
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Csongor Pilinszki-Nagy

Optimizing Hierarchical
Temporal Memory for Sequence

Learning

Supervisor:
Bálint Gyires-Tóth, PhD

October 29, 2018

Kivonat

A Hierarchikus Temporális Memória (HTM) egy olyan gépi tanulási módszer,

amely az agykéreg működésének újszerű elméletét használja fel. Ez az elmélet

többek között új megközeĺıtést ad arra, hogy mit jelent az intelligencia és hogyan

működik az emberi agy ezen része. Az elmélet szerint a agykéreg egy olyan

homogén rendszer, amely különböző absztrakciós rétegek hierarchiájába ren-

deződik, melyek ugyanazt az időalapú minta-tanulást végzik. Ennek a hierar-

chiának csak egy részét kell megfejteni ahhoz, hogy megértsék és lemásolják az

emberi szintű általános intelligenciát. A HTM egy új t́ıpusú neurális hálózatnak

tekinthető; alkalmas idősorokból való tanulásra anélkül, hogy a hálózat be-

mentéhez biztośıtani kellene az összes korábbi bemenetet.

Habár a téma még nem hozott olyan látványos eredményeket, mint amit a

mély neurális hálózatoknál láthattunk az elmúlt években, mindamellett rendḱıvül

erős gépi tanulási módszernek bizonyulhat. A leǵıgéretesebb eredmények a Nu-

menta csoport publikációiból és könyvéből származtak; a Biological and Machine

Intelligence, amelyben beszámolnak kutatási eredményeikről és egy lehetséges

megvalóśıtást is nyújtanak. Ez a NuPIC nevű program Python-ban, amely be-

mutatja az ilyen t́ıpusú hálózatok tanulási képességeit. Ennek az elméletnek

azonban jelenleg nincs publikált optimalizált megoldása.

A HTM hálózatot ritka mátrix reprezentációt igényel, vagyis annak ele-

meinek csak egy kis hányada nem nulla értékű. Ez a fajta ritka mátrix szükségessé

teszi az új t́ıpusú ritka mátrix operátorokat, amelyek nincsenek megfelelően im-

plementálva az elterjedtebb gépi tanuló keretrendszerekben. Továbbá a jelen-

legi megvalóśıtás nem alkalmaz nagymértékben párhuzamos hardvert, mint a

grafikus processzorok (GPU), amelyek jelentős módon hozzájárultak a gépi és

mély tanulás által elért eredményekhez.

Jelen munkámban ezekre a problémákra szeretnék megoldást nyújtani, im-

plementálni egy optimalizált alap HTM hálózatot, a GPU-kon végrehajtott

ritka mátrix műveletek használatával, és összehasonĺıtani őket a szekvenciális

tanulással a jelenlegi LSTM-ek (Long Short-Term Memory) seǵıtségével. A

1

HTM hálózatok belső mechanizmusának vizsgálata és a teljeśıtményének kiértékelése

szintén része a munkámnak.

2

Abstract

Hierarchical Temporal Memory (HTM) is a machine learning method that uti-

lizes the theory of how the neocortex functions. This theory presents a novel

approach as to what it means to be intelligent and what are the core principles

of this part of the human brain. It suggests that the neocortex is a homoge-

neous system arranged into a hierarchy of different abstraction layers, which do

the same time-based pattern learning. Only one section of this hierarchy needs

to be reverse engineered to understand and reimplement a human-like general

intelligence. The HTM can be considered as a novel type of neural networks; it

is suited to learn from sequential input, without providing the whole history of

inputs to the network.

There has not been as much research on this topic as on deep learning, how-

ever, it could also be a powerful machine learning method. The most promising

results came from Numenta group and their book; the Biological and Machine

Intelligence, which described their progress and possible implementations exten-

sively. They also published a simple implementation called NuPic in Python,

which demonstrates the learning capabilities of this type of network. However,

there is no published optimized implementation of this theory, which I would

like to contribute to during my research.

The main challenges are: a much more complex network structure, which

requires more work to express as parallel operations. The network is represented

in sparse matrices, meaning it only has a small fraction of its values are different

from zero. This type of sparseness requires a new type of sparse operators, which

are not well implemented in mainstream machine learning libraries. Finally,

no implementation uses massively parallel hardware, like Graphical Processing

Units, which are behind the current developments of machine learning.

In the current work, I would like to address these problems, implement an

optimized version of baseline HTM networks, using sparse operations executed

on GPUs and compare them on sequence learning with the current state of

the art LSTMs. Investigation of the inner mechanism of HTM networks and

3

evaluation of their performance are also part of my work.

4

Contents

1 Introduction 7

2 Deep learning background 11

2.1 Neural networks . 11

2.2 Recurrent neural networks . 11

2.3 Long Short-Term Memory . 12

3 HTM background 14

3.1 HTM overview . 14

Human brain model . 14

Basic HTM network . 14

HTM core principle . 16

3.2 HTM training . 17

Segments and synapses . 17

Hebbian learning . 18

3.3 Sparse Distributed Representation (SDR) 19

Bit arrays . 19

SDR capacity and comparison . 20

SDR overlap sets and subsampling 22

SDR sets and unions . 22

3.4 Encoding . 23

Scalar encoding . 23

3.5 Spatial pooling . 23

Input and output . 23

Columns . 24

Connections . 24

Inhibition . 25

Boosting . 26

Learning . 26

3.6 Temporal Memory . 27

5

Input and output . 27

Cells . 28

Connections . 30

Bursting . 30

Winner cells . 31

Training . 32

4 Proposed work 34

5 LSTM baseline 36

5.1 Network structure . 36

6 Methodology 37

6.1 Scalar encoder . 38

6.2 Spatial pooler . 39

6.3 Temporal memory . 39

6.4 Linear layer . 40

7 Experiments 41

8 Future work 43

9 Summary 44

References 47

Abbreviations 48

Acknowledgements 49

6

1 Introduction

Machine learning gained extraordinary popularity in the last decade, thanks to

both research progress and the advancements of computational power. These

changes led to achievements that weren’t imaginable before. However, these

solutions require an enormous amount of data and computational power to

train, especially when training on multimedia, like photos or videos. In the case

of sequence learning the length of the learned sequences presents additional

challenges. A shorter learning horizon can miss essential correlations in data,

while longer might be inefficient. There have been attempts to counter this

by sharing resources through cloud services to spread the costs related and

also transfer learning which enables only partial training of these vast models.

Unfortunately, these solutions are still computationally expensive and not so

effective compared to what the human brain is capable of.

When people talk about neural networks, it is understood that the structure

of those resembles the human brain’s intelligence or nerve system. However,

Numenta argues that this is not the case, current neural networks have little

or nothing to do with how the human brain or nervous system works. They

say that there are fundamental differences between current neural networks and

the human brain.[Haw+16] Some of the problems current neural networks suffer

from are overfitting, vanishing or exploding gradients, false positives or just the

general amount of computation needed to train with many epochs. According

to Numenta first we need to understand how the human brain works, then we

could implement such a system that works on those principles that make us

truly intelligent.

The Hierarchical Temporal Memory (HTM) network has some apparent,

currently mostly theoretical advantages over the regular feedforward neural

networks. It is a simpler structure that uses binary activations, binary con-

nections and a simpler method for training, i.e., updating those connections

during learning. This simplicity comes at a cost, this network has more neurons

than a feedforward network, since the neuron activity is always low. However,

7

Figure 1: Real and artificial neural networks, Source: [Num]

this sparseness can be used to make this network more efficient.

Numerous changes need to be implemented for such a network. Some of

those resemble well-known operations from other networks like max pooling

in convolutional neural networks.[L+95] In Figure 1 it can be seen how an

HTM cell models a real neuron. It receives inputs from three sources: the

Feedforward input, the Context representation and the Feedback information

from cell higher on the hierarchy. First, the encoding of data needs to change.

Instead of the apparent one-hot encoding, there is a more efficient encoding

that retains the semantic information and also remains efficient, and it is called

Sparse Distributed Representation (SDR). Every data can be represented as an

SDR of a combination of those. In Figure 2 there are two different encodings.

The one-hot encoding uses N bits to represent N classes, and for every class one

bit is active. In the SDR case, there are buckets which can be classes or scalar

ranges. For each of these buckets, a few adjacent bits are active. This encoding

has favorable properties over the usual one-hot encoding, which produce too

8

much overhead or densely packed representations of data which are prone to

false positives in the inference phase. More on the SDR representation in the

HTM - SDRs subsection.

Figure 2: Encoding differences

Then comes the Hierarchical Temporal Memory which is the system per-

fected by the research of Numenta, and also currently under massive devel-

opment. This is still far from a final product, but they managed to create a

demonstration system which can handle temporal data exceptionally. The HTM

network only accepts SDR inputs, so an encoder is always needed. It consists

of two parts a Spatial Pooler and a Temporal Memory part. The first part is

responsible for the normalization of data while reserving its spatial and seman-

tical meaning. The second part learns the temporal patterns and is capable of

coding the context of the current input in a way that makes different sequences

distinguishable.

After the spatial pooler coded what the network sees and Temporal Memory

the context, an SDR classifier needs to decide what the next element in the

sequence is going to be.

9

All the layers described here use Hebbian learning which means separable

learning for every layer. This method gets rid of the gradient vanishing and ex-

ploding problems, while also enables easy debugging for every layer.[Haw+16][KGV99]

There is an implementation of HTM network by Numenta called NuPIC,

but it is not an optimized code, more of a proof of concept prototype.[Haw+16]

The goal of my work is to apply massively parallel training possible in HTM

networks. Thus, it will be more scalable to more complex tasks. Furthermore,

I investigate the sequence learning capabilities of an HTM network against an

LSTM baseline network. The training data is a multidimensional superposed

sinusoidal signal with added noise.

My goal is to implement this method because of its favourable learning prop-

erties of one-shot learning and robustness against noise. The current implemen-

tation can not yet handle vast amounts of data, but it is a model that should

scale well, depending on the implementation. I contacted the Numenta team

about their optimization roadmap, and their response was positive towards my

plans. At this point they are still developing the models of other functionalities

of the neocortex, like the grid cell, so the performance optimization is not yet a

priority for them.

10

2 Deep learning background

2.1 Neural networks

Deep neural networks are the cutting edge technology in machine learning to-

day. These networks are capable of almost any optimization task, which can

be translated to image recognition, asset price prediction or video generation.

As the computational power started to increase thanks to the development of

graphics accelerator cards more complex neural networks started to appear to

tackle even more complex tasks with better accuracy. However, the problem

with these solutions is that as the model size increases it requires more and more

hyperparameter tuning and that demands either professional human knowledge

or even more computational power to optimize. Since the impact of these vari-

ables is not known the best method is still trial and error which is a massive

loss in efficiency.[Tho+13]

2.2 Recurrent neural networks

Recurrent neural networks were created to learn from sequences and predict

some future value, so there is a time-based correlation between the data points

in addition to the spatial features.[SSN12] Since time only goes forward, it is not

advised to treat the time dimension like any other spatial dimension. A typical

RNN has an input value xt and an output value ht. The network deals with

the time-based correlation by having a recurrent connection with itself, where

the last state of the neural network is the input of the network in the current

timestep.

This method presented in Figure 3 convert the learning to a feedforward like

neural network training, which is trained with the so-called backpropagation

through time (BPTT) algorithm.[Wer90] This approach presents a new chal-

lenge which is the fixed length sequence learning problem. How long should this

fixed length be and what is the maximum it can be. Since the error cannot

backpropagate through many layers due to vanishing or exploding gradients,

11

Figure 3: Recurrent Neural Network unrolled, Source: [Ola]

this is a limited model and can only learn short sequences well.

2.3 Long Short-Term Memory

When learning sequences the first problem that comes to mind is the length

of the sequences that the neural network is working with. There are multiple

levels at which we are interested in the context of the input. For example, when

learning sentences, there are character based sequences, sequences of words and

also connections that go through sentences as well. Building a character based

learning means that the network is not able to learn the connection between

sentences. If we were to learn at a bigger scale, by words, there might be a

problem where new worlds that don’t fit into the encoder confuse the network

into predicting something unexpected given the context. Recently the use of

Recurrent Neural Networks dominates the field of the sequence learning methods

because they deal with the time-based structure of the data more efficiently than

a fully connected neural network. However, the problem with sequence learning

with RNNs is that training those is hard. The only way it is done is rolling out a

few steps of the network as a feedforward one. This way the training is similar to

those, but through the many layers, the vanishing gradient problem can occur.

To fight this a new way was developed to hold onto some critical information

during the use of a network, by inserting an LSTM cell into the unrolled RNN

network.[HS97] LSTM stands for Long Short-Term Memory. Sequence learning

usually is done by Long Short-Term Memory or one-dimensional Convolutional

12

Neural Networks.[L+95] Both of these solutions use the same basic concept,

which rolls out the temporal part of the data into a multi-layered network.

This approach has an obvious limitation; it is a fixed length sequence learning

method, and also this length is restricted by how much layers can the error

backpropagate during learning.

13

3 HTM background

3.1 HTM overview

Human brain model

HTM is a unique approach to artificial intelligence that starts from the neu-

roscience of the neocortex. The older parts of the brain that are below the

neocortex are involved in the essential functions of life, like sleeping and eating.

The neocortex is involved in all that is considered intelligent behavior. The

structure of the neocortex is identical across the whole human brain; this tells

us that the brain processes the different pieces of information coming from dif-

ferent senses in the same way. The neocortex has a hierarchical structure where

lower parts process the stimuli, and higher parts learn more general features.

The neocortex consists of neurons, segments, and synapses. In Figure 4 there

are illustrations about the neuron columns in the neocortex. There are vertical

connections that are the feedforward and feedback information and there are

horizontal connections that are the context inputs. In this case the Feedback

inputs won’t be used since only one layer of HTM network will be used. The

neurons can connect to other nearby neurons through segments and synapses.

There are different types of segments, those that connect to the neurons found

lower in the hierarchy are called proximal. The ones that come from distant

neurons are the distal ones. There are also distal segments that connect to the

upper neurons.

The feedforward neural network somewhat resembles these principles, it is

homogeneous, meaning every cell does the same computations and it has a

hierarchy, every cell in higher layers learn something more abstract from the

layers beneath.

Basic HTM network

Figure 5 shows an overview of the HTM network for scalar value sequence learn-

ing. All the parts of HTM have different roles in understanding and predicting

14

Figure 4: Neuron column, Source: [Caj]

the input data.

• The SDR scalar encoder, which is capable of representing multidimen-

sional scalar data as a Sparse Distributed Representation. There are en-

coders for just about any type of data, but those are beyond the scope of

this paper. SDR representation is a form of coding data into bit arrays so

that it retains the semantic similarity between similar input values.

• The spatial pooler decides which columns should be activated given the

SDR representation of the input. The spatial pooler acts as a normaliza-

tion layer for the SDR input, which makes sure the number of columns

and number of active columns stays fixed. This is crucial for the HTM

network to work.

• The Temporal Memory receives input from the spatial pooler and does

the sequence learning, which is expressed in a set of active cells. Both the

active columns and active cells are sparse representations of data just as

the SDRs. These active cells not only represent the input data but provide

15

a distinct representation about the context that came before the input.

Figure 5: HTM overview

Using this multi-tiered input the SDR classifier has to decode the active cell

values to a scalar value that should come next in the sequence. This output can

also be multidimensional like the input values. The HTM network can not only

predict the future values of sequences but detect anomalies in sequences.

HTM core principle

HTM starts with the core assumption that everything the neocortex does is

based on the memory and recall of sequences. These sequences are patterns of

the SDR input, which are translated into the sequences of cell activations in the

network. This is an online training method, which doesn’t need multiple epochs

of training. Most of the necessary synapse connections are created during the

first pass, so it is a one-shot learning capability. The HTM network can recognize

16

and predict sequence with such robustness, that it does not suffer from the usual

problems hindering the training of conventional neural networks. HTM builds

a predictive model of the world so every time it receives input, it is attempting

to predict what is going to happen next.

3.2 HTM training

Training in the HTM network differs from other neural networks. In the net-

work all neurons, segments and synapses have binary activations. The networks

connections are decimal values between 0 and 1. Since this network is binary,

the typical loss back propagation method will not work in this case. The learn-

ing suited for such a network is Hebbian-learning.[KGV99] It is a simpler but

unsupervised learning method, where the learning only occurs between neigh-

boring layers. Other methods help the learning mechanism, but these are only

present in the spatial pooler and Temporal Memory.

Segments and synapses

Figure 6: HTM segments and synapses

17

In the HTM network, cells are not connected directly through synapses with

each other. Figure 6 shows how the cells, synapses and segments are connected.

A cell has one or multiple segments connected to it. If one of these segments

is activated, then the cell is activated too. This is like an OR gate between

the segments. The segment has synapses that connect to other cells. If one

cell is active, the synapses connected to it will be activated too. If the seg-

ment has enough active synapses, then it becomes active. This is a summation

operation with a gate for a given threshold. The synapses are only potential

synapses meaning there could be a connection if the strength of that connec-

tion is enough. At initialization, these synapses will have strength around the

threshold, and with time these can change. If a potential synapse strength is

above the threshold, it is a connected synapse and with enough other synapses

can activate the segment.

Hebbian learning

Figure 7: Hebbian learning, white cells are active and black cells are inactive

Hebbian learning[KGV99] rules shown in Figure 7:

18

• Only those synapses that are connected to an active cell through a segment

learn

• If one synapse is connected to an active cell, then it contributed right to the

activation of that segment. Therefore its strength should be incremented

• If one synapse is connected to an inactive cell, then it did not contribute

right to the activation of that segment. Therefore its strength should be

decreased

The learning has one more added complexity at learning in the Temporal

Memory but more on that in the Temporal Memory learning section.

3.3 Sparse Distributed Representation (SDR)

Bit arrays

The capacity of a dense bit array in 2 to the power of the number of bits.

This gives the bit array a large capacity but little resistance to noise. The first

operator for two-bit arrays is the OR operation, which is used for creating a

union of multiple bit arrays. The second operator for two-bit arrays is the AND

operator which can be used for getting the matching bits between two arrays.

The population of a bit array is the number of ones in it. The population is also

the Hamming weight of the bit array. In Figure 8 a dense and a sparse matrix

is shown. dense representation is a bit array where the ones and zeros are for

example in a 50-50% ratio. On the other hand, a spare representation has only

a 2% ratio; this enables favorable properties for use in the HTM network. In

this sparse case, the capacity is much smaller. In a good representation, every

bit in this bit array can have a specific meaning which represents a given object.

A sparse bit array can be stored efficiently by only storing the indices of the

ones.

19

Figure 8: A dense and sparse binary matrix, red is active white is inactive

SDR capacity and comparison

HTM networks use Sparse Distributed Representations (SDR). This is a rep-

resentation for any data in the form of a sparse bit array, where only a small

fraction of bit are ones. As discussed above the capacity of a sparse bit array is

much smaller than a dense one, but still, huge capacity is achievable with not

a modarate sized SDR representation. Let’s take the example of an SDR. N is

the length of the array, while W is the number of active bits in the array. The

sparsity is the proportion of these two variables. Numenta says that in the brain

only 2% of the cells are active, so let’s see the capacity of a bit array of this

sparsity. In the example, the capacity of a 256 bit SDR with a population of 5 is

8,8 * 10e9. Storing this array would only require five integer values, which hold

the indices of these active bits. In a bigger example, let’s calculate the capacity

of a 2048 bit SDR, which is the recommended minimum size by Numenta for an

SDR. Ideally, an SDR should be much bigger, for example, 65k bits, but for the

sake of implementation and visualization purposes, we will only work with the

20

Figure 9: SDR overlap score, the green cells are the shared active bits of the

two matrices

recommended minimum. This case the population should be 40. The capacity

comes out to 2,37*10e84, which is more than enough to code any classification

or regression task. In order to enable classification and regression there needs

to be a way to decide whether or not two SDRs are matching, so if the HTM

network encountered such an SDR before. This is what SDR comparison is for.

In Figure 9 there is an example of a two SDR overlap. In the example, there

are two random SDRs, and the third is the overlap between them, which is a

simple AND operation between the two inputs. The population of the overlap

is the overlapping score for these two compared SDRs. With two dense arrays,

the expected overlap score is high. In the rare case, the overlap is much more

unlikely, so the overlap scores are typically lower. To decide whether or not

overlap is a match or not a threshold is needed called θ. If the population of the

overlap array is higher than the threshold, it is a match. Otherwise, these are

two different SDRs. The accidental overlaps in SDRs are rare so the matching

of two SDRs can be done with high precision. The rate of an SDR matching

21

as a false positive is meager. The sparseness of the SDRs also makes for good

noise tolerance properties. Presenting large amounts of noise to the second SDR

has little effect on the overlap score of the comparison. In summary, an SDR

representation is a reliable way of comparing representation for matching.

SDR overlap sets and subsampling

SDR overlap sets are an array of SDRs that fit a specific overlap score criteria

to an SDR. Let’s take an example, where a 256 bit SDR with five population.

The following formula calculates the number of overlapping SDRs that have B

overlap score: Wx over b x (n-wx) over (w-b). With SDRs, there is another

way of compressing data apart from only saving the current bit indices, which

is subsampling. For comparing two SDRs, it is not needed to use every active

bit. Take a subsample from the active bits, calculate the overlap score and

the chance of false positives will not increase much while saving storage and

computational capacities.

SDR sets and unions

The use of SDR sets is that these can reliably represent a large number of SDRs.

Let’s say that we have seen 100 SDRs and we want to decide about the new

ones if any of the previous one is matching. The naive approach would be to

take every SDR and compare it to the new one. Instead, a union can be built

from these 100 arrays. Since these are sparse, the chance of colliding bits is

low. Therefore the sparsity of the union will be significantly higher. Despite the

union SDRs almost saturating this is still a reliable way of matching the SDR

with the previous 100. If the new one matches with the union, it matches with

one of the previously seen with high certainty. If it does not match with the

union, it probably is not in the collection. This method only works for a limited

sized collection, but effectively can reduce the computations required by many

folds.

22

3.4 Encoding

Scalar encoding

The language of the HTM network is an SDR. There needs to be an encoder for

it so that it can be applied to real-world problems. The first and most crucial

encoder for the HTM system is the scalar encoder, and I will be focusing on

this in the rest of this paper. An encoder for the HTM must meet the following

criteria.

The principles of SDR encoding:

• Semantically similar data should result in SDRs with overlapping bits.

The higher the overlap, the more the similarity.

• The same input should always produce the same output, so it needs to be

deterministic.

• The output should have the same dimensions for all inputs.

• The output should have similar sparsity for all inputs and should handle

noise and subsampling.

An example of such an encoder if shown in Figure 10. That is a scalar encoder

for values between 0 and 100. There are 8 bits and 3 of them should be active.

All values below 0 or over 100 are capped to the range of the scalar encoder.

3.5 Spatial pooling

Input and output

The spatial pooler is the first layer of the HTM network which comes after

the encoder. It takes the SDR input from the encoder and outputs a set of

active columns. These columns represent the recognition of the input. The

columns also have a normalizing effect. There are two tasks for the spatial

pooler, maintain a fixed sparsity and maintain overlap properties of the output

of the encoder. These properties can be looked at like the normalization in other

23

Figure 10: Scalar encoder

neural networks which helps the learning process by constraining the neurons

behavior.

Columns

The column in a spatial pooler means a set of cell that shares the same segment

connecting to the encoders SDR input. Presented with the input of these cells

that are in a column would like to be activated simultaneously, this means that

the column is activated.

Connections

The spatial pooler has connections between the SDR input cells and the spatial

pooler columns. Every synapse is a potential synapse which can be connected

or not depending on its strength. At initialization, there are only some cells

connected to one column with a potential synapse. This already has some effect

to fight overfitting the input data. If the potential synapse strength is over the

threshold, it is connected.

24

At initialization, the synapses are initialized around the threshold strength

so at the start half of the potential synapses are connected as well. The values

of synapses strength are ranging from 0 to 1, and the threshold can be chosen

anywhere between these two. The network’s performance is invariant to this

variable according to Numenta.

Figure 11: Spatial Pooler connections (green stronger connections)

Inhibition

For a given SDR input the column activations are calculated. The activations

are the number of potential synapses that are connected to an active input cell.

Usually a fixed threshold would decide whether or not a column activation score

makes the column active or not, but in this case, the sparsity needs to be fixed.

The solution is inhibition between columns, that only allow the top n most active

columns to be active. These are the columns that can best represent the input

SDR. It can be seen that this method not only maintains sparsity but ensures

that the semantic information is the same. By changing only a small fraction of

the active bits the activation scores of the columns would only change a little,

25

thus not resulting in entirely different winners of the inhibition. A completely

different SDR would result in different activation scores and different winners,

meaning there’s no semantic similarity between the two inputs.

Boosting

There is one problem with using inhibition for column activations; there can be

columns that never get to be active therefore never have the chance to learn

and increase their synapse values. This means that a lot of columns is not rep-

resenting any information from the SDR inputs, leaving more information for

fewer columns to represent. This results in worse performance than the more

distributed column activations. What we are aiming for here is homeostasis

between the column activations over time, so every column has some role and

has a chance to improve synapse permanences. The solution to this problem

is boosting, shown in Figure 12. The figure shows the cell activations, which

is a moving average over the active cells. To counter the dominant cells the

boosting factors are calculated. The boosting effect if shown on the same figure

below with or without boosting. Without boosting some of the cells have high

activations, while after boosting is applied the activation is more spread across

the cells. The real effects are also shown on Figure 13 and 14 Boosting happens

before inhibition. Every column activation is multiplied by, and then the inhi-

bition occurs based on these adjusted scores. The more active columns have a

lower than one boosting score while the less active columns have a higher than

one boosting score. The boosting factors are the inverse of the active duty cycle

of the columns, capped by some minimum and maximum value, for example,

0.5 and 2.

Learning

The randomly initialized spatial pooler already satisfies the two criteria, but a

learning spatial pooler can do an even better representation of the input SDRs.

As it can be seen on Figure 15 the weights are randomly initialized, and on

26

Figure 12: Boosting for equal cell activations (green high value, red low value)

the Figure 16 there are the learned weights. A lot of the not useful synapses

are decrease and the important ones where the inputs are are strengthened. It

uses Hebbian learning between the input cells and the spatial pooling columns.

The Hebbian learning rule is simple; it is only applied to columns that are ac-

tive. The synapses coming from these columns that are connected to active cells

are reinforced, meaning their permanence values are increased. The synapses

that are connected to inactive cells are punished, their permanence values are

decreased. After learning the columns should have better activation scores be-

cause the connected synapses better aligned with those active cells that the

column represents.

3.6 Temporal Memory

Input and output

The Temporal Memory receives the active columns as input and outputs the

active cells which represent the context of the input in those active cells. At

27

Figure 13: Boosting factors, some of the cells are boosted

any given timestep the active columns tell what the network sees and the active

cells tell in what context the network sees it.

Cells

The cells in the Temporal memory can be either inactive, active, predictive

or winner cells. A cell is activated if it is in ana active column and was in

a predictive state in the previous timestep. A cell is a predictive cell one of

its distal segments is activated because it recognized a pattern in the previous

activation of the cells. Winner cells are chosen when there are no predictive cells

in an active column. The winner cells can grow new segments and synapses to

previous winner cells, therefore recognizing the patterns in the future.

The spatial pooling columns have one segment with potential synapses con-

nected to the input SDR. In order to have temporal learning capabilities the

HTM needs another mechanism called Temporal Memory which handles the

sequential column activations. The Temporal Memory should expect what is

going to happen in the next timestep, which columns will be activated. This is

28

Figure 14: Activations with boosting, the cell activations are homogeneous

Figure 15: Spatial Pooler synapses before learning

implemented by multiple cells in every column, which not only have an active

and inactive state but a predictive tool. This can be understood as preparing

a cell for activation. Going further into the column structure all the cells share

the same segment input from the encoder. This means that for a given input

cell in one column want to be active at the same time. However, there’s an-

other inhibition inside the columns which prevent all cells from becoming active

depending on the cells state.

There are three scenarios for a columns cells activation:

29

Figure 16: Spatial Pooler synapses after learning

• No cells were predicted inside the column

• Some cells were predicted inside the column

• Some cells were predicted inside a column that should not be activated in

the first place

In the first case, there is no inhibition, and all the cells become active,

meaning that the column encountered a sequence which it had never seen before.

In the second case, the sequence is already known since there was an accurate

prediction inside the column, only the predicted cell becomes active. Lastly,

when there were cells predicted in the column, but the column itself is not

active no cells will activate in this column, and the synapses that led to the

false prediction will be punished.

Connections

The connections in the Temporal Memory between cells are created during

learning, not initialized like in the spatial spooler. When there is an unknown

pattern in the previous cell activations, then new winning cells need to be chosen,

and new segments formed to those winner cells before.

Bursting

Bursting occurs when a column is activated, and there were no cells in a pre-

dictive state so the race for activation is a tie and all the cells become active

30

Figure 17: Distal connections in Temporal memory

shown in Figure 18. This is important because the activation of all cells is the

union of all the context representation that could have come before. Since we

do not know this pattern yet, we do not have a context representation for it.

Therefore a good choice would be to express all the possible contexts that could

come before, as all the cells activated.

Winner cells

To later recognize this pattern a winner cell is needed to choose to represent

the new pattern the network encountered. The winner cells are chosen based

on two factors, matching segments and least used cells.

• If there is a cell in the column that has a matching segment, it was almost

activated. Therefore it should be the representation of this new context.

• If there is no cell in the column with a matching segment, the cell with

the least segments should be the winner.

31

Figure 18: Predicted and bursting column

Training

The training happens similarly to spatial pooler training. The difference is that

one cell has many segments connected to it, and the synapses of these segment

do not connect to the previous layer’s output but other cells in the temporary

memory. The learning also creates new segments and synapses to ensure that the

unknown patterns get recognized the next time the network encounters them.

The synapse reinforcement would be the same as the spatial pooler if the cell

were correctly predicted in the column. The segment that led to the prediction

of the cell has updated the synapses that were connected to active cells will

increase in permanence, and the ones that were not will be decreased. Also if

there were not enough active synapses, the network grows new ones to previous

active cells to ensure at least the desired amount of active synapses.

If the cell is a bursting cell, then the learning is different in this case. Since

there were no segments that were activated by synapses, there needs to be a new

segment that will recognize this unknown pattern. First, there is the question of

which cell should be active next time the network encounters the same pattern.

32

This is called a winner cell, and only these will take part in the learning process.

Correctly predicted cells are automatically winner cells as well, so those always

learn. The winner cell can be chosen in two ways. There could be equal segments

attached to the cell, which means they have a slightly less activation to become

activated but still pass the matching threshold. In this case, the segment almost

matches the input so there only needs to be a slight change to the synapses in

this matching segment, some new synapses to the previous winner cells.

In the case where there are no equal segments connected to the cell then

there needs to be a new segment that will recognize this unknown pattern.

The winner cells should be the one that has the least segments so that no cell

would be responsible for detecting too many patterns. This is an equalizer of

responsibilities across cells. The new segment will connect to some of the winner

cells in the previous timestep.

33

4 Proposed work

First I had to get familiar with the concept of the HTM network. For this

the two most helpful sources were the Numenta Biological and Machine Intel-

ligence online book[Haw+16] and the HTM school video series created also by

Numenta.[Num18] After reading and watching these material I wrote a text

prediction program using their NuPIC package, which could predict the coming

characters with high accuracy given that it was only one epoch training. How-

ever I thought that a different implementation could achieve better results in

terms of performance. So I strated to lay out my plans about rebuilding this

structure using matrix and tensor operations using the math package for Python

called NumPy. First and SDR encoder for scalar input was created, then the

Spatial Pooler with training. Then I started to work on the Temporal Memory.

After a couple of months the basic network was implemented and it could read

a sequence of data and output the active cell states. One holdup in the develop-

ment was the growing of segments in the Temporal memory, which proved to be

a much more complex operation than anticipated. During the debugging phase

new functions were added to the network, like restoring a trained model and

visualizations about different network metrics. When the network was finally

capable of learning one stream of sequence data, then it was time to make it a

multidimensional data stream network. For this only the first and layst layer

of the network needed change, since the rest of the network uses SDR represen-

tations. With this the network could learn from a bigger stream of data, using

the same number of internal cells, since the capacity of the SDR representations

are so high. My plans about accelerating the network by using sparse tensors

and graphical processors were hindered by the Temporal Memory problems and

also the lacking implementation of sparse tensor packages for Python. Finally

an LSTM baseline network were created to measure the results. These networks

were created using the Tensorflow Keras package.

The training consists of test with multidimension scalar input sequences.

These are created from a sum of different frequency of sine functions with added

34

noise. The HTM network needs to predict the scalar value in the next time

step receiving the current scalar value and also using its own SDR context

representation. The LSTM network uses the last few inputs and has to predict

the next scalar values also for every dimension.

The results show that both the networks are capable of learning the undis-

turbed sequences. However the HTM network seems to handle the noisy inputs

a little better. Here are the results of the experiment:

35

5 LSTM baseline

5.1 Network structure

The LSTM baseline network had 4 configurations for learning multidimensional

sinusoid sequences. For this one and two layered and 64 and 256 size LSTM

cells were used. The input dimension of the sequences contained 100 different

frequiencies of these sinusoids. After the LSTM cells a simple linear feedforward

layer predicted the next element for every sequence dimension. The LSTM used

the previous 20 samples form the input sequence to determine the next element.

Below are the training times and losses of the training of the LSTM network

configurations.

LSTM configurations

Config Number of layers Size Training time Training Loss

LSTM 1-64 1 64 50.1s 0.5493

LSTM 1-256 1 256 50.1s 0.1356

LSTM 2-64 2 64 100.15s 0.7071

LSTM 2-256 2 256 100.15s 0.1356

Figure 19 20 show three of the 1000 dimensions of sequences, the the network

should’ve learned. The pictures show that the network couldn’t fully learn all

the noisy transitions since the blue (training) and green (predicted) lines don’t

overlap fully.

36

Figure 19: LSTM 1 Layer (64 (above) and 256 (below) size)

6 Methodology

Following the results of Numenta, first, an SDR scalar encoder was implemented,

then a spatial pooler followed. The Temporal Memory first version used dense

matrices then the sparse implementation was executed as well. Since the Tem-

poral Memory was the computationally heavy part, the sparse matrix represen-

tation had a significant increase in performance so the network could be much.

Furthermore, I would like to use a sparse representation for all layers in the

future. A standard perceptron classifies the output of the network with softmax

output. The implementation of the output processing by Numenta is different;

37

Figure 20: LSTM 2 Layer predictions (64 (above) and 256 (below) size)

they use an SDR classifier at the end. The documentation on this part is vague

so the functionality of this part is not well understood but will take part in

future developments with a sparse matrix representation as well.

6.1 Scalar encoder

The scalar encoder makes the following steps:

• Cap the value to the value range.

38

• Get the number of buckets from the input size and the number of active

cells.

• Find the fitting bucket to the input value.

• Encode the bucket into an SDR with the first active cell at the bucket

index.

• Return the SDR.

6.2 Spatial pooler

The Spatial Pooler makes the following steps:

• Initialize SP with potential synapses.

• Calculate segment activations from input SDR. (matrix multiplication be-

tween input vector and SP synapse matrix)

• Multiple activations by boosting factors.

• Choose the top N activations.

• Activate the columns that are connected to those segments.

• Update column activity and boost factors.

• Update synapse strengths with Hebbian learning.

6.3 Temporal memory

The Temporal Memory makes the following steps:

• Initialize the TM synapses with no synapses.

• Calculate segments activations from previous active cells. (tensor multi-

plication between the previous active cells and the TM synapses

• Determine matching and active segments depending on which threshold

the activations on the segments pass.

39

• The cells that have an active segment become predictive state.

• The cells that were previously predictive and are in an active column

should be active.

• These cells are automatically winner cells.

• All the cells in the columns that are active but had no active segments are

bursting cells and become active.

• If the column has a matching segment, then the segment with the maxi-

mum activation wins.

• If the column has no matching segments the cell with the least segments

becomes active.

• The cell connected to the winner segment is a winner cell.

• The segments that are winner segments update the synapses connected to

them and grow new segments connected to the previous winner cells.

6.4 Linear layer

The linear layer is a one layer feedforward neural network with linear activations

from the TensorFlow and Keras packages.[Mar+15][Cho+15]

40

7 Experiments

The HTM network should be able to learn the same sequence as the LSTM

network, so the same data is passed on. The network consist of a Scalar En-

coder with 100 bits for each encoded value. Next a Spatial pooler with 100

columns. Then a Temporal memory with 10 cells in each columns. Last the

same feedforward neural network with linear activations for fair comparison.

Figure 21: HTM layer output, 100 columns

The network as shown in Figure 21 could learn the patterns seemingly better.

The overlap between the blue (training) and orange (prediction) lines is high,

which means accurate prediction. The training time for this is 160s, with the

three Temporal Memory epochs consuming most of this. It is worth noting that

the average bursting rate, which can be translated to the network’s confidence in

the predictions significantly drops after the first epoch. At first all the columns

bursts all the time since there are no learned connections to predict cells. This

was an average 100 bursting cells in the first epoch. Then at the second pass the

averege drops to 2 bursting columns and stays there in the third epoch as well.

This means that the columns rarely burst, mostly only at the first input. This

41

means that most of the necessary connections are formed during the first epoch,

and then not much is needed to change in the TM snypases. This means that

the HTM is capable of the desired one shot learning. The loss of the learning

drops to low values which are in the range of 0.001 for mean squared error.

42

8 Future work

In this paper, the optimization of the HTM network consisted of rethinking the

algorithm regarding using matrix operations and using those to accelerate the

HTM network.

Since the Temporal Memory needed the most computational power, this is

the first part that is needed to be implemented using sparse tensors. However,

when increasing the network size, the other parts of the HTM network can be

also computationally so expensive that it is worth implementing those sparsely

as well.

In the future, I would like to extend the sparse implementation to the whole

network so that the network can scale up optimally.

Furthermore, I would like to add new functionality to the network as well.

First, an SDR classifier needs to be made, but the lacking documentation makes

it hard to rework the algorithm into sparse matrix operations. Then to use this

method in as many domains as possible a lot of new SDR encoders are needed,

like date, sound, image, video and GPS encoders.

Since Numenta is continually evolving its HTM theory, it is most likely they

will introduce new functionalities into NuPIC as well, so these need to be also

reimplemented into the optimized HTM network. One clear path they are going

now is the way grid cells code the spatial movements of the person and how these

cells can also have something to do with the way people make a mindmap of

the objects and concepts they know.

43

9 Summary

In conclusion, I presented the HTM networks theory and the beneficial prop-

erties of it. Proposed a way to execute it using matrix and tensor operations

and implemented such a network using Numpy and Tensorflow. Compared the

results to a baseline LSTM networks performance on noisy multidimensional

periodic sequences, which showed good results in terms of accuracy and similar

training times. For fair comparisons I tried to match the hyperparamters of the

two networks. The results showed the true learning capabilities of the HTM

network.

However the scalability of the network could not been achieved in the scope

of this paper, since the current sparse packages lacked either sparse tensor op-

erations or tensor mutability. This leads to the path of reimplementing a sparse

tensor package which enables both fast operations between tensors and also mu-

tability for synapse updates. Without the sparse implementations the graphical

processor implementation is not achievable neither, since the overhead of copy-

ing sparse matrices in dense format between the processor and the graphical

processor outweigh the benefits of parallel execution. Graphical processor ac-

celeration works for big batches of data, but for this case batch learning is not

yet worked out. That is another hindering factor of such an implementation.

44

List of Figures

1 Real and artificial neural networks, Source: [Num] 8

2 Encoding differences . 9

3 Recurrent Neural Network unrolled, Source: [Ola] 12

4 Neuron column, Source: [Caj] . 15

5 HTM overview . 16

6 HTM segments and synapses . 17

7 Hebbian learning, white cells are active and black cells are inactive 18

8 A dense and sparse binary matrix, red is active white is inactive 20

9 SDR overlap score, the green cells are the shared active bits of

the two matrices . 21

10 Scalar encoder . 24

11 Spatial Pooler connections (green stronger connections) 25

12 Boosting for equal cell activations (green high value, red low value) 27

13 Boosting factors, some of the cells are boosted 28

14 Activations with boosting, the cell activations are homogeneous . 29

15 Spatial Pooler synapses before learning 29

16 Spatial Pooler synapses after learning 30

17 Distal connections in Temporal memory 31

18 Predicted and bursting column 32

19 LSTM 1 Layer (64 (above) and 256 (below) size) 37

20 LSTM 2 Layer predictions (64 (above) and 256 (below) size) . . 38

21 HTM layer output, 100 columns 41

45

References

[Wer90] Paul J Werbos. “Backpropagation through time: what it does and

how to do it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–

1560.

[L+95] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for

images, speech, and time series”. In: The handbook of brain theory

and neural networks 3361.10 (1995), p. 1995.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-

ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[KGV99] Richard Kempter, Wulfram Gerstner, and J Leo Van Hemmen.

“Hebbian learning and spiking neurons”. In: Physical Review E 59.4

(1999), p. 4498.

[SSN12] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. “LSTM

neural networks for language modeling”. In: Thirteenth annual con-

ference of the international speech communication association. 2012.

[Tho+13] Chris Thornton et al. “Auto-WEKA: Combined selection and hy-

perparameter optimization of classification algorithms”. In: Proceed-

ings of the 19th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. ACM. 2013, pp. 847–855.

[Cho+15] François Chollet et al. Keras. https://keras.io. 2015.

[Mar+15] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. Software available from tensorflow.org.

2015. url: https://www.tensorflow.org/.

[Haw+16] J. Hawkins et al. “Biological and Machine Intelligence (BAMI)”. Ini-

tial online release 0.4. 2016. url: http://numenta.com/biological-

and-machine-intelligence/.

46

[Num18] Numenta. HTM school. 2018. url: https://www.youtube.com/

playlist?list=PL3yXMgtrZmDqhsFQzwUC9V8MeeVOQ7eZ9 (visited

on 10/26/2018).

[Caj] Santiago Ramón y Cajal. Neuron column. https://upload.wikimedia.

org/wikipedia/commons/5/5b/Cajal_cortex_drawings.png.

[Online; accessed 2018.10.28.]

[Num] Numenta. Real and artificial neural networks. https://numenta.

com/neuroscience-research/research-publications/papers/

images/why- neurons- have- thousands.png. [Online; accessed

2018.10.28.]

[Ola] Christopher Olah. Recurrent Neural Network unrolled. http : / /

colah.github.io/posts/2015-08-Understanding-LSTMs/img/

RNN-unrolled.png. [Online; accessed 2018.10.28.]

47

Abbreviations

• RNN: Recurrent Neural Networks

• LSTM: Long Short-Term Memory

• HTM: Hierarchical Temporal Memory

• SDR: Sparse Distributed Representation

• SP: Spatial Pooler

• TM: Temporal Memory

48

Acknowledgements

The research presented in this paper has been supported by the European Union,

co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013).

49

