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Kivonat

A világon nincs olyan ember alkotta rendszer, amely hibátlanul működne, ezért elenged-
hetetlen a hibadiagnosztika a rendszerleállások okozta kiesések és a karbantartási idők
csökkentése érdekében. A rendszerek egyre összetettebbé válásával párhuzamosan a di-
agnosztikai problémák jelenlegi megoldásai nehezen skálázódnak. Az ipar által jelenleg
használt módszereknél jellemzően egy magasabb fokú automatizálási és agilisabb diag-
nosztikai megközelítésre van szükség.

A dolgozat a klasszikus rendszer szintű diagnosztika eredményeiből kiindulva bemutat egy
újszerű, induktív logikai programozás (ILP) alapú, adatvezérelt hibaelhárítást támogató
megközelítést és annak egy prototípusán egy alkalmazási példát. Kifejezetten új elem, a
szakterületi tudás alapú optimalizációs feladatok támogatása. A dolgozat tárgyalja még a
javasolt megközelítés előnyeit, illetve szinergiáját a meglévő megoldásokkal.

A hibaelhárítási problémák induktív logikai programozás alapú támogatásának egyik fő
előnye, hogy a kikövetkeztetett, hibajavítást támogató szabályok megmagyarázhatóak, ami
a kritikus rendszerek szempontjából elengedhetetlen. Emellett a logika alapú módszerek
nem igényelnek nagy mennyiségű adatot a következtetések levonásához, így a szabályrend-
szer kinyerése gyorsan lezajlik.

A szakterületi tudás és modellek felhasználásával lehetővé válik, hogy az elemzés megoldása
egy pontosabb képet adjon a problémáról és kiterjeszthető legyen olyan speciális esetekre
is, ahol a klasszikus megoldásoktól eltérően kell kezelni a meghibásodásokat.

Az adatvezérelt hibadiagnosztika alapja az adatgyűjtés és adatfeldolgozás. Az összetett
rendszerek hatalmas mennyiségű adatot generálnak, amelyek hatékony feldolgozására van
szükség. A kvalitatív modellek átláthatóbb képet adnak a komplex rendszerekről szim-
bolikus, könnyen érthető módon. Továbbá ezen modellek tetszőlegesen skálázhatók, és
támogatják a széleskörben használt modellellenőrzési és diagnosztikai technikákat.

A dolgozat tárgyalja az ILP segítségével történő szakterületi tudás alapú optimalizációs hi-
baelhárítási megoldásokat. Megvizsgál egy Answer Set Programming alapú ILP keretrend-
szert, a FastLAS-t, és néhány példán keresztül szemlélteti a bemutatott megközelítést.
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Abstract

There are no human-made systems in the world that function in a flawless manner. Thus,
fault recovery is essential in reducing system downtime and maintenance time. As systems
become increasingly complex, diagnostic problems also become more difficult. Compared
to solutions currently used by the industry, today‘s problems typically require a higher
degree of automation and a more agile diagnostic approach.

The report presents a novel, Inductive Logic Programming (ILP) based, data-driven fault
recovery approach based on the results of classic system-level diagnostics. Additionally,
it showcases some application examples with the help of a prototype. An especially new
element is the support of domain-specific knowledge-based optimization tasks. The report
also discusses the advantages of the proposed approach and its synergy with existing
solutions.

One of the main advantages of ILP-supported fault recovery is that the fault recovery
action rules can be explained, which is essential for critical systems. In addition, logic-
based methods do not require large amounts of data to draw conclusions, so the extraction
of the ruleset takes place quickly.

With the help of domain-specific knowledge and models, it becomes possible for the solu-
tion of the analysis to give a more accurate picture of the problem and to be extendable
to special use cases where failures must be handled differently from classical solutions.

Data-driven fault diagnosis is based on data collection and data processing. Complex sys-
tems generate huge amounts of data that require efficient processing. Qualitative models
provide an abstract picture of complex systems in a symbolic, easy-to-understand way.
Moreover, these scalable models support widely used model verification and diagnostic
techniques.

The report discusses ILP-supported, domain-specific knowledge-based optimization solu-
tions for fault recovery. It examines an Answer Set Programming based ILP framework -
called FastLAS - and illustrates the presented approach through examples.
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Chapter 1

Introduction

Fault recovery inside complex systems is an increasingly important problem. Faults can
have a wide range of causes, such as design and implementation errors, human errors or
deterioration damages. As a result, faulty systems usually have decreased performance,
they do not function as intended, or do not function at all. Recovering from these faults is
of utmost importance to maintain the expected level of service. The primary goal of fault
recovery is to restore the system to normal operation when the system fails by executing
fault recovery actions. With the help of proper recovery actions, system downtime and
maintenance times can be reduced with a great extent, and usually, this also results in
lowered maintenance costs. However, providing reliable fault recovery actions is not a
trivial process.

The aim of the report is to present and examine a novel, Inductive Logic Program-
ming (ILP) supported, data-driven, domain-specific knowledge-based approach to the well-
researched area of fault recovery. The goal of the approach is to support fault recovery
by generalizing, optimizing and validating the recovery actions rules with the help of
domain-specific knowledge.

As systems become more and more complex, providing fault recovery actions is also be-
coming more complicated. Determining appropriate recovery actions for the possible fault
scenarios while accounting for error propagation is an exhaustive engineering process.
Additionally, in many cases, there is not a single set of recovery actions that fits every
environment in which a system operates. Different external circumstances and constraints
can require the alteration of the recovery process to be optimized to different targets, such
as recovery cost and recovery time. To support complex systems, the presented approach
incorporates engineering models (e.g., information flow model) and cost metrics (e.g., re-
covery time) that can be used to provide solutions for a wide range of fault recovery related
optimization and validation problems.

There are many possible approaches to provide fault recovery actions, both manual and
automatic. These include — among many others — system modeling and system sim-
ulation to identify potential failure points and to provide recovery actions to fix them.
Additionally, there are learning-based approaches that utilize artificial intelligence and
machine learning. All different approaches have different use cases, and can be applied
in different scenarios. In many systems, one approach is usually not enough, as it cannot
cover the system at the required level, or it would be too complicated to do so. In complex
systems, the approaches are combined to cover the system in greater detail. Thus, more
fitting recovery actions can be provided. While the presented approach is fully functional
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on its own, it can also be used in conjunction with other fault recovery approaches to
provide even better fault recovery solutions.

1.1 The Presented Approach
The most fundamental part of the approach is that it is based on logic programming.
The ILP part of the approach provides the ability to learn from examples and to extract
logical rules. Additionally, ILP can take into consideration a knowledge-base containing
background information, moreover, specific ILP systems also support the optimization of
the extracted rules with respect to predefined criteria. This overall combination helps
overcome several shortcomings of other fault recovery solutions. The following section
describes the goal of each part of the approach:

Knowledge-base - Knowledge-base — or background knowledge — is going to be used
to provide additional information about the examined system, such as system archi-
tecture and hierarchy. Incorporating this information in the rule extraction process
can be very beneficial. Knowing system connections and interactions can help in
finding more appropriate recovery actions.

Logic programming - Thanks to logic programming, everything in the workflow is fully
explainable, which is a very important concept in fault recovery. Answer Set Pro-
gramming (ASP) — a logic programming language — is going to be used in this
report to programmatically represent fault recovery tasks. This means that exam-
ples, background knowledge and optimization targets will also have to be translated
into code with logic programming.

ILP - ILP intends to provide some of the benefits of machine learning based fault recovery
approaches. This mainly includes learning from examples and generalizing to a
wider range of fault recovery scenarios with a focus on explainability. ILP systems
incorporate a knowledge-base into the rule-extraction process, additionally, specific
ILP systems support the optimization of the task based on scoring functions. One
such system, which is going to be used in this report, is called FastLAS [1].

Scoring functions - Scoring functions are going to be used to optimize fault recovery
rules with respect to different criteria, such as recovery cost. They are going to
make use of the background knowledge to score recovery actions based on exter-
nal constraints, additionally, the architecture, components and the hierarchy of the
system.

1.2 Workflow Processes
The workflow presented in the report can be broken up into well-separated sub-processes.
An overview is depicted in Figure 1.1. Here the separate processes will only be briefly
described since in-depth explanations with use cases will be provided in later chapters.

Knowledge-Base Compilation - The first process is called Knowledge-Base Compila-
tion. Its goal is to translate the input system models and external requirements into
a form that can be used in the Rule-Extraction process. This includes translating
the system model with ASP into a logic-based representation and formulating the
external requirements and cost metrics into scoring functions.

Rule-Extraction - The second process is called Rule-Extraction. Its purpose is to ex-
tract the fault recovery rules while taking as inputs the examples from the system
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and the compiled knowledge base from the first process. In the report, this process
is going to be performed with FastLAS.

Evaluation - The final process is the Evaluation. After the rules have been extracted,
they have to be examined and checked whether they are correct and provide the
intended fault recovery actions. Because the rules are ASP rules, they can be easily
interpreted by a system expert, and any required adjustment can be carried out by
making changes in the preceding processes.

Knowledge-Base
Compilation Rule-Extraction Evaluation

Figure 1.1: The processes of the workflow

1.3 Report Structure
In the following sections, the report details the approach and the workflow in great depth
alongside use cases and examples. Firstly, it will take a broader look at fault diagnosis
and recovery in Chapter 2, then move on to the presented workflow in Chapter 3. After
that, it will demonstrate concepts of system modeling in Chapter 4 that are required to
formulate a good rule extraction task, followed by taking a look at the more technical parts
of the approach, such as ASP in Chapter 5 and ILP in Chapter 6. After these steps, all
the background information will be provided to examine the workflow in action through
use cases and examples in Chapter 7.

Inductive Reasoning Supported
Fault Recovery

Fault Diagnosis and Recovery

Rule-Extraction Workflow

System Modeling

Answer Set Programming

Inductive Logic Programming

ILP Supported Fault Recovery

Figure 1.2: Report structure mind map

5



Chapter 2

Fault Diagnosis and Recovery

This chapter introduces the connection between fault diagnosis and recovery. It provides
an overview of the possible fault diagnosis approaches, such as analytical model-based and
data-driven diagnosis. After that, it details the general concepts of fault recovery.

Figure 2.1 outlines the connection between fault diagnosis and fault recovery. When a fault
occurs in a system, the system can no longer properly fulfil its tasks. The consequences of
the fault can be visible in countless forms. In the best case, the fault causes only subtle
errors in the system operations and does not affect the whole system continuously. On the
other end, there can be faults that make the entire system unusable until everything is
not repaired. The severity of the faults is dependent on the importance of the components
which are affected by the fault. For instance, there can be components which are only used
occasionally, and if they become faulty, then they might be restored to normal operation
before they have to be used, causing no disruptions to the system operations. In any case,
when there is a fault, it must be diagnosed. The task of fault diagnosis is to monitor the
system and to find the component causing the faulty behaviour as soon as possible. When
the fault has been diagnosed, it is time to begin the recovery process based on the collected
data. At the end of a successful fault recovery step, all the faulty system components have
to be fixed, and the whole system has to operate as intended.

Fault Diagnosis Fault Recovery

Normal OperationFaulty Operation

Fault Occurrence

Figure 2.1: Connection of fault diagnosis and fault recovery

2.1 Fault Diagnosis
Fault diagnosis is a closely related field to fault recovery, and in many cases, it is a
preceding step that provides the appropriate inputs required by fault recovery. Moreover,
many concepts used in fault diagnosis can also be utilized in the fault recovery process. The
field of fault diagnosis is highly researched, so it is beneficial to use these well-researched
and proven concepts.
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Fault diagnosis consists of three main parts, which are the following [2]:

• Fault detection: detection of the occurrence of a fault inside the system, which leads
to undesired consequences and system malfunctions

• Fault isolation: localization of a fault

• Fault identification: determining the location, type and severity of a fault

Figure 2.2 depicts the different fault diagnosis methods. The methods can be classified into
three groups: analytical model-based, data-driven and knowledge-based methods. Starting
with analytical model-based methods, initial research on fault diagnosis dates back to
the 1970s [3, 4], where it was used to detect and isolate faulty system components. As
systems became more complex and the data produced by these systems became enormous,
analytical model-based methods have been replaced with data-driven alternatives that
started to make use of data analytics and machine learning. Data-driven solutions [5]
proved to be very useful to a wide range of fault diagnosis problems. They are very well
suited to detect and locate faults in systems only based on data without requiring an
accurate mathematical model of the system. However, the lack of possibility to supply
background knowledge to data-driven approaches and their black-box nature led to the
popularity of knowledge-based approaches. Knowledge-based fault diagnosis makes it
possible to supply known facts about the system and use them together with additional
data to deduce new, hidden knowledge about the system with logical reasoning methods.

The knowledge-based fault diagnosis aspect is going to play a prominent role in the report
since it is used in the presented knowledge-based fault recovery approach. The methods
with green backgrounds are especially important. Those are the methods that will directly
appear in the report in later chapters.

Analytical Model-
Based Methods

Knowledge-Based
Methods

Data-Driven
Methods

Causal Models

Abstraction Hierarchy

Structural

Functional

Digraphs

Qualitative Qualitative

ILP

Expert Systems

Quantitative Quantitative

Observers

Output  Residuals

Fault Diagnosis

Model Based History Based

Parameter Estimation

Parity Space

Statistical Methods

Machine Learning

Pattern Recognition Supervised

Unsupervised

Figure 2.2: Classification of fault diagnosis methods [6]

2.1.1 Analytical Model-Based Fault Diagnosis

The analytical model-based fault diagnosis approach was initially developed to provide
fault diagnosis for industrial machines [3]. The goal was to improve the reliability of in-
dustrial systems in which components provided overlapping and supplementary functions.
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In case of a component failure, the component was not replaced but isolated, and the
functions it performed were assigned to other components that could fulfil the required
operations.

The foundations of analytical model-based fault diagnosis are mathematical models that
accurately describe the processes of the examined system. The models are carefully en-
gineered to estimate the behaviour of the real-world system as closely as possible. The
differences between the model’s estimated output of the system and the running system’s
output are used as a basis for fault diagnosis [5]. These differences are usually referred
to as residuals, and decision rules check threshold limits of these residuals to generate
fault symptoms. There are several methods to monitor and process the relationship of the
outputs. In most approaches, a nonzero residual indicates the occurrence of a fault inside
the system.

Analytical model-based fault diagnosis has many great use cases, and many robust systems
use it for fault diagnosis. However, one of its main drawbacks is that it is very complicated
to develop precise physical models of large complex systems [5]. Additionally, an extensive
monitoring system is required to properly observe the system, which adds another layer
of complexity to the process. In cases where analytical approaches cannot be used, other
methods have to be utilized, such as data-driven fault diagnosis.

2.1.2 Data-Driven Fault Diagnosis

Data-driven fault diagnosis methods extract information from historical samples of the
system. There are numerous approaches, such as clustering [7] and statistical analysis [8].
These methods became very popular due to the following reasons:

• Complex systems generate huge amounts of data, and data is the main building
block of these approaches

• They do not require an accurate physical model of the underlying system

• They have the ability to process high-dimensional data interdependencies

Most data-driven methods apply algorithms on the historical samples of the system to
discover patterns in the examples. Later these patterns can be used for fault detection and
diagnosis by comparing the actual system patterns to the previously discovered patterns.
Or in other cases, they can be used to project possible faults that might happen in the
future based on telltale fault signs [9].

Data-driven methods include machine learning-based approaches to fault diagnosis. Ma-
chine learning became very popular in the field [10] because it can be easily applied to
a wide range of fault diagnosis problems. For example, Neural Networks (NNs) [11] can
be used as supervised multi-class fault classifiers. The inputs can be attributes from a
system, and the neuron outputs can correspond to fault locations or fault types. However,
two major drawbacks of machine learning-based approaches — both due to their black
box-like operation — are that their inner working is hidden from the outside world, and
the models they learn can not be explained.

2.1.3 Knowledge-Based Fault Diagnosis

Knowledge-based fault diagnosis consists of a knowledge base and an inference engine to
deduce new insights [4]. They are especially well suited in the following cases:

• For complex systems where accurate mathematical models are not available or they
would be too complicated and expensive to be developed.
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• Where the fault diagnosis process needs to be explainable because it is not enough
to only know the input and output mappings, and the inner workings are important
too.

• When there is available background knowledge that can be used during the inference
process.

Knowledge-based approaches provide several of the advantages of data-driven solutions
since they are based on data too. However, how this data is utilized is different since it
is stored in a knowledge base in a logically structured form. This approach very much
mimics how intelligent beings utilize information. The known facts are accumulated in a
knowledge base which can be used to deduce new facts from unknown data. The new facts
can also be added to the knowledge base, providing a way for the process to continuously
improve as new data is processed.

The applicability of knowledge-based fault diagnosis depends on the quality and complete-
ness of the knowledge base and the overall knowledge. Therefore, it is crucial to extract
and provide information in the background knowledge in a well-structured form. The
more background information is available; the more effective the approach can be. Every
system-related information can be included in the knowledge base that can be represented
in a logical way. This includes the structural, behavioural and functional models of the
system.

2.2 Fault Recovery
Fault recovery is just as important as fault diagnosis. Fault diagnosis detects, identifies
and locates faults in the system, and this information is usually part of the inputs of the
fault recovery process. Whenever a fault occurs, after it has been diagnosed, fault recovery
should begin. The main focus of fault recovery is to find and provide the required steps
and actions to return to normal operation after a fault has occurred.

In many cases, the fault recovery process can be very complex. Even in a small system,
there can be many connections, dependencies and interactions between system compo-
nents. The errors caused by a fault in one component can propagate to other connected
components. The recovery process must consider error propagation in the system to
provide actions that target the root component of the errors, where the fault actually
happened. In addition, the fault recovery process must be executed rapidly to restore
normal operations as soon as possible. From the point of detection, the time it takes to
recover is very much dependent on how reliable and accurate the fault recovery process is.
If the recovery actions properly target the faulty components and if the actions are well
defined, it can shorten the time required to recover.

There are many possible approaches to implement fault recovery. The approaches can
mainly be categorized as manual or automatic. A mutual property in both of them is
that they require data to be collected about the possible faults and their consequences in
the system. This data includes, for instance, system models, logged fault scenarios and
system simulation data.

Manual - A manual approach to fault recovery might be completely adequate for smaller
systems. It includes a system expert who thoroughly knows and understands the
system. Based on the collected data, the expert provides recovery actions for fault
scenarios ranging from minor software patches and updates to hardware replace-
ments. This process can be imagined as a manual classification, where a fault or a
combination of faults is mapped to a single or multiple recovery actions.
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Automatic - Fault recovery in complex systems requires additional steps since the size
of the collected data is much larger, and many times it cannot be manually handled.
This is where automatic methods can be very beneficial. Automatic methods require
the input data to be labeled — which usually comes from the manual step — and
based on this data, they can generalize to a broader range of faults in the system.
There are many good approaches to automatically extract recovery rules from labeled
data, such as Artificial Neural Networks [12].

To implement knowledge-based fault recovery, several previously discussed aspects of
knowledge-based fault diagnosis can be utilized. Its features and advantages are very
much similar in the two domains. Knowledge-based fault recovery will be detailed along-
side the rule-extraction workflow in Chapter 3.
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Chapter 3

Rule-Extraction Workflow

This chapter takes a look at knowledge-based fault recovery and discusses its parts, aspects
and related technologies. After that, the rule-extraction workflow will be detailed, which
is the main contribution of this report. It encompasses all the required inputs, processes
and steps to implement knowledge-based fault recovery.

3.1 Knowledge-Based Fault Recovery
Knowledge-based fault recovery is a data-driven automatic fault recovery approach. It
aims to provide explainable fault recovery rules based on example data with the help of
reasoning processes. Figure 3.1 depicts the approach, where the rectangles illustrate data,
the rounded rectangle depicts the knowledge-based fault recovery process, and the ellipses
depict its components. The two components are the knowledge base and an inference
engine. The knowledge base stores background information about the examined system
and provides it to the inference engine in an easily interpretable form. The inference
engine deduces new facts from the knowledge base with the help of reasoning methods that
resemble the human thinking process. The input data to the process consists of examples
and any kind of problem-related information that can be used during the inference process.

Data Fault Recovery
RulesKnowledge Base Inference Engine

Knowledge-Based Fault Recovery

Figure 3.1: Knowledge-based fault recovery approach

The components of knowledge-based fault recovery can utilize a number of methods which
are represented in Figure 3.2. These methods can be arbitrarily combined to fit the
recovery process to the problem as much as possible. The knowledge base can mainly use
the following three knowledge representation mechanisms: ontologies, knowledge graphs
and logic rules. How the information is processed from the knowledge base by the reasoning
process can be based on deductive, inductive or abductive reasoning.
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Knowledge-Base

Ontologies

Reasoning Process 
(Inference Engine)

Deductive
Reasoning

Inductive
Reasoning

Logic RulesKnowledge
Graphs

Abductive
Reasoning

Figure 3.2: Methods of knowledge-based fault recovery (Source: [4] Page: 5)

3.1.1 Knowledge Base Representation

Ontologies describe the domain knowledge with its properties, attributes and relation-
ships by defining classes of objects with nouns. For fault recovery, ontologies can be
used to describe fault reasons, fault effects and recommended fault recovery actions.

Knowledge Graphs represent the knowledge in the form of graphs, where the subjects
and objects can be mapped to vertices, and the predicates can be regarded as the
path between the vertices. The main advantage of this representation is that it can be
analyzed with well-researched graph algorithms. Knowledge graphs in fault recovery
can be very useful for representing system-related information in the knowledge base,
such as connections and dependencies.

Logic Rules encode the knowledge about the system and the faults in an
IF [conditions...], THEN [consequences...] form. The representation is very
straightforward, and it is a major benefit because it can be easily understood. Fault
recovery can make great use of logic rules to encode the examples where the condi-
tions are fault symptoms, and the consequences are recovery actions.

3.1.2 Reasoning Approaches

Deductive Reasoning is the process of reasoning from generalized statements to reach
a specific logical conclusion. The result of the process is a valid solution, which
means that the conclusion must be true if the premises are true. It is regarded
as a top-down approach, starting from general statements to reach specific ones.
Deductive reasoning will be used in the report to check the hypotheses produced
by the inductive process. To illustrate how deductive reasoning works, consider the
following example:

• Premise 1: Every star emits photons.

• Premise 2: The Sun is a star.

• Conclusion: The Sun emits photons.

Inductive Reasoning is the process of deriving generalized logical conclusions from spe-
cific observations. It starts with a set of observations and tries to find a hypothesis
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that explains every observation without contradiction. It is regarded as a bottom-up
approach, starting from specific statements to reach general ones. Inductive reason-
ing will be extensively used in the report, since the whole knowledge-based fault
recovery method relies on it. More specifically, it will be used to extract the fault
recovery rules from the provided examples with the help of Inductive Logic Pro-
gramming (ILP) systems. To illustrate how inductive reasoning works, consider the
following example:

• Premise: The Sun has risen in the east every morning up until now.

• Conclusion: The Sun will also rise in the east tomorrow.

Abductive Reasoning is concerned with finding the most likely conclusion which can
be drawn from an incomplete set of observations. The most likely conclusion is
not necessarily the one that is true. Its most important difference compared to
deductive and inductive reasoning is that it favors one conclusion above others by
demonstrating its likelihood. Abductive reasoning is widely used in the field of fault
diagnosis [13]. To illustrate how abductive reasoning works, consider the following
example:

• Observation: There is a global disturbance in radio communications.

• Most likely explanation: There has been a solar flare.

Here too, the explanation is not certain and might not be true since there could
be other reasons why radio communication is not working, but it is the most likely
explanation.

3.1.3 Advantages of Knowledge-Based Fault Recovery

There are several advantages of knowledge-based fault recovery compared to other ap-
proaches. One of them is that with the help of the knowledge base, the knowledge about
the problems can be continuously accumulated and later on used during the inference
process. This provides a great way to fine-tune the process over time to produce more
appropriate recovery rules. There are two more major advantages, which can be attributed
to how the underlying inference engines usually work. Firstly, the approach does not re-
quire huge amounts of data to be able to generalize, so it is suitable for both simple and
complex systems. Secondly, since the whole process is based on logic, the inferred recovery
rules contain all the logical information about why and when a given rule is applicable.
This combination of the advantages makes the approach applicable to a wide range of
problems.

3.2 The Workflow
Figure 3.3 illustrates the overview of the workflow. In the figure, squares depict input data
to the processes, and processes are depicted with ellipses. The workflow has been designed
to be flexible and easily adjustable, making it applicable to a wide range of fault recovery
problems. It does not impose any restrictions nor requirements on how a system should
be built up or what its architecture should be. This information has to be translated by
the developers into a form that is suitable to the workflow’s inputs.
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Figure 3.3: Workflow overview

3.2.1 Workflow Inputs

Engineering Models - Engineering models contain technical details about the system
in which fault recovery is intended to be introduced. Every architectural data has
to be provided to the fault recovery process through this input. This includes,
among many others, the functional model, hierarchy, elements, dependencies and
interconnections of the system. These engineering models are very important in the
rule extraction process since they are used to provide the system’s architecture.

Cost Metrics - Cost metrics allow adding external requirements and preferences to the
rule extraction process to adjust the produced rules. There are numerous different
scenarios for which a fault recovery process could be optimized. The environment in
which a system operates, financial constraints, and time-critical requirements are all
factors that might require the fault recovery process to be optimized for a specific
target cost metric.

Scoring functions provide the basis for including cost metrics in the rule extraction
process. The complexity of the scoring functions can range from simple algorithms
that optimize the rules with respect to some predefined weights to complex algo-
rithms that take into consideration multiple metrics and try to find the balance
between them. Even though FastLAS supports scoring functions, this is not the
case in most ILP systems, so the applicability of scoring functions is ILP system
dependent.

Fault Recovery Action Table - The fault recovery action table is the most important
input to the process. It provides the examples which are used by the underlying ILP
system to extract the fault recovery rules. These examples come from the data that
is extracted from the system during its operation. The examples have to be labeled
— ideally, they should be the output of the manual classification process — and it
must be exactly known what combination of symptoms in the system implies which
recovery action.

The fault recovery examples can be represented in a tabular format, and from that,
they can be mapped to logic rules. In a tabular format, the columns represent the
different fault symptoms, a specific column represents the recovery actions suitable
to handle the fault, and the rows represent the fault scenarios. In the logic rules,
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the conditions are the fault symptoms, and the consequences are the recovery rules.
This is the format of the examples that will be used throughout this report in later
chapters.

3.2.2 Workflow Processes

Knowledge-Base Compilation - Knowledge-base compilation is the first process. Its
inputs are the engineering models and the cost metrics. The goal of this process is
to translate its inputs into a form that is easily processable by the ILP system. In
the report, Answer Set Programming (ASP) will be used to represent the inputs for
FastLAS.

Representing the engineering models in ASP is reasonably straightforward. How one
would describe the system with plain words can be easily translated to ASP with
the help of ontologies and logic rules. Additionally, knowledge graphs can be used
to represent the hierarchy of the system and the connections between the system
components. These representation methods provide a general way to describe a
wide range of systems.

Cost metrics also have to be represented with ASP. Additionally, to include cost
metrics in the FastLAS-based rule extraction process, they have to be defined with
scoring functions in a FastLAS-specific way. This required representation of scoring
functions will be detailed in later sections (Section 6.3).

Rule-Extraction - Rule-extraction is the second process. Its inputs are the fault recov-
ery action table and the outputs from the knowledge-base compilation step. This
is the process where the ILP task is executed to produce the recovery rules. At
this point, the examples, the engineering models and the cost metrics all have to
be transformed into logical representations with the help of a logic programming
language. All the previous steps prepare the different inputs for this step.

In the report, this is the step where the FastLAS rule extraction task is executed.
The extracted rules carry the intended characteristics that are defined with the
scoring function. This is because the scoring function takes into consideration every
provided information to produce a set of fault recovery rules that are optimized to
the specified cost metrics.

Evaluation - Evaluation is the last process. When the rules have been extracted, it
is time to examine the results and identify any incorrect rules. This process is
usually fulfilled by a system expert. If something has to be adjusted, it can be
easily carried out by making changes in the knowledge base compilation and rule
extraction processes. If everything is correct after the rules have been examined,
then the workflow is over, and the rules are ready to be used to provide the fault
recovery actions for the system.

3.3 Building Blocks in the Report
In the report, the building blocks of the knowledge-based fault recovery process are Answer
Set Programming, inductive reasoning with ILP, and deductive reasoning with clingo [14].
ASP is used to represent everything in the knowledge base in an easy-to-understand way
with logic rules and knowledge graphs. ILP provides the ability to extract fault recovery
rules from example data with the help of inductive reasoning. There are several ILP
systems that could be used in the approach. This report uses the FastLAS ILP system,
which has two main advantages over other ILP systems. The first is that it supports
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scoring functions that can be used to fine-tune the reasoning process. The second one is
that it is very well optimized for large-scale problems, and it can provide optimal solutions
to much more complex problems than its counterparts. Clingo will be used in the examples
to check the hypothesis — produced by the inductive process — with deductive reasoning.

The following sections will detail the steps and used technologies that are required to
implement knowledge-based fault recovery. Firstly, there will be a detailed examination of
the modeling approaches (Chapter 4) that provide useful information for the knowledge-
based fault recovery process. Then the technologies used in the report will be discussed,
which are ASP (Chapter 5), ILP (Chapter 6) and FastLAS (Section 6.3). After these
chapters, the use cases and examples (Chapter 7) will give a thorough picture of how the
approach and the workflow can be used to solve fault recovery problems.
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Chapter 4

System Modeling

System modeling is an essential process related to the presented fault recovery approach
as it provides the engineering models for the rule-extraction workflow. It is crucial to
have correct and information-rich models about the examined system in order to produce
appropriate recovery rules. This chapter details different aspects of system modeling that
are important from the knowledge-based fault recovery aspect.

4.1 Architectural Models
Architectural models define the high-level unifying structures, and the behaviour of sys-
tems [15]. They provide system components, connections and dependencies with a set of
rules, guidelines, and constraints that establish how the system parts work and fit to-
gether. They describe a wide-range of the system properties, such as system hierarchy,
physical elements, components, relationships and links. Many system modeling methods
work with the data provided by architectural models because they contain a comprehen-
sive set of structural and behavioural information about the entire system. Architectural
models play a key role in knowledge-based fault recovery at all stages since they provide
a major part of the information about the problem that has to be solved.

4.2 Qualitative Modeling
Qualitative modeling [16] is a modeling approach concerned with the understanding and
discrete representation of the continuous aspects of systems. Since knowledge-based fault
recovery is a discrete method and requires symbolic reasoning, this modeling approach is
very important. Three key principles govern qualitative modeling, which are discretization,
relevance and ambiguity.

Discretization - Qualitative modeling, as its name implies, looks at continuous at-
tributes and properties in a quantized, discretized way. This turns continuous at-
tributes into entities which can be more easily represented and symbolically reasoned
about. Additionally, discretization abstracts away unnecessary components from the
continuous domain. As an example, consider a car. To solve different problems re-
lated to the car, it is not always required to know the exact velocity of it, only
whether it is moving backwards, forwards, or it is standing. In such a case, the con-
tinuous property — which is the velocity of the car — can be abstracted away, and
the state of the car can be represented with only three words: backwards, standing
and forwards.
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Discretization and abstraction are both very helpful in eliminating unnecessary sys-
tem details. They can reduce the computational complexity of the tasks and keep
the focus on the parts that truly matter to the specific problem. In knowledge-based
fault recovery — especially when the approach is based on ILP systems such as Fast-
LAS, which can not process real numbers — this property of qualitative modeling
is exceptionally beneficial.

Relevance - The aspects of how the discretized values are defined are based on the
constraints imposed by the problem that has to be solved. Qualitative values are
to be relevant for some specific task. To continue the previous example, if the car
dynamics are being tested above a certain positive speed limit, then the backwards
and standing states are not relevant. As an other example, the car’s velocity might
be divided up to discrete intervals, and its dynamic behaviour is determined for these
intervals. From a qualitative point of view, the car can be considered to produce the
same behaviour inside the intervals, and the exact velocity is not important.

Ambiguity - With high-level abstraction, it is often the case that not enough information
is available to accurately determine which of several possible behaviours will occur
in a system. Due to this, predictions made by qualitative models can be ambiguous.
However, this property of qualitative models can be beneficial and can be used to
frame and identify the parts of a problem that are truly important. After the relevant
parts have been identified, traditional modeling methods — such as mathematical
and numerical models — can be used to clarify the ambiguity for the qualitative
models. This reduces the required modeling effort and can help keep the focus on
the parts that are important to solve the specific problem.

4.3 Information Flow Model
The information flow model is concerned with how communication takes place in a system
[17]. Which components communicate, what kind of information is begin transmitted and
due to this, what the dependencies are between the components. The information flow
model provides a logical representation of the system being analyzed. This logical repre-
sentation can be easily translated for the workflow with logic programming languages, pro-
viding valuable information that can be used during the rule extraction process. Knowing
the flow of information is especially important to be able to account for error propaga-
tion inside a system. Errors caused by faults in one component can propagate to other
connected components. Without knowing how the information flows inside the system, it
would be very hard to consider these dependencies.

The flow of information in most cases can be represented with the help of graphs. When
the direction of the communication is also important, directed graphs can be utilized. This
is a significant property since it is then possible to analyze the information flow model with
graph processing algorithms, which is a well-researched area. As an example, consider the
graph depicted in Figure 4.1.
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Figure 4.1: Example information flow model depicted as a graph

It is clearly visible how information flows inside the graph. Additionally, in logic program-
ming, the connections between the components are very straightforward to represent. It
only has to be stated as a fact that a connection between two components exists. After the
connections have been declared, the graph can be processed. A very important notion in
information flow modeling — which will also be used in the examples — is the transitive
closure.

4.3.1 Transitive Closure

The transitive closure of a directed graph GD tells for every vertex vi whether vertex vj

is reachable from it, where vi, vj ∈ GD and i ̸= j. Transitive closures can be used in fault
recovery to account for error propagation and the effects from components that are not
directly connected but through multiple intermediary components. A valuable property of
transitive closures is that they have a matrix representation, which makes interpretation
and processing very convenient. In the matrix representation, the rows and columns are
the vertices of the graph. If a cell is marked in the matrix, then it means that there is a
connection between the two vertices for which the row and column are marked.

As an example, Figure 4.2 depicts the matrix representation of the information flow model
illustrated in 4.1. The columns represent the source components of the connections, and
the rows represent the targets. The light grey cells represent when there is no connection
between two components, the cells with and X represent when there is. Cells with blue
backgrounds represent the directly connected components, and cells with red backgrounds
depict the transitive connections.

c1
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c3

c4

c1 c2 c3 c4

X

X

X

X

X

X
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X
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Figure 4.2: Transitive closure of the example information flow model
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With this representation, it is very easy to reason about the distant connections in a
system. The information flow model will be used in the examples (Section 7.5), and how
the transitive closure can be calculated with ASP is discussed in Section 5.4.
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Chapter 5

Answer Set Programming

Answer Set Programming (ASP) [18] is going to be used in this report to represent fault
recovery tasks. The examples, background knowledge and optimization targets will all be
translated into code with ASP.

ASP is a declarative, rule-based language for knowledge representation and reasoning, de-
veloped in the field of logic programming. ASP is used to represent and solve problems
with the help of logic programs whose answer sets (stable models) correspond to solutions.
It allows domain and problem-specific knowledge to be represented in an intuitive, easy-to-
understand way. Additionally, thanks to its strong declarative nature, it supports rapid
prototyping and the development of software for solving complex search and optimization
problems.

5.1 Working with ASP

ProcessingModeling

Problem

Logic Program Grounder Solver

Interpretation

Answer Sets

Solution

Figure 5.1: Answer Set Programming Process [14]

Working with ASP programs typically involves three stages, which are modeling, pro-
cessing and interpretation (Figure 5.1).

Modeling is the first stage. Here the problem is translated into a logical representation
— conforming to ASP rules — by the programmer. The fundamental approach to
writing ASP programs is based on the "generate-and-test" strategy. First, a group
of rules are created whose answer sets correspond to candidate solutions. Then, the
second group of rules is added, that eliminates candidates which represent invalid
solutions.
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Processing comes after modeling, and it consists of two sub-parts, namely grounding —
also called as variable replacement — and propositional solving.

Grounding is the process of efficiently replacing a predicate program P with a
possibly small propositional program whose answer sets are equivalent to P.
Given an input program with first-order variables, the grounder computes an
equivalent ground (variable-free) program. A naive approach for grounding
is to generate all possible propositional programs. However, this is inefficient
and often impossible due to computational complexity. Intelligent grounding
techniques incorporate a wide range of optimizations such as rewriting, partial
evaluation and approaches borrowed from database technology.

Propositional solving is the process of finding answer sets for the propositional
programs produced by the grounder. Most solvers use methods developed in
the field of satisfiability solving (SAT), such as local search, backtrack search
and formula manipulation. Additionally, the answer set search can be further
improved by sophisticated search heuristics and techniques like backjumping
and clause learning.

Interpretation is the final stage. After processing is finished and the answer sets have
been found the output is ready to be examined. Additionally, errors or non-desired
solutions can be identified here to make further adjustments to the model provided
in the first stage.

5.2 Negation in ASP
ASP employs two kinds of negations, which are Negation as Failure (NAF) and logical
negation [19]. NAF is a non-monotonic, logic programming related inference rule, and it
is used to derive that a proposition p does not hold (not p) from the failure to derive that
specific proposition p. Logical negation is the standard negation approach, which takes
a proposition p to ¬p. There is a subtle but very important difference between the two
negations. NAF handles the absence of information about a proposition as a distinct state,
while logical negation requires explicit information about the proposition. To illustrate
this difference, consider a scenario where a street has to be crossed under the condition
that there is no approaching car. With NAF, it is okay to cross if there is no information
about the approaching cars, meaning that it cannot be derived that a car is coming. With
logical negation, it is okay to cross only if there is explicit information stating that a car
is not coming.

The usage of both negations in ASP leads to an additional fundamental ASP concept,
which is called the Local Closed-World Assumption (LCWA) [19]. LCWA assumes that
a predicate does not hold whenever there is no evidence that it does. This means that
everything that is used under the LCWA has to be explicitly stated to be included during
the processing. As an example, even numbers which are used by a specific ASP program
have to be explicitly stated, or if they are not stated, then the ASP program can not work
with them.

5.3 Basics and Building Blocks
The basic building blocks of ASP programs [20] are atoms, literals, and rules. Atoms are
elementary propositions that may be true or false; literals are atoms a and their negations
not a. In addition to the basic building blocks, there are several language extensions in
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ASP, such as Disjunctive Rules and Aggregate Functions. This section will only discuss
the ones that are important for understanding the report.

5.3.1 Facts and Rules

Rules are expressions in the following form:

r ← b1, ..., bm, not c1, ..., not cn. (5.1)

where r and all bi’s and cj’s are atoms. Intuitively, rule (5.1) is a justification to "establish"
or "derive" that r (the so-called head) is true, if all literals to the right of ← (the so-called
body) are true in the following sense: a non-negated literal bi is true if it has a derivation,
a negated one, not cj, is true if the atom cj does not have one.

As a concrete example, consider the following rule:

engine_working ← turned_on, not broken. (5.2)

It states that, engine_working, the rule’s head, is true if the engine is turned on and there
is no reason to think that the engine is broken.

Facts are rules with an empty, or no body at all. They are represented in the following
forms:

turned_on← .

turned_on.
(5.3)

Both rules in 5.3 mean the same thing, that turned_on is true in all circumstances without
any condition.

It is important to point out again that in ASP not is not a standard negation operator. In-
stead, it is meant to stand for a modality "non-derivable". Consider the following example:

turned_on.

engine_working ← turned_on, not broken.
(5.4)

In example 5.4 for engine_working to be derived, turned_on should be derived, and it is
given as a fact. While broken should not be derived, since the program, which describes
what is known, has no rule to derive broken.

5.3.2 Disjunctive Rules

Disjunctive rules can be used as generators. Consider the following rules with their answer
sets below the horizontal line:

x(1). x(2).
0 {y(X) : x(X)} 2.

(5.5)

{x(1), x(2)}
{x(1), x(2), y(1)}
{x(1), x(2), y(2)}

{x(1), x(2), y(1), y(2)}

The numbers on the two sides of the curly brackets indicate the minimum and maximum
number of components that can be included in a generated rule. If the number on the
minimum or maximum side is omitted they default to zero or the maximum number of
combinations respectively.
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5.3.3 Integrity Constraints

Integrity constraint are used to eliminate answers sets that do not satisfy the requirements
of the body of the constraint.

x(1). x(2).
0 {y(X) : x(X)} 2.

: − not y(1).
(5.6)

{x(1), x(2), y(1)}
{x(1), x(2), y(1), y(2)}

In example (5.6) there is a generator which produces the same answers sets as in example
(5.5). In addition to this there is an integrity constraint which eliminates answers sets
that do not include y(1).

5.3.4 Aggregate Functions

[21] Aggregate functions are used on a group of values to produce an output. Such functions
in ASP are #sum, #count, #min and #max.

x(1). x(2).
0 {y(X) : x(X)} 2.

: − #count{C : y(C)} < 2.

(5.7)

{x(1), x(2), y(1), y(2)}

In example (5.7) the number of atoms in the form of y(C) are counted and those answer
sets are eliminated which do not contain at least two of them.

5.4 Transitive Closure in ASP
To showcase how ASP works, this section details a small example that calculates the
transitive closure (Figure 4.2) of the information flow model depicted in Figure 4.1.
The first step to solve this problem with ASP is to define the connections between the
components as facts. The facts are depicted in Listing 5.1.

% Facts of the example information flow model
connection(c1,c2).
connection(c1,c3).
connection(c2,c4).
connection(c3,c2).
connection(c4,c3).

Listing 5.1: Facts of the example information flow model

The second step is to process the connections with the help of two simple rules depicted in
Listing 5.2. The first rule adds the closure(X, Y ) conclusion to the background knowledge
based on the connections. The second rule then adds a closure(X, Z) conclusion if X ̸= Z
and there exists a connection between X and Y and there is a closure in the background
knowledge in the form of closure(Y, Z).
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% Transitive closure calculation
closure(X,Y) :- connection(X,Y).
closure(X,Z) :- X != Z, connection(X,Y), closure(Y,Z).

Listing 5.2: Transitive closure calculation

The two rules are very straightforward and simple. They clearly highlight the advantages of
logic programming and ASP. When executed, the result depicted in Figure 4.2 is received.
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Chapter 6

Inductive Logic Programming

Inductive Logic Programming (ILP) [22] is an area formed at the intersection of Machine
Learning and Logic Programming. ILP programs aim to learn a set of logical rules —
called a hypothesis — based on positive and negative examples while considering a supplied
background knowledge. The main characteristics of ILP systems from the machine learning
side is their goal to learn and find patterns in data, then generalize and make predictions
about previously unseen datasets. From the logic side, their goal is to find connections in
datasets that are logically deducible and explainable.

6.1 Advantages of ILP Systems
The primary advantage of ILP systems is their ability to give logical explanations about
the rules they learn. Today, most artificial intelligence and machine learning solutions
function like black-boxes. The way they internally work is not transparent. This property
of traditional AI/ML algorithms can be a drawback, and in many engineering fields, it is
not acceptable to have algorithms that cannot be fully explained. On the other hand, ILP
systems inherently possess this ability, as they are based on formal logic.

Another positive trait of ILP systems is that they are able to generalize from a smaller
number of examples. Thanks to this, the training process can be executed faster, which
can be very beneficial in many scenarios, for instance, in time-critical situations. Examples
for the training process must be represented with the same formal logic method.

A third very beneficial property of ILP systems is their ability to efficiently encode and
utilize background knowledge, which is essential for achieving intelligent behaviour. The
background knowledge also has to be represented with the same logic-based formalism so
that it is straightforward to incorporate it in the induction task. Traditional AI solutions
generally do not allow this in such a smooth manner out-of-the-box.

6.2 ILP Background
In general, an ILP task [22] is a tuple in the form T = ⟨B,SM ,⟨E+,E−⟩⟩ where B is a
background knowledge, usually in the form of a logic program, SM is a hypothesis space,
which defines the set of rules that are allowed to be in a hypothesis, and E+ and E− are
positive and negative examples, respectively. A hypothesis — a subset of the hypothesis
space — is the inductive solution of the ILP task. The goal of the ILP task is to find a
hypothesis H in the hypothesis space SM that has at least one answer set (when combined
with B) that extends every positive example (E+), and none of the negative examples
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(E−). A hypothesis H ⊆ SM is an inductive solution of T if and only if:

1. ∀e+ ∈ E+ ∃A ∈ AS(B ∪H) such that A extends e+

2. ∀e− ∈ E− ∄A ∈ AS(B ∪H) such that A extends e−

1. states that for every positive example, there must be a rule in the set of all answer
sets of the union of the background knowledge and the hypothesis that covers the
example.

2. states the opposite that there must be no rule in the set of all answer sets of the
union of the background knowledge and the hypothesis that covers any negative
example.

6.3 FastLAS
FastLAS (Fast Learning from Answer Sets) is a system for Inductive Logic Programming
[1]. It is based on a restricted version of the general ILP approach presented in Section
6.2, called Observational Predicate Learning (OPL), where the predicates in the examples
coincide with the predicates defined by the hypothesis. It has two main advantages com-
pared to other ILP systems, such as its predecessor, ILASP [23]. Firstly, most ILP systems
assume that the hypotheses with the lowest number of literals are the best solutions. In
contrast, FastLAS supports scoring functions that can be used to score hypotheses accord-
ing to predefined criteria. This makes FastLAS applicable to an even wider set of problems
and provides great flexibility. Secondly, it is specifically designed to be scalable with re-
spect to the hypothesis space — the set of all rules which can appear in the hypothesis.
This is achieved by computing a smaller subset of the hypothesis space that is guaranteed
to contain at least one optimal solution with respect to a supplied scoring function. This
search space can be orders of magnitude smaller than the full hypothesis space.

6.3.1 Hypothesis Space

Many ILP systems make use of mode declarations [24] to specify hypothesis spaces, and
FastLAS follows this approach. A mode bias is defined as a pair of sets of mode declarations
〈Mh, Mb〉, where Mh is called the head, and Mb is called the body mode declaration. A
mode declaration is a ground atom whose arguments can be placeholders. A placeholder
is a term var(t) or const(t) for some constant term t. A placeholder can be replaced by
any variable or constant (respectively) of type t. An atom a is compatible with a mode
declaration m if each of the placeholder variables and placeholder constants in m has been
replaced by a variable or a constant of the correct type.

There are two types of mode declarations in FastLAS: #modeh for the head declarations
and #modeb for the body declarations. Mode declarations can be specified with a recall,
which is an integer that specifies the maximum number of times the mode declaration
can be used in a single rule. The maximum number of variables in each rule can also be
specified with the predicate #maxv.

As an example, consider the hypothesis space in Listing 6.1. There is a single head and
three body mode declarations. All three body mode declarations can only be used once
in any rule since their recall is set to 1. The maximum number of variables in any rule is
set to 1 (line nr. 5), so the body mode declaration, which contains one variable (line nr.
2), is allowed to be in the search space. However, the one with two variables (line nr. 3)
is not.
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1 #modeh(h).
2 #modeb(1,b1(var(type1))).
3 #modeb(1,b2(var(type1),var(type2))).
4 #modeb(1,b3).
5 #maxv(1).

Listing 6.1: Example hypothesis space

When processed, Listing 6.1 leads to the search space in Listing 6.2. As expected, every
body mode declaration is contained at most once in any rule. Besides this, no rule
contains the body mode declaration that has two variables.

1 ~ :- b1(V1).
1 ~ :- not b3.
1 ~ h.
1 ~ :- b3.
2 ~ :- b1(V1); not b3.
2 ~ h :- not b3.
2 ~ h :- b1(V1).
2 ~ h :- b3.
2 ~ :- b3; b1(V1).
3 ~ h :- b3; b1(V1).
3 ~ h :- b1(V1); not b3.

Listing 6.2: The example hypothesis space’s search space

6.3.2 Training Data

In FastLAS, the examples from the training data have to be represented in a FastLAS
specific form. The required format is e = ⟨eid,einc,eexc,ectx⟩, where e is the example, eid

is an identifier for the example, einc is the set of inclusions, eexc is the set of exclusions
and ectx is an ASP program called as context. An inclusion is a head mode declaration
for which the example is positive, and an exclusion is a head mode declaration for which
the example is negative.

Listing 6.3 depicts a concrete FastLAS example. The #pos keyword marks the beginning
of the example. The first component in the example is the identifier (id(1)), the second
component contains the inclusions ({turned_on}), the third component contains the
exclusions ({turned_off}) and the final component is the context, which is a small ASP
program.

#pos(id(1),{turned_on},{turned_off},{
value(10).

}).

Listing 6.3: FastLAS example format

6.3.3 Scoring Function

One of the main advantages of FastLAS is that it supports the usage of scoring functions
so the hypothesis can be adjusted with respect to predefined criteria. This is the feature
that allows FastLAS to be used in domain-specific scenarios where the shortest rules are
not the most desirable, such as in fault recovery.

A FastLAS scoring function is a function S : Programs × TOP L → R≥0, where Programs
is the set of all ASP programs and TOP L is the set of all OPL tasks. A hypothesis H ∈
Programs is an optimal solution of task T ∈ TOP L with respect to scoring function S if
and only if there is no H’ such that S(H’,T ) < S(H,T ).
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6.3.4 FastLAS Algorithm

The FastLAS algorithm consists of four main steps: (1) initial construction; (2) general-
ization; (3) optimization; and (4) solving. The role of the initial construction step is to
calculate a subset S1

M of the hypothesis space SM , that is guaranteed to contain at least
one solution of the learning task if the task is satisfiable. In most cases, S1

M contains very
specific rules since each rule is calculated to cover a single example in the set of all exam-
ples. The second step, generalization, is responsible for finding rules which are subrules
of one or more rules in S1

M , leading to a larger hypothesis space S2
M . In the optimization

step, each rule is examined in S2
M , and an optimized version is calculated with respect to

the scoring function, which results in hypothesis space S3
M that is guaranteed to contain

at least one optimal solution. The final step, solving, is responsible for finding a subset
of the hypothesis space S3

M that covers all examples and which is guaranteed to be an
optimal solution of the entire learning task.

6.3.5 FastLAS Example

FastLAS has been used to solve real-world problems in many fields, such as Natural
Language Processing, Event Detection and Security. To demonstrate how FastLAS can
be used, this section discusses how it was used in the security domain to learn security
policies.

The research in Paper [25] was focusing on how Symbolic Learning with the help of Fast-
LAS can be beneficial in the privacy and security domain. Machine learning has become a
very valuable tool in the field. However, it is not always applicable. Many security-related
problems require the models to be explainable to exactly know what the security and pri-
vacy rules that are being learnt contain. The paper discussed a whole system developed
for anomaly detection for access requests based on FastLAS and domain-specific scoring
functions. The received results were very positive and yielded more accurate results in
comparison to traditional AI/ML approaches.

The two main properties of FastLAS that made it applicable in the field were: (1) the
learnt security rules were explainable, which is of great importance in the field of security;
(2) with the help of scoring functions, the level of generality of the learnt rules could be
easily adjusted. Security rules that are too general or too specific are not desirable since
they generate a high number of false allows and false denies. The right balance has to be
found to generate the least amount of errors.

In the paper, the learning process was divided into three separate sections that covered
different aspects of the policy learning task. The exact parts and their respective goals
are detailed in the following section:

Input pre-processing - The first part was for input pre-processing. The inputs were
network access requests that contained traditional HTTP request data, such as
source and destination IP addresses and ports in JSON format. This had to be
converted to a flattened representation that complied with the input example for-
mat required by FastLAS (6.3.2).

Learning task generation - The second part was for generating the learning task for
FastLAS. The data from the network requests had to be translated to head and body
mode declarations, and additional background knowledge had to be extracted and
properly represented in the hypothesis space for FastLAS. Additionally, the scoring
function was defined in this part.
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Learning and output processing - The final part consisted of running the generated
FastLAS learning task and processing the output. During the processing, the outputs
have been converted to proper security rules based on the learned hypothesis so that
they could be evaluated on the test data.

The results of the learning process have been compared to the results of three different
anomaly detection baselines, which were: (1) One-Class Support Vector Machine, (2)
Isolation Forest and (3) Local Outlier Factor. The results from the comparisons showed
that FastLAS was the most accurate. Its True Positive Rate (TPR) was the highest and
False Positive Rate (FPR) was the lowest among all solutions.
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Chapter 7

ILP Supported Fault Recovery

Now that the required background materials have been presented, this chapter showcases
the applicability of the approach through different use cases. The use cases will detail the
knowledge-based fault recovery process starting from the analysis of the inputs and then
move on to the logical representation of the fault recovery action table, system models and
scoring functions. In the end, it concludes with the ILP-supported rule extraction process.
The different parts of the workflow are going to be incrementally introduced one-by-one.
There will be four use cases:

1. The first use case is going to showcase the generalization capability of ILP systems
and how it can be beneficial to fault recovery. This approach is useful when there is
no additional information and model about the examined system.

2. The second use case is going to build on the first use case, and it will introduce the
concept of recovery rule preferences with the usage of weights and scoring functions.

3. The third use case is going to combine the first two use cases and extend them with
background knowledge.

4. The fourth use case is going to showcase the consistency checking ability of the
approach with the help of the background knowledge.

The inputs required by the workflow — such as fault recovery action tables — are going to
be provided in an already processed and abstracted form so that the main focus stays on
the parts that truly matter from the workflow’s point of view. These parts are fundamental
building blocks that can be arbitrarily tweaked and combined to fit the needs of real-world
complex systems.

It is important to note that the scoring functions presented in the examples might not be
optimal. Their point in the report is to illustrate how they can be used and not to create
the most optimal scoring functions.

7.1 Use Case Background
Figure 7.1 represents the system which the examples are going to be based on. There are
two system elements, namely units and components. Units are illustrated with rectangles
while components with circles. Units are allowed to contain other units and components
inside themselves, in contrast to this, components are atomic elements that are not bro-
ken down any further and cannot contain additional system elements. Units containing
other elements represent hierarchy in the system and directed edges between components
illustrate the flow of information and component dependencies.
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c1

c2 c4
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c3

Figure 7.1: Example system architecture

In the use cases the system elements will be abstracted away, in order to keep the focus
entirely on the recovery actions. Figure 7.2 represents the recovery actions associated
to the elements. The hierarchy and the connections remain the same, the only thing
that changes is that system elements are referred to with recovery actions, so whenever a
particular combination of symptoms arises that signals the fault of a system element, it
can immediately be associated with the recovery action which belongs to the element.

a1

a2

a3 a6

a4
a5

Figure 7.2: Example system recovery actions

Table 7.1 depicts the fault recovery action table (Figure 3.3) representing input symptom
combinations and their respective recovery actions for the example system. Data included
in the table can be considered, for instance, to be the output of a fault diagnosis step
processed by a system expert.

The table contains symptoms and corresponding fault recovery actions based on the com-
bination of the symptoms. There are four symptoms (s1-4), 10 different combinations of
the symptoms, and 6 fault recovery actions (Action1-6). In one scenario a symptom can
take up only one value out of four possible values. The possible values are: "True" (T ),
"False" (F), "Don’t know" (-) and "Don’t care" (Ø). "True" (T ) and "False" (F) indicate
that the symptom is definitely present or not present, respectively. These two values are
usually the output of system tests that provide an exact answer whether a symptom is
present or not. "Don’t know" (-) is used to indicate that nothing is known about the
symptom, but if there was information about it, then maybe there would be a different,
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more applicable recovery action for the scenario (Section 5.2). "Don’t care" (Ø) is used to
indicate that even if there was information about the symptom, the same recovery action
would be used (Section 5.2).

Symptoms Actions1 s2 s3 s4

F - - - 1
T - F F 2
T - - - 3
F T F F 3
F T - - 3
- - T - 4
T - - - 5
F T - - 5
- - - T 5
T - T F 6

Table 7.1: The example fault recovery action table

The exact symptoms and recovery actions are not of importance in the examples, the
point is only to be able to differentiate between them. In a real-world system, symptoms
can be, for example, system malfunctions, hardware faults, erroneous software responses
and recovery actions can be hardware replacements and software updates.

7.1.1 Fault Recovery Action Table Representation

Since the input examples are mutually used in every following example, as an initial
step they will be represented with the help of logic programming so that FastLAS can
use them during the rule extraction/learning process. Symptom combinations appearing
in each line of the table (Table 7.1) provide the attributes for the positive examples of
the actions appearing at the end of the same line. Actions not appearing at the end
of the line will have this symptom combination marked as negative from their point of view.

#pos(id(1),{action_1},{action_2,action_3,action_4,action_5,action_6},{
s_1(f).
s_2(dont_know).
s_3(dont_know).
s_4(dont_know).

}).

Listing 7.1: Scenario #1 in ASP

Listing 7.1 shows the first scenario from Table 7.1, represented with ASP for FastLAS. The
#pos keyword marks the beginning of the example. The first component in the example
is the identifier (eid), the second component contains the actions for which this scenario
is positive (einc), in this case it means that if these symptoms appear, then action_1 is a
possible recovery action. The third component contains the actions that are not suitable
to recover from this fault (eexc), in this case everything is listed besides action_1. The
final component is the context of the example (ectx), which contains the symptoms as they
appear in Table 7.1.

All the other lines of the table can be converted to FastLAS processable examples based on
this methodology. The process is very straightforward and easily understandable, which
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is one of the advantages of the logic-based approach. Now that the fault recovery action
table is represented properly, everything is provided to move on to the examples.

7.2 Use Case 1 - Generalization
The generalization property can be very beneficial in the fault recovery domain. The input
data provided in Section 7.1 contains scenarios that are too exact. If there is a fault in
the system that produces a symptom combination that is not included in the table, then
the recovery actions can not determined. In such cases, generalization can help in finding
recovery actions.

FastLAS — and ILP systems in general — inherently possesses the ability to generalize
from the examples, thanks to the algorithms it is built upon. By default, it looks for
a minimal set of rules that cover all positive examples and none of the negatives. The
only thing that has to be done to get the generalized version of the table is to define the
full learning task with mode declarations, then execute it with FastLAS. The rule heads
for which FastLAS will have to learn the bodies are going to be the recovery actions
(Action1-6), and the bodies are going to be the symptoms (s1-4). Listing 7.2 shows these
head and body mode declarations.

% Head mode declarations
#modeh(action_1).
#modeh(action_2).
#modeh(action_3).
#modeh(action_4).
#modeh(action_5).
#modeh(action_6).

% Body mode declarations
#modeb(s_1(const(observation))).
#modeb(s_2(const(observation))).
#modeb(s_3(const(observation))).
#modeb(s_4(const(observation))).

% Constant declarations
#constant(observation, dont_know).
#constant(observation, t).
#constant(observation, f).

Listing 7.2: Mode declarations for FastLAS

After running FastLAS, the hypothesis depicted in Table 7.2 is received. The most notable
difference is that there are now symptoms that have "Don’t care" values, and this is the
basis for generalization.
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Symptoms Actions1 s2 s3 s4

F - Ø Ø 1
T Ø F Ø 2
T Ø Ø - 3
Ø T Ø Ø 3
Ø Ø T - 4
Ø Ø Ø T 5
Ø T Ø - 5
T Ø Ø - 5
Ø Ø T F 6

Table 7.2: The generalized version of the recovery actions

To understand how this and the initial table differ, consider the symptom combination in
Table 7.3. For this combination the initial fault recovery action table did not provide a
recovery action. To check whether the hypothesis provides any recovery actions, it must
be evaluated on the example. To do this, the example and the hypothesis together have
to be solved with an ASP system, such as clingo [26].

Symptoms
s1 s2 s3 s4

T - F T

Table 7.3: Example symptom combination to showcase generalization

Listing 7.3 depicts the clingo task which contains the hypothesis and the uncovered
symptom combination. After running clingo, the result consists of two actions that can
be used for fault recovery, Action2 and Action5. These recovery actions were not available
in the initial fault recovery action table. Here it is important to point out that with
the clingo task a deductive reasoning process is being conducted. There is a hypothesis,
which contains general observations, since it is the result of the inductive reasoning
process. And there is an uncovered, specific example for which the recovery actions have
to be found based on the general hypothesis.

% Hypothesis
action_1 :- s_1(f), s_2(dont_know).
action_2 :- s_3(f), s_1(t).
action_3 :- s_1(t), s_4(dont_know).
action_3 :- s_2(t).
action_4 :- s_3(t), s_4(dont_know).
action_5 :- s_4(t).
action_5 :- s_2(t), s_4(dont_know).
action_5 :- s_1(t), s_4(dont_know).
action_6 :- s_4(f), s_3(t).

% Uncovered symptom combination
s_1(t). s_2(dont_know). s_3(f). s_4(t).

Listing 7.3: Clingo task with the hypothesis and the uncovered symptoms

The example clearly showcases the generalization ability of the approach. Based on the
initial fault recovery action table it was able learn a generalized, logically explainable hy-
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pothesis that can be used to provide recovery actions even in scenarios when the symptom
combinations are uncovered.

7.2.1 Avoiding Over-Generalization

As detailed in the previous example (Section 7.2), by default FastLAS looks for a minimal
set of rules that cover all the positive examples and none of the negatives. In our analogy
this corresponds to the highest level of generalization. In some use-cases this might be
undesirable and has to be avoided, for instance, when the produced rules are too general
and a lot of rules would be applicable based on a few symptoms. In the simplest case, the
use of integrity constraints (5.3.3) that require the hypothesis to contain specific head and
body element combinations is a feasible approach. However, for complex systems where
a more flexible approach is required, the favored way to solve this involves the usage of
weights and preferences, a concept detailed in the following section.

7.3 Use Case 2 - Weights and Preferences
Weights and preferences provide a great way to tweak the hypothesis to fit arbitrary needs.
These preferences usually come from external sources. This example is going to discuss
how Cost Metrics (Figure 3.3) can be included in the workflow to provide a way to prefer
hypotheses based on different criteria.

Preferences are introduced into the workflow with the help of the knowledge-base and
scoring functions. First, weights have to be defined for the different possible fault recovery
actions, and they have to be included in the knowledge-base. After this, a scoring function
has to be developed that takes these weights into account. Just as in the previous example,
all the weights and the scoring function have to be represented with the help of logic
programming.

This example is going to build upon the learning task created in the first example (Listing
7.2). To start with, lets define weights for the different actions (Table 7.4). These weights
could be defined for a number of purposes, such as the required steps to execute the action,
or the cost associated with executing the action. In our example the weights are going to
represent the time it takes to execute the action.

Action Execution time
action1 5
action3 7
action2 25
action4 30
action5 50
action6 70

Table 7.4: Actions and their respective weights (Execution time)

Based on the weights, we define a scoring function which prefers more general rules in
the hypothesis for actions that have a weight below a predefined threshold value, and
produces more specific rules for actions which have weights above the threshold. In the
time analogy, this means that if an action has an execution time below the threshold, then
it should be generalized, on the other hand, actions with long execution times are going
to be preferred in more specific scenarios.
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The scoring function can be described with the formula in Equation 7.1, where weight(A)
≥ 0, threshold ≥ 0 and attrs(rb) > 0. The left side of the equation, scoreA(r), represents
the score of action A with respect to rule r. The right side represents the time analogy
theory discussed in the previous paragraph, where ReLu(x) is the Rectified Linear Unit,
weight(A) is the weight of the action, threshold is the value which can be used to fine tune
the generalization and attrs(rb) is the length of the body of the rule.

scoreA(r) = ReLu(weight(A)− threshold)
attrs(rb)

ReLu(x) = max(0, x)
(7.1)

Given the scoring function, FastLAS will find the hypothesis which contains rules for which
the sum of scores is minimal from all hypotheses. Formally this can be represented with
Formula 7.2, where S is the entire search space, HA are the hypotheses containing the
actions with the rules, and H∗

A is the best hypothesis with the minimal sum of scores.

H∗
A = argmin

HA∈S

∑
ri∈HA

scoreA(ri) (7.2)

After the weights and the scoring functions have been defined, the next step is to
represent them in ASP for FastLAS (Listing 7.4). The first block of code is used to set
the generalization parameter, the second block generates the used numbers as facts and
defines the ReLu function and the final block represents the scoring function. In the
example the generalization threshold has been set to 10. This means that Action1 and
Action3 are going to have a more general rules since they both have weights below the
threshold and Action2 and Action4−6 are going to have more specific rules, because they
have weights above the threshold.

% Generalization threshold
#bias("gen_threshold(10).").

% Number generation
#bias("number(-1000..1000).").
% ReLu function
#bias("relu(X,0) :- number(X), X <= 0.").
#bias("relu(X,X) :- number(X), X > 0.").

% Scoring function
#bias("penalty(Penalty, Action) :- in_head(Action), action_weight(Action, Weight),

BodyLen = #count{B:in_body(B)}, gen_threshold(Gt),
relu(Weight - Gt, ReLu), Penalty = ReLu/BodyLen.").

Listing 7.4: The scoring function which uses the weights

Executing the previously defined FastLAS task yields the results listed in Table 7.5. The
most notable property is that Action2 and Action4−6 do not contain "Don’t care" values,
additionally, they have more specific and longer rules. In contrast to this, Action1 and
Action3 contain "Don’t care" values and generally they have shorter rules.

In the time analogy, Table 7.5 means that the actions below the thresholds will be preferred
because of their shorter execution times. These rules can be considered to be useful in a
time-critical scenario, for instance, if the actions are imagined as element replacements in
the system, this could mean that unit 1 and component 3 have shorter replacement times,
thus the actions related to them are preferred.
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Symptoms Actions1 s2 s3 s4

F - Ø Ø 1
Ø T Ø Ø 3
T Ø Ø - 3
T - F F 2
- - T - 4
- - - T 5
F T - - 5
T - - - 5
T - T F 6

Table 7.5: The weighted version of the recovery actions (The horizontal line depicts the
threshold)

7.4 Use Case 3 - Engineering Models
This example is going to showcase the way how Engineering Models (Figure 3.3) can be
included in the background knowledge to adjust the rule extraction process. The hierarchy
from Figure 7.1 and Figure 7.2 is going to be utilized. The goal is to use the hierarchy of
the system elements to set up a recovery action preference for the elements that are on a
higher level in the hierarchy and contain more system elements, so in this case recovery
actions that belong to units will be preferred. The current goal is similar to the one in
the previous example, however, there the weights had to be set manually. Now instead,
this information is going to be extracted from the engineering models, thus the process is
going to be more scalable.

As the first step, the hierarchy in Figure 7.1 has to be translated to ASP. There are two
units, the first unit contains two components and the other unit, while the second unit
contains two components. The power of ASP is going to be leveraged to simplify this
step by specifying only the elements that are directly contained by the units and leave
the calculation of the transitive relations to ASP rules. This representation is depicted in
Listing 7.5.

% Background knowledge representing system hierarchy
#bias("contains(u1,c1).").
#bias("contains(u1,c2).").
#bias("contains(u1,u2).").
#bias("contains(u2,c3).").
#bias("contains(u2,c4).").

% Background knowledge processing - transitive relations, contained elements
#bias("contains(X,Z) :- contains(X,Y), contains(Y,Z).").

Listing 7.5: The hierarchy represented with ASP in the background knowledge

The first block of code describes the system elements that are directly contained. The
second block is a single ASP rule which is used to find every other contained element.
This part also highlights the advantages of ASP, since a single rule can help us save a lot
of time.

Now that the hierarchy is defined, it is time to specify the scoring function that is going to
take it into account during the rule extraction process. Equation 7.3 describes the scoring
function, where contains(AE) ≥ 0, threshold ≥ 0, attrs(rb) > 0, scoreA(r) is the score
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of action A with respect to rule r, ReLu(x) is the Rectified Linear Unit, threshold is the
limit for the number of contained elements above which the rules for the actions will be
generalized, contains(AE) is the count of the contained elements by element E to which
action A belongs based on Figure 7.1 and Figure 7.2 and attrs(rb) is the length of the
body of the rule.

scoreA(r) = ReLu(threshold− contains(AE))
attrs(rb)

ReLu(x) = max(0, x)
(7.3)

Listing 7.6 shows the discussed scoring function represented with ASP for the FastLAS
learning task. The first block of code is used to set the generalization parameter, the
second block generates the used numbers as facts and defines the ReLu function. The last
block is the scoring function, the (ReLu ∗ 10 ) part in the scoring function’s numerator
is used only because FastLAS does not handle real numbers, and without a scaled
numerator the results would be erroneous. The threshold value in the example has been
set to 2, in the hierarchy of the system this implies that recovery actions that belong to
units will be generalized, since both units in the example contain two or more elements.

% Generalization and falloff parameters
#bias("gen_threshold(2).").

% Number generation
#bias("number(-1000..1000).").
% ReLu function
#bias("relu(X,0) :- number(X), X <= 0.").
#bias("relu(X,X) :- number(X), X > 0.").

% Scoring function
#bias("penalty(Penalty, Action) :- in_head(Action), BodyLen = #count{B:in_body(B)},

ContainCount = #count{Y:contains(Action,Y)}, gen_threshold(Gt),
relu(Gt-ContainCount, ReLu), Penalty = (ReLu * 10)/BodyLen.").

Listing 7.6: The scoring function represented for FastLAS

The hypothesis received after running the FastLAS learning task with the background
knowledge and the scoring function can be seen in Table 7.6. As expected, Action1 and
Action4 — the recovery actions that belong to units — have more general rules, on the
other hand, all the other actions have very specific rules.

Symptoms Actions1 s2 s3 s4

F - Ø Ø 1
Ø Ø T - 4
T - F F 2
T - - - 3
F T - - 3
F T F F 3
- - - T 5
F T - - 5
T - - - 5
T - T F 6

Table 7.6: The hypothesis optimized based on the system hierarchy (The horizontal line
depicts the threshold)
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In Example 2 (7.3) the weights had to be manually assigned to the individual actions,
while in this example they were extracted from the engineering models that accurately
describe the system. Both approaches have advantages, manual weight assignment can be
very useful in cases when there are no models and adequate background knowledge that
could be used in the process. However, when there are models about the system, they can
be easily represented and used. This approach is much more scalable and can easily adapt
to system changes.

7.5 Use Case 4 - Consistency Checking
Modeling complex system accurately is a challenging task, since there are a lot of things
that can go wrong and lead to erroneous results. This example illustrates how the input
examples and the Engineering Models (Figure 3.3) can be used to check for any inconsis-
tencies during the rule extraction process to avoid incorrect results. In the example, the
possible symptoms that can appear in the body of a rule will be restricted, and the rule
extraction process will check for any erroneous examples that violate this constraint, and
reject them if they do so. If there will be no hypothesis that satisfies all the constraints,
then it will mean that there is an inconsistency between the examples and the models. In
addition to this, the example will also take into consideration that faults might propagate
from one component to the other if they are connected, making use of the connections in
Figure 7.1.

The first step is to define the restrictions for the rule bodies, which is going to be based
on the initial fault recovery action table (Table 7.1). These constraints will be used to
disqualify rules for actions which contain symptoms that do not appear together in a single
row with the action in the table (Table 7.1). Listing 7.7 show these body constraints for
Action3. All restrictions can be defined in the same way for the other recovery actions too.

% Possible bodies for action_3
#bias("possible_body(action_3, s_1(t)).").
#bias("possible_body(action_3, s_1(f)).").
#bias("possible_body(action_3, s_2(dont_know)).").
#bias("possible_body(action_3, s_2(t)).").
#bias("possible_body(action_3, s_3(dont_know)).").
#bias("possible_body(action_3, s_3(f)).").
#bias("possible_body(action_3, s_4(dont_know)).").
#bias("possible_body(action_3, s_4(f)).").

Listing 7.7: Action3 possible bodies based on the initial fault recovery action table

The next step is to represent the connections in the system from Figure 7.2 for the FastLAS
task. This will be used to account for fault propagation inside the system. Faults that
appear in one system element might cause errors in the following, connected elements. The
advantages of ASP are going to be utilized again to simplify this step, by only defining
the first-order connections between the elements and using ASP rules to calculate the
transitive closure (4.3.1) of the connections.

Listing 7.8 depicts the connections and the background knowledge for the FastLAS task.
The first block of code describes the first-order connections based on Figure 7.2. The
second part is very important, at first it computes the transitive closure of the connections
then uses the closure to define the additional possible symptoms for the rules. If there is
a transitive connection between two system elements, then it means that there is a flow
of information or dependency between the two, and an error in any preceding element
can propagate to the elements that it communicates to.
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% Background-knowledge representing action connections
#bias("connection(action_2, action_3).").
#bias("connection(action_2, action_5).").
#bias("connection(action_3, action_2).").
#bias("connection(action_3, action_5).").
#bias("connection(action_3, action_6).").
#bias("connection(action_5, action_6).").

% Background knowledge processing - closure
#bias("transitive(X,Y) :- connection(X,Y).").
#bias("transitive(X,Z) :- X!=Z, connection(X,Y), transitive(Y,Z).").
% Background-knowledge processing - fault propagation
#bias("possible_body(X,Z) :- transitive(Y,X), possible_body(Y,Z).").

Listing 7.8: Connections and background knowledge processing

The last step to introduce consistency checking is to define an integrity constraint that
rejects any hypothesis that contains rules for which the head takes up a forbidden body.
With the help of the constraint in Listing 7.9, every hypothesis is rejected which contains
a head and body combination that is not included in the possible bodies represented in
the background knowledge.

% Integrity constraint for consistency checking
#bias(":- in_head(A), in_body(B), not possible_body(A,B).").

Listing 7.9: Integrity constraint for consistency checking

Now that the integrity constraint has been defined, consistency checking has been
introduced to the FastLAS task. To test it, an erroneous example will be added to the
task and checked whether there is any hypothesis that can satisfy it. Consider the positive
example for Action2 in Listing 7.10. With this example, the output of the rule extraction
process will be UNSATISFIABLE. This is because the rules for Action2 are not allowed
to contain the symptom s4(t), additionally, there are no connections to Action2 (Figure
7.2) from where this symptom could propagate. In the closure, Action2 is only connected
to Action3, but even Action3 is not allowed to contain s4(t) in its body, so there can not
be a hypothesis that satisfies this new positive example. To fix this error, either the new
positive example has to be adjusted, or s4(t) has to be added to the possible bodies of
Action2 or Action3.

#pos(id(9),{action_2},{action_1,action_3,action_4,action_5,action_6},{
s_1(f).
s_2(t).
s_3(f).
s_4(t).

}).

Listing 7.10: Erroneous example to showcase consistency checking

Consistency checking can be a very beneficial addition to any rule extraction task to
mitigate mistakes. It is simple and straightforward to set up and can save a lot of time
during the development process. However, it is important to point out that consistency
checking does not tell what is wrong, the examples or the background knowledge. It only
tells that they are not compliant with each other, and its the task of the developers and
the system experts to resolve the contradiction between the two.
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Chapter 8

Summary

8.1 Conclusion
The goal of the report was to examine the field of fault recovery and how inductive reason-
ing can be used to support the fault recovery process. The report thoroughly examined
different aspects of the field of fault recovery. Starting from general concepts, it discussed
related fields and areas, then moved on Knowledge-Based Fault Recovery. It defined a uni-
versal workflow for supporting fault recovery with inductive reasoning. Then it delved into
the technologies that can be used to implement Knowledge-Based Fault Recovery, such
as Answer Set Programming (ASP) and Inductive Logic Programming (ILP). In the end,
it provided examples with the novel FastLAS ILP system to illustrate how the workflow
works.

The use cases walked through the different parts of the workflow and showcased how they
can be used, what can be included in them, and what their capabilities are. The features
presented with the examples are among the most fundamental ones and provide a good
starting point for many fault recovery tasks. Additionally, the workflow has been designed
to be modular enough to allow the inclusion of further features to extend it.

The examples clearly showed that supporting fault recovery with Inductive Logic Pro-
gramming systems has many benefits. The main benefits are the explainability of the
extracted rules, the ability to generalize from a smaller number of examples and — thanks
to FastLAS — the support of domain-specific scoring functions to optimize the hypotheses
with respect to target metrics.

8.2 Further Work
There are many aspects in which the research of Knowledge-Based Fault Recovery could
continue. One such area is the usage of scoring functions. In the report, simple scoring
functions have been used to showcase their functionality. However, there are many so-
phisticated scoring functions that could contribute far more to the fault recovery process
than the ones presented. Another possibility is the examination of the usage of addi-
tional system models. Even though the modeling aspects presented here can be used
to cover a wide-range of modeling-related problems in Knowledge-Based Fault Recovery,
there are numerous other system models (e.g., behavioral models) that can be made use
of to fine-tune the process. On top of these two directions, it could also be examined
how the workflow and the approach could be modified to support changing systems and
requirements to provide a runtime fault recovery approach.
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