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Összefoglalás Ipari becslések szerint 2020-ra 50 milliárdra nő a különféle okoseszkö-
zök száma, amelyek egymással és velünk kommunikálva komplex rendszert alkotnak
a világhálón. A szinte korlátlan kapacitású számítási felhőbe azonban az egyszerű
szenzorok és mobiltelefonok mellett azok a kritikus beágyazott rendszerek – autók,
repülőgépek, gyógyászati berendezések - is bekapcsolódnak, amelyek működésén em-
beréletek múlnak. A kiberfizikai rendszerek radikálisan új lehetőségeket teremtenek :
az egymással kommunikáló autók baleseteket előzhetnek meg, az intelligens épületek
energiafogyasztása csökken.

A hagyományos kritikus beágyazott rendszerekben gyakorta alkalmazott módszer
a futási idejű ellenőrzés. Ennek célja olyan ellenőrző programok szintézise, melyek
segítségével felderíthető egy kritikus komponens hibás, a követelményektől eltérő
viselkedése a rendszer működése közben.

Kiberfizikai rendszerekben a rendelkezésre álló számítási felhő adatfeldolgozó
kapacitása, illetve a különféle szenzorok és beavatkozók lehetővé teszik, hogy több,
egymásra hierarchikusan épülő, különböző megbízhatóságú és felelősségű ellenőrzési
kört is megvalósíthassunk. Ennek értelmében a hagyományos, kritikus komponensek
nagy megbízhatóságú monitorai lokális felelősségi körben működhetnek. Mindezek
fölé (független és globális szenzoradatokra építve) olyan rendszerszintű monitorok
is megalkothatók, amelyek ugyan kevésbé megbízhatóak, de a rendszerszintű hibát
prediktíven, korábbi fázisban detektálhatják.

A TDK dolgozatban egy ilyen hierarchikus futási idejű ellenőrzést támogató, mate-
matikailag precíz keretrendszert dolgoztunk ki, amely támogatja (1) a kritikus kom-
ponensek monitorainak automatikus szintézisét egy magasszintű állapotgép alapú
formalizmusból kiindulva, (2) valamint rendszerszintű hierarchikus monitorok létreho-
zását komplex eseményfeldolgozás segítségével. A dolgozat eredményeit modellvasutak
monitorozásának (valós terepasztalon is megvalósított) esettanulmányán keresztül
demonstráljuk, amely többszintű ellenőrzés segítségével képes elkerülni a vonatok
összeütközését.
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Abstract According to industrial estimates, the number of various smart devices -
communicating with either us or each other - will rise to 50 billion, forming one of
the most complex systems on the world wide web. This network of nearly unlimited
computing power will not only consist of simple sensors and mobile phones, but also
cars, airplanes, andmedical devices on which lives depend upon. Cyber-physical systems
open up radically new opportunities: accidents can be avoided by cars communicating
with each other, and the energy consumption of smart buildings can be drastically lower,
just to name a few.

The traditional critical embedded systems often use runtime verification with the
goal of synthesizing monitoring programs to discover faulty components, whose be-
haviour differ from that of the specification.

The computing and data-processing capabilities of cyber-physical systems, coupled
with their sensors and actuators make it possible to create a hierarchical, layered
structure of high-reliability monitoring components with various responsibilities. The
traditional critical components’ high-reliability monitors’ responsibilities can be limited
to a local scope. This allows the creation of system-level monitors based on independent
and global sensory data. These monitors are less reliable, but can predict errors in
earlier stages.

This paper describes a hierarchical, mathematically precise, runtime verification
framework which supports (1) the critical components’ monitors automatic synthetisa-
tion from a high-level statechart formalism, (2) as well as the creation of hierarchical,
system-level monitors based on complex event-processing. The results are presented as
a case study of the monitoring system of a model railway track, where collisions are
avoided by using multi-level runtime verification.
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Chapter 1

Introduction

1.1 Cyber-physical systems

The design of complex cyber-physical systems is an interdisciplinary process. From an
engineering point of view, defining the requirements, designing sufficiently reliable
components, dealing with scalability issues, employing testing processes that result
in high test coverage, verifying safety critical components, and maintainability issues
are all present at the same time. Systems engineering focuses on how to design and
manage such systems. [17]

Safety-critical systems are systemswhose failure could result in loss of life, significant
property damage, or damage to the environment. There are many well known examples
in areas such as medicine, flight control, weapons industries, and nuclear systems. Many
modern information systems are becoming safety-critical in a general sense because
financial loss and even loss of life can result from their failure. Safety-critical systems will
be even more common and more influential in the future. From a software perspective,
the growing number of such systems result in the need for faster development cycles,
which will require significant advances in areas like specification, architecture, and
verification, to meet the safety requirements. [16]

1.2 Verification techniques

As modern society is becoming more and more dependent on cyber-physical systems,
the need for faultlessly working hardware and software increases. The development
of safety critical systems require extensive testing efforts. Validation and verification
methodologies have been present in the development processes of such systems for
a long time [25], but faster and more reliable approaches are needed. Validation
checks that the requirements specified for the software meet the needs of the user –
as such, validation usually can be aided, but can’t entirely be done by software. The
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point of verification is to analyse whether the specified requirements are met. Methods
for verification can be divided into two groups: design time verification and runtime
verification. These approaches aren’t exclusive, and their mutual use can support a
more robust verification process.

1.2.1 Design time verification

Design time verification is a method used for finding errors of the system before
deployment. Traditional software development methodologies usually rely on design
time approaches. Verification methods can be applied on multiple levels, from small
parts to the whole entirety of the system. These processes check the compliance of the
system against the specification of the appropriate level.
Formal verification can also be used to give proof that the verified parts match the
behaviour described by the (also formal) specification. On the other hand, applying
formal methods usually have higher costs, and the verification of complex systems can
be impossible due to the problem of state space explosion. As a result, the role of formal
methods is to verify the correct behavior of system components, and not the entire
system.

1.2.2 Runtime verification

Runtime verification is a method for the inspection of running systems. The motivation
of the approach is the complexity of design time verification. As systems are getting
larger, the application of formal methods are more and more limited as the resources
needed for verification cannot be realized. This means that formal verification methods
must verify an abstract model, not the deployed system itself. In addition, specifications
are rarely complete, and design time methods can rarely handle hardware errors.
Runtime verification uses monitors to observe certain (usually critical) components,
checking whether their operation violates properties described in the specification. The
usage of monitoring components can result in significantly smaller monitors than the
component itself as multiple levels of abstraction can be used, as long as the error states
remain distinguishable. This has the advantage of detecting the erroneous operation
of the system, and allows systematic safety engineering to handle faults, or trigger an
emergency shutdown if necessary.

1.3 Systems engineering methods

Traditional software development methods often use informal specifications to develop
system, architecture, and component level designs – which can also be informal. This
can easily result in higher verification costs or faulty systems, making them suboptimal



1.3. Systems engineering methods 3

choices for safety critical software development. To introduce a level of formality and
allow manageable, hierarchical software testing procedures, the V model was developed.

1.3.1 V model

A concept of operations is one of the initial stages in a system life cycle based on the
“Vee” diagram, illustrated in Figure 1.3.

Specification

Architectural
design

Component
design

System
test

Integration
test

Unit
test

Implementation

Validation

Figure 1.1 The traditional V model [18]

Figure 1.3 shows the stages of development, with a symbolic “V” showing the
progression. The project definition stages on the left side begin with the development
of a Concept of Operations, continue with Requirements and Architecture, and Detailed
Design. The Implementation stage is shown across the base of the “V”. The right side
shows the testing and implementation stages of a system, with an upward-pointing
arrow for progression. [18]

The V model is the basic scheme of software development. In the left of the figure,
we proceed by decomposing the specification into an architecture level design, and the
architectural design into component level designs. Every level of decomposition has it’s
own specification. After the implementation process, we verify every level’s behavior
with it’s specification.

1.3.2 Model driven software development

Model driven software development (MDSD) emphasizes problem solving by the de-
velopment and maintenance of models describing the system being designed. MDSD
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heavily relies on automated code and documentation generation based on the models
of components or the overall model of the system.

Modeling has the advantage of introducing abstractions, thus reducing the complex-
ity of the development process. Code generation guarantees that the code will inherit
the properties that can be directly derived from the model, while reducing the costs by
eliminating unnecessary round-trip engineering. The generation of documentation also
results in the always up-to-date description of components, stored together with the
requirements and the model. Furthermore, model based approaches have the advantage
of easier testability, or if the model is formal enough they can make formal verification
possible. This is especially important for the development of safety critical systems,
making MDSD notably widespread in such areas.

Various methods and tools are available for the generation of test cases and mon-
itoring components from models, as well as for formally verifying certain properties.
These tools usually support the modeling formalisms used in their application domain.

MDSD is usually accompanied by the Y model – a software life cycle model for
component based systems [6], which is based on the V model.

1.3.3 Y model

Speci�cation

Architectural
design

Component
design

Source code
generation

Acceptance
test

Architecture
tests

Component
tests

Test case
generation

Figure 1.2 A section of the Y model

The Y model [6] is an extension of the V model (which is in turn an extension of
the waterfall model) [21], by using code and test case generation. Much like the V
model, the development process is partitioned vertically. Each level contains a model
that is transformed to a verification model, on which formal methods can be applied.
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The results of the verification process can be traced back to the original models making
iterative improvement possible. The top level is for high level system models, while
the second level contains architectural models, and the third one is for component
based models. This provides input for the source code and configuration generation
for the individual components. Test cases are paired with the source code and can be
generated from the component verification models.

1.3.4 Modeling languages on di�erent abstraction levels

MDSD methods require modeling languages to describe the behavior of systems and
components. Engineering practices developed a wide range of such languages over the
years to support fast paced product development. This allows the use of domain specific
languages, which leads to a shorter modeling process but challenges formal verification
software, as their input is usually stricter and in a more general format. The result is
the need for complex model transformations before the verification can begin, which
can lead to higher development costs, or – if the transformation contains errors – even
faulty behaviour.
As a result, standardized modeling languages were developed like the UML (Unified
Modeling Language [5]) and SysML (Systems Modeling Language [4]) languages.

Finite automaton

The modeling of systems with finite state space is often done by using finite automata –
also known as finite state machines. A finite automaton accepts a (finite) list of symbols
and produces a computation of the automaton for each input list. Although finite
automata can be easily visualized, this formalism describes a simple, flat transition
system and lacks the support for higher level concepts. The development of finite
automata models are supported by many tools (e.g.: Finite State Machine Designer
[11]).

Statechart

Statecharts, also known as state machines are an extension of finite automata. There
are multiple available syntaxes for statecharts (e.g. the one defined by UML [12]). The
higher level concepts that were introduced include variables, actions, and hierarchically
nested states. Event-driven execution is also possible by using signals as the triggers
of transitions. Available variable types heavily depend on the concrete semantics of
the chosen statechart language. Actions can usually be variable assignments, signal
raises, or the setting of timers. Hierarchy lets users organize system descriptions using
a top-down approach. Support for hierarchy is introduced via nested states and parallel
regions. States can also have entry and exit actions, which allows the description of
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common functionality in parent states [20].
Statecharts are usually created by tools that support the graphical design of the model
(e.g.: Yakindu [26], an Eclipse based editor).

Message Sequence Chart

The formalism of message sequence charts (MSC) describes the communication be-
tween components – the order in which messages can occur [15] [13]. The message
interchange is usually represented by a graphical model. These charts can be used for
high level specification, design, trace based testing, or documentation. A collection of
possible sequence charts can also describe a complete communication protocol between
components. UML sequence diagrams were inspired by MSCs, but their semantics differ
regarding some of the basic elements of the language such as lifelines and arrows [14].

1.4 Model based tools

1.4.1 Eclipse Modeling Framework

The EMF project is a modeling framework and code generation facility for building tools
and other applications based on a structured data model. From a model specification
described in XMI, EMF provides tools and runtime support to produce a set of Java
classes for the model, along with a set of adapter classes that enable viewing and
command-based editing of the model, and a basic editor. [9]

1.4.2 EMF-IncQuery

EMF-IncQuery is a framework for defining declarative graph queries over EMF models,
and executing them efficiently without manual coding in an imperative programming
language such as Java. [10]

1.5 Complex event processing

Complex event processing is a method of tracking and analysing streams of information
and deriving conclusions. In a complex event processing environment, there can be
multiple event sources, and with logical patterns given by a formalism, we can find
patterns in the incoming stream, e.g. events followed by another events in some
sequence.



1.6. A hierarchical approach to runtime verification 7

Event source1

Event source2

Event sourcen

...

Complex
Event 

Processor

Logical
Patterns

Conclusions

Figure 1.3 Complex event processing overview

1.5.1 VIATRA-CEP

CEP plays an important role in the model-driven engineering (MDE) as a supporting
technique in various scenarios. The VIATRA project delivers a state-of-the-art event
processing framework for the MDE scene, called VIATRA-CEP. [24]

The VIATRA-CEP is using the EMF models, and the EMF-IncQuery graph search
engine to deliver a high throughput, model based complex event processing framework.

1.6 A hierarchical approach to runtime verification

We propose a hierarchical runtime verification approach by combining

1. traditional component-level monitors synthesized from statecharts with

2. architecture-level monitors that rely on complex event processing.

Runtime veri�cation

System level
verification

Component level
verification

Operation

System

Components

Figure 1.4 Overview of the hierarchical runtime verification system

The goals were:

• easy, high-level, and precise specification languages for capturing monitors



1.6. A hierarchical approach to runtime verification 8

• the automated synthesis of monitors

• hierarchical monitoring

The result is a hierarchical runtime verification framework which can enable verifi-
cation on two levels (Figure 1.4).

1.6.1 Low level monitoring

Low level monitoring of the components is achieved by monitors which can be generated
from statecharts. The traditional formalism was expanded by adding support for
statechart templates and parametric signals. This enables users to easily describe
systems with homogeneous components. Erroneous states and transitions can be
marked and specific handler functions can be written to deal with certain errors locally.

The monitors aim to be lightweight components, and as such use C++. After genera-
tion, they can be deployed to run in parallel with the safety critical component. The
monitor has an interface to accept signals from the system, enabling the simulation of
the desired behavior.

1.6.2 High level monitoring

The entirety of the system is monitored using a complex event processing engine. This
can monitor the messaging between components and detected errors based on the
specification of valid messaging sequences. The approach uses pattern matching to
detect faulty operation of the system. Should illegal sequences occur, error handling
operations (e.g. restart or shutdown of a component or the whole system) can be
applied to avoid the violation of safety criteria.

1.6.3 Hierarchical monitoring approach

The low level components can communicate with the system level monitor. This high
level monitor can than base it’s decisions not only on the messaging sequences between
components but also the the signals received from the component level monitors. This
way, the system level monitor can decide whether the specified safety criteria are still
met and act accordingly. The complete structure of this hierarchical approach can be
seen in Figure 1.5.
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Chapter 2

Statechart language

We propose a statechart language as the modeling method used for the runtime verifica-
tion of components. Many software is available for component generation or verification
based on statecharts. Unfortunately the available solutions for verification and modeling
provide limited syntax, and no error marking methods. Both leads to longer devel-
opment, harder maintenance, and higher costs. The developed statechart language
supports the verification of statecharts with parametric signals and timers, and enables
the creation of template based statecharts that can be instantiated with parameters.

2.1 Parametric statechart declarations

The language allows a specification to consist of multiple statecharts. This feature led to
of the main strength of the language: the definition of statechart templates, which can
be instantiated parametrically. This results in ‘ descriptions for otherwise complex, but
homogeneous systems with many similar components. Statecharts can be parametrized
by values of well known data types. Separate statecharts can communicate with each
other using signals or global variables.

2.2 Parametric signals

Signals can also be parametrized with integer type variables. These parameters can
then be used to discriminate between similarly named signal raises, which results in
more readable code, by allowing transitions to use the same signal as their trigger, when
their functionality is similar.
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2.3 Overview

For a brief overview of the basic capabilities of the language, see Figure 2.1. The
statechart describes a monitor for a round based game, where two players must press a
button after the onStart signal was raised. The player who presses the button sooner
wins. The game only ends after the second player has also made his move. The game
enters a finish state and is restarted after 500 time units – which is also the time
between the beginning of the game and the first round. The system uses a local variable
to determine which player won. In addition to this, the hardware has the capabilities
to detect whether a button is stuck during the game phase. Should such occasion occur,
the monitor enters a state called Stuck, which is marked as an error state.

Figure 2.1 A simple statechart

The description of the whole system is enclosed in a specification, which can have
multiple statecharts, signals, and global variable declarations. Each statechart consists
of a region and an optional number of local variable declarations. Regions encapsulate
states and transitions. Each region must have at least an initial state. A state itself can
have an arbitrary number of inner regions, which will run in parallel. States can also
have entry and exit actions associated with them. Transitions must have a source and a
target state, and optional triggers, guard conditions, and actions. States and transitions
can be marked with an error token to indicate that the execution of the transition or
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the activation of the state is erroneous behaviour. Actions can be variable assignments
and signal raises.

2.4 Language syntax

The language has a textual syntax that was designed to be simple without sacrificing
expressiveness. The structure aims to be conform visual statechart languages, allowing
one-to-one mapping where possible. Hierarchy is expressed by the scoping of elements.
The naming of variables is similar to the conventions used by C-style programming
languages.

2.4.1 Specification

Modelling the whole system as a single statechart would result in an overly complex
statechart. Systems can usually be described as independent components that can
communicate with each other. Therefore, an enclosing specification is used for the
description of the whole system, within which statecharts can be declared as (mostly)
independently operating components. Each specification can contain multiple state-
charts. To enable communication between statecharts, global variable declarations and
signal declarations are placed in the specification itself. For the model from Figure 2.1,
the specification of the system is:

1 specification Game {
2 signal onStart
3 signal onPress1
4 signal onPress2
5 signal onHw
6 statechart ...
7 }

2.4.2 Statecharts

The syntax for statechart definition would be in the form of:

statechart PushGame(params) {...}

where params is an optional parameter list, and {...} contains the description of
the statechart itself. The parenthesis can be omitted if no parameters were specified.
Parametrized statecharts can be created from existing templates by providing a value
for each parameter and omitting the description. Definitions without parameters are
treated as an instantiation of the statechart. The system described by Figure 2.1 has no
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need for parameters, but should an integer type parameter be required, two statecharts
could be instantiated as:

1 statechart PushInstance1 (1) := PushGame
2 statechart PushInstance2 (2) := PushGame

A specification must contain at least one instantiated statechart.

2.4.3 Regions

Statecharts are structured by the use of regions. At the root of every statechart, a region
encloses all of the states. A state can have an arbitrary number of inner regions. This
plays a fundamental part in the scoping of elements. A region can have both states and
transitions. The syntax for a region is:

region Game {...}

where the {...} is the definition of the region’s contents. Each region must contain at
least an initial state for the model to be valid.

2.4.4 State nodes

Regions can contain multiple state nodes. A state node can either be a state or a pseudo
state. States create the base structure of the model, while pseudo states help to describe
functionality. Pseudo states can either be initial-, fork-, join-, or choice states.

Figure 2.1 contains a composite state, three initial states, a composite state with
two regions, and four simple states and an error state.

States

States can either be atomic states or composite states. An atomic state is a state which
does not contain inner regions. All states can contain entry and exit actions, which are
executed when entering or exiting the state. Composite states contain one or more
inner regions, each with at least an initial state. A state’s parent state is it’s containing
region’s containing state. If the region does not have a containing state, the parent is
the region’s containing statechart. Composite states allow users to maintain a clean
model by the introduction of hierarchy, and the ability to describe common actions in
the parent state.

These states could be described without the initial states and inner transitions as:

1 state Start
2 state Finish
3 state Game {
4 region P1 {
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5 ...
6 state P1_Wait
7 ...
8 }
9 region P2 {

10 ...
11 state P2_Wait
12 ...
13 }
14 }

Initial states

Initial states can be found in all regions - if the region’s containing state is entered,
these inner states become active. An example for an initial state as used in the first
inner region of the Game state is:

1 region P1 {
2 initial state init
3 ...
4 }

Choice states

Choice states are pseudo states whose outgoing transitions have exactly one of the guard
conditions evaluating as true at all times. Choice states let the user create tree-like
transition structures with simple guards conditions on each level, instead of rewriting
similar, complex guard conditions using a single transition level. This usually results in
more readable, modifiable, and expressive models. A choice state could be expressed
as:

1 choice whichPlayerWon

Fork and join states

A fork state is a pseudo state that has a single incoming transition and any number of
outgoing transitions. The outgoing transitions cannot have triggers, guards, or actions
associated with them. If the incoming transition fires, all the outgoing transitions fire as
well, and the fork state itself is not entered. This results in the simultaneous activation
of multiple states.

A join state is a pseudo state that has a single outgoing transition and multiple
incoming transitions. The incoming transitions cannot have triggers, guards, or actions
associated with them. The outgoing transition is enabled when it’s guard is true and
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all the incoming transitions’ source states are active. Triggers can be declared on the
outgoing transition.

The system from Figure 2.1 has both a fork and a join state. They can be expressed
as:

1 region Game {
2 fork startSignalTriggered
3 join allPlayersDone
4 ...
5 }

2.4.5 Transitions

Transitions describe the possible state changes. A transition can only occur if the source
state is active. After the transition fires, the source state becomes inactive and the
target state active. Furthermore, a transition can have a trigger, a guard condition, and
an arbitrary number of actions associated with it. A simple transition is in the form of:

1 region Game {
2 ...
3 transition from Game to Start
4 ...
5 }

Transition triggers

Transitions with triggers can only fire when one of the triggering signals arrive. Defining
triggers is optional. Enabled transitions without a trigger occur on the next timestep
after the source state becomes active. The transition to the error state in Figure 2.1 has
a trigger, which can be expressed as follows:

1 region Game {
2 ...
3 transition from Game to Stuck on onHw
4 ...
5 }

Transition guards

Transitions can have guard conditions, which are expressions that evaluate to a boolean
value. If the guard condition evaluates to true, the transition is enabled, otherwise it is
blocked. If we’d like to have transition that restarts the game when player one won, it
would be (with no waiting):

1 region Game {
2 ...
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3 transition from Finish to Start [win = 1]
4 ...
5 }

Transition actions

A transition can have any number of actions associated with it. These actions are
performed when the transition fires.

2.4.6 Actions

Raising signals with or without a timeout, and variable assignments are called actions.
They represent operations that might result in a change of the model’s state.

Parametric signals

Statecharts can communicate with the outside world and each other using signals.
These signals are declared directly in the specification. Signals can be used with a single
integer parameter (which can be either a constant or a variable). This allows much
simpler syntax when dealing with communication, as a statechart can raise a signal
and pass a value simultaneusly. It also leaves room for a later expansion to a token
based automata with re-entry. A parametric signal with the integer parameter 1 could
be raised like:

1 region Game {
2 ...
3 transition from Finish to Start / raise onStart (1)
4 ...
5 }

where 1 could be an integer-type variable declaration. A signal can be referenced
multiple times, but only one transition may be taken per statechart for a raised signal.
This results in a clearer model.

Timed signals

Raising a signal can be offset by a certain amount of time. Apart from their delayed
nature, timeout- and signal references can be used interchangeably. The starting timeout
in Figure 2.1 can be raised by:

1 region Game {
2 ...
3 transition from init to Start / raise onStart after 500
4 ...
5 }

where 500 is the number of timesteps before the signal is raised.
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Variable assignments

Variable assignments can be expressed with the syntax:

1 region P1 {
2 ...
3 transition from P1_Wait to forkState / assign win := 2
4 ...
5 }

An assignment’s left hand side has to evaluate to an assignable reference, such as a
variable or an array element. The right hand side can be any valid expression.

2.4.7 Timing of transitions and actions

Transitions are fired one by one. The firing of a transition means that the triggering
signal is consumed. This can result in non-deterministic runs if two transitions share
the same trigger and can be enabled simultaneously. Such models can be created but
should be avoided, as the order of the transitions is not guaranteed. Actions related to
the current transition being taken are all executed in a single step.

2.4.8 Signaling errors, error propagation

States and transitions can be labelled as errors. For states, the syntax is:

1 region Game {
2 ...
3 state [Error buttonStuck] Stuck
4 ...
5 }

For transitions, an example would be:

1 region Game {
2 ...
3 transition [Error buttonStuck] from Game to Stuck
4 ...
5 }

The buttonStuck string is a description given by the user. This description is only
used for the generation of error messages.

2.4.9 Expressions

Variables can be used in expressions. Expressions can have an arbitrarily complex
structure within the limits of the transition system described in [23]. This allows the
use of array indexing, parenthesis, and common operators in programming languages
such as +, -, *, / – just to mention a few. Assignments’ left hand sides must reference a
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single variable while their right hand side is an expression. Logical expressions are also
available (for example expressions using comparison operators). Each expression is a
mixture of variables, constants, and operators. For a full reference, see [23].

2.4.10 Variables

Variables can either be global (accessible to all statecharts) or local (bound to a single
statechart in which they were declared). Many types are supported, like characters,
integers, and doubles. For a complete list, see [23]. Variable declarations are in the
form of:

1 statechart Game {
2 local var win : integer
3 ...
4 }

where local (or global) denotes the scope of the variable of any of the supported
types.

2.5 Formal representation

To enable formal verification of the defined systems, a mapping tool was developed that
can generate transition systems (with the syntax described in [23]) from statechart
specifications. This means that complex concepts of the model have to be flattened out.
The transition system used has the following major capabilities:

• multiple independent transition systems can be defined

• these systems are enclosed in a specification

• transition systems can use local and global variables

• the state of a transition system can be defined as a vector of all referenced variables

• multiple states can be represented by expressions that restrict certain variables’
values and leaves the rest of them unbound

• such restrictions are logical formulas with variables

• transition systems have transitions that represent changes of state using the
referenced variables previous and current values
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2.5.1 Specification

The specification of the statechart language is mapped to the specification of the
transition system. Global variables cannot be declared in the transition specification
itself, they must be referenced in each transition system that uses them. Signals will be
mapped to global variables.

2.5.2 Statecharts

Each statechart is mapped to a separate transition system. These transition systems
model systems running in parallel, which models the behaviour of the separate stat-
echarts - they define systems that can communicate with each other but are running
independently. Local variables in statecharts have the same local representation after
mapped, and need no conversion.

2.5.3 Regions

A transition system does not support hierarchical structures – they are flat models. This
means that all regions, states, and transitions inside a statechart are mapped directly
into a transition system.

2.5.4 States

States are represented as boolean variables that indicate whether a state is currently
active or not. As entry and exit actions are unknown concepts in a transition system,
these actions are propagated to all of the incoming and outgoing transitions of the state.
This way any transition that would result in the entering or exiting of the state executes
the appropriate actions.

Composite states entry and exit actions and their incoming and outgoing transitions
are propagated to the atomic states inside them. This means that only atomic states
are represented in the transition systems.

2.5.5 Transitions

Transitions between states are transitions in the transition system too. For a transition
to be enabled, guard conditions have to evaluate as TRUE for the current state of the
system, the source state has to be enabled (meaning that the source state’s boolean
variable is true), and the transition should have no trigger or the triggering signal’s
boolean variable has to be true (representing that it was raised). When the transition
fires in the formal model:

1. the exit actions,
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2. the actions associated with the transition,

3. and the entry actions of the appropriate states occur.

2.5.6 Signals

Signals can be used for communication between statecharts. As such, each transition
system that references a signal needs to be able to check whether the signal was
raised. Therefore, in the formal model signals are represented as a set of global boolean
variables. The variable is true if the signal has been raised since the previous timestep. As
each statechart referencing the same signal might react to it by the firing of a transition
triggered by the signal, a separate global boolean is used for each transition system.
Since each signal can only trigger a single transition inside any given statechart, more
complexer solutions are not needed. As signals are stored as booleans, the parameters
are stored and can be referenced as global integer variables.

2.5.7 Timeouts

Timeouts are signals that are raised with an offset in the time domain. Handling timeouts
in a transition system is a well researched area [8]. A separate timing system is created
as a transition system to generate simulate timesteps. The system has a variable that
stores the current time and each signal has a helper variable that represents when the
signal has to be raised next. If a timeout is set, the offset of the timeout is added to
the current time and this value is assigned to the helper variable. The timing system
has a constantly enabled transition which increments the current time if no timeout
can occur. For each timeout a transition is defined that is enabled when the current
time is equal to the time stored in the helper variable. When this transition happens,
the signal is raised. The helper variables are set to -1 by default to prevent false signal
raises based on timeouts.

2.5.8 Variables and expressions

Variable types are the same as in the statechart model. Global variables remain global
ones, and local variables that are declared inside statecharts are mapped to local
variables inside systems. Expressions need no further flattening as the expression
library used by the transition system language and the statechart language is the same.

2.5.9 Verification

The verification of the mapped system is based on LTL or CTL expressions. These can
be defined at the end of the mapped specification. By default, the non-reachability of
error states and transitions are the only verified properties.
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Chapter 3

Synthesis of monitors

Current methods for statechart based code generation usually result in poor quality
code. We propose a method for monitor generation based on the statechart language
described in Chapter 2 on page 10. Our approach was to generate easily readable,
extensible, object oriented C++ code, that can run in environments with limited resources
– primarily embedded systems.

3.1 Mapping of elements

3.1.1 Specification

A specification consists of separate statecharts. To simplifying their handling, a class
was created called StatechartRegistry that can automatically iterate through each
statechart and update their state one timestep at a time. This class is also responsible
for the initialization process of the monitor. The name of the class does not represent
the whole specification as global variables and signals are handled by utility classes.

3.1.2 Statecharts

Statecharts are represented as classes with lists of all their transitions, states, and
currently active states. Local variables are mapped to global ones for unified usage.
The statecharts’ names are also stored for the error signaling process. Statecharts
have functions for calculating their enabled transitions, taking enabled transitions, and
maintaining the list of active states.

3.1.3 State nodes

State nodes represent states, initial states, join states, and fork states. Their mapping
highly depends on their type.
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States

Atomic or complex states are represented by named objects. All of these objects are
derived from the State class. This object represents a state that has no entry and
exit actions. If a state has entry or exit actions, a child class is generated where the
appropriate entry and exit actions are represented as overrides for the Entry() or
Exit() function. Classes are instantiated using the states’ fully qualified names.

Initial states

Initial states are mapped to State objects. This general class also has a boolean variable
that is set to TRUE for initial states.

Fork, join, and choice states

Fork, join, and choice states are not represented in the monitoring object. These state
nodes modify the behavior of transitions, and are handled when mapping transitions.

3.1.4 Transitions

Transitions are represented as objects connecting two states. An instance of the generic
Transition class has an isEnabled() function that always returns true, and an empty
action() function that simply returns. A null-initialized list reference is also present
that can point to a list of states. The list itself is only created for fork and join states
to minimize memory usage. The triggers of the transitions are handled in a separate
mapper class and are play no role in the creation of transition objects.

Simple transitions

Transitions without actions or guards can be instances of the generic Transition class,
while transitions with guard conditions or actions are it’s children with overloaded
functions. Simple transitions have one source and one target state specified when
instantiating them.

Transitions of choice states

Transitions from, and to choice states are handled by a statechart preprocessor that
unfolds choices to simple transitions with the needed guard conditions to conserve
functionality. The call to the preprocessor is the first step of the monitor generation.
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Transitions of fork and join states

Incoming and outgoing transitions of a fork state are mapped to a single transition
with a target state reference of null. The fork’s outgoing transitions are stored in the
separate list of state references. A join state’s transitions are also mapped to a single
transition with a source state reference of null. The fork’s incoming transitions are
stored in the separate list of state references.

3.1.5 Signals

Signals are represented as instances of the Signal class, which is a class that describes
a named object containing an integer value. Raising a signal means creating an instance
with the appropriate name and parameter and putting it in a queue for processing in
the next timestep. Signals with a timeout are stored in a separate row until they should
be raised. Parameterless signals are signals with a parameter of a predefined, unused
value.

3.1.6 Actions

Raising signals and timeouts

Signals can be raised by creating a signal object and placing it in the queue for arrived
signals. Timeouts are signal raises that will occur in the future. When raising a timeout,
the appropriate signal is created and put in a queue that holds pairs of signals and
timestamps. The timestamp represents when the signal should go off.

Variables and expressions

The assignments and expressions that can be used in the statechart language are a
subset of the C++ language, so the mapping between the statechart language and the
generated monitor adds no restrictions and require no extra constructs.

3.1.7 Variables

The variable types of the statechart language are plain old data types in C++. Local
variables are converted to global variables with fully qualified names. This allows a
variable container class to be created which holds all of the variables and allows unified
usage.
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3.2 Implementation

The implementation of the monitoring component can raise many questions about
timing issues. To generate working, and easily usable code additional helper classes
and extra functions for the already described ones are required. As such, the most
important utility classes are also described in this section.

3.2.1 Timing related issues

The generated monitoring component will run on a real hardware. This means that
the system can only take a limited number of transitions per second. Aiming for a
lightweight component, there is a settable sleep and timeout period. The default
implementation of the utility classes enables the user to set this period with millisecond
precision.

For each timestep, the monitor:

1. wakes up

2. checks the future signals queue for elapsed signals

3. puts such signals in the arrived signal’s queue

4. selects a statechart

5. checks for transitions that can be fired

6. fires one of them and apply the related actions

7. updates the list of active states

8. repeats from step 5 until no transition is enabled

9. repeats from step 4 until no statechart is left

10. goes to sleep for the set sleep period

Raising signals while taking a transition puts the raised signal in a separate row that
will be switched for the currently used one before going to sleep again. This means that
only those transitions are taken whose triggers arrived in the queue before waking up.
A signal with a timeout of x means that the signal will be raised on the next awakening
after x milliseconds will have passed.
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3.2.2 Utility classes

A few utility classes are needed to keep the structure of the code more readable, or to
make the functionality more customizable. The most important classes are listed under
this section.

SignalRegistry

A class called SignalRegistry was introduced to create a thread-safe wrapper for
signals, and a maintainer of signals with timeouts.

VariableRegistry

All variables are treated as global variables. For availability and enclosure, we choose
to create a centralized class with static variables resembling each variable found in the
original statechart descriptions.

Timestamp

For easily replaceable timing settings, the handling of timing properties is done by a
separate Timestamp class. The default implementation is to use millisecond-resolution
functions and classes of std::chrono.

3.2.3 Signal pushing

The monitoring component starts in a separate thread. This means that calling the
start function will only block the current thread as long as the initialization process
is running. After starting the monitor, the SignalRegistry::SignalArrived(param)
function can be called to inject a signal with the name param into the system from the
outside world. Naturally, the SignalRegistry class is thread-safe.

3.2.4 Error signaling

The OnError(param) function is called upon reaching an error state or transition. The
param is equal to the specified message defined in the statechart model, or in case of
states that have not defined a message, the fully qualified name of the error state. The
function should be modified by the user to implement the necessary error signalling
steps of the system.
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Chapter 4

System Level Runtime Verification

In this chapter we summarize the basic concepts of System Level Runtime Verification,
overview of the Complex Event Processing approach and we suggest an intermediate
language as a formal framework of our approach

4.1 Complex Event Processing using technologies

In the proposed hierarchical runtime verification approach, the top level of modelling
and analysis is supported by a Complex Event Processing Framework.

In our project we are going to do so, and define Event Patterns at the system level.
Our choice for CEP is the VIATRA CEP, because it’s the only open source CEP with

• a live model integration,

• where you can define graph patterns to the model, and automatically generate
atomic events on the appearance and disappearance of these patterns.

VIATRA CEP uses a language called VIATRA Event Pattern Language (VEPL for
short). This language is perfect for our approach, it has intuitive syntax, and the event
patterns can be defined in a very high level. However, it is not easy to formalize as the
execution of the patterns are dependent on so called “event contexts” which makes
formalization extremely difficult.

We propose an intermediate language, to formalize the system level runtime verifica-
tion task. The proposed formalism supports the formalization of the used CEP language.
In addition, it also makes the framework more extensible as other engineering models
can be integrated above the intermediate language.

The operators of the language are shown in Table 4.1. The syntactic sugars are
shown in Table 4.2, but we are going to ignore these, since they can be translated to
the basic operators as shown in Table 4.3.
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High level

Intermediate language
 (Regular Expressions)

Executable code 
(Monitor automaton)

Figure 4.1 Formal intermediate language

We are going to introduce every step through an example, which is about the
runtime verification of a two phase lock algorithm. In the two phase locking algorithm
there are two rules :

1. Resources must be allocated in a previously defined sequence, which is the same
for all tasks

2. If a task releases a resource, it’s not allowed to allocate anything anymore.

Since this example uses resources, we have to define the following behaviour: each
resource can be allocated once before every release, and can be released once before
every allocation.

To show the usefulness of the expressiveness of our language in critical systems,
where timeouts are common, we will extend the requirements: The first phase must
finish after 10 seconds, i.e. the time between the first allocation and the first release
must be less than 10 seconds1.

4.2 Formal Intermediate language

In this section, we overview formalisms from the literature, and suggest parametric
timed region automaton as an intermediate formalism. As many of the high level
specification languages like VEPL and Sequence charts can be characterized with the

1In the final example we are going to change this, to “A resource can not be in allocated state for more
than 10 sec”, but to only have one automaton, we will use this rule right now.
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Table 4.1 Basic operators

Operator name Denotation Meaning

followed by p1 → p2 Both patterns have to appear in the specified
order.

or p1 OR p2 One of the patterns has to appear.

“infinite” multiplicity p{∗} The pattern can appear 0 to infinite times.

within timewindow p[t] Once the first element of the pattern is ob-
served (i.e. the patterns “starts to build up”),
the rest of the pattern has to be observed within
t milliseconds.

Table 4.2 Syntactic sugars

Operator name Denotation Meaning

and p1 AND p2 Both of the patterns has to appear, but
the order does not matter.

negation NOT p On atomic pattern: event instance with
the given type must not occur. On com-
plex pattern: the pattern must not match.

multiplicity p{n} The pattern has to appear n times, where
n is a positive integer.

“at least once” multiplicity p{+} The pattern has to appear at least once.

Table 4.3 Syntactic sugars mapped to basic operators

Operator name Denotation Equivalent

and p1 AND p2 ((p1→ p2) OR (p2→ p1)).
negation NOT p Σ\p, where Σ is the set of all the possible

Events.

multiplicity p{n} p→ p→ . . . p, n times.

“at least once” multiplicity p{+} p→ p{∗}
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help of regular languages, this was the motivation behind our research. Our findings
are similar to those of paper [7].

4.2.1 Regular Expression

In this particular example, we need a language to describe event sequences. To do so,
one of the most common formalism is regular expressions, where the alphabet is the
set of possible events.

Definition 4.1 Regular Expressions over an alphabet Σ (also referred to as Σ-
expressions) are defined using the following families of rules.

1. a for every letter a ∈ Σ and the special symbol ε are expressions.

2. If ϕ,ϕ1,ϕ2 are Σ-expressions then ϕ1 · ϕ2,ϕ1 ∨ ϕ2,ϕ1 ∧ ϕ2,ϕ∗ are Σ-
expressions.

To illustrate the usage of the regular expressions in the two phase locking example
we are going to describe the behaviour of one resource with a simple VEPL pattern:
(a→ r){∗}2 which means that an infinite sequences of allocation and release are allowed
after each other. This is equivalent to the regular expression : (a · r)∗.

Deterministic Finite Automaton

To match regular expressions, the most common solution is to construct an automaton
accepting the language generated by the regular expressions. Variuous algorithms exist
for the generation of deterministic finite automaton from regular expressions

Definition 4.2 An Event Automaton (Deterministic Finite Event Automaton in other
words) is a tuple 〈Q,Σ,δd , q0, F〉 where:

• Q is a finite, nonempty set. These are the states of the automaton,

• Σ is a finite, nonempty set. This is the event set of the automaton,

• δd is a subset of tuples 〈Q×Σ×Q〉, and the number of outgoing edges from
each state for each event is only one i.e. ∀q0 ∈Q and ∀e0 ∈ Σ : |〈q0, e0, q1〉|= 1,
where q1 ∈Q

• q0 ∈Q the initial state,

• F ⊆Q the set of the accepting states.

2a stands for allocating a resource and r stands for releasing a resource
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Just to illustrate the operation of the Finite Automata we can use a token assigned
to the active state.

The semantic is the following : At initialization the token is at state f0. If the token
enters state s′ where s′ ∈ F then we accept the event trace. When receiving input e,
where e ∈ Σ, if the token is on state s the next state will be s′ where δd〈s, e, s′〉. For
short, from now we will use the notation s→ s′.

The regular expression of the example can be compiled to the event automaton of
Figure 4.2.

initial
state

allocating
phase

a r a

error

a

releasing
phase

r

Figure 4.2 Event automaton for the two phase locking example

4.2.2 Timed Regular Expression

Using the previously defined semantics we can not express timed properties, but regular
expressions can be expanded to a formalism which can do so : the Timed Regular
Expressions

Definition 4.3 Timed Regular Expressions over an alphabet Σ (also referred to as
Σ-expressions) are defined using the following rules [1] .

1. a for every letter a ∈ Σ and the special symbol ε are expressions.

2. If ϕ,ϕ1,ϕ2 are Σ-expressions then ϕ1 · ϕ2,ϕ1 ∨ϕ2,ϕ1 ∧ϕ2,ϕ∗, 〈ϕ〉I , where I
is an Interval, are Σ-expressions.

With the Timed Regular Expression formalism we can extend our example to the
next level, and add the timeout. The new expression will be : (a ∗ r ∗ a)|(〈a∗〉t<10sr∗)

Timed Event Automaton

For accepting languages generated by timed regular expressions, we introduce the
timed event automaton.

Definition 4.4 A Timed Event Automaton 〈Q,Σ,δ, q0, F, t, T 〉 where

• Q,Σ, q0, and F are the same as in Definition 4.2,
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• t is a global clock variable t ∈ R,

• T is a set of local timeout clock variables, i.e. a subset of tuples 〈Q,R〉 assigning
timeouts to states.

• and δ is the union of discrete and timed transitions i.e. δt ∪δd where

– δd is defined as in Definition 4.2,

– and δt represents timed transitions and defined as the set of tuples 〈Q×
R×Q〉

The semantic of the Timed Deterministic Finite Automaton is defined as follows:
Q t ⊆Q is the set of states with outgoing timed transitions, i.e. ∀s ∈Q t : ∃δt〈s, t, s′〉,

where t ∈ R and s′ ∈Q. We have to define rules for entering states with timed outgoing
transitions and we also define the general rules of changing states.

1. Initialization Rule : On initialization of the automaton, we have to set all clocks
to∞ i.e. ∀t i∀qi T 〈qi , t i〉, t i :=∞

2. Entering Timed State Rule: On entry to state s where s ∈Q t the timeout variable ts

of the state is set according to the value of the global time and the timeout value of
the output transition t t imeout : ts := t+ t t imeout where T 〈s, ts〉 and δt〈s, t t imeouts, s′〉
where t t imeout is minimal from the set of possible t t imeouts

3. Firing Transitions Rule: Non-deterministically choose an enabled transition from
the set of enabled discrete or timed transitions. s is the currently active state, and
s′ is the next state according to δ. We have two cases, the chosen transition is:

a) Discrete Transition: In case of s′ /∈Q t than the execution of the transition is
as described formerly. If we exit state s ∈Q t by a transition in δd , then the
following rule extends the firing rule of discrete transitions by invalidating
the corresponding timeout values: ts :=∞, where T 〈ts, s〉

b) Timed Transition: The transition with the minimal timeout value is selected,
i.e. transition δt from state st where ∀q ∈ Q t : tq ≥ ts, than the following
rules apply: the global time is set t := ts, the local clock is set to infinity:
ts :=∞ and move to through δt : s→ s′ the next state according to δt .

Timed Region Automaton

We add a syntactic sugar to ease the compilation of high level languages to this inter-
mediate language. Using regions in our automaton language has the same motivation
as the application of regions in state chart formalisms.
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Definition 4.5 A Timed Region Event Automaton 〈Q,Σ,δ, q0, F, t, T 〉 where

• Q,Σ, q0, F, and t are the same as in Definition 4.4,

• T is a set of timeout clock variables for sets of states, i.e. a set of tuples 〈Reg,R〉

• and δ is the union of discrete and timed transitions i.e. δt ∪δd where

– δd is defined as in Definition 4.4,

– and δt represents timed transitions and defined as the set of tuples
〈R,R,Q〉

• For Syntactic sugar we are going to use R as short for Regions, the set of which
have outgoing timed transitions i.e. ∀Ri ∈ R,∃t,∃q ⊆ δt〈Ri , t, q〉

The semantic of the Timed Region Automaton is defined as follows: Q t ⊆Q is the
set of states with outgoing timed transitions, i.e. ∀q ∈Q t : q ∈ R.

Let us use the following notations:
s is the currently active state, and s′ is the next state according to δ.
r is the set of currently active regions, i.e. r ⊆ R where ∃rs : rs ∈ r, s ∈ rs

r ′ is the set of regions we enter, i.e. r ⊆ R where ∃rs : rs ∈ r, s′ ∈ rs

r+ ⊆ R is a set of new timed regions we just entered, i.e. r+ = r ′ \ r
r− ⊆ R is a set of timed regions we just left i.e. r− = r \ r ′

We have to define rules for the initialization of the automaton, entering states with
timed outgoing transitions and we also define the general rules of changing states.

1. Initialization Rule : At the initialization of the automaton, we have to set all clock
variables to∞ i.e. ∀t i ,∀qi , T 〈ri , t i〉, t i :=∞, where ri ∈ R

2. Entering new timed region rule : If we enter a new set of timed regions, i.e. r+ 6= ;,
we set the timers according to the timeouts, i.e. ∀t t imeout : t t imeout := t+ t i where
rt ∈ r+,∃q,δt〈rt , t i , q〉, T 〈rt , t t imeout〉

3. Firing Transition Rule: Choose an enabled transition from the set of enabled
discrete or timed transitions. We have two cases, the chosen transition is:

a) Discrete Transition: In case of r− = ; than the execution of the transition is
as in described formerly. If we exit a region i.e. r− 6= ;, then the following
rule extends the firing rule of discrete transitions: ∀ts,∀qs in δt〈ri , ts, qs〉
where ri ∈ r−, the timer of the regions are invalidated i.e. ts :=∞

b) Timed Transition: The transition with the minimal timeout value is selected,
i.e. transition ∃t i ,∃si ,δt〈ri , t i , si〉where ri ∈ r and tmin is the minimum from
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all t i, than the following rules apply: the global time is set t := tmin, the
local clock is set to infinity: ts :=∞ and move to the next state according
to δt .

Using the Timed Region Automaton we can compile our timed regular expression
(a ∗ r ∗ a)|(〈a∗〉t<10sr∗) of Figure 4.3

initial
state

allocating
phase

a r a

error

a

timeout
error

t>10

releasing
phase

r

Figure 4.3 Timed region event automaton for the two phase locking example

4.2.3 Parametric Timed Regular Expression

Complex systems usually have parametric behaviours, which can be expressed by
formalisms extended with parameters. In this section we overview such formalisms
that generate the parametric timed regular languages and an automaton formalism
accepting them.

Definition 4.6 A Parametric Timed Regular Expression is a timed regular expression
where the set of events are defined as a set of tuples. 〈Σ, P〉, where Σ is defined as
formerly and P is a set of parameters.

(a(task, resource)∗r(task, resource)∗a(task, resource))|(〈a(task, resource)∗〉t<10sr(task, resource)∗)

4.2.4 Parametric Timed Region Automaton

According to [2] we use s to denote a tuple 〈s0, . . . , sk〉. We use X → Y and+ to denote
sets of total and partial function between X and Y , respectively. We write maps (partial
functions) as [x0 7→ v0, . . . , x i 7→ vi] and the empty maps as []. Given two maps A and
B, the map override operator is defined as:

(A† B)(x) =











B(x) if x ∈ dom(B)

A(x) if x /∈ dom(B) and x ∈ dom(A)

undefined otherwise.
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Definition 4.7 (Symbols, Events, Alphabets and Traces). Let Sym= Val∪Var be the
set of all symbols (variables or values). An event is a pair 〈e, s〉 ∈ Σ× Sym∗, written
e(s). An event e(s) is ground if s ∈ Val∗. Let Event be the set of all events and GEvent
be the set of all ground events. A trace is a finite sequence of ground events. Let
Trace = GEvent∗ be the set of all traces[2].

Definition 4.8 (Substitution). The binding θ = [x0 7→ v0, . . . , x i 7→ vi] can be
applied to a symbol s and to an event e(s) as follows:

s(θ ) =

¨

θ (s) if s ∈ dom(θ )

s otherwise
e〈s0, . . . , s j〉(θ ) = e〈s0(θ ), . . . , s j(θ )〉

Definition 4.9 (Matching). Given a ground event a an event b the predicate matches
(a, b) hold if there exists a binding θ s.t. b(θ) = a. Moreover let matches(a, b) denote
the smallest such binding w.r.t v iff it exists (and is undefined otherwise)

Definition 4.10 (Configurations and Transition Relation). We define configurations
as elements o the set Config = Q × Bind. Let→⊆ Config × GEvent × Config be a
relation on configurations s.t. configurations 〈q,ϕ〉 and 〈q′,ϕ′〉 are related by the
ground event a, written 〈q,ϕ〉

a
−→ 〈q′ϕ′〉 if, and only if

∃b ∈A,∃γ ∈ Assign : (q, b,γ, q′) ∈ δ∧
matches(a, b)∧ϕ′ = γ(ϕ † match(a, b))

Let the transition relation→E be the smallest relation containing→ such that for any
event a and configuration c if >c′ : c

a
−→ c′ then c

a
−→E c. The relation→E is lifted to

traces. For any two configurations c and c′, c
ε
−→E c holds, and

a.τ
−→E c′ holds if there

exist a configuration c′ s.t. c
a
−→E c′′

τ
−→E c′

Definition 4.11 A Parametric Timed Region Event Automaton 〈Q,Σ,δ, q0, F, t, T 〉
where

• Q,Σ, q0, F, and t are the same as in Definition 4.5,

• T is a set of timeout clock variables for sets of states, for each token, i.e. a set
of tuples 〈R,R, B〉, where B is a binding

• and δ is the union of discrete and timed transitions i.e. δt ∪δd where

– δd is defined as in Definition 4.5,
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– and δt represents timed transitions and defined as the set of tuples 〈R×
R×Q〉

We give the following semantics to the Parametric Timed Region Automaton:
We have to define rules for the initialization of the automaton, entering states with

timed outgoing transitions and we also define the general rules of changing states.

1. Initialization Rule : On initialization of the automaton, T is an empty set i.e.
T = ;

2. Entering new timed region rule : If we enter a new set of timed regions, with a
token with binding b i.e. r+ 6= ;, we set the timers according to the timeouts, i.e.
∀t t imeout : t t imeout := t + t i where rt ∈ r+,∃q,δt〈rt , t i , q〉, T 〈rt , b, t t imeout〉

3. Firing Transitions Rule: Choose an enabled transition from the set of enabled
discrete or timed transitions. We have two cases, the chosen transition is:

a) Discrete Transition: In case of r− = ; than the execution of the transition
is as in described formerly. If else if we exit a region i.e. r− = ;, then
the following rule extends the firing rule of discrete transitions: ∀ts,∀qs

in δt〈ri , ts, qs〉 where ri ∈ r−, the timer of the regions are invalidated i.e.
ts :=∞

b) Timed Transition: The transition with the minimal timeout value is selected,
i.e. transition ∃t i ,∃si ,δt〈ri , t i , si〉where ri ∈ r and tmin is the minimum from
all t i, than the following rules apply: the global time is set t := tmin, the
local clock is set to infinity: ts :=∞ and move to the next state according
to δt .

The automaton of expression (a(task, resource)∗r(task, resource)∗a(task, resource))|(〈a(task, resource)∗〉t<10sr(task, resource)∗)
is shown on Figure 4.4

4.3 Examples of Complex Event Processing

4.3.1 File System

Problem

File system - A file shouldn’t be read when it has been opened for writing, and shouldn’t
be written, when opened for reading. A file shouldn’t be opened for writing and reading
without a close event between the two different opens [19]. The possible parametrized
events are : Open(file, mode), Close(file), Read(file), Write(file). Mode is either "R" or
"W" which stands for Read and Write respectively.
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initial
state

allocating
phase

a(t,-) r(t,-) a(t,-)

error

a(t,-)

releasing
phase

r(t,-)

Figure 4.4 Timed region event automaton for the two phase locking example

Solution

We are looking for these patterns :

• open(f,"W")→ NOT close(f){∗} → open(f,"R");

• open(f,"R")→ NOT close(f){∗} → open(f,"W");

• open(f,"W")→ NOT close(f){∗} → read(f);

• open(f,"R")→ NOT close(f){∗} → write(f);

These event patterns can be matched with the automaton seen on Figure 4.5

initial
state

allocating
phase

a(t,-) r(t,-) a(t,-)

error

a(t,-)

releasing
phase

r(t,-)

Figure 4.5 Automaton of the file example



4.4. Implementation 37

4.3.2 Mars Rover Tasking - Two phase locking

Problem

In concurrent systems the avoidance of deadlocks and livelocks are an utmost importance.
To solve this problem, one of the many patterns is the two phase locking - which can
be defined by two rules. These rules are :

1. Every task must allocate the resources in a given order.

2. If a task releases a resource, it can’t allocate anymore

Solution

Since our implementation doesn’t support guards yet we can only use constant amount
of resources. For this example, this amount will be set to two, to minimize the model
of the example. The Item 1 pattern can be matched with the Figure 4.6, and the Item 2

initial alloc

allocate(t, r)

release

release(t, r) allocate(t, r)

realloc

Figure 4.6 Automaton to forbid the reallocation

allocate(t, r2) allocate(t, r1)

Figure 4.7 Automaton to forbid inverse allocation

4.4 Implementation

4.4.1 Metamodel

Finite Automaton

The event automaton is represented with the State, Transition, and EventGuard classes.
Every State has a boolean flag
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Figure 4.8 Metamodel of the Impementation in EMF

Timing

The timing is done by Timed Regions

Parameters and Bindings

4.4.2 Executor

The algorithm first searches for all the activated transitions. If it finds an activated
transition, it iterates over the tokens which are on the state. The first token with
matching (non-confronting) parameter list will be split to the next state if there are
new parameter bindings from the event, or moved if there are no new bindings. If a
token enters an acceptor state it’ll next state
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Chapter 5

Case study

The goal of our case study introduced in this chapter is to show the application and
an example of our hierarchical runtime verification framework. The motivation of this
study was the related report from 2014 [3], where the goal was a distributed, model
based security logic. The work of [3] focused on the model driven development of a
safety logic and its application in the Model Railway Project. Our work builds on the
hardware and software presented in [3] and extends it with the runtime verification of:

• The safety logic in the embedded controllers.

• The correctness of the overall system.

Runtime veri�cation

VIATRA
CEP

C++
monitors

Operation

Safety logic

Hardware

Railway

Safety logic

Arduino

Figure 5.1 The configuration of the case study
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5.1 System level observation with computer vision

5.1.1 Hardware

In case of a computer vision (CV) based approach, it is critical to choose the appropriate
hardware. We had two parameters in the selection of the camera: height above the
board, and FOV. The camera we used have these parameters:

• Resolution: 1920x1080

• Horitontal FOV: 120°

The camera have an installation height of 120cm. This is a perfect value for using
the case study in any room, and not suffer serious perspective distortions.

5.1.2 OpenCV

One key point of this study from the technological viewpoint is computer vision. It is a
new extension of the hardware, which allows us to monitor the board with fairly big
precision and reliability, if the correct techniques and materials are used.

We needed a fast, reliable, efficient library to use with the camera, and develop
the detection algorithm. Our choice was the OpenCV1 library, which is an industry
leading, open source computer vision library. It implements various algorithms with
effective implementation e.g. using the latest streaming vector instruction sets. The
main programming language – and what we used – is C++, but it has many binding
to other popular languages like Java, and Python.

5.1.3 Marker design

One of the steps of the CV implementation was the design of the markers, which should
provide an easy detection, and identification of the marked objects.

The first step was to consider the usage of an external library, named ArUco2. This
library provides the generation and detection library of markers. The problem with the
library was the lack of tolerance in quality, and motion blur. Because these negative
properties of the existing libraries, we implemented a marker detection algorithm for
our needs.

After the implementation was in our hands, we could make markers which suits our
needs. The chosen size of the markers was the size of the model railroad car’s width as
it provides the proper accuracy.

1http://opencv.org/
2http://www.uco.es/investiga/grupos/ava/node/26

http://opencv.org/
http://www.uco.es/investiga/grupos/ava/node/26
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As explained in Section 5.1.4, circular patterns are well suited for CV recognition
applications. The final design consists of two detection circles, with a colored circle for
the purpose of identification between them (Figure 5.2).

Figure 5.2 The final marker design

5.1.4 Mathematical solution for marker detection

According to the various lighting conditions and used materials, the marker detection
has to be robust. Also, the fact that these markers have perspective distortion when
they are near the edges of the visible region of the camera, required the application of
signal processing techniques.

This method is commonly used for transforming and processing a signal – in our
case a picture – in the frequency domain.

Convolution method

Our method is based on the convolution of two bitmap images, one from the camera,
and one from the generated pattern.

According to the theorem, we can multiply two spectrums and apply an inverse
Fourier transformation to get the convoluted image. If one image is the pattern, the
other image is the raw3. Applying the convolution results in an image where every
pixel represents the value how much the two spectrums match.

Pattern bitmap properties

The prerequisite for the pattern is that the size of the pattern and the size of the raw
image must match, and the raw must be a grayscale image.

The pattern itself needs to be generated with values in accordance to the shape
we would like to match (Figure 5.3). The raw pixels are multiplied by this value. The
meaning of the resulting values are the following:

• value = 0: Doesn’t affect the match.

3In our application raw (or raw image) means the unprocessed image from the camera
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• value > 0: The multiplied raw pixel summed positively to the result of the
convolution.

• value < 0: The multiplied raw pixel summed negatively to the result of the
convolution.

−1

0

1

Figure 5.3 Example for pattern bitmap placement and value

5.1.5 Software

With the OpenCV library, we implemented a processing pipeline which can process
the live video feed of the camera. The data is forwarded to the high level safety logic,
which can decide what actions should be taken. The Table 5.1 shows all the essential
steps in the processing pipeline of computer vision.

We used GPU acceleration through pipeline stage 1–4. The acceleration is imple-
mented by OpenCV, and can be used with CUDA capable NVidia video accelerators.

5.1.6 Summary

With this implementation, we can follow the system in real-time, providing the high-
level logic with an additional, independent source of information. This leads to a more
robust system with added redundancy.
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Table 5.1 Computer vision processing pipeline

Stage # Description Example images

1
Loading an image from the
camera

2 Convert the image to grayscale

3
Convolve the image with the
pattern

Stage # Description

4 Applying a threshold to filter the brightest spots

5 Finding the contours of the enclosed shapes

6 Calculating the center point of the contours

7 Finding possible markers by distance

8 Identifying the marker by the center
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5.2 Model railroad

In the following section, a briefly overview of the structure of the railroad and the
controlling hardware is given.

5.2.1 Overview

The model railroad (Figure 5.4) contains the following hardware elements:

• 15 powerable sections

• 6 railroad switchs

• 6 Arduino controllers for each switch

• 3 remotely controllable trains

Figure 5.4 The railroad network with section IDs
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5.2.2 Hardware

The core of the hardware are the Arduino microcontrollers, which collect information
and control the sections. For every railroad switch there is an associated controller
which can control the power of the sections nearby, using the slave units connected to
it (Figure 5.5).

Figure 5.5 Master-slave associations

5.3 Metamodel design

In this section we develop the metamodel of the system for the physical hardware. The
safety logic is based on this logical model – as a result, a model with many details of
the physical world is needed.

5.3.1 Physical elements

The computer vision provides an external source of information for the system level
logics. The CV forwards a train ID (determined by the marker color) and a position
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(x-y coordinates) to the model, and we must discretize this information in order to
make it searchable by the safety logic for hazardous events.

The main components of the physical system are:

• Section: Either a rail or a railroad switch. Every section has a distinctive identifier.

• Rail: A rail is a variable length curve. The main challenge is the determination of
the next section. Only rails can be powered down, so the safety logic must act
when the train is on a rail.

• Railroad switch: The switch is a region, where we know the entry and exit
section by its setting. The switch is always powered, which means that the trains
cannot be affected while on the switch. The basic concepts are:

– A switch consists of three rails: a central, a divergent and a straight rail.

– Straight rail: The straight rail follows the central rail without a curve.

– Divergent rail: The divergent rail moves away from the imaginary line of
the central rail.

Divergent

Straight

Figure 5.6 The switch’s straight, and divergent rails

5.3.2 Metamodeling the physical elements

After specifying the physical elements and their properties, the logical concept of the
model elements and their connections had to be uncovered.

A bottom-up structure was followed because it aids the graph search (Section 5.3.6),
and helps the review of the main components of the logical elements.

1. SectionModel: The root of the board model. It is separated from trains as the
root element is persisted, and loaded at every start of the application, while the
TrainModel is dynamic (Figure 5.9)(Figure 5.10)(Figure 5.8).
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Enabled
section

Enabled
section

Disabled
section

Figure 5.7 Enabled-disabled section explanation

a) Configuration: Contains the enabled groups of the switch. The Divergent-
Configuration and StraightConfiguration are exactly the same as the Config-
uration. They are only presented in the metamodel because they allow the
easier use of IncQuery patterns (Section 5.3.6) (Figure 5.11).

b) SwitchSetting: Contains a straight, and a divergent configuration (Fig-
ure 5.11).

c) Region: The atomic abstract element of the model. The region is the smallest
unit of measurement (Figure 5.9).

d) SectionRegion: Specialized region, which is a part of a powerable group.
Only powerable sections can stop a train (Figure 5.9).

e) RailRegion: Specialized region. Because the exact position inside a switch
is unessential, the entire area of the switch is declared as one region (Fig-
ure 5.9).

f) Group: A group is a collection of regions (Figure 5.9).

g) PowerableGroup: A collection of regions which can be shut of. The equiva-
lent to one rail in the modelled study (Figure 5.9).

h) SwitchGroup: A group of exactly one SwichRegion. Has a reference to a
Configuration, describing the current switch settings (Figure 5.9).
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2. TrainModel: The root of all train elements (Figure 5.10).

a) Train: The train representation with an unique ID, the current and previous
region (Item 1c), and the next group (Item 1f) determined by the current,
and previous region (Figure 5.10).

Figure 5.8 The group view of the metamodel of the Model Railway Project model



5.3. Metamodel design 49

Figure 5.9 The section view of the metamodel of the Model Railway Project model
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Figure 5.10 The train view of the Model Railway Project model
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Figure 5.11 The settings view of the Model Railway Project model
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5.3.3 Using the Eclipse Modeling Framework

We used EMF to develop the metamodel of the railway. The main reason for the usage
of this modeling tool is that it allows the use of IncQuery. A few other reasons are:

• Besides the POJO4, EMF can generate an Eclipse based editor for the model,
where we can add/remove/edit all of the elements and their properties easily.
The editor always checks the whether the model is well formed, and marks any
problematic elements.

• The framework ensures that all of the used references are valid by updating them
automatically.

• The declaration of opposing edges are also valid – these are two-way references
between objects. The framework will maintain these references e.g. if we assign
object A to object B, if they have a bidirectional reference between them, the
EMF will automatically update the other side of the reference, in our case the
reference from A to B.

5.3.4 Building the EMF model

After the conceptual design of the model, the EMF model had to be designed.
When building EMF models, it is important that every element must be a part of

exactly one containment tree. If an element is not in a tree or it is in multiple tree, the
serialization process fails. In Section 5.3.2 the TrainModel and SectionModel represents
the root of the model.

5.3.5 Using EMF-IncQuery

The motivation for the use of IncQuery is the graph based nature of the problem. The
railway can be depicted as a graph, and hazardous patterns can be described e.g. a
train’s next section is the next section of an opposing train. These scenarios can be
described declaratively by IncQuery patterns, reducing the possibility of a coding failure.

The other advantage of using the IncQuery framework is it’s scalability. The IncQuery
framework – as its name suggest: incremental query – is a fast, caching query engine
based on the RETE algorithm. The framework can effectively follow changes in huge
environments.

5.3.6 Building the IncQuery patterns

Let us examine the patterns providing the essential filtering of hazardous patterns in
the environment.

4Plain Old Java Object
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1 pattern trainAtNextGroup(t1: Train) {
2 Train.nextGroup(t1, ng);
3
4 Train(t2);
5 t1 != t2;
6
7 Train.currentlyOn(t2, co);
8 Group.regions(ng, co);
9 }

Listing 5.1 Collision detection

Listing 5.1 shows an IncQuery example. This pattern matches the next group of t1
– if not null, e.g. the train is stationary – which has a different train on it (t2).

This example clearly represents the advantages of a declarative approach. With the
right metamodel an incrementally executed scalable pattern can be designed with only
5 lines of code.

1 pattern trainAtNextPowerable(t1: Train) {
2 Train.nextGroup(t1, ng);
3 Train.currentlyOn(t1, t1co);
4
5 SwitchGroup(ng);
6 SwitchGroup.configuration.enabled(ng, enabled);
7 enabled != t1co;
8
9 Train(t2);

10 t1 != t2;
11 Train.currentlyOn(t2, t2co);
12 Group.regions(t2g , t2co);
13
14 enabled == t2g;
15 }

Listing 5.2 Collision detection
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Listing 5.3 is a pattern for finding the next powerable group in the direction of travel.
This is a necessity as trains cannot stop on switch groups. With Listing 5.1 hazardous
situations in the next group can be filtered, but if the train is on a switch, it might crash.
This pattern is specialized in the case of a train going towards a switch. The other side
of the switch is examined. If any train is present, the pattern will match, switching the
power off the section.

1 pattern trainFromDisabled(t: Train) {
2 SwitchGroup(sg);
3 SwitchGroup.regions(sg, region);
4 SwitchGroup.configuration.enabled(sg, enabled);
5 region != enabled;
6
7 Train.currentlyOn(t, region);
8 Train.nextGroup(t, sg);
9 }

Listing 5.3 Collision detection

5.4 Component-monitor integration

The related study [3] implemented a model based security logic. With the use of the
statechart language presented in Chapter 2 on page 10, we can monitor the state and
execution of the model, and verify it on a higher level. In this example, we break the
execution of the safety logic into two parts:

• Monitoring the execution engine: Execution errors (entry to error states) are
detected by the monitors. The resolution of the monitoring is set to 1 second.

• Monitoring the transitions of the model: If the safety logic cannot access it’s
sensors, or communicate, the model execution will stop because of the lack of
input. This behavior can be detected.

clk

signals: clk

StateChart

entry: raise clk 
           after 1000

Figure 5.12 Clock generation state chart
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5.4.1 Monitor statecharts

Check

onAlive / x:=1

clk [x=0]
EXEC

ERROR

[x!=0] / x:=0

variables: x
signals: onAlive, clk

StateChart aliveSC

Check

onTransition / x:=1

clk [x=0]
HANG
ERROR

[x!=0] / x:=0

variables: x
signals: onTransition, clk

StateChart transitionSC

Figure 5.13 Error detection state machines

Figure 5.12, and Figure 5.13 show the concept of our monitor statechart. The
statechart clockGen generates a periodic clock sign of 1s. In the statecharts aliveSC and
transitionSC we use this clock signal as a timing event. If the expected signals are not
triggered between two clock cycles, the statechart steps into an error state.

1 specification transitionSpec {
2 signal clk
3 statechart clockSC {
4 region clockSC {
5 initial state i
6 state clock {
7 entry: raise clk after 1000
8 }
9 transition from clock to clock on clk

10 }
11 }
12 }

Listing 5.4 Statechart representation of clock generation
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1 specification transitionSpec {
2 signal clk
3 signal onTransition
4 statechart transitionSC {
5 local x : integer
6 region transitionSC {
7 initial state i
8 state Check
9 state HangError

10 choice errorDetection
11 transition from i to Check
12 transition from Check to errorDetection on clk
13 transition from errorDetection to HangError [x=0]
14 transition from errorDetection to Check [x/=0] / assign x

:=0
15 transition from Check to Check on onTransition / assign x

:=1
16 }
17 }
18 }

Listing 5.5 Statechart representation of hang error detection

1 specification aliveSpec {
2 signal clk
3 signal onAlive
4 statechart aliveSC {
5 local x : integer
6 region aliveSC {
7 initial state i
8 state Check
9 state ExecError

10 choice errorDetection
11 transition from i to Check
12 transition from Check to errorDetection on clk
13 transition from errorDetection to ExecError [x=0]
14 transition from errorDetection to Check [x/=0] / assign x

:=0
15 transition from Check to Check on onAlive / assign x:=1
16 }
17 }
18 }

Listing 5.6 Statechart representation of hang error detection
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5.4.2 Generated VEPL

The statecharts’ definitions from Section 5.4.1 generates a VEPL pattern for the system
monitor component, therefore we can write patterns, and define actions for pattern
matches.

1 package hu.bme.mit.tdk2015.critcyber.vepl
2
3 AtomicEvent ExecError(id: String)
4 AtomicEvent HangError(id: String)

Listing 5.7 Generated VEPL definition

The generated stub (Listing 5.7) contains the error states of the statechart as
AtomicEvents. With these events, a complex event processing pattern can be built.

1 package hu.bme.mit.tdk2015.critcyber.vepl
2
3 AtomicEvent ExecError(id: String)
4 AtomicEvent HangError(id: String)
5
6 rule ExecErrorRule on ExecError {
7 System.out.println("Error source id: " + ruleInstance.atom.

parameterTable.parameterBindings.head.value);
8 ErrorHandler :: handleExecError(ruleInstance.atom.parameterTable.

parameterBindings.head.value)
9 }

10
11 rule HangErrorRule on HangError {
12 System.out.println("Error source id: " + ruleInstance.atom.

parameterTable.parameterBindings.head.value);
13 ErrorHandler :: handleHangError(ruleInstance.atom.parameterTable.

parameterBindings.head.value)
14 }

Listing 5.8 Extended VEPL definition

With Listing 5.8, a very simple pattern is used to match the generated events, and
handle them by defining rules without any conditions. Events can be parametrized, so
an event itself can mark the source of the validation error. The ErrorHandler class is
needed because the model cannot be accessed from the rule, therefore a static class
is needed which can modify the state of the model. For example, if the static method
handleHangError sets the safe attribute of the Group with the id we can fetch from
the event representing the error state, the Listing 5.9 pattern can match.
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1 pattern trainReachUnsafe(t: Train) {
2 Train.nextGroup(t, ng);
3 Group.safe(ng, safe);
4 check(safe == false);
5 } or {
6 Train.currentlyOn(t, co);
7 Group.regions(g, co);
8
9 Train.nextGroup(t, ng);

10 PowerableGroup(ng);
11 find regionNeighbour(ng, nng);
12 nng != g;
13
14 Group.safe(nng , nng_safe);
15 nng_safe == true;
16 } or {
17 Train.currentlyOn(t, co);
18 Group.regions(g, co);
19
20 Train.nextGroup(t, ng);
21 SwitchGroup(ng);
22 SwitchGroup.configuration.enabled(ng, enabled);
23 enabled != g;
24
25 Group.safe(enabled , nng_safe);
26 nng_safe == true;
27 }

Listing 5.9 Collision detection

This pattern filters those trains whose second next track is unsafe. The middle
rail is needed for buffering because we cannot be sure about the unsafe track state
(Figure 5.15), and if another train is coming in the opposing direction, there is a chance
that it cannot be stopped. As a result, the insertion of the middle track is a necessity
to prevent collisions (Figure 5.14). This is an example of runtime verification: we get
notified about the component failures, and the higher level logic can act before the
catastrophe.
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Figure 5.14 Safe configuration. The train from the failed group can be stopped on
the buffer rail.

Figure 5.15 Unsafe configuration. If a train comes in the opposing direction, they will
crash.

5.5 Summary

The Train Benchmark[22] shows a similar railroad application with IncQuery based
pattern matching. Their benchmark showed IncQuery can match patterns on a similar
railroad model with element sizes over 80 million under 100 milliseconds after the
initial caching.
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Chapter 6

Conclusion

Cyber physical and safety critical systems are difficult to analyse at design time, so
various techniques need to be applied during the development and operation. In our
work, we focus on the analysis of such systems during their operation.

In this report we introduce the concept of hierarchical runtime verification to extend
the traditional model driven development methodology with a model driven runtime
verification approach.

Our framework combines the advantages of various modeling languages and
provides engineers with the ability to use familiar modeling formalisms to design the
properties to be analysed runtime. In addition, our approach supports the hierarchical
composition of the various runtime verification tasks to provide system level assurance
of safety properties.

For a proof of concept implementation, we integrated statechart based component
level runtime verification with a complex event processing based high level formalism.
In our work we also aimed to eliminate the disadvantages of the approaches used at
different levels of verification. The low level componentwise monitoring is supported
with a well-established statechart formalism, which is also formalised with the help
of transition systems. This formalization enables us to extend our framework and
provide the formal analysis of the runtime verification properties. To take a further
step in this direction, an intermediate formal language is proposed to be under the
high level (system level) engineering modeling language. The intermediate language
also supports the further extension of the framework with other high level modeling
languages.

We illustrated the applicability of our approach with the help of a case-study.
In addition, our framework is used for educational purposes to illustrate runtime
verification at the courses of the department.
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