
Analysis and Implementation of Long Pattern
Matching Approaches

Ferenc Galkó

Department of Automation and Applied Informatics,
Budapest University of Technology and Economics,

Műegyetem rkp. 3
Budapest, 1111, Hungary
ferenc.galko@gmail.com

Supervisor: Sándor Juhász

Department of Automation and Applied Informatics,
Budapest University of Technology and Economics,

Magyar Tudósok krt. 2 QBF207
Budapest, 1117, Hungary
juhasz.sandor@aut.bme.hu

2014



Abstract

Suffix arrays and suffix trees are well-known for their capability
of efficiently solving string processing problems including exact string
matching, which has many uses in a variety of fields like computa-
tional molecular biology and search engines. In this paper we present
a novel way to use hash tables for exact string matching as well as our
detailed comparison of the different approaches, throughout carefully
selected test suites ranging from proteins to English texts. Our exper-
imental results show that in many areas our hash table based version
outperforms even the best known suffix array and suffix tree based
solutions, thus indicate that this approach is not only of theoretical
interest.

2



Contents

1 Introduction 4

2 Notations and Previous Concepts 6
2.1 Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Suffix Hash Table 11
3.1 Constructing the Table . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Matching Patterns . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Dealing with Small Patterns . . . . . . . . . . . . . . . . . . . 17

4 Parameters 18
4.1 Parameter q and k . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 On-line Determination . . . . . . . . . . . . . . . . . . . . . . 21

5 Implementation Details 23
5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Experimental results 26
6.1 Compared Implementations . . . . . . . . . . . . . . . . . . . 26
6.2 Construction and Pattern Matching . . . . . . . . . . . . . . . 26

7 Conclusion and Outlook 32

3



1 Introduction

In a rapidly developing world one can hardly argue about the growing impor-
tance of information processing and data mining. Exact and inexact string
matching algorithms were one of the main focuses during the last decades,
both of them have ample uses in bioinformatics, search engines, natural lan-
guage processing and even in intrusion detection.

Since the exigent need for faster and faster string matching algorithms
is yet to be satisfied, in this paper we present a novel way of using hash
tables for exact string matching - which in some cases clearly outperforms
the existing solutions - as well as compare different methods to shed light on
the advantages and drawbacks of the different approaches.

Notwithstanding with the simple definition of the exact string matching
problem, that is, we would like to find every occurrence of a pattern in a
given text, the performance of an exact string matching algorithm is crucial,
since in many cases operating on enormous amount of data is inevitable.

Allowing for the fact that many application inherently uses multiple
searches with different patterns in the same text, we can preprocess the orig-
inal text to facilitate multiple consecutive queries. That is to say, we create
a data structure from the original text, and in the future we use both the
newly constructed data structure and the original text for a possibly more
efficient pattern matching.

The idea of preprocessing is already widely used, especially in the form of
suffix trees and suffix arrays and their extensions, yet many scientists are still
working on more efficient solutions in terms of execution time and memory
usage.

Both suffix trees and suffix array are versatile data structures with many
uses in string processing, and once they are created it is possible to match any
pattern to the original text in linear time to the length of the pattern (and
of course the number of occurrences of that particular pattern)1. Therefore
as soon as one of these auxiliary data structures is constructed, the length
of the original text is irrelevant and the execution time is solely determined
by the length of the pattern and the number of occurrences.

According to this fact, one could think that we should merely focus on
the construction times of these data structures, however, in many cases we

1Although with the suffix array alone the linear time pattern matching is not possible,
it is achievable by constructing accessory data structures along with the suffix array [3].

4



would like to match millions if not billions of patterns to the same text, and
in these cases practical results evince a thousandfold discrepancy in pattern
matching times between these mathematically equally good data structures.

More than that, if the construction time of a data structure were greater
than another data structure, but the first one provided a faster way for
pattern matching than the latter, one could easily determine the minimum
number of patterns where from the first method would be more efficient in
terms of total execution time (including both construction and matching
times).

Because of this, we discuss the construction and the pattern matching
times independently from each other, throughout meticulously selected test
suites ranging from XML files to DNA sequences, which possibly provides
greater insight into the different approaches.

In this paper we suggest a new method that uses hash tables to quickly
find smaller subsequences of the original pattern, thereby allowing a faster
exact pattern matching than any other method known by us. In addition to
introducing this approach, we also provide an implementation of a hash table
which is specially designed to tackle the exact string matching problem.

The rest of the paper is organized as follows: in Section 2 we introduce
the notations used in this paper as well as a formal definition for the exact
string matching problem. The existing approaches, to wit, suffix arrays and
trees, are also outlined in this section. Our hash table based version is de-
scribed in Section 3 where we discuss the construction and pattern matching
possibilities of this method in different subsections. Section 4 gives advice
on optimal parameter determination, not solely based on theoretical consid-
erations but also on our empirical results. In Section 5 we shed light on
important implementation details which can drastically speed up both the
construction and the pattern matching processes, while Section 6 contains
an in detail comparison between currently existing implementations and the
hash table based version. Finally, Conclusion and Outlook summarizes our
findings and proposes directions for future improvements.

5



2 Notations and Previous Concepts

In this section we give a formal definition to the exact string matching prob-
lem and summarize the notations used in this paper as well as briefly intro-
duce existing approaches.

Given a string S = s1s2 . . . sn, (si ∈
∑

), where si denotes the i′th char-
acter of S and Si,j denotes the substring sisi+1 . . . sj, i <= j, while the suffix
of S from the character i is Si = Si,n and n = |S| denotes the length of S.
Table 1 summarizes all of the notations.

Table 1: Summary of the notations and their meanings used in this document.

Notation Denotes

S original string that contains the patterns of interest

n = |S| length of S

si character in S at the position i

Si,j substring sisi+1 . . . sj, i <= j

Si = Si,n suffix of S from position of i

Sei string associated with the i’th edge in a suffix tree

ei length of the i’th edge in a suffix tree

P pattern string

|P | = m length of P

|∑ | size of the alphabet

k number of buckets in the hash table

q special hash table parameter (see in Section 3)

B[i] the i’th element of the bucket

Definition 1. Exact String Matching: Given an alphabet
∑

= {a1, a2, . . . , al}
and a string S = s1s2 . . . sn in that alphabet. An exact string matching of
a pattern P = p1p2 . . . pm, (pi ∈

∑
) to S determines all of the i1, i2, . . . , ij

indexes where sik = p1, sik+1 = p2, . . . sik+m−1 = pm, k ∈ {1, 2, . . . , j}.
The practical implication of this formal definition extremely simple: we

have to locate every occurrence of a given pattern in a text. Of course if one
of the suffixes of the pattern is also a prefix of that particular pattern, it is
possible that the matches overlap.

6



Figure 1: Example of suffix array construction for CGATATATCGG. It is suffi-
cient to store the n (in this case 11) offset integers in the suffix array.

Thus, the result of matching P = ATAT to S = CGATATATCGG
would be {3, 5} while S3 = ATATATCGG and S5 = ATATCGG.

2.1 Suffix Arrays

A suffix array is a simple and elegant, but nevertheless versatile data struc-
ture, which in many cases outperforms suffix trees (which is described in Sec-
tion 2.2) in execution time and in memory usage. A suffix array is a sorted
array that contains all of the suffixes of a string S, therefore the size of a suffix
array is always |S| = n. Rather than storing the exact suffixes in the array, it
is sufficient to store their starting indexes in the original string, which means
a memory usage of 4n (in this paper we suppose that 4 byte pointers or in-
dexes are sufficient to handle the size of the input strings, which is practically
always the case). Figure 1 shows an example for S = CGATATATCGG.

Even with a simple sorting algorithm like merge sort, the sorting of the
n suffixes could be done in O(n2logn) (by comparing O(nlogn) suffixes and
each comparison requires O(n) time), therefore the construction of a suffix
array SA could also be done in that time.

In Figure 1 we illustrate the construction of a concrete suffix array for
S = CGATATATCGG. During the first step we create a new array with
the suffixes, and since the original string is already in the memory even for
the first step it is sufficient to store the indexes rather than the suffixes

7



Figure 2: Example of suffix array based pattern matching for S =
CGATATATCGG and P = G.

themselves, which results in a simple sorted array of integers ranging from 1
to |S|. In the next step we sort the array, but instead of using the indexes,
we compare the underlying suffixes during sorting.

If a suffix is a prefix of another suffix, that means that we run out of char-
acters when comparing the first suffix to the second and still cannot decide
the lexicographical order. In this case we say that the shorter one is lexico-
graphically smaller than the larger one. In other words we put an imaginary
$ character to the end of S that is lexicographically smaller than every other
character in the alphabet and then the sortation becomes unequivocal (the
concept of the $ character is widely used when discussing suffix trees and
suffix arrays). In the case of Figure 1 a good example for this is S11 and S2

where the previous is the prefix of the latter.
After we have a suffix array, we can perform two binary searches to de-

termine a first i and a last j (where i <= j) index, so that SA[i] and SA[j]
suffixes start with the given P pattern. Since the suffix array is sorted, each
SA[k], k ∈ {i, i + 1, . . . , j} suffix array entry denotes a matching suffix.

In Figure 2 we show the process of matching the simple pattern P = G.
Firstly, we determine the first array index where the underlying suffix starts
with P , in this case SA[7] (which refers to S11). Then, we conduct another
search to determine the last array index with the same condition, which
results in the first and the last index of 7 and 9, respectively. Drawing on
the fact that the suffix array is sorted we can determine these indexes with

8



binary searches, but what is even more important is that every array index
between these two denotes correct results, which means that SA[7], SA[8]
and SA[9] are the solution of the problem (which refer to S11, S2 and S10,
respectively). In this example only SA[8] was inferred, but if there are z
occurrences for a pattern, we only conduct two binary searches and infer the
remaining z − 2 matches from those.

There are several ways to improve the execution times. With two ad-
ditional arrays the desired O(n) construction and the O(m + z) matching
can be achieved with the memory usage of 6n [5, 3], while by considering
other practical facts the matching time can be reduced further [1], and by
compressing the array a significant amount of memory can be saved [11].

2.2 Suffix Trees

A suffix tree is a data structure designed to facilitate string operations such
as exact and inexact string matching (the latter one is out of the scope of our
current topic) or determining the longest common substring in two strings
[6].

Given a string S, |S| = n there are exactly n leaf nodes in a suffix tree,
and each edge denotes a substring of S. Thus, each path from the root to
any leaf node determines a set of substrings, which can be concatenated into
a suffix of the original string.

This means, that every internal node determines a set of suffixes that start
with the prefix associated with the path to the internal node. For example
in Figure 3 the leftmost internal node has two children (1 and 3) and by the
time we traversed to this internal node, we know that all of these children
are suffixes with the prefix of AT . Therefore, if we searched for P = A or
P = AT we would know that there are exactly two solutions, the first and
the third suffixes, without having to check any further nodes or edges.

Of course if there were another edge from the root node annotated with
AT then we would leave out correct results. Luckily, this cannot happen in a
suffix tree, for by definition all of the edges of a single node must start with
different characters. In case of Figure 3 this does not only stand for the root
node, but also for every internal node in accordance with the definition.

So how can we use the suffix tree for fast pattern matching? First, we
have to get the first character of the pattern, then we have to decide which
edge starts with this particular character and we shall move on the node
determined by this edge. Now the first e1 characters of the patterns are

9



already matched correctly, where e1 is the length of the string associated
with the selected edge, because every suffix in the hierarchy starting from
this nodes starts with Se1 (the string associated with the edge). So we can
move e1 characters forward in the pattern and select the next edge by the
character starting from that position.

At one point the concatenated length of the strings reaches the length of
the pattern (formally, e1+e2+ · · ·+ey >= |P |) and we have to stop at a child
node determined by this overflowing edge. Every leaf nodes in the hierarchy
determined by this stopping node refers to a correct suffix, because these
suffixes start with Se1Se2 . . . Sey and P is the prefix of this concatenation.

In a concrete example (see in Figure 3), where P = ATCG, we would
look for an edge starting with A from the root node, and since the edge
contains Se1 = AT , we would use the third character of the pattern during
the next iteration, which is in this case a C. We arrive at the third suffix,
which means that this suffix starts with the pattern, and since there are no
other suffixes with this property, it is safe to say that the result set is {3}.

If we inaugurate another rule, to wit, that every internal node except
for the root must have at least two children, it is easy to see that a suffix
tree cannot always be constructed for a given string (a simple example is
S = AAAA). For this, we extend the original string with a character that is
lexicographically smaller than every other character in the alphabet (the $
symbol in Figure 3) which does not effect the outcome of the queries.

Although a suffix tree can be constructed in O(n) [6] time and a single
pattern matching can be done in O(m + z), where m is the length of the
pattern to be matched and z is the number of occurrences, tree-like data
structures like suffix trees are less cache friendly than array-like ones [2].
In order to build a suffix tree in linear time from a string S of length n,
we have to store additional information in the nodes, thus even a careful
implementation takes up to 10-20n space in memory [9].

Recent results suggest that in many, if not all applications, suffix trees
can and should be replaced with suffix arrays to hasten string operations and
to reduce memory usage [2].

10



....

1

.

ATCGG$

.

3

.

CGG$

.

AT

.

5

.

CGG$

..

7

.

$

.

6

.

G$

.

G

..

2

.

ATCGG$

.

4

.

CGG$

.

T

Figure 3: An example suffix tree made from S = ATATCGG.

3 Suffix Hash Table

Hash tables are widely used in many fields of computer science for efficiently
storing key-value pairs where value retrieval of near O(1) complexity takes
precedence over memory usage [7, 12, 4]. In this section we introduce an al-
gorithm based on hash tables that efficiently solves the exact string matching
problem.

Hashing is already widely used for pattern matching, presented in a sem-
inal paper by Rabin and Karp [8], and it is also possible to match multiple
pattern by this existing method.

However, for this approach, the patterns must be specified and prepro-
cessed, whereas our method does not require the set of patterns to be known,
but instead it draws on the original string, in which we would like to search.

3.1 Constructing the Table

Both suffix arrays and suffix trees store suffixes of the given S string, which
makes them efficient in exact string matching, for all occurrences of a given
pattern are a prefix of a given suffix.

11



S= C G A T A T A T A C G G ... T
1 2 3 5 7 n

1 24 56 62 143

2 45

3 38 40

4 2

k-1 15 50

k 3 5 7

q=3

Figure 4: Storing suffixes in a hash table with k buckets while q = 3.

While suffix trees use trees and suffix arrays use arrays to store the suf-
fix pointers (or offsets), hash tables could also be appropriate for the same
purpose. First, we have to find a way to calculate hash values for all the pos-
sible suffixes. The idea is to generate hash values for Si from the substring
Si,i−1+q, that is, instead of generating hash values for the complete suffix we
only use the first q characters to select the appropriate bucket (q <= n and
in most of the cases q << n).

Thus, there are a total of n − q + 1 suffixes to be stored in a number
of k buckets by using a hash function h(x). Figure 4 shows and exam-
ple for q = 3. Because the three suffix S3, S5 and S7 share a common q
long prefix (ATA) they certainly go into the same bucket. However, col-
lisions are also possible since there can be one or more Sj suffixes where
h(Sj,j−1+q) = h(ATA), Sj,j−1+q 6= ATA, thus they will be assigned to the
same bucket. That is, we can never be entirely sure whether a bucket con-
tains only suffixes with the same q-long prefixes, which we should consider
during further operations.

To calculate the hash values during construction time, it is possible to
use a so-called rolling hash, which is also used by the Rabin-Karp algorithm
[8]. A rolling hash is a specially designed hash function, which facilitates
multiple hash value generations while only two characters of the string of
interest changes: the leftmost character is omitted and a new character is
inserted to the rightmost position. This would mean that the hash values
can be calculated independently from q in constant time.

12



The rolling hash, however, only hastens the construction of the table and
it cannot be used efficiently during pattern matching time, which makes other
hash functions possibly faster for answering queries.

As discussed in the following subsection, the hash conflicts would neces-
sitate to check every possible result whether it is produced by hash conflict
or is a real occurrence. This shall not be a problem if the average number of
matches remains low, but if there were an immense amount of occurrences
it would drastically slow down the process of matching. Therefore, in some
cases it is advantageous to eliminate these conflicts during construction time,
which although slows down the process of producing the table, provides a
great speed-up during matching time. We suggest two possible ways for the
hash conflict elimination, and while the first one focuses on memory usage,
the second one supports faster pattern matching.

The first idea is to use a mixture of open and bucket hashing, which means
that if a bucket is empty we simply put the suffix into this bucket, but if the
bucket already contains an element, we compare the actual suffix with the
contained suffix and on conflict (which means that the first q character of the
contained suffix and the currently inserted suffix is not the same) we select
another bucket for the current suffix. This way a single bucket will only
contain suffixes with the same q-long prefix and we do not have to allocate
any additional memory to make this possible.

However, during matching time it is possible that bucket determined by
the first hash value does not contain the suffixes of interest and we have
to look into further buckets, which makes this approach a memory but not
pattern matching time efficient solution.

The second idea, however, optimizes - the in many cases more important
- pattern matching time. During this approach, instead of finding an empty
bucket for the conflicting suffixes, we split the original bucket into two or
more smaller sub-buckets, each of them contains one type of suffixes. This
solution is illustrated in Figure 5.

When we look up for a specific type of suffix, we have to find the cor-
responding sub-bucket inside the selected bucket, but as practical results
attest, with well chosen parameters discussed in the next sections, we can
keep the number of hash conflicts as low as one percent (which means that
only one percent of the buckets would contain sub-buckets). Although the
memory usage is slightly higher compared to the first solution, since all of
the previously empty buckets remain unused, it provides a faster access to
the suffixes.

13



1 ◦ CCA. . . CCA. . . CCA. . . CCA. . .

2 ◦ AAA. . .

3 • TAC. . . TAC. . .

4 ◦ AGC. . .

k-1 ◦ CAG. . . CAG. . .

k ◦ GAA. . . GAA. . . GAA. . .

• CAC. . . CAC. . .

◦ TTA. . . TTA. . .

Figure 5: Storing conflicted suffixes in sub-buckets: h(TAC) = h(CAC) =
h(TTA).

Algorithm 1 shows a simple algorithm for building the hash table with
the given q, k parameters and h hash function without considering any of the
collision issues discussed above.

Algorithm 1: BuildSuffixHash(S, q, k, h)

n← len(S)
SH ← emptyhashtable(k)
for i = 1 to n− q + 1 do

store i in SH to bucket h(Si,i−1+q)
end for
return SH

3.2 Matching Patterns

There is a simple way to use this data structure for exact string matching.
We would like to match pattern P, |P | = m,m >= q. First, we have to
calculate the H1 value, where Hi = h(Pi,i−1+q). If bucket H1 contained only
a small amount of indexes, we could simply check whether P is the prefix of
any of the suffixes in the bucket one by one, and add the matching suffixes
to the result list. In order to ensure the efficiency of the searching, we have
to choose q and k (the number of buckets) of the hash table in a way that it
results in an average non-empty bucket size of about one. The determination
of the q and k parameters is discussed in detail in the following subsection.

14



Even with the best effort of choosing the above parameters there will be
cases when we have to deal with buckets with many elements (for example,
when there are many occurrences of the pattern string). For these cases
the following method is applied to reduce the number of string comparisons:
after calculating H1 from the first q characters we retrieve all of the indexes
from bucket H1 to a possible solutions PS array (instead of an array we can
use any kind of data structure for storing the possible solutions). Next, we
should narrow down the number of candidates in array PS by checking the
following q characters of the original pattern P . Instead of matching directly
to the original string like the first method suggests, now we use the same hash
table to retrieve the possible continuations. We take the next q characters
of the pattern P and read their possible position from the hash table by
checking indexes in bucket H1+q. If a suffix matches the first q characters,
then it is present in H1, and if also matches the next q characters, then
the continuation position should be present in H1+q. For this reason we can
drop all candidate positions i ∈ PS from PS where i + q /∈ BH1+q (Bh is
the bucket belonging to hash h in the hash table). If we continue this for
1 + 2q, 1 + 3q, . . . we can drastically narrow down the size of PS and at the
end of the process we can check the leftover indexes in PS whether they are
real matches. Algorithm 2 demonstrates the described algorithm for exact
string matching.

The only reason we have to check each element in PS is that there could
have been hash conflicts during the creation of the hash table, which would
result in erroneous results. However, it is possible overcome this issue with
one of the ideas detailed in Section 3.1, which would make sure that only
suffixes with a beginning of the same q characters go into the same bucket.
If we constructed the hash table in accordance with this, we would not have
to check all of the leftover indexes, thus a substantial amount of time could
be saved during pattern matching time.

Another important note is that the buckets and possible sub-buckets are
inherently sorted in an ascending order, which on we can draw for further
calculations, that is, when merging the content of a bucket with PS we can
use a slightly more efficient algorithm than the basic method. For this, we
maintain two indexes, one for PS and one for the bucket which contains the
possible continuations for the suffixes in PS.

In every iteration we increase the first, the second or both indexes by
using the following rule: if PS[i] + q = B[j] that means that B[j] denotes a
suffix that is a continuation of PS[i], we keep PS[i] as a possible solution and

15



increase both i and j (since PS[i] is already retained as a possible solution
and it is not possible that B[j] is also a continuation of PS[i + 1], because
PS consists of different suffixes).

If PS[i] + q > B[j] that means that the current element of B is not a
continuation of PS[i], but it is still possible that there is a correct element in
the bucket, so we increase j. If PS[i] + q < B[j] that means that there is no
match for PS[i] and we omit this element from the possible solutions array,
but it is still possible that B[j] is a continuation of a further element in PS
so we only increase i but not j. Once we reach the end of PS with i the
new possible solutions array is precisely determined, and since we increase
at least one index during every iteration, the merging time is O(|PS|+ |B|).

Both methods require m, the length of the pattern to be greater (or equal)
than q, which makes suffix hashing especially efficient for large patterns,
however, there is a way to extend this data structure to be capable of dealing
with smaller patterns, which we discuss in Section 3.3.

Algorithm 2: FindPattern(P, SH, h, q)

Require: |P | >= q
left← len(P )− q
offset← 0
PS ← SH[h(P1,q)]
while left > 0 and len(PS) > 0 do

if left ¿= q then
offset← offset + q

else
offset← offset + left

end if
for i = 1 to len(PS) do

if PS[i] + offset 6∈ SH[h(Poffset+1,offest+q)] then
remove i from PS

end if
end for
left← len(P )− (offset + q)

end while{if needed check every element in PS to filter false results}
return PS

16



3.3 Dealing with Small Patterns

In the sections above we have discussed pattern matching for patterns where
|P | >= q. In many cases the vast majority of the patterns are over the size
of q but there can be exceptions where |P | < q and we still would like to
search for these rare short patterns.

The problem with these patterns is that we can not search the hash table
directly, because we have used q long substrings of S to store the suffixes,
however with a small amendment we can refine the hash table to make these
kind of searches possible.

For this we have to maintain a sorted data structure that contains pointers
to non-empty buckets and sorted by the Si,i−1+q substrings we have used to
create the hash table.

To search for the small pattern we have to do two binary searches to
determine the first and the last bucket that contains suffixes starting with
pattern |P |, these buckets and every bucket between the range of these two
are possible solutions. We should keep in mind, that we have not stored
the last q − 1 suffixes of S in the hash table, therefore this method omits
occurrences in those suffixes, however, we can get these results simply by
searching the last q character of S for matches.

This supplementary data structure is similar to a suffix array, except that
there can be a lot more suffixes than buckets therefore using a suffix array
in this case can be advantageous if the maximum bucket size is not far more
than 1.

17



4 Parameters

4.1 Parameter q and k

Since both q and k parameters play important role in this approach, we
should pay special attention at their selection. A greater q could help spread-
ing the suffixes into more buckets, while a small k (k << n) inevitably results
in overcrowded buckets.

Our goal is to reach an average non-empty bucket size of one, and while
a greater k provides more buckets to spread the elements to, increasing k
beyond 2n does not entail substantial improvement in execution time, but
wastes a lot of memory, because at least 50 percent of the buckets would
certainly be empty.

To restrict the average number of elements per bucket, we have to consider
that each suffix starting with the same q long substring of S goes into the
same bucket. Therefore we should choose q to be big enough to provide many
different values, since that can facilitate the dispersal of suffixes into different
buckets. Considering this fact, the size of the alphabet |∑ | also plays a key
role in the determination of q.

If for example |∑ | = 4 and k = n = 106, then with q = 6 maximum a
total of 46 = 4096 buckets will be used, while the other 995904 will surely
be totally empty. So a total of 106 element would be forced into a mere 4096
buckets.

However, the same q could be successfully used for a larger alphabet, for
example if the alphabet size were 20, then the maximum number of used
buckets would be 206 = 6.4 · 107, which combined with a good hash function
and an input where the 6 long substrings of S are spread over a large domain,
can be efficiently mapped to 106 buckets, resulting in small bucket sizes.

In Figure 6 we illustrate the average length of a non-empty bucket de-
pending on the q and k parameters. It seems that the main determinant,
as we would expect, is the q parameter, whereas k only plays a significant
role in the bucket sizes when it is below 1n, further increase in k only results
in negligible bucket size reduction. Although the figure only illustrates this
metric for DNA sequences, the graphs look very similar for the other types
of text inputs as well (see in Section 6).

Another, equally important measurement is the number of non-empty
buckets, since if there were a huge portion of buckets left empty we would
allocate unnecessary space for them, thus wasting precious memory. Figure 7

18



10
20

30

1

2

3

100

102

104

q
k[n]

Average non-empty bucket length

bucket
length

Figure 6: The average length of a non-empty bucket (calculated by using
DNA sequences as inputs see in Section 6). The aim is to keep it near to 1.

shows the impact of the q and k parameters on the usage of buckets. A bigger
q obviously helps to spread the suffixes into more buckets, thus increasing
the number of used buckets, while a k of about 2n is usually a good trade-off
between memory usage and efficiency.

To eliminate conflicts by using an aforementioned method (see in Section
3.1), it is important to gain insight into the number of conflicted buckets. A
conflicted bucket is a bucket that contains at least 2 suffixes with different q
long prefixes, so they should be stored in different buckets and the storage
in the same bucket is the result of a hash conflict.

The number of conflicted buckets determines the efficiency of the meth-
ods described in 3.1, since if the number of conflicted buckets remains high,
the sub-bucket solution is clearly a better approach, whereas for infrequent
conflicts the mixed open and bucket hashing can provide a better solution.
Figure 8 and 9 illustrate the number of conflicted buckets and suffixes, re-
spectively.

19



10
20

30

1

2

3

0

0.5

q
k[n]

Portion of non-empty buckets

non-empty
buckets

Figure 7: The portion of non-empty buckets (calculated by using DNA se-
quences as inputs see in Section 6).

10
20

30

1

2

3

0

0.2

0.4

0.6

q
k[n]

Portion of conflicted buckets

conflicted
buckets

Figure 8: The portion of conflicted buckets (calculated by using DNA se-
quences as inputs see in Section 6).

20



10
20

30

1

2

3

0

0.2

0.4

q
k[n]

Portion of conflicted suffixes

conflicted
suffixes

Figure 9: The portion of conflicted suffixes (calculated by using DNA se-
quences as inputs see in Section 6).

The bigger the q is, the faster the algorithm will find the matches. How-
ever, we should keep in mind that the algorithm cannot find matches effi-
ciently for patterns where |P | < q. When searching for multiple patterns of
varying sizes, we may also consider building multiple hash tables: one for a
small q matching the lowest pattern size, and one for a larger q allowing to
search for longer patterns efficiently.

Therefore q should be the length of the smallest pattern we would like to
search for, while k should be 1-2 times n (or even more if memory efficiency
is not an issue), considering that a larger k could prevent hash conflicts, but
also drastically increases memory usage.

4.2 On-line Determination

Although in the current document the on-line determination of the param-
eters is not in the main focus, it is worth to mention that it is possible to
adjust parameter k during construction time.

It would also be possible to suggest an efficient q parameter according to
the concrete characteristics of the given S text, but since we cannot search
for patterns smaller than q efficiently, determining a q parameter by the text
and not by the future patterns is of little if no avail.

21



Luckily, parameter k can be dynamically adjusted to maintain an equi-
librium between memory usage and matching efficiency. A simple yet easily
implementable solution is to maintain a single counter of the number of empty
buckets, and when the ratio of the non-empty and empty buckets reaches a
threshold, we can increase (for example double) k and re-hash the suffixes.

Determining k parameter dynamically is especially useful when the length
of S is not fixed, that is, we can append parts to the original string. This
on-line determination can be more efficient than solely determining k by the
length of S, because it also takes the specific characteristics of S into account.

22



5 Implementation Details

5.1 Construction

Implementing an efficient, specialized hash table for this algorithm is of great
importance. Having chosen the bucket number k we should allocate memory
space for k pointers, which will serve as bucket pointers.

An easily implementable yet fairly efficient solution is to use an array
of k pointers as a hash table, where each pointer can point either to a real
bucket or directly to a suffix in the original string. This is beneficial, because
if a bucket contains one element only, then we can reach it directly (without
a further memory access), but if multiple suffixes are mapped to the same
bucket, then we can simply access the extendable bucket by using the pointer.

Although both are pointers, it is easy to tell suffix and bucket point-
ers apart: whenever we calculate a Hi hash value and check the associated
bucket, we first check whether the pointer in the hash table is pointing to a
substring of S or not. If the pointer is pointing to a location between the
beginning and the end of S, we assume that this is the only suffix contained
in this particular bucket, for we can save up a substantial amount of memory
by omitting the storage of unnecessary arrays. This is especially important
for properly tuned q and k parameters, where most of the non-empty buckets
contain 1 element.

However, if multiple pointers are associated to a single bucket we have to
store all of them in a separate array. In this case, the pointer p should be
used as an array pointer and since we also have to store the size of the array
somewhere, we should do it at the first position of p. This way p[1] would
contain the length of the array, while p[2], p[3], . . . , p[p[1] + 1] would contain
suffix pointers.

The impact of the q and k parameters is illustrated in Figure 10. It is
clear that both q and k play significant role in this metric of vital importance.
A larger q helps to spread the suffixes into more buckets, while using more
buckets reduces the number of conflicted buckets, therefore leads to more
buckets with size of 1. For specific type of texts an outstanding direct storage
percentage can be achieved by properly tuned parameters. For example in
the case of DNA sequences, with k = 3n and q = 30 about 70 percent of the
suffixes can be stored directly in the hash table (see in Figure 10).

However, for XML files only about 40 percent can be reached, due to the
q-long repetitions in the original XML input (see in Figure 11).

23



10
20

30
1

2

3

0

0.5

q
k[n]

Portion of directly stored suffixes

direct
storage

Figure 10: The portion of directly stored suffixes (calculated by using DNA
sequences as inputs see in Section 6).

10
20

30
1

2

3

0

0.2

0.4

q
k[n]

Portion of directly stored suffixes

direct
storage

Figure 11: The portion of directly stored suffixes (calculated by using the
XML file as an input see in Section 6).

24



The allocated k pointer requires a total of 4k space in memory in bytes
(assuming 32-bit integers) and the worst-case scenario is when every suffix
goes into the same bucket, which demands another 4n memory space.

Thus, the worst-case memory usage of the data structure is 4(k+n), whilst
properly selected q, h and k parameters pare down the required memory to
4n.

25



6 Experimental results

In this section we compare our implementation of the hash table version with
other available suffix tree and suffix array implementations. All of the tests
ran on a system using Intel Core i5-2400 3.1 GHz CPU and 2 GB available
main memory.

6.1 Compared Implementations

The following implementations were compared:

STree: This implementation is based on suffix trees, using Ukkonen’s algo-
rithm for construction [13] and written in C. The construction is linear
in |S| and matching a pattern with z occurrences takes O(z + |P |)
time, thus once the tree is built matching a pattern is independent of
the length of S.

DivSuf: This is a suffix array using version. For the construction we use
Yuta Mori’s C implementation [10], which is deemed to be one of the
fastest. However, for matching patterns we simply use binary search, al-
though with two additional auxiliary data structures one could achieve
the desired O(z + |P |) matching time [3].

SH QX KY : Finally, this is our own C++ based implementation based on
a special hash table implemented by us. X and Y denote the actual
value of the q and k parameters, for example SH Q5 K1.5 means that
q = 5 and k = 1.5n parameters were used in the tests.

The implementations were tested with a variety of input files ranging from
DNA sequences to source codes. A detailed description of the different char-
acteristics of the source files can be found at http://pizzachili.dcc.uchile.cl/
which is widely used for testing string processing algorithms.

6.2 Construction and Pattern Matching

For the first test we used patterns of 30 to 100 length randomly selected from
the source file. Table 2 summarizes the construction and pattern matching
times of the different implementations. The construction times refer to the
time needed to build the data structure, while the matching time denotes

26



the elapsed time for matching a million patterns with the previously built
data structure (all times are in milliseconds). The leftmost numbers ranging
from 100000 to 3000000 denote the size of the input files in bytes, that is,
the length of the original string, in which we would like to search for the
patterns.

While the construction times of the suffix array and the hash table are
really close to each other, there is a huge discrepancy in pattern matching
times between these data structures. Exact string matching with the hash
table is especially efficient for varied inputs like DNA, proteins and English
text.

Since the suffix array and the hash table based version clearly outperforms
the suffix tree based version for larger strings both in construction and in
pattern matching times, we did a second evaluation for larger inputs with
the suffix array and hash table based versions. Here we used input files
with size of 50MB and matched a million patterns in each case. Table 3
summarizes the results of this comparison.

Because we created patterns by randomly reading 30 to 100 characters of
the given source file, we matched frequent patterns more often. For example,
in the ”pitches” file there are more than 300 000 matches for the 30 long
pattern consisting of the * character, which means that the bucket associated
with this pattern contains at least 300 000 elements.

In addition to the large bucket sizes, we were matching these kind of
patterns many times, because these are the most probable candidates when
we select a random pattern from the source. Thus, we had to operate on
immensely large buckets for most of the time. In real life application this is
usually not a problem, since we do not want to search for the ”30 long *”
pattern this often, hence these large buckets can usually be ignored.

This is why we also used another type of pattern generation in the de-
tailed comparison of the suffix array and hash table versions. In the latter
pattern generation method, we generated patterns randomly from a given
alphabet, which means that matches were fairly unlikely, thus we did not
have to operate on large buckets. In Table 3 ”From Source” indicates that
the patterns were selected from the source file itself, while ”Random” means
that the patterns were randomly generated.

It is important to understand that occasionally dealing with large buckets
is not a problem at all, what really slows down the process is the frequent
matching of these repeating patterns.

27



Table 2: Construction and execution times in milliseconds for input files of
different size and type.

Construction Matching

ST
re

e

D
iv

Su
f

SH
Q

20
K

1.
5

SH
Q

30
K

4

ST
re

e

D
iv

Su
f

SH
Q

20
K

1.
5

SH
Q

30
K

4

10
00

00

dna 41.8 10.9 8.0 6.7 577.6 630.2 196.2 129.1

sources 37.9 8.1 9.1 9.3 1369.8 653.6 415.0 286.0

proteins 52.6 10.5 9.5 10.0 871.2 575.9 468.1 365.2

pitches 53.2 8.4 8.3 8.0 1189.7 529.1 203.2 125.5

english 57.4 9.2 8.0 6.9 1612.9 609.0 198.7 124.4

dblp.xml 29.5 7.7 7.1 4.3 2080.9 739.7 941.0 669.9

10
00

00
0

dna 447.3 86.6 73.0 79.7 1301.7 1006.4 328.7 200.1

sources 355.4 68.3 75.8 84.2 4971.7 1058.4 1154.7 682.9

proteins 610.6 76.6 77.2 86.5 2133.4 931.5 682.1 517.6

pitches 850.2 73.7 75.6 76.1 3719.6 904.9 362.7 231.8

english 566.1 73.6 82.9 75.9 4204.6 980.6 388.3 212.8

dblp.xml 306.8 53.2 78.1 81.8 10976.7 1313.8 4371.6 2556.8

30
00

00
0

dna 1625.8 240.2 247.0 224.1 1995.4 1584.8 402.7 225.7

sources 1302.2 180.5 239.4 240.1 8104.7 1649.2 1228.4 741.1

proteins 2732.0 259.3 233.1 241.0 3184.3 1567.4 703.8 518.7

pitches 2794.8 184.0 235.3 241.0 7070.9 1490.7 704.5 509.1

english 2230.5 218.1 246.3 220.1 6350.0 1496.0 404.7 231.5

dblp.xml 1105.0 166.2 215.8 223.1 16317.8 2026.0 6920.9 3544.8

28



Table 3: Construction and execution times in seconds for input files of dif-
ferent type with a size of 50MB.

Construction
Matching

From Source Random

D
iv

Su
f

SH
Q

20
K

1.
5

SH
Q

30
K

4

D
iv

Su
f

SH
Q

20
K

1.
5

SH
Q

30
K

4

D
iv

Su
f

SH
Q

20
K

1.
5

SH
Q

30
K

4

dna 6.18 5.22 4.66 3.30 0.72 0.36 0.731 0.163 0.094

sources 4.09 4.72 4.80 3.69 16.62 6.41 1.354 0.135 0.078

proteins 7.43 4.64 4.65 3.14 1.66 0.93 1.933 0.160 0.085

pitches 4.20 4.51 4.46 10.62 103.12 83.67 2.113 0.167 0.085

english 6.03 6.38 5.82 3.21 1.21 0.79 1.006 0.172 0.104

dblp.xml 4.20 4.49 5.64 4.89 61.91 33.50 1.169 0.073 0.087

Figure 12: The average construction times for different input sizes. The
average was calculated from the DNA, protein and English input files.

Although the construction times of the suffix array and the hash tables
are close to each other (see in Figure 12), a suffix array alone is not capable
of matching patterns in linear time to their length, which resulted in longer
matching times (see in Figure 13). It seems that when there are no occur-

29



rences at all (in the case of randomly generated patterns) the hash table is
more than ten times faster than the suffix array. The reason for this is that
we only have to generate a single hash value and there is a really high chance
that the first bucket is already empty and we can terminate the search.

To achieve the desired O(z+ |P |) matching time with the suffix array, we
have to build two additional data structures, the LCP-array and the child-
table [3]. However, even the fastest currently known method for constructing
the LCP-array takes about the same time as the suffix array construction
[5], let alone the child-table construction. This means that in many cases
constructing an enhanced suffix array alone would take three times more
time than constructing a hash table and matching a million patterns to it.

Figure 13: The average matching times of 1 million patterns. The average
was calculated from the 50MB DNA, protein and English input files. The
source label denotes that the patterns were randomly selected from the source
file itself, whereas random denotes that the pattern were randomly generated
from an alphabet.

The advantage of our approach is that it provides an efficient method for

30



predictably long pattern strings and diversified S string where there are a
small amount of matches on average, while the disadvantage of this technique
is that it is only usable efficiently for searching patterns over certain length.
Furthermore the algorithm is not prepared for any changes in the string S
during the searches, and it is incapable of finding partial matches of the
search pattern in its current form. The algorithm is also sensitive to badly-
chosen parameters that can drastically slow down the process due to large
bucket sizes.

31



7 Conclusion and Outlook

This paper introduced a novel method for using and implementing hash tables
to solve the exact string matching problem. It was also shown by measure-
ments that under certain circumstances it outperforms suffix tree and suffix
array based approaches.

The construction time of this data structure is in many cases the same
as that of the suffix array’s, but it provides a much faster way to match long
patterns, while constructing an enhanced suffix array, which is capable of
matching patterns in linear time to the length of P , takes much more time
then preparing the hash table.

We also showed how to choose the most important parameters k and q
to provide a fast way for matching long patterns in various S strings, where
the average number of matches remains low. If the fluctuation of the length
of P is small or there is no fluctuation at all, this is an especially efficient
method.

For future improvement we suggest a well-chosen data structure for buck-
ets, while our future intention is to investigate the parallelizability and im-
proving the cache friendliness of the approach.

32



References

[1] M.I. Abouelhoda and A. Dawood. Fine tuning the enhanced suffix ar-
ray. In Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo
International, pages 1–4, Dec 2008.

[2] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch.
Replacing suffix trees with enhanced suffix arrays. J. of Discrete Algo-
rithms, 2(1):53–86, March 2004.

[3] MohamedIbrahim Abouelhoda, Enno Ohlebusch, and Stefan Kurtz. Op-
timal exact string matching based on suffix arrays. In AlbertoH.F. Laen-
der and ArlindoL. Oliveira, editors, String Processing and Information
Retrieval, volume 2476 of Lecture Notes in Computer Science, pages
31–43. Springer Berlin Heidelberg, 2002.

[4] A. Dudas and J. Sandor. Cache performance and efficiency factors of
parallel data structures. In Parallel and Distributed Processing with Ap-
plications (ISPA), 2012 IEEE 10th International Symposium on, pages
580–587, July 2012.

[5] Johannes Fischer. Inducing the lcp-array. In Frank Dehne, John Iacono,
and Jrg-Rdiger Sack, editors, Algorithms and Data Structures, volume
6844 of Lecture Notes in Computer Science, pages 374–385. Springer
Berlin Heidelberg, 2011.

[6] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, New
York, NY, USA, 1997.

[7] Sndor Juhsz and kos Duds. Adapting hash table design to real-life
datasets. In Proc. of the IADIS European Conference on Informatics
2009, part of the IADIS Multiconference of Computer Science and In-
formation systems 2009, pages 3–10, Algarve, Portugal, June 2009.

[8] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249–260, March 1987.

[9] Stefan Kurtz. Reducing the space requirement of suffix trees. Software
- Practice and Experience, 29:1149–1171, 1999.

33



[10] Yuta Mori. An implementation of the induced sorting algorithm.
https://sites.google.com/site/yuta256/sais/, 2010. [Online; ac-
cessed April, 2014].

[11] Enno Ohlebusch and Simon Gog. A compressed enhanced suffix array
supporting fast string matching. In Jussi Karlgren, Jorma Tarhio, and
Heikki Hyyr, editors, String Processing and Information Retrieval, vol-
ume 5721 of Lecture Notes in Computer Science, pages 51–62. Springer
Berlin Heidelberg, 2009.

[12] Chris Purcell and Tim Harris. Non-blocking hashtables with open ad-
dressing. In Pierre Fraigniaud, editor, Distributed Computing, volume
3724 of Lecture Notes in Computer Science, pages 108–121. Springer
Berlin Heidelberg, 2005.

[13] E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

34


