast addressing represents a one-to-all association in a Layer 2 segment 

(OSI-model), which means a network subnet.  

Multicast addressing represents a one-to-many-of-many or many-to-many-of-

many association. Packets are routed simultaneously in a single transmission to many 

recipients.  

 Anycast addressing represents a one-to-one-of-many association where packets 

are routed to any single member of a group of potential receivers. In this group all the 

members are identified by the same destination address.  

Geocast addressing refers to the delivery of information to a group of destinations 

in a network identified by their geographical locations. This is a special form of multicast 

addressing used by some routing protocols for mobile ad-hoc networks. (IPv6 only) 



 8 

2.1.2 IP address-assignment strategies 

The simplest way of obtaining an IP address to an interface of a networking node 

is to configure it manually. 

The IPv6 Neighbor Discovery (ND) protocol provides a much simpler feature, 

which can be used by the hosts to determine their full IPv6 addresses without the help of 

DHCP. This kind of addressing method is the Stateless Address Autoconfiguration 

(SLAAC) and described in RFC4862 [2]. 

Beside the static configuration, there is another method to assign IP address to an 

interface in a stateful way. Dynamic Host Configuration protocol (DHCP) is described in 

RFC2131 [3] for IPv4 and RFC3315 [4]. Using DHCP we can provide further functions 

or options to the hosts, a detailed description can be found in the following section about 

them. 

2.2 Dynamic Host Configuration Protocol 

DHCP provides configuration parameters to the hosts on the network. DHCP is 

not just a protocol, which is delivering host-specific configuration parameters from a 

DHCP server to a host, but it describes the mechanism of allocating addresses to the hosts.  

DHCP uses a client-server model, where designated DHCP servers allocate 

network addresses and deliver configuration parameters to the hosts. These hosts are the 

clients in the model and are dynamically configured to receive the parameters from the 

server.  

2.2.1 Address allocation mechanisms 

There are three mechanisms that DHCP supports for IP address allocation. In 

automatic allocation DHCP assigns a permanent IP address to the client. The DHCP 

server can assign IP addresses for a limited period of time, this mechanism is the dynamic 

allocation. Sometimes it can happen, that a dynamically configured host needs the same 

address every time, when it tries to connect to the network. In this case a manual 

allocation is needed, and the network administrator can configure these addresses on the 

DHCP server to be associated by the special clients. 



 9 

2.2.2 Client-server interaction – allocating a network address 

The following DHCP messages are exchanged in the simplest case of typical 

client-server interaction.  

1.) The client broadcasts a DHCPDISCOVER message on its local physical 

subnet. This message may include some options that suggest values for the IP 

address and lease duration. DHCP relay agents can pass the message towards 

the DHCP servers in another subnet. 

2.) Each server may respond with a DHCPOFFER message. This message 

includes an offered available and unused network address and some other 

configuration parameters in DHCP options (e.g.: DNS, Default Gateway etc.) 

3.) The client sends DHCPREQUEST messages back to the servers (if there is 

more than one). In this message the client can request the offered parameters 

from one server and can implicitly decline the offers from the others. It can 

confirm the correctness of previously allocated address after, or extend the the 

lease on a particular network address. 

4.) DHCPACK message is sent back from the server with the client configuration 

parameters, with the committed network address. 

It is worth to mention, that all of these messages above are broadcasted throughout 

the Layer 2 segment. 

 

 

Figure 2.1.: Simple DHCP communication 



 10 

2.3 Routing Protocols 

In this section I briefly describe the most important protocols and techniques to 

deploy the proper routing-forwarding architecture used in today’s IP/MPLS networks. 

Routing protocols can be categorized as distance-vector, link-state, hybrid or path-vector 

and as a hierarchical or flat.  

2.3.1 Static Versus Dynamic Routing 

Static routes are manually configured on a router. Due to this manual 

configuration they cannot react to network outages, unless the static route specifies the 

outbound interface. In this case, if this interface goes down, the static route is removed 

from the routing table of the router.  

Routing protocols (RPs) use algorithms to dynamically determine the best route 

to a destination. When the network topology changes RP adjusts the routes automatically. 

Every RP calculates the best path toward to a destination with the usage of metrics. The 

following dynamic routing protocols exist: RIPv1, RIPv2, IGRP, EIGRP, OSPF, IS-IS, 

RIPng, OSPFv3, EIGRP for IPv6, BGP.  

2.3.2 Interior Versus Exterior RPs 

RPs can be divided into two categories: interior gateway protocols (IGP) and 

exterior gateway protocols (EGP). IGPs are used within an organisation’s administrative 

domain. EGP is used to communicate with exterior domains, where routing information 

can be changed between the administrative domains. Today BGP (Border Gateway 

Protocol) is the de facto EGP.  

2.3.3 Hierarchical Versus Flat RPs 

Some RPs are defined to have a backbone network. This backbone network and 

the internetwork form two levels of hierarchy, which is sufficient to provide scalability. 

The backbone consists of only some devices, the so called backbone routers. These 

devices service and coordinate the routes and traffic towards the non-local internetwork 

routers. OSPF and IS-IS are hierarchical routing protocols. 

Flat RPs cannot be organized in a hierarchical way. In a flat topology every router 

forms a peering relationship with the others and no router have a special role. Flat RPs 

are EIGRP, RIPv1 and RIPv2. 



 11 

2.3.4 OSPF 

OSPFv2 is defined in RFC2328 [5] and is used in IPv4 networks. OSPF is a link-

state routing protocol that uses Dijkstra’s shortest path first algorithm to calculate the 

paths towards the destinations. OSPFv3 is designed to support only IPv6, but now it can 

support IPv4 as well. The support for multiple address families is defined in RFC5838 

[6]. 

OSPF was created to support large networks, where RIP (the first dynamic routing 

protocol) was not able to handle such a big number of peers. The introduction of OSPF 

improved the speed of convergence and it provides the use of variable-length subnet 

masks (VLSM). Path calculation using the SPF algorithm improved also. 

In OSPF, each router sends link-state advertisements (LSAs) about itself and its 

connections to other networks in a networking area. Based on the received LSAs, each 

router is able to calculate the best routes to a destination by running the SPF algorithm. 

Each OSPF router has the identical database which is describing the topology within the 

area. OSPF uses multicast addresses to communicate between the routers and uses IP 

protocol 89.  

In a typical Internet Service Provider (ISP) network OSPF is used as the IGP.  

2.3.5 Border Gateway Protocol 

BGPv4 is described in RFC1771 [7]. BGP is an interdomain routing protocol and 

is used to exchange routing information (e.g.: network-reachability) between autonomous 

systems (AS). BGP is a path-vector protocol, where a path stands from the sequence of 

AS numbers (ASN). An ASN represents a whole AS and uniquely identifies the system. 

BGP node uses the TCP port 179 for communicating its peers. BGP also can be used 

inside large enterprise networks as internal BGP (iBGP) to form adjacency above the 

existing Layer 3 network. Using an IGP (e.g.: OSPF) it is easy to define BGP 

neighborships only on the edge of the network and let the IGP to handle the forwarding 

inside the network between the BGP peers.  

With route redistribution BGP can learn all the connected routes, manually 

configured static routes and IGP routes and will be able to redistribute this information 

between the BGP peers. 



 12 

Using route filtering and default route origination we can influence the view of 

the network of a BGP peer, reducing the resource intensity of path calculation and we can 

spare some bandwidth as well. BGP tables can be really big and in a well designed 

enterprise network it is not always necessary to distribute the full view of the Internet and 

Intranet between peers.  

2.4 Multiprotocol Label Switching (MPLS) 

2.4.1 Limitations of traditional IP routing and forwarding 

In traditional IP packet forwarding the router analyzes the destination IP address 

in the network layer header of each packet. This happens independently at each hop in 

the network. Dynamic RPs or static configuration builds the database needed to analyze 

the destination IP addresses. That is what we call the routing table. Traditional IP routing 

is also called hop-by-hop destination based unicast routing. 

Unfortunately Layer 2 switches do not have the capability to handle Layer 3 

routing information or to influence the path selection by analyzing the network layer 

header information. 

2.4.2 The MPLS architecture 

RFC3031 [8] describes the MPLS architecture. MPLS combines the benefits of 

Layer 2 packet forwarding and Layer 3 routing. MPLS assigns labels to packets for 

transporting across a packet- or cell-based network. Label swapping is the forwarding 

technique, which means that the packet is tagged with a fixed-length label. This label tells 

the switching nodes, how to process and forward the data.  

The MPLS architecture contains two separate components: the data plane and the 

control plane. Data plane is the so called forwarding component that uses a label-

forwarding database. The control plane is responsible for creating the label-forwarding 

information (also called as bindings) between the interconnected switches. Figure 2.2 

shows the basic architecture of IP routing with an MPLS capable node. 

The MPLS capable router is similar to traditional IP routers, when it populates the 

IP routing table with IP routing protocols. This IP routing table is used to build up the IP 

forwarding cache or table, the so called Forwarding Information Base (FIB). 



 13 

The MPLS node uses the IP routing table to determine the label binding exchange. 

In this case, the adjacent MPLS nodes exchange labels for individual subnets. These 

subnets are stored within the IP routing table. The label binding exchange is performed 

by the usage of the IETF-specified Label Distribution Protocol (LDP) or other vendor 

specific proprietary protocols (e.g.: Cisco TDP). 

Based on the exchanged labels among MPLS nodes, the nodes build up the Label 

Forwarding Table and this table is used by the data plane to forward the labelled packets 

through the MPLS network. 

 

 

Figure 2.2.: MPLS node basic architecture 

2.4.3 Label Switch Router 

Any router or switch that performs label distribution and can forward packets 

based on labels is a Label Switch Router (LSR). Several different types of LSR exist. 

These nodes are differentiated by the functionalities they provide in an MPLS network 

(e.g.: Edge-LSR, ATM-LSR, ATM edge-LSR). The most important type to discuss is the 



 14 

Edge-LSR. Edge-LSR can perform label imposition and deposition (push and pop action). 

Push action means prepending of labels (a label, or a stack of labels) to a packet in the 

ingress point. This ingress point is the edge of the MPLS network, that is where the Edge-

LSR name is come from. On the egress point, where the packet leaves the MPLS network, 

the pop action is performed.  

Each packet enters the MPLS network at an ingress LSR and leaves it at an egress 

LSR. This mechanism creates a Label Switched Path. Because LSRs are unidirectional, 

the direction of communication between the devices connected an MPLS network can be 

different.  

2.5 Network Management – Operating IP/MPLS networks 

After a proper network design and when the routers and switches are implemented 

and configured, the network “starts to live”. To ensure that the network operates properly, 

the network operators need to gather operating statistics and in case of a failure or 

development, they need to manage the devices correctly. The gathered statistics can be 

information of bandwidth utilization, CPU and memory utilization of the devices, 

interface counters etc. Configuration changes can be made using a network management 

tool or simply via the Command Line Interface (CLI). For the proper network 

management ISO defines five type of processes. These processes also known as FCAPS: 

• Fault management: detecting and correcting network fault problems 

• Configuration management: scheduling, modifying and tracking 

configuration changes 

• Accounting management: keeping track of subscriber circuits for billing 

services 

• Performance management: measuring the effectiveness of the network 

at delivering packets 

• Security management: tracking the authentication and authorization 

information 

To support network management, we need to identify some elements to perform 

this task: 



 15 

• NMS: Network Management System. A system runs the applications to 

manage and monitor the networking devices. 

• Network management protocols and standards: These are used to 

collect and exchange necessary information between the NMS and the 

managed devices. Some examples: SNMP, MIB, Syslog, NetFlow , 

NETConf/YANG [9] etc. 

• Managed devices: networking devices managed by the NMS 

• Management agents: per protocol entities in the managed devices, like 

SNMP agents. 

2.5.1 Simple Network Management Protocol (SNMP) 

SNMP is an IP application layer protocol that has been the standard for 

exchanging management information between network devices. RFC1157 [10] describes 

SNMP, which gives a really simple solution and requires a really short code to implement, 

when vendors want to build SNMP agents on their products.  

SNMP uses User Datagram Protocol (UDP), and therefore it does not require any 

connection oriented datagram connections that Transmission Control Protocol (TCP) 

could provide. Using UDP, the management traffic does not add a big overhead to the 

network.  

SNMP components are: 

• The managed devices 

• The agent that runs on the managed device 

• The NMS 

A managed device can be any of the networking devices (routers, switches) or 

even servers. The devices collect and store the management information and can send the 

collected data to the NMS. To exchange SNMP information, SNMP community strings 

(password) can be used. 

The SNMP agents gather the measured data by the devices and store them in 

SNMP format. They can respond to a manager request (with correct community) or can 

send SNMP traps if an event occurs. The NMS can poll the SNMP agents for data 

regularly and it is able to store, analyze and display the polled data. 



 16 

Different privilege levels can be configured for each SNMP community. However 

SNMP allows “write” privileges as well, it is not really used by network operators, 

because SNMP does not provide any commitment about the successful write event. If the 

NMS can access to the CLI and have the proper scripts to run and check the configured 

parameters, configuring via SNMP can be possible. But if the NMS has CLI access, it is 

easier to configure the devices with scripts and then check the states with SNMP or with 

other CLI scripts. In the NETConf/YANG model this check is a built in basic function, 

that is why the industry is turning to change the SNMP based management to 

NETConf/YANG. There is another tool, which is Ansible [11]. Ansible is a powerful tool 

for automated CLI configuration. 

2.5.2 Management Information Base (MIB) 

A MIB is a collection of information stored on the local agent of the managed 

device. The organization of MIBs are hierarchical and can be accessed by the NMS. This 

hierarchical organization means a database, where objects are organized in a tree-like 

structure. Each object has a unique object identifier (OID), which represents the object in 

a dotted decimal format. RFC1213 [12] describes the TCP/IP MIBs. Some of these MIBs 

were used to collect data in my measurements as well.  

2.5.3 Other Technologies for Network Management 

NetFlow allows tracking of IP flows. IP flows are a set of specific IP packets 

passed through a router within a specific timeslot, which share the same source or 

destination address, port numbers, type of service or protocol number. NetFlow 

information is forwarded to a network data analyzer, or accounting and billing 

applications. The most used version is NetFlow Version 9 described in RFC3954 [13]. 

The Syslog protocol is described in RFC3164 [14]. Syslog can transmit event 

notification messages over the network. The network devices can generate and send 

syslog messages to an event server. Syslog operates over UDP similar to SNMP. Syslog 

messages are generated in many areas, mostly on a per protocol bases. A Syslog message 

can be generated in several severity levels from 0-7, where 0 means the highest severity. 

If a device generates a severity 0 message, it means an emergency event, which lead the 

system to an unusable state. Syslog is widely used in network troubleshooting and root 

cause analysis, because it describes the states of the system well, and the messages are 

organized on a detailed timescale. 



 17 

3 Introduction to Machine Learning 

The following section is based on the book of Sebastian Raschka titled Python 

Machine Learning [15]. During my search in literature, this book gave me the best 

overview to understand and use Machine Learning algorithms and I was quite happy when 

I found good examples for Regression Analysis and I quickly realized that how easy is to 

use these algorithms to examine the measured data of IP/MPLS networks.  

Because ML and predictive analytics are so big topics, I try to concentrate for only 

regression in this section. 

3.1 Machine Learning basics 

The three different types of machine learning are: supervised learning, 

unsupervised learning and reinforcement learning. With supervised learning, we are able 

to make predictions about the future.  

3.1.1 Supervised learning 

With supervised learning the machines can learn a model from labelled training 

data, and this can give us the ability to make future predictions about the unseen data. 

The term supervised refers to a set of samples, where we already know the desired output.  

There are two subcategories of supervised learning, classification and regression. 

In case of classification we can train a model using the supervised machine learning 

algorithm on certain properties of the mostly same kind of data (e.g.: e-mails), and if the 

samples are already marked with some class labels, the model can make decision about 

what type of class the data is belonging from further unseen data samples. Spam-filtering 

is working this way. Regression is the other subcategory, where the outcome signal is a 

continuous value. 

3.1.2 Classification for predicting class labels 

As I discuss it above, classification is used for predicting categorical class labels 

of new data samples or instances based on past observations. These class labels are 

discrete, unordered values and based on the group membership of the instances. Binary 

classification is about deciding on that an instance is a part of the group or not. These are 

two possible classes.  



 18 

 

Figure 3.1.: Supervised learning 

The class labels do not have to be binary, with multi-class classification, 

supervised learning can assign any labels to the new instances if they were presented in 

the training set.  

3.1.3 Regression for predicting continuous outcomes 

Regression analysis is the second type of supervised learning and is used to predict 

continuous outcomes. In this type of analysis, we have a given number predictor or 

explanatory variables and continuous response variable or the outcome. The task is to 

find the relationship between these variables and after that we are able to predict the 

outcome of the unseen input data. 

3.1.4 Building machine learning systems 

The figure below shows the right process for predictive modelling. Many machine 

learning algorithms require to transform the data of selected features to the same scale. 

This transform in most of the cases is ending on the range [0-1] or a standard normal 

distribution with zero mean and unit variance. If the selected features are highly correlated 

and redundant, dimensionality reduction may be required to run the ML algorithm faster. 

To check, that our machine learning algorithm performs well not just on the 

training dataset, we often randomly divide the dataset into a separate training and test set. 

With the test set we can evaluate our final model, to see that it will perform well with 

unseen data.  

 



 19 

 

Figure 3.2.: Workflow diagram of predictive modelling 

3.1.5 Using Python for machine learning 

Python is one of the most popular programming languages for data science. A 

large number of libraries were developed by its community. In my implementation I used 

the NumPy, SciPy, scikit-learn and  matplotlib libraries.  

3.2 The Perceptron, the Adaline, and Machine Learning 

algorithms based on them 

3.2.1 Artificial neurons and the early history of machine learning 

The first concept about understanding of how the biological brain works was 

published by Warren McCullock and Walter Pitts in 1943 [16]. They discussed the 

simplified brain-cell in this publication, the so-called McCullock-Pitts neuron. 

A few years later Frank Rosenblatt published his first concept of the so-called 

perceptron, based on the MCP neuron model [16]. With this perceptron rule, Rosenblatt 

proposed an algorithm, that would automatically learn the optimal weight coefficients, 

then these are multiplied with the input features a decision can be made, whether a neuron 

fires or not. If we talk about supervised learning, such an algorithm can be used to predict 

if a sample belongs to one class or the other.  



 20 

If we are thinking about this problem as a binary classification task we can refer 

to the classes as 1 (as a positive class) and -1 (as a negative class) in the simplest case. 

We can then define an activation function Φ(z), which takes care of certain input values 

x and a corresponding weight vector w. Here z is the so-called net input (z=w1x1 + ... + 

wmxm): 

 w = [

w1

⋮
wm

],  x = [

x1

⋮
xm

] (1) 

If the activation of a particular sample x(i), that is, the output of Φ(z),  is greater 

than the defined threshold θ, we predict a class 1 and class -1, otherwise, in the perceptron 

algorithm, the activation function is a simple unit step function, which is also called the 

Heaviside step function: 

 𝑧 =  ∑ 𝒙𝑗𝒘𝑗
𝑚
𝑗=0 = 𝒘𝑇𝒙  ,and 𝛷(𝑧) = {

1,         𝑧 ≥ 𝜃
−1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2) 

The whole idea behind the neuron and perceptron models is to use a reductionist 

approach, how a single neuron in the brain works. The steps of the perceptron rule are 

summarized below: 

1. Initialize the weights to 0 or small random numbers 

2. For each training example x(i) perform the following steps: 

a. Compute the output value ŷ. 

b. Update the weights. 

Here, the output value is the class label predicted by the unit step function that we 

defined earlier. The simultaneous update of each weight wj in the weight vector w can be 

written as: 

 wj ≔  wj +  Δwj  (3) 

The value of 𝛥𝑤𝑗, which is used to update the weight 𝑤𝑗 , is calculated by the 

perceptron learning rule: 

 Δwj =  η(y (i) − ŷ(i))xj
(i)

 (4) 

Where η is the learning rate (a constant between 0.0 and 1.0), y(i)  is the true class 

label of the ith training sample and ŷ(i) is the predicted class label. It is important to note, 

that all weights in the weight vector are being updated simultaneously, which means that 



 21 

we do not recompute the ŷ(i) before all of the weights 𝛥𝑤𝑗 were updated. For a two 

dimensional datased our equations would be: 

 Δw0 =  η(y (i) − output (i))  (5) 

  Δw1 =  η(y (i) − output(i))x1
(i)

  (6) 

  Δw2 =  η(y (i) − output (i))x2
(i)

  (7) 

It is also important to mention that the convergence of the perceptron is only 

guaranteed if the two classes are linearly separable and the learning rate is sufficiently 

small. If the two classes cannot be separated by a linear decision boundary, we can set a 

maximum number of passes over the training dataset (that is what we call epochs) and/or 

a threshold for the number of tolerated misclassifications – the perceptron would never 

stop updating the weights otherwise. 

Let me just summarize, how a perceptron works. 

 

Figure 3.3.: The perceptron model (from the book of Raschka – Python Machine 

Learning) 

The perceptron receives the inputs of a sample x, then combines them with the 

weights w to compute the net input. The net input is then passed to the activation function 

(in this case this is a unit step function), which generates the binary output -1 or +1 – the 

predicted class label of the sample. During the learning phase, this output is used to 

calculate the error of the prediction and update the weights. 

3.2.2  Adaptive linear neurons 

To move forward in understanding machine learning, I have to briefly describe 

the ADAptive Linear Neuron (Adaline). Adaline algorithm is really interesting, because 

it demonstrates well the key concept of defining and minimizing cost functions. This topic 



 22 

is really important to understand how advanced machine learning algorithms work for 

classification, logistic regression and support vector machines, as well for regression 

models.  

The key difference between the Adaline rule (also known as Widrow-Hoff rule) 

and the perceptron is that the weights are updated base on a linear activation function 

rather than a unit step function like a perceptron. In Adaline, this linear activation function 

Φ(z) is simply the identity function of the net input so that  Φ(wTx) = wTx. 

The linear activation function is used for learning the weights, and a quantizer, 

which is similar to the unit step function is used to predict the class labels. 

We can clearly see the difference to the perceptron, that know we use the 

continuous valued output from the linear activation function to compute the model error 

and update the weights.  

 

Figure 3.4.: The Adaline model (from the book Raschka – Python Machine Learning) 

3.2.3 Minimizing cost functions with gradient descent 

The key ingredient of supervised machine learning algorithms is to define an 

objective function, which can be optimized during the learning process. This function is 

often a cost function that we want to minimize. In case of Adaline, we can define the cost 

function J to learn the weights as the Sum of Squared Errors (SSE) between the 

calculated outcome and the true class label.  

   J(w) =
1

2
∑ (y (i) − Φ(z(i)))

2

i   (8) 

The term ½ is just added to make it easier to derive the gradient. Since this linear 

activation function is continuous, the cost function becomes differentiable. Another 

advantage of this cost function is that is convex, so that we can use a simple, but powerful 



 23 

optimization algorithm, which is called gradient descent to find the weights to minimize 

our cost function. 

 

Figure 3.5.: Gradient descent (from the book of Raschka – Python Maschine 

Learning) 

3.2.4 A simple linear regression model 

A simple (univariate) linear regression can be used to find relationship between a 

single feature (explanatory variable x) and a continuous valued response (target variable 

y). The equation of the model is defined below: 

   y = w0 + w1x  (13) 

In the equation 𝒘𝟎 represents the weight, the y axis intercepts and 𝒘𝟏 is the 

coefficient of the explanatory variable. The aim of the model is to learn the weights of 

the linear equation to describe the relationship between the explanatory variable and the 

target variable. This relationship can be used to predict the responses of new explanatory 

variables. The new explanatory variables shall not be included in the training dataset.  

As we can see from the figure below, linear regression is used to find the best-

fitting straight line through the sample points. This line is also known as the regression 

line and the vertical lines to the sample points are the so-called offsets or residuals, in 

other words the errors of the prediction. 

3.2.5 The ordinary least squares linear regression model 

However we described above the linear regression model, but we did not mention 

how we understand the term of a “best-fitting” line. To find the best solution, we have to 

introduce the Ordinary Least Squares (OLS) method to estimate the parameters of the 

regression line that minimizes the sum of squared vertical distances. 



 24 

 

Figure 3.6.: Linear regression model (from the book of Raschka – Python Machine 

Learning) 

Regarding the Adaline model, the artificial neuron uses a linear activation 

function and we defined J(w) as a cost function earlier. This cost function has to be 

minimized to learn the weights via the optimization algorithms, such as the Gradient 

Descent (GD) and Stochastic Gradient Descent (SGD). The cost function of adaline is 

the Sum of Squared Errors (SSE). This is identical to the OLS cost function that we 

defined earlier. 

   J(w) =
1

2
∑ (y (i) − ŷ(i))

2n
i=1   (14) 

In the equation ŷ is the predicted value, in this case ŷ = wTx. The OLS linear 

regression is very similar to the Adaline, just without the unit step function. So without 

the unit step function or quantizer, the output of the model will be a continuous number 

instead of the class labels -1 or 1.  

3.2.6  Evaluating the performance of linear regression models 

If we plot the residuals (the differences between actual and predicted values), for 

the training and test data and we cannot find any pattern, it means that the errors are 

randomly distributed and our model works as we expected.  

Another useful quantitative measure of a model’s performance is the so-called 

Mean Squared Error, which is the average value of the SSE cost function that we 

minimize to fit the linear regression model as I described earlier. The MSE is useful for 



 25 

comparing different regression models or for tuning their parameters via a grid search and 

cross-validation: 

   MSE =
1

n
∑ (y (i) − ŷ(i))

2n
i=1   (15) 

If we calculate the MSE in a model for the training data and the test data, and we 

see that the value of MSE on the training set is lower that the MSE on the test set, it can 

be an indicator, that our model overfits the training data.  

Another and more useful approach is to report the coefficient of determination 

(R2), which means the standardized version of the MSE, for better interpretability of the 

model performance. In other words, R2 is the fraction of response variance that is captured 

by the model.  

   R2 = 1 −
SSE

SST
  (16) 

SSE here is the sum of squared errors and SST is the total sum of squares: 

   SST = ∑ (y (i) − μy)
2n

i=1   (17) 

We can say as well, that SST is the variance of the response and R2 is just the 

rescaled version of the MSE: 

   R2 = 1 −
MSE

Var(y)
  (18) 

For the dataset R2 is bounded between 0 and one, but for the test set it can be 

negative as well. If the model fits perfectly the data R2 = 1, and MSE = 0. 

3.2.7 Polynomial regression 

If we add polynomial terms to the simple linear regression model, or in other 

words we turn the line into a curve, our equation looks like the following: 

   y = w0 + w1x + w2x2 + ... + wdxd (19) 

In the equation d denotes the degree of the polynomial. Although we can use 

polynomial regression to model a nonlinear relationship, it is still considered as a multiple 

linear regression model, because of the linear regression coefficients w.  

3.2.8 Decision tree regression 

A decision tree is grown by iteratively splitting its nodes until the leaves are pure 

or a stopping criterion is satisfied. If we are using the decision trees for classification, we 



 26 

define the entropy as a measure of impurity to determine, which feature split maximizes 

the Information Gain (IG). IG is defined below for a binary split: 

   IG(Dp, x) = I(Dp) −  
Nleft

Np
I(Dleft) −  

Nright

Np
I(Dright)  (20) 

Here, x is the feature to perform the split, Np is the number of samples in the parent 

node, Nleft and Nright are the number of samples in the child nodes, I is the impurity 

function, Dp is the dataset of the parent node, and Dleft and Dright are the datasets of the 

child nodes. The aim of the model is to find the feature split that maximizes the 

information gain.  

3.2.9  Random forests 

A random forest can be considered as an ensemble of decision trees. The ensemble 

learning idea is came from combining weak learners to build a more robust model, a 

strong learner, that has a better generalization error and is less susceptible to overfitting.  

The random forest algorithm can be summarized in four steps: 

1. Draw a random bootstrap sample of size n – randomly choose n samples 

from the training set with replacement.  

2. Grow a decision tree from the bootstrap sample. At each node: 

1. Randomly select d features without replacement 

2. Split the node using the feature that provides the best split 

according to the objective function, for instance, by maximizing 

the information gain. 

3. Repeat the main steps from 1 to 2 k times. 

4. Aggregate the prediction by each tree to assign the class label by majority 

vote. 

Majority voting simply means that we select the class label that has been predicted 

by the majority of classifiers and received more than 50% of the votes. Strictly speaking, 

majority vote refers to binary class settings only. 

 



 27 

4 The simplified ISP network model 

Generally, it is not an easy job to build up a simplified model of an ISP network. 

The aim of modelling a service provider architecture is to collect similar data to the live 

environment. I built up different scenarios and I had to simplify it every time when I 

started to measure the network, because of the hardware resources. During the 

simplification I tried to focus on the most important protocols and elements of the network 

and highlight the crucial building blocks.  

4.1 Planning, used tools and resources to build up the network 

4.1.1 Hardware resources 

The whole network runs in a virtual environment, which is using only one physical 

machine, so I had to take care of my configuration and hardware resources. I used a simple 

PC, with a second generation Intel Core i5 processor (4 cores, 3.4GHz processor base 

frequency), 8 GB 1333MHz DDR3 RAM and a 7200 rpm hard disk drive.  

For measurement purposes I used my notebook, but from the viewpoint of 

resources, in practice any kind of computer can do the job, so it is not necessary to list all 

the HW details of this machine. Of course, in a real environment we have to provide the 

right hardware configuration, but for a basic SNMP polling, which was the only 

measurement feature I had to provide, the statements above can be true.  

To connect the virtual network with the measuring machine I had to involve my 

home Local Area Network (LAN) in the topology. I tried to simulate a so-called Out of 

Band network (OOB), which is mostly used by ISPs for management and measurement 

purposes. Because it has to be a physically separated independent network, my LAN at 

home could match this criteria. It seems to be a good idea, to dedicate another machine 

for the measurement eliminating lots of resource dependent failures as well, as I did with 

my notebook. 

4.1.2 Operation systems, applications, tools 

On the PC a 64-bit Windows 10 operation system provides the ability to virtualize 

the resources of the hardware. The measuring laptop runs the 32-bit Windows 7 OS that 

does not have server capabilities, that is why we have to install some applications to 



 28 

support the functions of a real management server. At least we need the capability of a 

SNMP server. We can simply solve this problem by installing the Net-SNMP package on 

our system and we can run all the commands from the command prompt. To collect the 

data from the network I used only this method, however I tried different types of 

measurement applications and I built up a whole measurement system using Cacti [18]. 

Cacti is a complete frontend to RRDTool [19], which is the Open Source industry 

standard, high performance data logging and graphing system for time series data. 

RRDtool can be easily integrated in shell scripts, perl, python and many other 

programming language based applications. Cacti stores all the collected information in a 

MySQL database. The frontend is completely PHP driven and from a browser it is really 

easy to manage the whole system. Cacti supports SNMP to collect the data, but it support 

scripts as well to run them via CLI and store the results of the scripts.  

In my virtual network topology I used a DHCP server, which was realized by 

using VirtualBox [20] to run a Windows Server 2008 R2 OS image. VirtualBox is one of 

the most known virtualization tool and it is really easy to use. We can use VB to divide 

and allocate our computer’s resources to install a new OS via VB as a real machine  once 

and after that, we are able to use it virtually any time we want.  

The other virtualization application I used is GNS3 [21]. The Graphical Network 

Simulator is a network software emulator that is released in 2008. It allows the 

combination of virtual and real devices to simulate complex networks. It uses Dynamips 

emulation software to simulate a Cisco or Juniper OS. Furthermore GNS3 supports 

VMware, VirtualBox, IOU (IOS on UNIX) and Qemu virtualization. This means, that we 

can use any of the virtualization tools above and connect them in GNS3 to simulate 

closely anything we want to work with, but we always need to take care of the resources.  

For emulating the routers I used several Cisco image files. The following list 

shows the different used versions of Cisco IOS and also represents the modelled router 

platform in GNS3: 

• Cisco IOS Software, 7200 Software (C7200-ADVENTERPRISEK9-M), 

Version 15.2(4)S4, RELEASE SOFTWARE (fc2) 

• Cisco IOS Software, 3700 Software (C3725-ADVENTERPRISEK9-M), 

Version 12.4(15)T14, RELEASE SOFTWARE (fc2) 



 29 

• Cisco IOS Software, 2600 Software (C2691-ADVIPSERVICESK9-M), 

Version 12.4(25a), RELEASE SOFTWARE (fc2) 

For running the SNMP polling from my notebook, I wrote a simple Windows 

batch file using just one loop to poll all the necessary MIB OIDs from all the SNMP 

agents in the network. Running this batch file continuously provides the simulation of 

real network measurement by storing the information in different maps and files.  

The goal of using as many different image files (from different vendors), 

applications and tools as possible is the following: on one hand to highlight the issues of 

building a standardized network in multi-vendor and multi-OS environment, but on the 

other hand to prove, that my solution for the analysis can be used for any kind of data 

exported from any kind of system.  

4.1.3 Simplification, Issues and Lessons Learned 

4.1.3.1 Accessing the DHCP-MIB in a DHCP server 

One of the most important examples of the issues mentioned above was that I had 

to implement a DHCP server in four different ways until I found the right method to grant 

access to the exact DHCP-MIB [22] OIDs. For the first time I used a simple Cisco c2691 

router image and configured the router as a DHCP server. However it seemed obvious for 

me, that if the DHCP server configuration is supported by a router IOS, then the DHCP-

MIB should be implemented. Unfortunately when I run an snmpwalk  command from the 

SNMP server, which is used for querying all data from a given point of the OID-tree, I 

was unable to find any DHCP-MIB related information in the router.  

After investigating this issue I found that the supported MIBs shows a dependency 

to the correspondent licensed version of the router OS, but I was still convinced that a 

router image, which is supporting advanced enterprise features (this is what the 

“ADVENTERPRISEK” notation is used for) should contain the DHCP-MIB. 

I thought simultaneously that this problem could be a GNS3 limitation also, so I 

borrowed a real Cisco c871 router with the ADVENTERPRISEK licensed version of IOS, 

connected it to my home LAN, and configured it as the DHCP server. At least I had a 

supposition that to a real device I can add somehow the needed SNMP MIBs. In case of 

this simple router and the version of IOS, finally I failed. 



 30 

But I still had the chance to succeed with IOS XE, which is the newer 

implementation of IOS supporting the needs of a Next Generation Network (IOS XR 

also). I found the clear documentation how to add MIBs to the router, so I downloaded a 

CSR1000v image, which is the virtualized router image of Cisco running IOS XE, 

deployed it in VirtualBox and started the investigation. After one or two hours of trying 

to add a simple MIB I thought I had to stop for a bit and search for other examples.  

Finally I used a Windows Server 2008 R2 image in VirtualBox. It was easy to 

configure the DHCP pools using the GUI, but after running the snmpwalk command, I 

still was unable to access to the DHCP-MIB. Some minutes of Google searching guided 

me to modify the system registry database and manually add the necessary lines to use 

the DHCP-MIB. 

4.1.3.2 Connecting GNS3 and physical devices to the LAN 

It is possible in GNS3 to provide virtualized bridge interface to the Ethernet 

connection of the computer. When I planned the network on paper, my first scenario was 

that I will connect my virtual border router to internet through my home LAN and 

propagate a default route towards the other devices. In this case I should have deployed 

the whole OOB network and the measurement server as well virtually, which caused some 

problems with in my hardware resource utilization. I describe this issue in the further 

section.  

So I had resource problems and I decided that I move the role of the measurement 

server to another physical machine. In this case the OOB network and the exit towards 

the Internet would use the same Layer 2 network, in other words the LAN. To avoid any 

possible loop in my network I introduced simple Layer 3 traffic separation using Virtual 

Routing- and Forwarding-tables (VRF). VRFs can be used to deploy IP- or L3VPNs 

which means, that a router can use more than one routing-table simultaneously. In this 

case, the traffic can be separated in Layer 3 level, even the IP addresses can overlap until 

there is a need for communication between the VRFs [23]. So I planned to introduce a 

L3VPN for management purposes using VRF-Lite [24]. But L3 separation needs L2 

separation as well if we use the same medium (in this case the Ethernet connection of the 

PC) to forward IP packets. This kind of separation can be implemented using Virtual 

Local Area Networks (VLANs) [25]. Unfortunately the virtual Ethernet bridge provided 

by GNS3 does not support VLANs, so the complete traffic separation cannot be 



 31 

performed, and in this way the routes of the management VRF can be seen in the global 

routing table. This is a kind of the so-called Route-leaking, which sometimes can be 

necessary in a real environment to provide access from one VRF into another, but we still 

need to be careful to keep the control, which IP addresses can be reached from the 

logically divided domains to avoid loops.  

Finally I decided to leave the idea of the full Internet access behind, and use a 

simple router to simulate the Internet with some loopback interfaces configured with 

public addresses and to form eBGP peering connection to propagate the modelled-

Internet routes towards the ISP network as a traditional ISP-to-ISP connection looks alike.  

A final consideration had been made using Windows OS in the network. I had to 

enable the important ports on the built in Windows Firewall to use SNMP and ICMP 

echoes.  

4.1.3.3 Simplification of the architecture  

As I described above I planned a much bigger ISP network with a virtualized OOB 

network. Furthermore I wanted to present how dynamic RPs can provide redundancy (I 

also had Machine Learning usecases for this scenario), so I deployed  redundant core 

network  routers, redundant Route Reflectors and full-mesh connections within the edge 

routers and core routers. The core routers are the so-called Provider routers (P routers). 

From functionality point of view, these are simple MPLS LSRs. The edge routers are 

Provider-Edge routers (PE routers) or MPLS edge-LSRs. If we use iBGP inside our 

network as a dynamic routing protocol, we need to introduce a full-mesh neighborship 

between the nodes or implement Route Reflectors (RRs). If we are using the RR scenario, 

we have to define the adjacency relations only between an iBGP router and the RRs. In 

this way adding a new router into the network does not require further configurations of 

the already existing nodes. The iBGP neighborship between the RRs and all the routers 

provides that every router in the topology can see the others advertised routes, but in this 

kind of topology RRs are responsible to propagate the routing advertisements within the 

routers.  

In a service provider network only the PE routers speak iBGP with an IGP (e.g.: 

OSPF or IS-IS) and MPLS configuration. On the P routers only the IGP and the MPLS 

run. 



 32 

I was able to configure such a big and redundant network on my PC in GNS3 with 

many Virtual PC hosts representing the customers and the network worked well.  

However, during the measurement, because of the continuously changing behaviour of 

the VPCs and SNMP polling, I encountered some delivery errors in the measured data. It 

means, that my PC was unable to handle the huge amount of packets generated by the 

communication of the routers, the simulated changing behaviour of VPCs and the 

continuously polled SNMP data. 

I had to rethink my scenario and my expectations about the measurement as well.  

My aim was to produce data as similar as possible to the real networks. So I ended up 

with a new final scenario described in the following sections.  

4.2 Describing the implementation of the ISP network 

4.2.1 The Final Topology 

 

Figure 4.1.: The simplified model of an ISP network 

On the figure above we can see the final simplified topology of the implemented 

network. It has three PE routers and one P router as the parts of the ISP’s MPLS IP core 

network. One Router symbolises the Internet that is why I changed the symbol of the 

router to an Internet cloud. The OOB cloud represents an independent Layer2 network 

that has separated connections to all the manageable devices. The NMS is connected to 



 33 

this network as well. We have a separated DHCP server connected to the edge2-isp router 

and several VPCs representing the end-users.  

As I expounded in the previous section, I had to give up the redundancy of the 

network and with my measurements I shifted the focus to the end-users’ behaviour and 

the IP address pool utilization. Because this type of communication is only a client-server 

type of communication, we will see later, that the collected data from the core network 

routers cannot describe exactly what is happening on the end of the network, unless we 

are machines, which are able to process every packet sent through the network.  

4.2.2 Configuring the IP/MPLS Core with the DHCP server 

 

Figure 4.2.: The IP/MPLS Core 

In this section I describe the configuration of the IP/MPLS Core network, the 

router representing the Internet and the DHCP server. 

4.2.2.1 ASN & IP addressing scheme 

Before we start to implement the network we need to plan the IP addressing very 

careful. It is very important to allocate the right subnet sizes with a margin which can be 

used if the network grows and new nodes need new addresses. For the sake of simplic ity 



 34 

I used IPv4 addresses only. All the used addresses are private or allocated for 

documentation purposes only. It means that these addresses can never be used on the 

Internet.  

For using the right addresses, domain names, ASNs in my documentation, I 

followed the rules described in these RFCs: 

• Public IPv4 – RFC5737 [26] 

• Private IPv4 – RFC1918 [27] 

• Domain names – RFC2606 [28] 

• IPv6 – RFC3849 [29] 

• ASN – RFC5398 [30] 

• Private ASN – RFC6996 [31] 

The planned addressing scheme can be found below. 

Public IPv4 Description 

192.0.2.0/24 Infrastructure 

198.51.100.0/24 Customer Pool 

203.0.113.0/24 BGP 

192.168.1.0/24 Management 

Table 4.1.: Allocating pools for the ISP network 

Device Interface Neighbor_Device Neighbor_Interface IPv4 Subnet 

core0-isp FastEthernet0/0 edge2-isp FastEthernet0/1 192.0.2.0/31 

core0-isp FastEthernet1/0 edge0-isp FastEthernet0/0 192.0.2.2/31 

core0-isp FastEthernet1/1 edge1-isp FastEthernet0/0 192.0.2.4/31 

edge2-isp FastEthernet1/0 DHCP_server Ethernet1 198.51.100.64/30 

edge0-isp FastEthernet0/1 Customers   198.51.100.30/27 

edge1-isp FastEthernet0/1 Customers   198.51.100.63/27 

edge2-isp FastEthernet2/0 Internet FastEthernet0/0 203.0.113.8/31 

Table 4.2.: Interface addressing scheme 

Device Interface  IPv4 Address 

core0-isp Loopback0 203.0.113.0 

edge0-isp Loopback0 203.0.113.1 

edge1-isp Loopback0 203.0.113.2 

edge2-isp Loopback0 203.0.113.3 

Table 4.3.: Loopback addresses 



 35 

ASNumbers ASN 

ISP 64496 

Other ISP 64497 

Table 4.4.: AS Numbers 

Device Interface IPv4 Address 

NMS eth0 192.168.1.67/24 

DHCP_server eth0 192.168.1.68/24 

edge2-isp fa0/0 192.168.1.73/24 

core0-isp fa0/1 192.168.1.70/24 

edge0-isp fa1/0 192.168.1.71/24 

edge1-isp fa1/0 192.168.1.72/24 

Table 4.5.: OOB network addressing 

4.2.2.2 PE router configuration 

I added comments to the configurations (see the Appendix) to describe the 

functions clearly. The edge2-isp router is used as a border router towards the Internet. It 

also has connection to the DHCP server. The edge0-isp and edge1-isp routers are 

representing a branch office or a part of a town, where the subscriber connections are 

terminated with the help of aggregation switches.  

On the figure below we can see the edge router terminating subscriber 

connections.  

 

Figure 4.3.: The edge router terminates the subscriber connections 



 36 

4.2.2.3 P router configuration 

The core0-isp router is the P router of the network. This router runs only the OSPF 

process and MPLS and the biggest advantage of using a core router in the network, that 

it has direct connections to PE Routers and with connections it can provide multiple path 

to the same destination with MPLS. Machines used for P router function provide the 

highest bandwidth with high port density and designed for forwarding the packets as fast 

as possible to not introduce further delays into the network. That is why only OSPF runs 

here as IGP, because it can provide the fast convergence which is needed for the MPLS 

network.  

4.2.2.4 Internet router configuration 

The router, represents the Internet, has some public IP addresses configured on 

several Loopback interfaces. It has an eBGP connection to the edge2-isp router and 

advertises the so-called Internet addresses towards the ISP network.  

4.2.2.5 DHCP server configuration 

Configuring a DHCP server on Windows server platform is really easy, because 

we can use the GUI to configure the DHCP pools. Figure 4.4. shows the configured 

DHCP pools. 



 37 

 

Figure 4.4.: DHCP server role in Windows 

  



 38 

4.2.3 Verifying the network configuration 

After we build up a network the network administrators have to make sure that 

the network works properly before releasing it into production state.  

4.2.3.1 Checking interface states 

First of all we need to check that all the configured interfaces are up and operating 

from both physical and logical viewpoint correctly. We must to do it on every network 

element. An example can be seen below for checking the interface states: 

 

Figure 4.5.: Verifying networking interfaces 

4.2.3.2  Verifying MPLS and Routing tables  

If we know that all the interfaces are connected, we need to check that the 

configured protocols are also working in the expected way. 



 39 

 

Figure 4.6.: Verifying the MPLS forwarding-table 

 

Figure 4.7.: Verifying the routing table 

As we can see above, the edge0-isp router works properly, it knows the routes 

propagated by OSPF, it sees the connected interfaces and it has a default route towards 

the Internet propagated by BGP.  

We also need to check that the routing tables for the configured VRFs are built 

up: 



 40 

 

Figure 4.8.: Verifying VRFs 

4.2.4 End-to-end testing 

The final step of implementation is to build up test cases and see that everything 

works well in the network. In my test case I checked, that the hosts can reach the DHCP 

server, can ask for an IP address and can reach the Internet. The other important thing is 

to try to do some measurements to make sure, that the NMS has the right connectivity to 

the devices.  

4.2.4.1 Testing the user connectivity 

From both separated network I randomly chose a VPC and tested the network. As 

we can see on the figure below, the VPC was able to ask for a new IP Address with DHCP. 

DORA means, that the DHCP Discovery was sent out, the Offer has arrived, a Request 

was sent out, and the Ack has arrived. We can see that the host get a new IP address. It is 

necessary to check, that all the options are also configured automatically, such as the 

default gateway, DNS server and so on.  

If the automated configuration is done, we can start to test the connectivity 

towards the Internet. I randomly chose an IP address and started to ping it. As we can see 

not all of the ICMP echoes were successful. This can happen in a production environment 

also, so to make sure, that the host is working in a proper way, let us try to reach some 

other sites. Now we see that it works fine.  

It is also necessary to check the DHCP server. Windows server provides easy 

export of the DHCP data. 



 41 

 

Figure 4.9.: Testing user connectivity 

Client IP 
Address 

Name 
Lease 

Expiration 
Type Unique ID Desc 

Network 
Access 

Protection 
Probation 
Expiration 

Filter 
Profile 

198.51.100.1 PC41.net.isp.example 
5/11/2017 

8:38:10 
PM 

DHCP 5079666803  Full  Access N/A None  

198.51.100.33 PC281.net.isp.example 
5/11/2017 

8:48:30 
PM 

DHCP 507966681b  Full  Access N/A None  

Table 4.6.: DHCP lease export 

  



 42 

4.3 Measuring the Network 

As I described earlier, I used the OOB network to connect all the management 

interfaces of the networking elements. NMS is the system that is using SNMPv2 to pool 

the important data of devices.  

4.3.1 Testing the NMS 

First of all we need to be sure that the communication works between the NMS 

and networking devices. I used ping to verify these connections. Unfortunately the 

language used on the NMS is Hungarian, but we can see the ping worked well:  

 

Figure 4.10.: Testing connectivity 

After this action I tried to poll a single SNMP parameter to verify that SNMP 

works also. I polled the counter of ICMPInMsgs OID, to see that after the first ping the 

system counts the data well and it is accessible: 

 

Figure 4.11.: SNMP polling 

Fortunately everything works fine, so the network is ready for production and 

measurement. 



 43 

4.3.2 Concepts of simulation and measurement 

To produce very similar data to the live network environment my concept 

regarding the simulation was, that I should try to simulate the subscriber behaviour on the 

VPCs.  

I introduced a regular subscriber behaviour model: 

1. The subscriber turns on his/her computer which tries to connect to the 

Internet. The computer by default asks for an IP address via DHCP 

2. The subscriber then starts to use the service and generate different types 

of traffics. He/she connects to different websites for example. 

3. The subscriber leaves the computer 

a) the computer is then turned off 

b) the computer stays online 

In a very simple way the VPCs use DHCP to ask for an IP address, and can give 

it back when they disconnect the network. For traffic generation I used the ICMP echoes 

with different packet size and recurrence (bigger, smaller, or the combination of the with 

sweep ping). 

The measurement took 72 minutes. I tried to scale down 3 days to 72 minutes to 

ensure, that I can specify some busy hours when most of the subscribers are connected 

and using the service in a very intensive way. 

4.3.3 The measured data 

On the DHCP server I monitored the following SNMP OIDs (the names are 

representing the exact type of message that is why further explanation is not needed): 

• parDHCPTotalNoOfAcks 

• parDHCPTotalNoOfDeclines 

• parDHCPTotalNoOfDiscovers 

• parDHCPTotalNoOfNacks 

• parDHCPTotalNoOfOffers 

• parDHCPTotalNoOfReleases 



 44 

• parDHCPTotalNoOfRequests 

• subnet_1_NoAddFree 

• subnet_1_NoAddInUse 

• subnet_1_NoPendingOffers 

• subnet_2_NoAddFree 

• subnet_2_NoAddInUse 

• subnet_2_NoPendingOffers 

On the routers I monitored each and every interface (except the mgmt interface) 

asking for the following OIDs: 

• ifHCInBroadcastPkts 

• ifHCInMulticastPkts 

• ifHCInOctets 

• ifHCInUcastPkts 

• ifHCOutBroadcastPkts 

• ifHCOutMulticastPkts 

• ifHCOutOctets 

• ifHCOutUcastPkts 

I used a simple Windows batch file to poll these parameters. Every polled different 

type of data is stored in a different file in a hierarchical map structure.  

After the simulation was completed I created an Excel document, in which every 

measurement data was imported. Later I was able to export the results into a CSV 

(comma-separated values) file, which is easy to import into a python panda database. 

 

 

 



 45 

5 Using ML algorithms to predict continuous values in 

the ISP network 

In this final section I describe, how ML algorithms can handle the previously 

measured data. From python programming viewpoint I try to explain only the most 

important things, if the Reader have further questions about the implemented code, he/she 

can find the way to the proper documentation through the Bibliography. 

I used the cropped parts of the Jupyter notebook to show the implemented code 

instead of copying it into the document and I did it with reason. An iPython notebook has 

unbeatable built in visualization features, which makes the understanding really easy and 

the programming process fast and fun. 

5.1 Exploring and visualizing the measured dataset 

Because of resource limitation I filtered out some unnecessary columns from my 

measurement results. First of all I eliminated data which can be paired. For example if a 

router interface is connected to another router’s interface in a point-to-point relation, it 

makes sense to examine the measured data only on one end of the connection. I also 

eliminated the columns which have only zero values.  

I also added some columns where I calculated the sum of the DHCP parameters 

per sample. 

Then I imported the filtered dataset into a panda DataFrame and renamed the 

columns using shorter names: 



 46 

 

Figure 5.1.: Importing the network measurement dataset 

 

It is crucial to check whether the import was successful or not. So let me show, 

that we successfully created the dataset: 

 

Figure 5.2.: Showing the first five rows of the dataset 

5.1.1 Visualizing the important characteristics of the dataset 

Exploratory Data Analysis (EDA) is an important and recommended first before 

we start training our ML model. I used some simple techniques from the graphical EDA 

toolbox, which is really useful to visually detect the correlation between features, to see 

the distribution of the data and so on. 

A scatterplot matrix allows us to visualize the pair-wise correlations between the 

different features of the dataset in one place. For this we will use the pairplot function of 



 47 

the seaborn library. Seaborn is a Python library for drawing statistical plots based on 

matplotlib.  

On the following picture I plotted only 3x3 scatterplot matrix. I made lots of 

experiments by plotting different features. As you can see above, we have 58 features in 

our dataset. To plot a 58x58 scatterplot matrix requires so much resources, that I had to 

shrink the scope. So I had some presumptions which data features should be visualized.  

As I described earlier, DHCP uses Broadcast messages for communication. So it 

makes sense in our scenario to visualize the IP address usage related to the router interface 

measurements, which the DHCP server is connected to.  

 

Figure 5.3.: Shrinking the scope to create a small scatterplot matrix 

After I realized how easy to see the connections between the BC packets and the 

IP address usage I plotted the graph for the different subnets and for the total numbers of 

IP Addresses as well as I show it on the following pages. 



 48 

 

Figure 5.3.: Relations between the first DHCP pool usage and the BC packets  

We can see a nonlinear relation on the upper-right two plots. The other plots are 

useless from our perspective, but it is still interesting to see the closely linear relation 

between the sent and received (Out and In Pkts) BC messages. In this case we know that 

in our network there is no other protocol which is using BC for communication. Routing 

protocols use Multicast and Unicast, the end users generate only Unicast type of traffic 

except the DHCP messages. So it can be seen on the plots that the linear relationship 

comes from the client-server type of communication. Discovery-Offer, Request-

Acknowledgment, every question has its answer in the communication.  



 49 

 

Figure 5.4.: Relations between the second DHCP pool usage and the BC packets 



 50 

 

Figure 5.5.: Relations between the sum of IP addresses’ usage and the BC packets 

We can see that in total that the distribution has changed between the DHCP server 

answers which are an allocated or released IP address and a sent BC message shown on 

the second plot of the first row. But we still can see a clear relationship between the BC 

messages sent out by the router and the allocated IP addresses performed by the DHCP 

server.  

So let me continue the analysis with the upper right plot. Since we want to use for 

the first time linear- and nonlinear-regression to predict the values, we need to focus on 

the slopes of the plot. In the following examples I will shrink the dataset further, and I 

reduce the samples concentrating for only one slope.  

To quantify the linear relationship between the features we will create a 

correlation matrix. The correlation coefficients are bounded to the range -1 and 1. Two 



 51 

features have perfect positive correlation if  r = 1, no correlation if r = 0, and perfect 

negative correlation if r = -1. Now we can use NumPy’s corrcoef function and visualize 

a so-called heatmap for the reduced dataset. 

 

Figure 5.6.: Creating a heatmap to show the correlation between the features 

 

Figure 5.7.: A heatmap in case of increasing IP allocation 

 



 52 

 

Figure 5.8.: A heatmap in case of decreasing IP allocation 

We can see the high correlation between the allocated or released IP addresses 

and the sent BC messages towards the DHCP server. So we can see now, it makes sense 

to continue with these test cases and use the regression models for these to predict the 

next value of the allocated IP Addresses.  

5.2 Applying ML algorithms on the measured networking data 

5.2.1 Implementing an Ordinary Least Squares linear regression model 

In the chapter 3.2. I described how the Adaline and the OLS model works. We 

understood that if we remove the unit step function from the Adaline, we can get an OLS 

model. Let us see, how a basic implementation looks alike of the OLS with the Gradient 

Descent weight optimization algorithm.  



 53 

 

Figure 5.9.: Implementation of a Linear Regression model 

To see how this model works in action, we use it for our simplified dataset. We 

need to standardize our variables for better convergence of the GD algorithm, so here we 

use the StandardScaler function of scikit-learn.  

 

Figure 5.10.: Using the model for the networking dataset 

It looks a good idea to plot the cost as a function of the number of the epochs, 

when we are using optimization algorithms, such as gradient descent to check the 



 54 

convergence. The following plot shows us, that how many cycles are needed for the 

model to converge, in other words how many cycles needs the model to pass over and 

over the training dataset until the convergence happens. 

 

Figure 5.11.: Convergence of the OLS model 

Now we can use the lin_regplot function to plot the number of sent BC messages 

against the IP address allocations: 

 

Figure 5.11.: The Linear Regression model fits the training data 



 55 

As we can see this model does not fit well on the training data or explain the 

relationship between the features. But it clearly shows the increasing nature of the IP 

address allocation. Let us see, how the prediction works, after transforming back the data: 

 

Figure 5.12.: Predicting output value with the implemented Linear Regression model 

In this example we tried to predict the number of allocated addresses if the BC 

message counter of the Fa0/1 interface on the edge2-isp router reaches the 7070 value. 

From the original database we can see, that this value is only 47, so we need further 

refinements of the model.  

On a side note, it is worth mentioning that we do not have to update the weights 

of the intercept if we work with standardized variables. The y axis intercept is always 0 

in these cases. Let me prove it by printing the weights: 

 

Figure 5.13.: the weights of the Linear Regression model (in case of standardization) 

5.2.2 Using the Linear Regression model of Scikit-Learn 

As we can see above, we need more efficient implementations of the Linear 

Regression model, so let us try scikit-lear’s LinearRegression object, that uses the 

LIBLINEAR library and advanced optimization algorithms that work better with 

unstandardized variables.  



 56 

 

Figure 5.14.: Fitting the network dataset to the sklearn Linear Regression model and 

displaying the weights 

If we plot how the model fits the training dataset, we can see that the result looks 

identical, to our own implementation, but fits better a bit.  

 

Figure 5.15.: sklearn LinearRegression model on the networking dataset 

It is instructive to show, how this LinearRegression model works with a training 

and test set of data. In the following example I imported more samples of the whole 

dataset, where the IP address usage shows an increasing trend. I splitted the data, 70% of 

the samples is used for training and the other 30% is used for test. Then I collected the 

predicted data in the y_train_pred and y_test_pred vectors. 



 57 

 

Figure 5.16.: Creating training and test splits from the dataset 

In the following figure I plotted the residuals against the predicted values, to see 

how big mistakes have been done by the model: 

 

Figure 5.17.: Evaluating the performance of the sklearn LinearRegression model 

In the case of perfect prediction the residuals would be exactly zero. For a good 

regression model we expect, that the errors are randomly distributed as I mentioned 

earlier. From this viewpoint, this model seems to work fine.  

We also mentioned earlier the R2 and MSE values. Our model is better when MSE 

is closer to 0 and R2 is closer to 1. Let me calculate these values for the current case: 



 58 

 

Figure 5.18.: Calculating the mean squared errors and the coefficients of 

determination for the training and test dataset 

5.2.3 Modelling nonlinear relationships 

In this section I use the PolynomialFeatures class from sklearn to show quadratic 

and cubic fit on the same dataset. I will compare the results in one plot. 

 

Figure 5.19.: Creating nonlinear regression models  

On the figure below we can see the linear, quadratic and cubic models. The 

calculated R2 values are also shown. 



 59 

 

Figure 5.20.: Linear and nonlinear regression comparison 

The nonlinear models are working really well with the networking dataset. We 

can see that the R2 values are close to 1. All in all we can declare that for optimal 

prediction we can use the quadratic and cubic regression models. Of course, there is 

always a chance to increase the degree of the polynomial, but we have to take care of our 

hardware resources and calculation time as well, when we work with big databases.  

5.2.4 Using decision tree regression 

Decision tree algorithm does not require any transformation of the features. We 

can easily use it for the whole dataset, so it can be a better model instead of manually 

shrinking the dataset based on the steepness of the slopes: 



 60 

 

Figure 5.21.: Using decision tree regression on the networking dataset 

With this depth the fitted line is really rough especially in the [7080:7100] range. 

But as we can see the fitted line tracks well the whole dataset, so just go deeper with the 

random forest regression. 

5.2.5 Random forest regression as the final solution 

So let us see, how the random forest algorithm, which we talked about in Chapter 

3.2. performs with the whole dataset. 

 

Figure 5.22.: MSE and R2 calculation of the random rorest regression model 



 61 

We can see that the model still overfits the training data, but we got so far the best 

scores compared to the others. In the following figure I show the errors of the prediction 

and we will see the improvement. 

 

Figure 5.23.: The errors of prediction for training and test data using random forest 

regression 

Finally, we have to notice, that my dataset was quite small compared to other 

datasets that are usually analyzed. Knowing this we can have the presumption, that these 

algorithms can perform well in a real network environment and can learn the behaviour 

of the network giving good enough predictions about the problematic events. At least this 

kind of approach to the network operation can enlighten the hope of the proactive 

management and may maximalize the customer experience. 

  



 62 

Conclusions 

The sections above showed clearly how powerful ML can be processing data 

produced by IP networks. All the python libraries were easy to use without any 

modification of the functions and to be honest, implementing the measurement system 

and collecting the necessary data were the most complicated tasks.  

I have to admit, that the platforms (SW images in my case) and networking 

technologies/solutions I used are more than 10 years old, and since these were not 

prepared for feeding big databases I had to spend more time on data preprocessing than I 

expected. But dealing with all the problems were not a waste of time, because in most of 

the cases this is the technology which is still used by network operators - of course they 

have newer equipments and management softwares, but the basics and logics are more or 

less the same.  

However my dataset was a bit small and I focused only on IP address pool 

utilization, I have good impressions about how useful these predictions can be. All kind 

of regression algorithms could showed good results and as I improved my model with 

different regression algorithms, I was always able to reduce the error of predictions.  

In the future I plan to extend my model to more networking use cases and to 

involve datasets produced by real networks. I hope that NETCONF/Yang models (today 

it seems to be the new standard for describing networking devices and their behavior) will 

be unified and supported by most of the vendors soon, so it will be much easier to collect 

standardized information and step in the world of data driven network management.  

   



 63 

Bibliography 

[1] J. Postel: Internet Protocol, RFC791, Internet Engineering Task Force, September 

1981 

[2] S. Thomson, T. Narten, T. Jinmei: IPv6 Stateless Address Autoconfiguration , 
RFC4862, Internet Engineering Task Force, September 2007 

[3] R.Droms: Dynamic Host Configuration Protocol, RF2131, Internet Engineering 

Task Force, March 1997 

[4] R. Rdoms, Ed., J. Bound, B. Volz, T. Lemon, C. Perkins, M. Carney: Dynamic 
Host Configuration Protocol for IPv6 (DHCPv6), RFC3315, Internet Engineering 
Task Force, July 2003 

[5] J. Moy: OSPF Version 2, RFC2328, Internet Engineering Task Force, April 1998 

[6] A. Lindem, Ed., S. Mirtorabi, A. Roy, M. Barnes, R. Aggarwal: Support of 
Address families in OSPFv3, RFC5838, Internet Engineering Task Force, April 
2010 

[7] Y. Rekhter, T. Li: A Border Gateway Protocol 4 (BGP-4), RFC1771, Internet 
Engineering Task Force, March 1995 

[8] E. Rosen, A. Viswanathan, R. Callon: Multiprotocol Label Switching 
Architecture, RFC3031, Internet Engineering Task Force, January 2001 

[9] M. Bjorklund, Ed..: YANG – A Data Modeling Language for the Network 
Configuration Protocol (NETCONF), RFC6020, Internet Engineering Task Force, 
October 2010 

[10] J.D. Case, M. Fedor, M. L. Schoffstall, J. Davin: Simple Network Management 

Protocol (SNMP), RFC1157, Internet Engineering Task Force, May 1990 

[11] Ansible: http://www.ansible.com (revision 21:00, 20 May 2017) 

[12] K.McCloghrie, M. Rose: Management Information Base for Network 
Management of TCP/IP-based internets: MIB-II, RFC1213, Internet Engineering 

Task Force, March 1991 

[13] B. Claise, Ed..: Cisco Systems NetFlow Services Export Version 9., RFC3954, 
Internet Engineering Task Force, October 2004 

[14] C. Londvick: The BSD Syslog Protocol, RFC3164, Internet Engineering Task 

Force, August 2001 

[15] S. Raschka: Python Machine Learning, 1st edition, ISBN 978-1-78355-513-0, 
Birmingham, 2015 

http://www.ansible.com/


 64 

[16] W. S. McCulloch and W. Pitts: A Logical Calculus of the Ideas Immanent in 
Nervous Activity, The bulletin of mathematical biophysics, 5(4):115–133, 1943 

[17] F. Rosenblatt: The Perceptron, a Perceiving and Recognizing Automaton, Cornell 
Aeronautical Laboratory, 1957 

[18] Cacti: http://www.cacti.net (revision 21:02, 20 May 2017) 

[19] RRDTool: http://oss.oetiker.ch/rrdtool/ (revision 21:03, 20 May 2017) 

[20] VirtualBox: https://www.virtualbox.org/ (revision 21:04, 20 May 2017) 

[21] GNS3: https://www.gns3.com/ (revision 21:05, 20 May 2017) 

[22] R. B. Hibbs, G. Waters: Dynamic Host Configuration Protocol (DHCP) Server 
MIB, Internet-draft, Internet Engineering Task Force, November 2000 

[23] E. Rosen, Y. Rekhter: BGP/MPLS IP Virtual Private Networks (VPNs), 
RFC4364, Internet Engineering Task Force, February 2006 

[24] VRF-lite: http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-
2/54sg/configuration/guide/config/vrf.pdf (revision 21:13, 20 May 2017) 

[25] The Institute of Electrical and Electronics Engineers: Virtual Bridged Local Area 
Networks, IEEE Std 802.1Q, ISBN 0-7381-3663-8, May 2003 

[26] J.Arkko, M. Cotton, L. Vegoda: IPv4 Address Blocks Reserved for Documenation, 
RFC5737, Internet Engineering Task Force, January 2010 

[27] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, E. Lear: Address 
Allocation for Private Internets, RFC1918, Internet Engineering Task Force, 

February 1996 

[28] D. Eastlake 3rd, A. Panitz: Reserved Top Level DNS Names, RFC2606, Internet 
Engineering Task Force, June 1999 

[29] G. Huston, A. Lord, P. Smith: IPv6 Address Prefix Reserved for Documentation , 

RFC3849, Internet Engineering Task Force, July 2004 

[30] G. Huston: Autonomous System (AS) Number Reservation for Documentation 
Use, Internet Engineering Task Force, December 2008 

[31] J. Mitchell: Autonomous System (AS) Number Reservation for Private Use , 

RFC6996, Internet Engineering Task Force, July 2013 

[32] A. Bruno, S. Jordan: CCDA 640-864 Official Cert Guide, 1st edition, ISBN 978-1-
58714-257-4, Indianapolis, May 2011 

http://www.cacti.net/
http://oss.oetiker.ch/rrdtool/
https://www.virtualbox.org/
https://www.gns3.com/
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/54sg/configuration/guide/config/vrf.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/54sg/configuration/guide/config/vrf.pdf


 65 

Appendix 

Configurations of the networking devices: 

version 12.4 
service timestamps debug datetime msec 
service timestamps log datetime msec 
no service password-encryption  !!! the configured passwords are not !!! 
hashed 
! 
hostname edge2-isp      
! 
boot-start-marker 
boot-end-marker 
! 
no aaa new-model 
memory-size iomem 5 
ip cef   !!! enabling CEF to support MPLS and dynamic routing 
! 
ip vrf mgmt  !!! VRF-lite configuration for mgmt IP-VPN 
 rd 64496:10    !!! route-distinguisher 
 route-target export 64496:10 
 route-target import 64496:10 
! 
ip domain name net.isp.example  !!! domain name configuration 
! 
mpls label protocol ldp   !!! MPLS ldp configuration 
multilink bundle-name authenticated 
! 
archive 
 log config 
  hidekeys 
! 
!!! Interface configurations !!! 
! 
interface Loopback0 
 ip address 203.0.113.3 255.255.255.255 
! 
interface FastEthernet0/0 
 description Management 
 ip vrf forwarding mgmt 
 ip address 192.168.1.73 255.255.255.0 
 speed 100 
 full-duplex 
 no cdp enable 
! 
interface FastEthernet0/1 
 description DHCP_server 
 ip address 198.51.100.65 255.255.255.224 
 speed 100 
 full-duplex 
! 
interface FastEthernet1/0 
 description MPLS core0-isp fa0_0 
 ip address 192.0.2.1 255.255.255.254 
 ip ospf network point-to-point 



 66 

 speed 100 
 full-duplex 
 mpls ip    !!! enabling mpls on the interface 
! 
interface FastEthernet2/0 
 ip address 203.0.113.8 255.255.255.254 
 speed 100 
 full-duplex 
! 
!!! Dynamic Routing Configuration !!! 
! 
router ospf 64496 !!! unique process ID 
 mpls ldp sync  !!! synchronizing the IGP with MPLS 
 router-id 203.0.113.3 !!! router-id based on the public IP addressed !!! 
Loopback 
 log-adjacency-changes 
 passive-interface default!!! by default we disable OSPF Hello packets on 
!!! all interfaces 
 no passive-interface FastEthernet1/0 
 no passive-interface Loopback0 
 network 192.0.2.0 0.0.0.1 area 0 !!! networks should be advertised 
 network 192.168.1.0 0.0.0.255 area 40 
 network 198.51.100.64 0.0.0.3 area 30 
 network 203.0.113.3 0.0.0.0 area 0 
! 
router bgp 64496 !!! BGP configuration, identifying the ASN 
 bgp router-id 203.0.113.3 !!! unique router-id as above 
 bgp log-neighbor-changes  !!! logging adjacency changes in the syslog 
 neighbor 203.0.113.1 remote-as 64496 !!! iBGP neighbor - note that the 
!!! ASN is the same 
 neighbor 203.0.113.1 description edge0-isp 
 neighbor 203.0.113.1 update-source Loopback0 
 neighbor 203.0.113.2 remote-as 64496 
 neighbor 203.0.113.2 description edge1-isp 
 neighbor 203.0.113.2 update-source Loopback0 
 neighbor 203.0.113.9 remote-as 64497 !!! eBGP configuration -  note ASN 
 neighbor 203.0.113.9 description Internet 
 neighbor 203.0.113.9 update-source Loopback0 
 ! 
 address-family ipv4   !!! ipv4 AF configuration 
  redistribute connected route-map redist-conn !!! redistributing only the 
!!! allowed connected routes 
  neighbor 203.0.113.1 activate  !!! activating BGP neighborship 
  neighbor 203.0.113.1 default-originate !!! propagating default route to 
!!! the neighbor 
  neighbor 203.0.113.2 activate 
  neighbor 203.0.113.2 default-originate 
  neighbor 203.0.113.9 activate 
  no auto-summary 
  no synchronization 
 exit-address-family 
! 
ip forward-protocol nd 
! 
no ip http server !!! disabling the TCP port 80 from security reasons 
no ip http secure-server !!! disabling TCP port 8080 
! 
!!! prefix-list that describes the allowed prefixes for redistribution  
! 



 67 

ip prefix-list red-conn seq 10 permit 192.0.2.0/31  
ip prefix-list red-conn seq 20 permit 198.51.100.64/30 
ip prefix-list red-conn seq 30 permit 203.0.113.3/32 
ip prefix-list red-conn seq 40 permit 192.168.1.0/24 
ip prefix-list red-conn seq 50 deny 0.0.0.0/0 
! 
!!! configuring SNMP Agent for Manager community with read-only privileges 
! 
snmp-server community Manager RO    
! 
!!! route-map for describing what should we do with the matching prefixes 
!!! specified in the prefix-set above 
! 
route-map redist-conn permit 10 
 match ip address prefix-list red-conn 
! 
control-plane 
! 
!!! configuring console, aux and terminal access  
!!! mandatory in real networks, but in this simple model we didn't secure 
!!! anything 
line con 0 
line aux 0 
line vty 0 4 
! 
end 

Configuration 4.1.: edge2-isp running-config 

version 12.4 
service timestamps debug datetime msec 
service timestamps log datetime msec 
no service password-encryption 
! 
hostname edge1-isp 
! 
boot-start-marker 
boot-end-marker 
! 
! 
no aaa new-model 
memory-size iomem 5 
ip cef 
! 
ip vrf mgmt 
 rd 64496:10 
 route-target export 64496:10 
 route-target import 64496:10 
! 
ip domain name net.isp.example 
ip auth-proxy max-nodata-conns 3 
ip admission max-nodata-conns 3 
! 
mpls label protocol ldp 
! 
interface Loopback0 
 ip address 203.0.113.2 255.255.255.255 
! 



 68 

interface FastEthernet0/0 
 description MPLS core0-isp fa1_1 
 ip address 192.0.2.5 255.255.255.254 
 ip ospf network point-to-point 
 speed 100 
 full-duplex 
 mpls ip 
! 
interface FastEthernet0/1 
 description Customers 
 ip address 198.51.100.62 255.255.255.224  !!! GW for subscribers 
 ip helper-address 198.51.100.66   !!! DHCP relay configuration 
 duplex auto 
 speed auto 
! 
interface FastEthernet1/0 
 description Management 
 ip vrf forwarding mgmt 
 ip address 192.168.1.72 255.255.255.0 
 duplex auto 
 speed auto 
! 
router ospf 64496 
 mpls ldp sync 
 router-id 203.0.113.2 
 log-adjacency-changes 
 passive-interface default 
 no passive-interface FastEthernet0/0 
 no passive-interface Loopback0 
 network 192.0.2.4 0.0.0.1 area 0 
 network 198.51.100.32 0.0.0.31 area 20 
 network 203.0.113.2 0.0.0.0 area 0 
! 
router bgp 64496 
 bgp router-id 203.0.113.2 
 bgp log-neighbor-changes 
 neighbor 203.0.113.1 remote-as 64496 
 neighbor 203.0.113.1 description edge0-isp 
 neighbor 203.0.113.1 update-source Loopback0 
 neighbor 203.0.113.3 remote-as 64496 
 neighbor 203.0.113.3 description edge2-isp 
 neighbor 203.0.113.3 update-source Loopback0 
 ! 
 address-family ipv4 
  redistribute connected route-map redist-conn 
  neighbor 203.0.113.1 activate 
  neighbor 203.0.113.3 activate 
  no auto-summary 
  no synchronization 
 exit-address-family 
! 
ip forward-protocol nd 
! 
no ip http server 
no ip http secure-server 
! 
ip prefix-list red-conn seq 10 permit 192.0.2.4/31 
ip prefix-list red-conn seq 20 permit 198.51.100.32/27 
ip prefix-list red-conn seq 30 permit 203.0.113.2/32 



 69 

ip prefix-list red-conn seq 40 deny 0.0.0.0/0 
snmp-server community Manager RO 
! 
route-map redist-conn permit 10 
 match ip address prefix-list red-conn 
! 
control-plane 
! 
line con 0 
line aux 0 
line vty 0 4 
 login 
! 
! 
end 

Configuration 4.2.: edge1-isp running-config 

version 15.2 
service timestamps debug datetime msec 
service timestamps log datetime msec 
! 
hostname core0-isp 
! 
boot-start-marker 
boot-end-marker 
! 
! 
! 
no aaa new-model 
! 
ip vrf mgmt 
 rd 64496:10 
 route-target export 64496:10 
 route-target import 64496:10 
! 
no ip domain lookup 
ip domain name isp.net.example 
ip cef 
no ipv6 cef 
! 
mpls label protocol ldp 
multilink bundle-name authenticated 
! 
interface Loopback0 
 ip address 203.0.113.0 255.255.255.255 
! 
interface FastEthernet0/0 
 description MPLS edge2-isp fa0_1 
 ip address 192.0.2.0 255.255.255.254 
 ip ospf network point-to-point 
 speed auto 
 duplex auto 
 mpls ip 
! 
interface FastEthernet0/1 
 description Management 
 ip vrf forwarding mgmt 



 70 

 ip address 192.168.1.70 255.255.255.0 
 speed auto 
 duplex auto 
 no cdp enable 
! 
interface FastEthernet1/0 
 description MPLS edge0-isp fa0_0 
 ip address 192.0.2.2 255.255.255.254 
 ip ospf network point-to-point 
 speed auto 
 duplex auto 
 mpls ip 
! 
interface FastEthernet1/1 
 description MPLS edge1-isp fa1_1 
 ip address 192.0.2.4 255.255.255.254 
 ip ospf network point-to-point 
 speed auto 
 duplex auto 
 mpls ip 
! 
router ospf 64496 
 router-id 203.0.113.0 
 passive-interface default 
 no passive-interface FastEthernet0/0 
 no passive-interface FastEthernet1/0 
 no passive-interface FastEthernet1/1 
 no passive-interface Loopback0 
! 
!!! because of the proper IP addressing, we can use aggregation here 
! 
 network 192.0.2.0 0.0.0.7 area 0    
 network 203.0.113.0 0.0.0.0 area 0 
 mpls ldp sync 
! 
ip forward-protocol nd 
! 
no ip http server 
no ip http secure-server 
! 
snmp-server community Manager RO 
! 
control-plane 
! 
line con 0 
 stopbits 1 
line aux 0 
 stopbits 1 
line vty 0 4 
 login 
! 
end 

Configuration 4.3.: core0-isp running-config 

version 12.4 
service timestamps debug datetime msec 
service timestamps log datetime msec 



 71 

no service password-encryption 
! 
hostname Internet 
! 
boot-start-marker 
boot-end-marker 
! 
no aaa new-model 
memory-size iomem 5 
ip cef 
! 
ip auth-proxy max-nodata-conns 3 
ip admission max-nodata-conns 3 
! 
interface Loopback1 
 ip address 1.1.1.1 255.255.255.255 
! 
interface Loopback2 
 ip address 2.2.2.2 255.255.255.255 
! 
interface Loopback3 
 ip address 3.3.3.3 255.255.255.255 
! 
interface Loopback4 
 ip address 4.4.4.4 255.255.255.255 
! 
interface Loopback5 
 ip address 5.5.5.5 255.255.255.255 
! 
interface Loopback6 
 ip address 6.6.6.6 255.255.255.255 
! 
interface Loopback7 
 ip address 7.7.7.7 255.255.255.255 
! 
interface Loopback8 
 ip address 8.8.8.8 255.255.255.255 
! 
interface FastEthernet0/0 
 ip address 203.0.113.9 255.255.255.254 
 speed 100 
 full-duplex 
! 
interface FastEthernet0/1 
 no ip address 
 shutdown 
 duplex auto 
 speed auto 
! 
router bgp 64497 
 bgp log-neighbor-changes 
 neighbor 203.0.113.8 remote-as 64496 
 neighbor 203.0.113.8 description ISP-network 
 ! 
 address-family ipv4 
  redistribute connected 
  neighbor 203.0.113.8 activate 
  no auto-summary 
  no synchronization 



 72 

 exit-address-family 
! 
ip forward-protocol nd 
! 
no ip http server 
no ip http secure-server 
! 
control-plane 
! 
line con 0 
line aux 0 
line vty 0 4 
 login 
! 
end 

Configuration 4.4.: Internet router running-config 

 

 

 

 


