
Budapesti M¶szaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Távközlési és Médiainformatikai Tanszék

Heurisztikus algoritmus tervezése elosztott
ponthiba lokalizálásra

A heuristic algorithm for network-wide local
unambiguous node failure localization

TDK dolgozat

Készítette Konzulens

Gyimóthi László dr. Tapolcai János

October 22, 2014

Contents

Abstract in Hungarian 2

Abstract 3

Introduction 4

1 Background 5

1.1 Centralized Unambiguous Node Failure Localization (UNFL) 5

1.2 Network-wide Local UNFL . 6

1.3 Problem De�nition . 7

1.4 Related Work . 8

2 The Recursive Matching-Contraction Algorithm 10

2.1 Integer Linear Program (ILP) . 11

2.2 Local Search Heuristic . 13

2.2.1 Initial coloring . 13

2.2.2 MAP type 1 . 14

2.2.3 MAP type 2 . 15

2.2.4 Spreading + MAP type 3 . 16

2.2.5 Illustrative example . 18

2.2.6 Articulation point removal . 19

2.2.7 Unnecessary m-trail removal . 21

2.2.8 Pseudocode . 22

3 Simulation 24

3.1 Erd®s-Rényi graphs . 24

3.2 Random planar graphs . 26

3.3 Real topologies . 28

4 Conclusion 33

List of Figures 34

List of Tables 35

References 35

1

Abstract in Hungarian

Napjainkra az Internet megbízhatósága kulcskérdéssé vált. A hatalmas sávszélesség igényt

kielégíteni képes optikai gerinchálózatok állandó felügyelete, valamint az esetleges hibák

gyors detektálása, lokalizálása és javítása alapvet® követelmény a szolgáltatók számára.

Mivel a hibainformáció terjesztésre szolgáló elektromos jelzésrendszeri üzenettovábbítás a

helyreállítási id®vel szemben támasztott követelményekhez képest jelent®s, felmerül az op-

tikai réteg hibalokalizációs képességének szükségessége. Az optikai hibalokalizáció egy lehet-

séges megvalósítása ún. monitorozó utak használata, amelyek mindössze 1-1 bit információt

hordozva kódolják, azonosítják a hálózat elemeit. A monitorozó utak segítségével a hálózat-

ban megvalósítható az elosztott ponthibalokalizáció, vagyis a hálózatnak azon képessége,

hogy bármely csomópont bármely másik csomópont hibáját detektálni, és egyértelm¶en

lokalizálni tudja, ezáltal rendkívül gyors hálózati helyreállítás garantálható.

Dolgozatomban egy általam megalkotott heurisztikus algoritmust mutatok be, melynek

segítségével elosztott ponthiba-lokalizáció hajtható végre optikai gerinchálózatokban. A

javasolt rekurzív algoritmust valós hálózati topológiákon, illetve általam generált síkgrá-

fokon egyaránt teszteltem, és a szakirodalomban megtalálható eddig ismert eredményekhez

képest jelent®s javulást sikerült elérni mind futási id®ben, mind célfüggvény értékben.

2

Abstract

Reliability of the Internet became crucial in the past years. The permanent monitoring,

surveillance of the optical backbone networks along with failure detection, localization and

correction functions are fundamental requirements, that an operator must satisfy. The tra-

ditional approach for failure detection and alarm message dissemination uses control plane

packets, that generates a signi�cant delay. A possible solution for implementing optical

layer failure localization in the network is using multihop supervisory lightpaths, called

monitoring trails. These trails intrinsically carry a single bit of information, representing

the statuses of the network elements they traverse by. By properly de�ning and utilizing

monitoring trails, all nodes can unambiguously identify the faulty element in the network,

almost instantaneously.

In this study I introduce a heuristic algorithm that achieves network wide unambiguous

failure localization in optical networks. The proposed recursive algorithm had been vali-

dated on a large number of topologies. Results show, that it signi�cantly outperforms the

previously known algorithms for the given problem.

3

Introduction

The problem investigated in this study is related to optical layer restoration, which allows

full recon�guration of the optical network to survive failures. Restoration is considered a

rather theoretical approach which requires only the minimal protection capacity. Imple-

menting restoration requires an intensive synchronization in the restoration process within

50msec after the failure. For example implementing stub release1 in real time requires an

exact knowledge of the failed elements in the network for each node. Fast failure localization

is currently not feasible and the main target of this work.

The traditional approaches use control plane packets to exchange the status information

after failures. A very general approach is to �x the set of failure states the network can

survive at planning. These failure states are often called shared risk link groups (SRLG),

and typically are single link or node failures. The rest of failure events are unlikely to happen

and thus ignored at the planning stage. As a result, the failure state is a little information

that should be disseminated in a very short time. An alternative idea was to follow the

compressed sensing approach, where a set of supervisory lightpaths are allocated in the

network. Each supervisory lightpath, often called monitoring-trails (m-trails), intrinsically

carries one bit of information about the failure. The idea is that a network failure interrupts

every supervisory lightpaths traversed by. This is immediately seen at every downstream

node to the failure along the interrupted supervisory lightpaths with optical channel tap

monitors. A node is called local unambiguous failure localization (L-UFL) capable if this

information is su�cient to identify the failed SRLG. The m-trail approach is expected

to serve as a complement to the existing electronic signaling approaches and enables an

ultra-fast and deterministic fault management process [2, 3, 7, 9�12,14].

In this study we follow the model of [11], where every node should be L-UFL capable, so

the network can perform network-wide L-UFL (NL-UFL) [10], and the target is to localize

single node failures. The main contribution of the study is to present a new heuristic

algorithm for the problem faster then the prior art.

The present study is organized as follows. Chapter 1 presents a brief overview on optical

layer failure localization techniques and de�nes the m-trail problem. It also contains a

short literature review and presents the background knowledge for the research. Chapter 2

introduces a novel heuristic, called RMCA, that solves the NL-UFL problem for single

node failures on general graphs. Chapter 3 shows simulation results on a wide range of

topologies, which verify the proposed algorithm. Chapter 4 concludes the work.

1releasing the bandwidth of all the connections interrupted by the failure

4

Chapter 1

Background

The issue of fast failure localization in optical backbone networks is a crucial problem

for network operators. Establishing failure recovery in the optical layer isolated from the

upper layer recovery protocols is a fundamental requirement in order to avoid the initiation

of multiple concurrent mechanisms. A frequently used scheme is to settle monitors in the

network, that can observe the statuses of certain network entities. In general, these monitors

are deployed at the network nodes, and their task is to generate a control plane alarm

message whenever an irregularity in the network is detected. The dissemination of these

alarm messages provides failure localization for all the nodes in the network. For modeling

possible network failures, often the concept of SRLG (Shared Risk Link Group) is used: an

SRLG contains a set of network entities (nodes, links, software entities, etc.), that share a

common risk of single failure, meaning that a failure in the network is likely to a�ect the

elements in the same SRLG. In this study we focus on single node failures, i.e. each SRLG

contains solely one node.

We assume, that a node's failure interrupts all of its interfaces, so that the faulty node

becomes isolated from the network. Hence, the 2-connectivity of the networks can be as-

sumed, as if this assumption is not satis�ed, the failure of a cut vertex would separate the

network into two, or more components, making the failure restoration process impossible.

1.1 Centralized Unambiguous Node Failure Localization (UNFL)

Network monitors can observe on-o� statuses of dedicated multihop supervisory lightpaths,

called monitoring trails (m-trails). These m-trails traverse a set of nodes and links in the

network. If we model the network as an undirected graph G = (V,E), then an m-trail

T1 can be represented as a connected subgraph of G. There are two distinct scenarios in

terms of monitoring trail usage for failure localization. In the centralized scheme, certain

monitoring nodes on each trail generate control plane messages whenever a failure oc-

curs on the given m-trail. The alarm messages are collected by a central controller entity,

that can unambiguously localize the faulty node from the given monitoring trail statuses

(as mentioned before, we consider only single node failures in this study). As an m-trail

intrinsically carries only a single bit of information (i.e. its on-o� status), in order to un-

5

Figure 1.1: ACT of an Unambiguous node failure localization (UNFL)

v1
v2

v3

v4v5

v6

v8

v7

v9

v10

v1
v2

v3

v4v5

v6

v8

v7

v9

v10

v1
v2

v3

v4v5

v6

v8

v7

v9

v10

v1
v2

v3

v4v5

v6

v8

v7

v9

v10

T1 T2

T4T3

Failure T1 T2 T3 T4

v1 1 1 1 1
v2 0 0 1 1
v3 1 0 1 1
v4 1 0 1 0
v5 1 1 0 1
v6 1 1 1 0
v7 0 1 1 0
v8 0 1 1 1
v9 0 1 0 1
v10 0 0 1 0

ambiguously identify any failure of the network, a set of m-trails T = {T1, . . . , Tb} has to
be established. Once the exact corresponding subgraphs of the m-trails are de�ned, each

vertex can be assigned a binary code. The i-th position of the binary code of node v is

1 i� Ti traverses v. As our aim is to implement Unambiguous Node Failure Localization

(UNFL), a unique binary code has to be assigned to all the nodes. The codes' uniqueness

guarantee that all nodes are traversed by a di�erent set of trails, thus the centralized con-

troller can unequivocally identify the faulty node. If we denote the number of nodes with

n, and the number of m-trails with b, then the arrangement of these binary codes results

in a matrix with n rows and b columns, called an Alarm Code Table (ACT). Figure 1.1

shows an example of UNFL in a 10-node network. Edges denoted with thick lines repre-

sent the monitoring trails. One might observe, that in this particular case each m-trail is

a path, meaning it is a sequence of vertices and edges. This is not an obligatory property

of the monitoring trails, in our study the only restriction on the de�ned lightpaths is their

connectivity. Note, that all nodes are assigned a unique binary string, thus any single node

failure can be unambiguously identi�ed by the controller.

1.2 Network-wide Local UNFL

The centralized scenario creates a large signaling overhead, as all the generated alarm

messages have to be collected by the controller. The whole process could be sped up, if

there are only a few nodes that have to change status information via alarm messages.

Ideally, there is a node, that can inspect all the trails, thus could operate as a controller

without collecting any alarm messages.

6

We de�ne local information for a node v as the on-o� statuses of all those lightpaths that

v is traversed by. From a practical point of view, every node can obtain these statuses of

their traversing lightpaths via optical signal tapping. If there is a node v, that can perform

UNFL using only its local information, then v is said to be Local-UNFL (L-UNFL) capable.

For instance, node v1 on Figure 1.1 is L-UNFL capable, as all the four trails are traversing

it. If all the nodes in the network are L-UNFL capable, we say that Network-wide L-UNFL

(NL-UNFL) is guaranteed.

The length of a monitoring trail Ti is denoted as |Ti|, and can be measured as the number

of nodes it traverses. Our main objective is to implement NL-UNFL for general topologies,

with minimum total cover length, that is ‖T‖ =
∑b

i=1 |Ti|. The cover length is also called

bandwidth cost, as this implies the additional bandwidth consumption of monitoring.

The simplest way to implement NL-UNFL in a 2-connected network with n nodes is to

de�ne n monitoring trails where the i-th trail contains all the nodes except for the i-th

one. Thus, when a single failure occurs in the network, it a�ects all the trails except for

the one that bypasses the faulty element, so that every node can unambiguously identify

the location of the failure (see Figure 1.2). This approach provides a fast and clear way to

reach the desired operation, however, as the number of required m-trails is a linear function

of the size of the graph, and the normalized cover length is n− 1, this con�guration does

not satisfy our requirements and constraints on the bandwidth occupancy. Instead of linear

results, we seek after solutions with logarithmic nature, as only dlog2 ne bits are needed to

distinguish n elements.

11111110 11111101

11111011

11110111

1110111111011111

10111111

01111111

v8 v7

v6

v5

v4v3

v2

v1

Figure 1.2: Implementing NL-UNFL in a simple way on a 8-node random
2-connected graph

1.3 Problem De�nition

The problem input is an undirected graph G = (V,E) with node set V and link set

E, where the number of nodes is denoted by n = |V |. The NL-UFL m-trail allocation

problem for single-node failure (NL-UNFL) is to establish a set of m-trails, denoted by

7

Table 1.1: Notation list

Notation Description

G = (V,E) undirected graph representation of the topology
n = |V | the number of nodes in G

b the number of m-trails
T = {T1, . . . , Tb} a solution with b m-trails

T j the m-trails seen at node vj
Ti the ith m-trail, which is a set of nodes in G
|Ti| number of nodes the ith m-trail traverses
bj number of m-trails traversing node vj
Aj the alarm code table seen at node vj ∈ V
||T ||V normalized cover length, see 1.1

T = {T1, . . . , Tb} where b = |T | is the number of m-trails, and each node vj ∈ V can

achieve L-UFL according to the on-o� status of m-trails in T j - the subset of T containing

the m-trails passing through vj . In this study we focus on node failures, and assume the

links are perfect. Thus each m-trail Ti is a set of nodes that can be connected in G. Let

bj = |T j | the number of m-trails seen at node vj . Let Aj denote the alarm code table seen

at node vj , which is an |V |× bj matrix with aji,[k] = 1 if the k-th m-trail seen at vj traverse

node vi and 0 otherwise. We say the failure of node vi can be localized at node vj if the

i-th row of Aj is unique.

The set of m-trails T j for vj must satisfy the following two requirements:

(R1): Every node vi ∈ V should be passed by a unique set of m-trails in T j , such that

every node has a unique alarm code seen by vj .

(R2): Ti for 1 ≤ i ≤ b must be a set of nodes forming a connected subgraph of G.

The objective is to have minimal average number of m-trails seen at each node, i.e.

||T ||V =
∑
vj∈V

bj
n

=

b∑
i=1

|Ti|
n
, (1.1)

where the equality holds because the total sum of the m-trails' lengths equals to the sum

of the number of m-trails seen at all the vertices.

1.4 Related Work

L-UFL was �rst investigated in [2] where the goal was to determine one (or more) mon-

itoring locations (MLs), that are nodes in the network where the m-trails can terminate,

in order to collaboratively identify the failed SRLGs according to the alarms collected by

the MLs. [10] extended this model by exploring the scenario where not only the termi-

nating node but also an intermediate node of an m-trail can obtain its on-o� status via

optical signal tapping. An overview of fast failure localization with m-trails can be found

in the book [9]. The study allocated m-trails which enable every nodes as L-UFL, called

8

Network-wide L-UFL (NL-UFL), capable for any single link failure. An e�cient heuristic

was developed for allocating m-trails in the shape of a spanning tree via link code swapping.

[11] is the only paper reported on node failures. It presents a heuristic algorithm (hence-

forward referred as GLSnode) that generates a random initial possibly invalid solution. Next

through a series of minor modi�cations it is changed to valid solutions. To verify the validity

of the solution, the L-UFL capability of each node is checked, which is at least |SRLG| · |V |
steps. This function is launched hundreds of times, which ends up a rather time consuming

job. In the present study we take a di�erent approach, which ensures the validity of the

solution by limiting the problem space to speci�c m-trail constructions. In Section 3.3 an

extensive comparison of the proposed RMCA and the GLSnode algorithm is conducted.

Also in [11], the authors determine a lower bound on the number of required monitoring

trails (denoted with b) for NL-UFL for single node failures:

b ≥ d1.62088 log2 (n)e , (1.2)

where n represents the number of nodes in the network. Note, that the cost of distributed

failure localization is also a�ected by the length of the monitoring trails. Thus, in many

studies ([2,6,13]) the normalized cover length of the set of m-trails is used as the objective

function, that is the sum of the length of all m-trails. A length of a trail can be de�ned

either as the number of links or as the number of nodes it traverses. In our study, we

investigate single node failures, hence hereafter we refer to the number of traversed nodes

by Ti as the length of the i-th trail.

9

Chapter 2

The Recursive Matching-Contraction

Algorithm

It can be easily shown that if we assign unique binary codes with a length of k bits to the

nodes in such a way, that at every bit position both the subgraph of the 1s and the 0s

are connected, then NL-UNFL is achievable with 2k+1 m-trails. Basically, the �rst k bits

have to be the unique binary codes of the nodes, and then the complements of these binary

codes have to be appended to them, which means 2k bits altogether. However, as we might

have pairs of codes that are exactly the complements of each other, an additional trail

has to be de�ned, which traverses all these complement pairs in the network. It guarantees

NL-UNFL, as every node v receives the information of all the �rst k bits (which assumed to

be a globally unique set of binary codes): either the original, i-th (1 ≤ i ≤ k) trail traverses
v, or its complement pair i+ k. The last trail ensures the recognition of the faultless state.

Assigning unique binary codes in a way mentioned above is not trivial as keeping the

value of k as low as possible is one of our main objectives. A possible solution could be the

following:

• Divide the given G = (V,E) graph's vertices into two disjoint color classes R an B in

such a way, that both classes compose a connected subgraph in G. Find a maximum

matching M between R and B. Vertices in the same classes are assigned the same

binary value at the current bit position1.

• Contract ∀e ∈M resulting a new graph G′ = (V ′, E′).

• Continue iterating these two steps on the new graphs, until only one vertex remains.

As for ∀e = (i, j) ∈ M the two vertices i and j are in di�erent color classes (meaning

they have di�erent binary values in the given position), they can be distinghuised further on

from each other. Thus, their contraction will not cease the uniqueness of the bit sequences,

but it reduces the size of the graph, so that the algorithm has to work on a smaller graph

at every iteration. It can be easily shown, that at the end of the algorithm, all the vertices

1E.g. vertex v is assigned 1, i� v ∈ R in the current iteration, and 0 otherwise.

10

are assigned a unique binary code.2 Moreover, the subgraphs of both the 1s and the 0s are

connected at each bit position, as we required the classes' connectivity at every iteration.

Obviously, the hardest part of the algorithm described above is the construction of the

two disjoint subgraphs with maximum matching. Edmonds' algorithm, presented in [4],

�nds a maximum matching in a general graph in polynomial time, however, it does not

take into account the color classes, and their connectivity, therefore it cannot be used for

our case. A rather simple way to implement the abovementioned constrained matching is

through Integer Linear Programming, which will be described in the next subsection.

The theoretical lower bound on the cover length for NL-UNFL is dlog2 ne as every node

need to distinguish n − 1 di�erent node's failure, and the faultless state. The minimum

||T ||V value, that the proposed Recursive Matching-Contraction Algorithm (RMCA) can

reach is

||T ||V,min = dlog2 ne+ κ, (2.1)

where

κ =
2 · (n− 2dlogne−1)

n
, 0 < κ ≤ 1. (2.2)

In order to achieve this value, the number of merging iteration steps should be dlog2 ne,
meaning, that after the dlog2 ne-th step the contracted graph is composed of a single vertex.

If we encode n nodes in dlog2 ne bits, then a minimum number of n−2dlogne−1 complement

codes will be obtained, as there are 2dlogne−1 codes in the set of binary sequences with length

of dlog2 ne that are pairwisely not complement of each other. Let δk denote the needed

matching cardinality, and nk the number of nodes in the k-th iteration. It can be easily

shown, that if we would like to encode n nodes in dlog2 ne bits, then δk ≥ nk − 2dlog2 ne−1

should be satis�ed for every k.

2.1 Integer Linear Program (ILP)

The mathematical tool of linear programming (LP) lets us optimize a certain objective

function with respect to certain constraints formulated in inequalities. Integer LP implies

another constraint: the de�ned variables can only take integer values. ILP is considered a

useful tool for formulating combinatorical optimization problems.

Let ye be a binary variable for ∀e ∈ E, which is 1 i� e is chosen to be inM, and zero

otherwise. The objective function is the sum of these ye variables, as we would like to

maximize the cardinality of M. The constraints are the followings. For every vertex, the

sum of its incident edges' ye values should be no more than 1, as a matching is formed

by a set of independent edges Eq. (2.4). Let the two color classes be B (blue) and R
(red). The binary variable xbv is 1, i� v is blue, and similarly xrv is 1, i� v is red, and 0

otherwise. Obviously the sum of these two values for every v should be 1, as in Eq. (2.5).

Eq. (2.6) guarantees that for all the edges inM, the vertices incident to e are from di�erent

color classes. In order to ensure the color classes' connectivity, new variables have to be

2Two vertices can be contracted, i� they have di�erent binary values at the current bit position, meaning
they can be distinguished further on. This rule recursively holds for all the contractions, hence, when the
last contraction occurs, all the nodes have unique codes.

11

introduced. Let us transform our initial graph G into a directed graph G′ = (V,E′), so that

instead of each undirected edge e = (i, j), two directed arcs are presented; one from i to j,

and another one from j to i. Assign two variables for each of these new arcs to represent

blue and red �ow values going through on the given arc: zb(i,j) and z
r
(i,j) respectively. The

�ow value can be larger than 0, only if both the source and the target vertices are from the

same color class as the �ow itself (e.g. zb(i,j) can be positive, if both i and j are in the blue

color class). β is a su�ciently large number, in this case β = |V | is an appropriate choice

Eq. (2.7). The sum of the incoming �ow and the node's own color class variable (xbv and

xrv) should be no more than the outgoing �ow. This holds for both color classes and for all

the vertices, except one from each class. The result will be a directed tree for both color

classes, where the root is the abovementioned exception node. In order to satisfy the �ow

equations for the roots as well, another binary variable is introduced for every vertex for

both classes; wb
v and w

r
v are assigned a value of 1, i� v is the root of the blue or the red tree

respectively Eq. (2.8). As there is exactly one root for each classes, and the root should

have the same color as the �ow itself, the inequalities of Eqs. (2.9) and (2.10) should be

appended.

This formulation might seem a bit complicated at �rst sight, nevertheless we have de-

scribed a graph theoretical optimization problem with only a few inequalities. Unfortu-

nately, there is no known polynomial time algorithm for solving ILP problems, consequently

the execution time increases excessively with the size of the input. Therefore, in the next

section we try to devise a heuristic approach for this matching-maximizing problem.

max . :
∑
e∈E

ye (2.3)

s.t.: ∑
e∈NG(v)

ye ≤ 1 ∀v ∈ V (2.4)

xbv + xrv = 1 ∀v ∈ V (2.5)

xbi + xbj ≥ ye xri + xrj ≥ ye ∀e = (i, j) ∈ E (2.6)

zb(i,j) ≤ β · x
b
i zr(i,j) ≤ β · x

r
i

zb(i,j) ≤ β · x
b
j zr(i,j) ≤ β · x

r
i

∀e = (i, j) ∈ E′ (2.7)

xbi +
∑

j z(j, i)
b ≤ β?wb

i +
∑

j z
b
(i,j)

xri +
∑

j z(j, i)
r ≤ β?wr

i +
∑

j z
r
(i,j)

∀i ∈ V (2.8)

∑
v∈V w

b
v = 1∑

v∈V w
r
v = 1

(2.9)

wb
v ≤ xbv wr

v ≤ xrv ∀v ∈ V (2.10)

12

r1

b1

r1

b1

Figure 2.1: Augmenting path in a bipartite graph

2.2 Local Search Heuristic

The solution given by the ILP is optimal for the abovementioned maximal matching prob-

lem, however, the computing time grows immensely with the size of the input graph. A

promising, fast alternative of the ILP can be a simple local search heuristic, that tries to

maximize the cardinality of an initial matching by means of certain augmenting paths.

Hereafter, RMCA will refer to the algorithm that utilizes the local search heuristic de-

scribed in this section for matching cardinality maximizing.

In case of bipartite graphs the concept of an augmenting path is well de�ned: it is an

alternating path from u to v, where u and v are two unpaired vertices in di�erent color

classes, thus, neither of them are included in the current matching. An alternating path is

a sequence of edges where every second edge is included in the current matching set M.

Fig. 2.1 shows an example of an augmenting path in a bipartite graph. The white and grey

ellipses represent the two color classes. Obviously, this de�nition of augmenting path can

be used for general graphs as well; if we de�ne the two color classes, augmenting paths

can be found regardless the edges that connect vertices in the same color class. Hence, the

concept of augmenting path (AP) is implemented in the heuristic.

2.2.1 Initial coloring

First of all, the two color classes should be de�ned; this is achieved by random walks

initiated from two nodes r0 and b0. The two classes spread in a step-by-step manner, if one

of the classes has no uncolored neighbour, then the rest of the graph is colored by the other

class. If the graph is connected (as we always assume), the walks will eventually cover all

the nodes in the network, classifying them into two color classes, R and B respectively.

Then, a maximal matchingM0 is found in a greedy way, where an independent set of inter-

class edges is chosen. Handling G as a bipartite graph, a maximum matching M can be

obtained fromM0 by means of APs. However, the aforementioned intra-class edges (which

do not exist in bipartite graphs) could be utilized as well, in order to de�ne new types of

augmenting paths, hereafter let us refer to them as mixed augmenting paths (MAPs). In the

following subsections I propose three types of MAPs, and illustrate them with examples

taken from the simulations conducted on some real network topologies. In particular, I

demonstrate all the three MAPs on the 16-node Pan-European network. The �gures show

both the original network, and the rearranged graph, where the nodes belonging the same

color class are grouped in the same ellipse. The two ellipses represent the two color classes,

and the nodes' colors also indicate the class they belong to. A visual summary of the three

13

b1

r1 r2

b1 r1

r2

b1

r1

b2

r2

b1

r1 b2

r2

r2

b1

r1

r2

b1 r1

Figure 2.2: An example of the 3 di�erent MAPs

F JG CA

P

M

HI

DE

B N OLK

F

J

G

C

A

P

M

H

I

D

E
B

N

O
L

K

F JG CA

P MHI

DE

B N OLK

F

J

G

C

A

P

M

H

I

D

E
B

N

O
L

K

Figure 2.3: An example of MAP type 1 on the Pan-European network

MAPs is shown on Figure 2.2. Note, that in this case, not all the edges are included on

the Figure 2.2, only the ones that are directly utilized during the augmenting method and

the ones included inM (the bold edges).

2.2.2 MAP type 1

A very simple way to increase the cardinality ofM is the following; supposing that there

is an unpaired vertex r1 ∈ R, that is connected to an unpaired vertex r2 ∈ R and another

vertex b1 ∈ B, r1 can be transposed to the color class B, and the edge e = (r1, r2) can be

added toM (see Figure 2.2). In order to keep the color classes' connectivity another very

important constraint has to be satis�ed: r1 must not be an articulation point (cut vertex)

of its original color class R; meaning that its removal must not a�ect the connectivity of

R.
We can follow this procedure on the real network example, shown on Figure 2.3. Initially,

M contains three edges, namely G − P , D − I and E − B, marked with bold edges. All

14

FJG C A

P

M

HID

E

B NOLK

F

J

G

C

A

P

M

H

I

D

E
B

N

O
L

K

FJ

G

C A

P

M

HID

EB

NOLK

F

J

G

C

A

P

M

H

I

D

E
B

N

O
L

K

Figure 2.4: An example of MAP type 2 on the Pan-European network

the remaining inter-class edges are denoted by dotted lines. In our case, there is only one

inter-class edge, namely the one connecting M and P . As we have seen, the execution of

MAP type 1 requires an unpaired vertex that is connected both to a vertex from the other

color class and another unpaired one from the same class. Fortunately, M satis�es these

criteria (through the edges M −P and M −J), furthermore, it is not an articulation point

in its own class, therefore the augmenting step can be executed. Hence,M is transposed to

the other class, and M − J is added toM increasing its cardinality to 4. As color classes

changed, the previous inter-class edge M − P becomes an intra-class edge, while a new

inter-class edges betweenM andD appears. Note, that further MAP type 1 steps cannot be

performed, since this single inter-class edge connects two vertices that are already paired.

However, further MAPs can be de�ned in order to increase the cardinality ofM.

2.2.3 MAP type 2

Another possible matching-increasing method is very similar to the augmenting path for

bipartite graph matchings. Provided that there is an alternating path between two paired

vertices r1 ∈ R and b1 ∈ B, and both r1 and b1 are connected to an unpaired vertex in their
own color class (r2 and b2 respectively), then an augmenting path is found (see Fig. 2.2).

r1 is transposed to B, and b1 is moved to R. The new matchingM′ is composed of those

inter-class edges of the augmenting path, that were not included in the initial matchingM
(the ones denoted with dotted lines) and two new edges r1− r2 and b1− b2. Note, however,
that neither r1 or b1 can be cut vertices in their own class, since the class-connectivity

constraints have to be satis�ed.

On Fig. 2.4 an initial matching of three edges is shown: G−P ,M−D and E−B. Besides
these three paired edges, there are two inter-class edges, P −M and D−E. Furthermore,

15

this �ve edges construct an alternating path from G to B: G − P −M − D − E − B.

As G and B are not cut vertices in their color classes, and they both connected to an

unpaired vertex of the same class (J and K respectively), we can use the augmenting path

described above. Thus, the resulting matchingM′ is composed of 4 edges: J −G, M −P ,
E −D and B −K. Note, that we could have chosen node I to be the new pair of B, as

I had also been unpaired before the augmenting step. Whenever the algorithm reaches

a state like this, i.e. it has to choose between two or more seemingly equivalent options,

it selects randomly one of them. Although, choosing B −K instead of B − I into M′ in
this particular situation is disadvantageous for the following reason. The resulting graph

does not contain any subgraphs that satis�es the criteria for either MAP type 1 or type

2, therefore no further augmenting steps can be done. 3 On the other hand, if node I had

been chosen to be the new pair of B, then through node K an additional MAP type 1

could have been de�ned, increasing the matching size to 5. As the investigation of all the

possible outcomes would require signi�cant computing time, for the sake of simplicity and

fastness the algorithm chooses randomly in these scenarios.

FJ GC AP

M H I D

E

B N OLK

F

J

G

C

A

P

M

H

I

D

E
B

N

O
L

K

FJ GC AP

M H I D

E B

N OLK

F

J

G

C

A

P

M

H

I

D

E
B

N

O
L

K

Figure 2.5: An example of Spreading and MAP type 3 on the Pan-European
network

2.2.4 Spreading + MAP type 3

It might happen that after the initialization, one color class is signi�cantly larger, than

the other one. In that case, the augmenting process gets stuck after a few steps, and the

3One might think, that I is an appropriate choice for MAP type 1 through edges B − I and I − N .
However, I is a cut vertex in its class, thus if it was transposed to the other class, D would become
separated from the rest of its class. The path A− E −D −M − P −H for MAP type 2 also violates the
cut vertex constraint at E and P .

16

Figure 2.6: Console window of the �rst step of RMCA on the North American
network

resulting matching will probably have a suboptimal cardinality. A possible way to overcome

this issue is to somehow let the smaller class "spread" into the larger one. Fig. 2.2 shows

one step of spreading. If the larger color class contains a paired vertex r1 (with pair b1)

that is not a cut vertex, and is connected to a not paired vertex r2 within its class, then

it can be moved to the smaller class, adding the edge r1 − r2 toM and removing r1 − b1.
The algorithm seeks spreading possibilities whenever it cannot �nd further MAPs of type

1 and type 2, and if one class is larger than the other one. Spreading does not increase

the cardinality ofM, it only balances the number of the vertices in the two color classes.

However, if the pair of r1, b1 is connected to an unpaired vertex r2 ∈ R, then that edge

e1 = (b1, r2) can be added to M. Thus, spreading might increase the cardinality of M
with this modi�cation. This method is hereafter referred to as the 3rd type of MAPs.

A MAP type 3 step is demonstrated on Fig. 2.5. In the initial con�guration no more

type 1 or type 2 MAPs can be found. Nevertheless, B is a promising candidate for being r1
in MAP type 3, as it is a not cut vertex paired with E, and it has two unpaired neighbours,

I and K. Hence, MAP type 3 can be executed, and as seen before, the algorithm chooses

randomly between the two suitable edges, B − I and B −K. Fortunately, B − I has been
chosen toM′ this time, so that a further MAP type 1 can be performed through the edge

B −K and K −N .

Fig. 2.6 shows the algorithm's output in the console window during its execution on the

39-node North American optical network. 19 blue, and 20 red nodes are present in the

network after the initial coloring. Thereafter, the augmenting process is initiated, and a

total number of 8 matching cardinality-increasing augmenting steps are performed (along

with two spreading steps). The resulting matching is composed of 13 pairs, which is a quite

high number regarding the network's low average nodal degree (3.13). The initial, and the

augmented matchings are shown on Figure 2.7 (a) and (b). Pale blue edges represent the

edges that are included in the matching set, while green edges are the remaining inter-class

edges.

Obviously, it is possible to de�ne further MAPs, that might increase the cardinality, but

for the sake of simplicity and quickness I have used only the ones introduced above.

17

(a) Initial matching (b) Augmented matching

Figure 2.7: 39-node

2.2.5 Illustrative example

Fig. 2.8 shows the sequence of steps and the resulting m-trails of RMCA on the 16-node

Pan-European optical network. Each merging step de�nes two new m-trails representing

the two disjoint color classes, colored with white and grey. On Fig. 2.8(a) the bold edges

at every step are the ones that will be contracted for the next iteration, so that their

two vertices' labels can be merged together, indicating, that they will be on the same

m-trails further on. Thus, on the initial graph the edges connecting J −M , A − E, H −
I and L − O can be contracted. Consequently, in the next iteration we are looking for

a matching with connected color classes in a smaller, 12-node graph. The color classes

and the obtained matchings are the result of the previously proposed graph coloring, and

augmenting methods. The same matching-contraction steps can be executed in the next

iterations, each step de�nes two m-trails. The importance of the connectivity of both color

classes is shown by Fig. 2.8(b). The corresponding two m-trails for the two colors classes

are represented with a solid and a dashed line (for white and grey classes respectively) for

each step, resulting in 12 trails altogether.

As mentioned before, an additional trail should be added to the solution when we have

nodes that are assigned complement binary codes, as they cannot take notice of each

other's failure. On our example K-G, and N -J are complement pairs (meaning they are

on di�erent trails for all the 6 pairs), so that the last m-trail has to include them along

with vertices H, I and P to make the trail connected. In our case Tcomp will increase

||T ||V by 7
16 , as it traverses 7 vertices in the 16-node network. The resulting Alarm Code

Table (ACT) is shown on Table 2.1, {T1, . . . , T13} are the 13 m-trails. A node is included

in the i-th m-trail, i� the i-th bit in the corresponding row is 1. Note, that {T6, . . . , T12} =
{T1, . . . , T6}, where Ti is the bitwise complement of Ti. Let's denote the �rst 12 trails by

{TM1, . . . , TM6, TM1, . . . , TM6}, where M refers to the M atching that basically generated

these trails. Also, Tcomp denotes the last, additional trail, referring to the complement pairs

that it contains.

The distinction of certain categories of m-trails is not necessary, however, it might be

18

F

J

G

C

A

P

M

H

I

D

E
B

N

O

L

K

F

G

C

AE

P

JM

HI

D

B

N

LO

K

G

CJM

AEF

P HILO

D

B

N

K

GP

CJM

ABEF

DHILO N

K
CGJMP

ABDE
FHILO KN

ABCD
EFGHI
JLMOP

KN

(a) The graph after merging in each step

(b) The trails

Figure 2.8: An illustrative example of the algorithm on 16-node European
reference network.

helpful, as a new type of m-trails will be presented in the next subsection.

2.2.6 Articulation point removal

As each matching-contraction step increases the number of m-trails by 2 (and ||T ||V by

1), the main target is to keep the contraction steps as low as possible. The proposed

RMCA performs very well on graphs with large average nodal degree, nevertheless, it has

some limitations on network topologies with lower nodal degrees. The main reason for this

behaviour is the emergence of cut vertices during edge contractions. Once the algorithm

reaches a point, where an articulation point appears, the convergence becomes slower,

much lower number of edges can be contracted at each step. The underlying reason for this

deceleration is the following: a cut vertex v seperates the graph into two components A

and B, thus when the color classes are being constructed, vertices in one of the components

have to be in the same color class as v is. Consequently, no edges in either A or B can be

included in the matching. Thus, the upper bound for |M| is max{b|A|/2c, b|B|/2c}, that

19

Table 2.1: ACT for the 16-node European network

XXXXXXXXXXXNodes
M-trails T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

TM1 TM2 TM3 TM4 TM5 TM6 TM1 TM2 TM3 TM4 TM5 TM6 Tcomp

A 0 0 1 1 0 0 1 1 0 0 1 1 0

B 1 0 0 1 0 0 0 1 1 0 1 1 0

C 0 0 1 1 1 0 1 1 0 0 0 1 0

D 1 1 1 0 0 0 0 0 0 1 1 1 0

E 1 0 1 1 0 0 0 1 0 0 1 1 0

F 0 1 1 1 0 0 1 0 0 0 1 1 0

G 0 1 1 0 1 0 1 0 0 1 0 1 1

H 0 1 0 0 0 0 1 0 1 1 1 1 1

I 1 1 0 0 0 0 0 0 1 1 1 1 1

J 0 1 1 1 1 0 1 0 0 0 0 1 1

K 1 0 0 1 0 1 0 1 1 0 1 0 1

L 0 0 0 0 0 0 1 1 1 1 1 1 0

M 1 1 1 1 1 0 0 0 0 0 0 1 0

N 1 0 0 0 0 1 0 1 1 1 1 0 1

O 1 0 0 0 0 0 0 1 1 1 1 1 0

P 0 1 0 0 1 0 1 0 1 1 0 1 1

is usually way lower than the theoretical optimum for a graph containing no cut vertices.

A quite intuitive way to overcome this issue is the following. If we unambiguously identify

the cut vertex v with a few additional m-trails, then all the further trails can go through

v. Therefore, v can be removed from the graph, and all of its neighbour vertices can be

connected with each other (as they are linked through v). Figure shows an articulation

point removal step on a random planar graph.

The only remaining question is the way we identify the cut vertex for all the nodes in

the network. It is easy to see, that adding four appropriate trails is always su�cient: two

for the two components containing the cut vertex, and two more monitoring trails for the

two components without the cut vertex. The drawback for this vertex removal is twofold.

First, and most importantly it will increase the normalized cover length value by two, as

every node is crossed by two out of the abovementioned four additional trails. Secondly,

as the removed cut vertex contained several nodes from the original graph (because of the

contractions of the previous steps), its removal means that these vertices might be included

in both color classes during the forthcoming iterations, which will also slightly increase the

cover length. However a large number of pairs can be found in the next iterations thanks

to the newly added edges, which will essentially improve the RMCA algorithm in terms of

||T ||V .
The four new m-trails are further denoted with {TA1, . . . , TA4}, where A refers to the

Articulation point removal. TA1 and TA2 are the trails going through component A without

and with the cut vertex, respectively, while TA3 and TA4 are the trails traversing the other

component, B. A node a in component A can unambiguously identify the failure of the

cut vertex v, as in this case TA1 would be faultless while TA2 would indicate an error. The

same holds for nodes in component B.

Leaf vertices (nodes with degree one) are managed in a di�erent way. Instead of removing

their neighbour cut vertex and adding four more m-trails as it was described above, we can

simply contract them to their neighbour, by de�ning 2 new m-trails for every leaf node v:

one containing only v, and another one containing the rest of the graph: G\{v}. Basically,

20

v

Figure 2.9: Example of articulation point removal on a random planar graph

D
J

CE

N

B

H

G

K

F
L

I
P Q M

O

A

Figure 2.10: 17-node German optical network

this is exactly the same mechanism, that the algorithm does during matching contraction,

so the newly constructed 2 trails can be placed in the set of TM trails.

2.2.7 Unnecessary m-trail removal

Following the previously described steps clearly guarantees NL-UNFL, however, it might

happen that a few m-trails become super�uous, meaning they can be removed from our

set T without violating the unambiguousity of the localization, thus a decrease in terms

of ||T ||V can be achieved. Super�uous trails are particularly likely to appear during ar-

ticulation point removals, where four trails are added to T for each vertex removal, as

seen in Subsection 2.2.6. Nevertheless, while adding four trails ensures further localization

unambiguousity for all possible scenarios, most of the times two trails are su�cient in

practice.

Therefore, as a �nal step, RMCA eliminates all the unnecessary monitoring trails from

T . Basically, a subroutine loops through the trails one by one, and if the i-th trail is needless
(i.e. the ACT provides NL-UNFL without the i-th trail), the i-th column is removed from

the ACT. An example of the m-trail reduction process is shown on Table 2.2(a), that

includes the ACT after RMCA's execution on the 17-node German optical network (before

m-trail elminiation), and the �nal ACT after super�uous m-trail elimination (Table 2.2(b)).

Observe, that in this case, no Tcomp was needed, as T did not contain any complementer

pairs. Although, the ACT does contain TA trails, as a cut vertex was removed. Note, that

an evolved cut vertex always contains more than one node from the original graph (in a 2-

connected graph), because of the algorithm's contracting nature. The removed articulation

21

Table 2.2: ACT for the 17-node German network before and after m-trail elimination

(a) Before elimination

TM1 TM2 TM3 TM4 TM5 TM6 TM7 TM1 TM2 TM3 TM4 TM5 TM6 TM7 TA1 TA2 TA3 TA4

A 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1
B 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1
C 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1
D 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1
E 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1
F 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1
G 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1
H 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1
I 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0
J 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1
K 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1
L 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0
M 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0
N 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 1 1
O 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0
P 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
Q 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0

(b) After elimination

TM1 TM2 TM3 TM4 TM6 TM7 TM1 TM2 TM3 TM4 TM5 TM6 TM7 TA1 TA3

A 0 0 1 0 1 1 1 1 0 1 1 0 0 0 1
B 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1
C 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1
D 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1
E 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1
F 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0
G 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1
H 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1
I 1 0 0 0 0 1 0 1 1 1 1 1 0 1 0
J 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1
K 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
L 1 0 0 0 1 1 0 1 1 1 1 0 0 1 0
M 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0
N 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1
O 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0
P 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0
Q 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0

point contained nodes F andK. Obviously, {F,K} is a cutter subset in the original network
(see Figure 2.10)

2.2.8 Pseudocode

A pseudocode of the RMCA algorithm is provided on Algorithm 1. Basically, the while

cycle implies the recursive contracting behaviour of the algorithm. First, the eliminiation

of the cut vertices take place if there is any. As it was discussed in Subsec. 2.2.6, four -

TA type of - trails are added to the current trail set, T . The original graph's nodes (i.e.

the real nodes of the network) contained by the removed vertices are restored in a register.

Once they are removed from the graph, the forthcoming iterations do not add any bits to

these nodes' codes. Hence, �lling these bit positions for the articulation points occurs after

the while cycle (Step 18). If the cut vertex is needed to make the i-th trail connected, than

1 is written to its i-th position. Therefore, if a node is removed in the k-th iteration, its

binary value on trails {Tk+1, . . . , Tl, Tk+1, . . . , Tl} is decided after the while cycle (l denotes

the number of contracting steps, i.e. the number of iterations). Hence, the previously seen

complement rule (i.e. TMi is 1, i� TMi is 0) does not necessarily hold for these nodes. For a

simple example, consider the codes of nodes F and K on the previous ACTs of the German

network (Table 2.2).

After the cut vertex removal, the graph is getting colored by the simple coloring pro-

22

cedure discussed in Subsec. 2.2.1, which provides two color classes R and B (as all the

nodes are colored, and each of them is assigned only one color, |R| + |B| = |V | holds).
Since the color classes (and the corresponding inter-, and intra-class edges) are de�ned, an

initial matching M can be established. Thereafter, the |M|-increasing augmenting steps

(AP, MAP type 1,2,3 and Spreading) are coming, until the current matching-size cannot be

increased. Steps (11)-(15) show the binary code assignment of the nodes. As the graph's

vertices gradually "grow" during the iterations (meaning they contain more and more

nodes from the original network, see Fig. 2.8(a)), the algorithm goes through all the nodes

included in a colored vertex v, and assigns 1 to the nodes if v is in R, and 0 otherwise.

Then, the edges that are included in the �nal matching are contracted, and the procedure

starts again on a smaller graph, until only 1 vertex remains. After the cycle terminates,

the cut vertices' codes are completed. If there are any complement codes in T (Step (20)),

then Tcomp is added (Step (21)). Finally, the super�uous trails are being removed (Step

(22)).

Algorithm 1: RMCA
Input: Undirected graph G = (V,E)
Output: Set of monitoring trails,T , that provides NL-UNFL

1 begin

2 It=0;
3 while |V |>1 do

4 ++It;
5 Eliminate cut vertices, adding 4 trails to T for each removed vertex;
6 Initial coloring of G, resulting R and B;
7 Greedy search for initial matching, resultingM;
8 repeat

9 Search for AP, MAP1, MAP2, Spreading and MAP3;
10 Update R,B,M;
11 until no more augmenting possibilities;
12 for ∀v ∈ V do

13 if v ∈ R then

14 for ∀ node n in v do Tn
It=1 and Tn

It=0 ;
15 else

16 for ∀ node n in v do Tn
It=0 and Tn

It=1 ;
17 end

18 end

19 for ∀e = (u, v) ∈M do contract e ;
20 Update V and E;
21 end

22 Complete T in cut vertices' rows;
23 Search for complement codes;
24 if Tcomp is needed then append Tcomp to T ;
25 Delete unnecessary trails;
26 end

23

Chapter 3

Simulation

The development of an algorithm is usually an iterative process. Simulations can reveal

a heuristic's weaknesses, that may lead to minor or major modi�cations on the original

algorithm. This certainly holds for RMCA, as the concept of Spreading (Subsec. 2.2.4),

Articulation point removal (Subsec. 2.2.6) and Super�uous trail elimination (Subsec. 2.2.7)

all emerged during initial simulations on test graphs. Therefore, it is essential for a network

planning algorithm to evaluate it on a large, diverse set of topologies. The proposed RMCA

algorithm was tested on a large number of di�erent input topologies including graphs

representing real optical networks. RMCA was implemented in C++, with the usage of

the LEMON graph library [1].

3.1 Erd®s-Rényi graphs

At �rst, in order to verify the algorithm's correctness, fastness and scalability, a number of

test graphs were generated with a slightly di�erent version of the well-known Erd®s-Rényi

model. Let us denote the generated graph with G = (n,m), where n and m are the number

of nodes and edges in the graph, respectively. When investigating optical layer restoration,

we are mainly interested in 2-connected topologies, as if the network is not 2-connected,

the failure of a cut vertex v would separate the graph into two components, so that the

tra�c passing through v cannot be served. Therefore, instead of generating an entirely

random graph with n nodes and m edges (as it is in the model), a ring of n nodes was

(a) Nodal deg. 2.0 (b) Nodal deg. 6.0 (c) Nodal deg. 10.0 (d) Nodal deg. 20.0

Figure 3.1: Erd®s-Rényi graphs with 50 nodes.

24

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

5

10

15

20

25

30

35

40

45

N
o
r
m
a
l
i
z
e
d

C
o
v
e
r

L
e
n
g
t
h

2 2,2 2,4 2,6 2,8 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6
10

−2

10
−1

10
0

10
1

10
2

Average Nodal Degree

R
u
n
n
i
n
g

T
i
m
e

[
s
]

NCL 20
NCL 50
NCL 80
Time 20
Time 50
Time 80

Figure 3.2: RMCA's performance on Erd®s-Rényi graphs of 20,50 and 80
nodes.

generated initially, in order to ensure the graph's 2-connectivity, thereafter the remaining

m−n edges were added randomly. Figure 3.1 illustrates 50-node Erd®s-Rényi graphs with

di�erent average nodal degrees.

With the aim of proving RMCA's correctness via a series of simulations, at �rst I have

generated a number of Erd®s-Rényi graphs with average nodal degree from 2.0 to 6.0 by

0.2 steps, for 3 di�erent sizes: n=20, 50 and 80 nodes. RMCA was executed on that overall

63 graphs, and the results are shown on Fig. 3.2. Dashed lines represent the measured ex-

ecution times as a function of average nodal degree, while solid lines denote the objective

function value (i.e. the normalized cover length: ||T ||V) obtained by RMCA on the corre-

sponding graph. The theoretical lower bounds on ||T ||V for 20, 50 and 80 nodes are 5, 6

and 7 respectively. The results provided by RMCA clearly approach these bounds rapidly:

at nodal degree 3.0 all the 3 lines are within a very small distance from their lowest possible

values. The running time results are also promising: RMCA executed even on the largest,

80-node graphs within 15-20 seconds, which is a very short time interval from a network

planning tool. Note, however, that the running time increases signi�cantly with the input

size, while the average nodal degree of the graph does not really a�ect it.

Another simple simulation was executed on Erd®s-Rényi graphs in order to further

investigate the scalability of RMCA. As mentioned before, we seek after solutions that

have a logarithmic nature, meaning that the normalized cover length or the number of

m-trails is not linear, but logarithmic function of the input size. Figure 3.3 shows the

results of RMCA on some Erd®s-Rényi graphs with sizes ranging from 10 to 120, and

nodal degree from 2.6 to 4.2 with steps of 0.4. Obviously, the performance progresses with

the increase of the average nodal degree; the more edges mean larger initial matching, and

more possibilities for RMCA to enlarge the found matching. It can be observed, that the

results of RMCA in terms of ||T ||V are growing in a logarithmic fashion with the size of

25

10 20 30 40 50 60 70 80 90 100 110 120
4

6

8

10

12

14

16

Number of nodes

N
o
r
m
a
l
i
z
e
d

C
o
v
e
r

L
e
n
g
t
h

Nd=2.6

Nd=3.0

Nd=3.4

Nd=3.8

Nd=4.2

Figure 3.3: RMCA's results on some Erd®s-Rényi graphs

the input, especially with higher nodal degrees.

3.2 Random planar graphs

Erd®s-Rényi graphs, however, are scarcely used for modeling optical backbone networks, as

real life topologies are seldom constructed in a random manner. Hence, instead of entirely

random graphs, we should rather focus our attention on planar graphs. Planar means, that

the graph can be embedded in the plane in such a way that no edges cross each other. I

have generated a number of planar graphs with large diameter with a random planar graph

generator [1] for creating optical network-like topologies. Figure 3.4 shows four example

graphs with average degree of 3.0, created by the planar graph generator.

(a) n=20,|E|=30 (b) n=40,|E|=60 (c) n=60,|E|=90 (d) n=100,|E|=150

Figure 3.4: Random planar graphs with average nodal degree 3.0.

The average nodal degree of a 50-node graph has been increased by 0.08 steps from 2.0

to 8.0, at every step 5 di�erent graphs were generated, resulting in a total number of 380

topologies. The algorithm was executed on each graph for 5 times. The mean ||T ||V value

and standard deviation for a given nodal degree were calculated from the corresponding 25

results. The algorithm was executed both with and without the usage of the augmenting

paths discussed in 2.2. In the former case all the previously discussed augmenting func-

tions (see Chap. 2) were included, while in the latter case none of these methods were

26

2 3 4 5 6 7 8
5

6.72

10

15

20

25

30

Average Nodal degree

N
o
r
m
.

C
o
v
e
r

L
e
n
g
t
h

2 3 4 5 6 7 8
10

−2

10
−1

10
0

10
1

R
u
n
n
i
n
g

t
i
m
e

[
s
]

RMCA
RMCA w/o augmenting.
Runtime of RMCA
Runtime of RMCA w/o augmenting.

Figure 3.5: Results of 380 randomly generated planar graphs with 50 nodes.

utilized for increasing the matching cardinality. The results are shown on Fig. 3.5, where

the corresponding values for each nodal degree are represented with error bars, showing

the mean ||T ||V value of the 25 results, and their standard deviation. As the input graph

contains 50 nodes, the minimum attainable value of ||T ||V is dlog2 ne+ κ = 6.72 (see Eq.

(2.1)), indicated with an additional tick on the y-axis, and a dotted line. Note, that RMCA

with augmenting paths not only approaches the optimum much quicker, but it also pro-

vides signi�cantly smaller variance. One of the main importances of this �gure, however, is

that RMCA performs well on graphs with rather low average nodal degree. As mentioned

before, we are mainly interested in backbone optical networks with nodal degree around

3-4.

The �gure also shows the mean running time values for a graph with a given nodal

degree (as the average of the corresponding 25 execution time values). Although, while

the performance of RMCA in terms of ||T ||V values in this case is very similar to the

behaviour seen at Section 3.1 (compared to the 50-node curve on Figure 3.2), the execution

time changes with the nodal degree in a di�erent manner. In particular, in case of planar

graphs the average execution time went from one second to almost 10 seconds with the

growth of nodal degree (note, that 10 seconds is still regarded as a low execution time).

The main reason for this behavior is obviously the di�erence of the topologies, particularly,

the diameter of the two types of graphs. The distance dG(u, v) in a graph G is the minimal

number of edges of a path connecting u to v (i.e. their degree of separation). The diameter

of a graph is the supremum of these distances over all the pairs of nodes u and v:

D(G) = sup
∀(u,v)

dG(u, v) (3.1)

27

The randomness during Erd®s-Rényi graphs' creation ensures both "long" and "short"

jumps in the network, so that the diameter is expected to be very low in contrast with a

planar topology, where additional edges are more likely to be established in between two

nodes that are already close to each other, thus their distance from the furthest node in the

network decreases much slower. This behaviour of the color classes' subgraphs in planar

graphs implies, that most of the edges will be intra-class edges after the initial coloring

step of the algorithm, that result in a relatively low number of inter-class edges, thus a low

initial matching cardinality. In case of Erd®s-Rényi graphs the initial number of inter -class

edges is expected to be larger, as its low diameter suggests, hence, the initial matching

cardinality is also expected to be relatively large. Fig. 3.6 shows a comparison of an Erd®s-

Rényi and a planar graph's initial, and augmented matching (pale blue edges are the ones

included in the current matching, green ones are the remaining inter-class edges). Note,

that the initial matching cardinality of the Erd®s-Rényi graph is almost 3 times more, than

the planar's. Despite this signi�cant di�erence, we have observed very similar curves for

their performances in terms of ||T ||V . The main reason for this is the contribution of the

newly de�ned MAPs. With the help of these matching-cardinality increasing mechanisms,

an initially low matching-size can easily approach the maximum possible number of paired

edges (see the augmented matchings on 3.6)

The drawback obviously is the time consumption of these augmenting steps. This is

behaviour that we can examine on Fig. 3.5. With the growth of the average nodal degree,

the number of intra-class edges increases as well, and as the de�ned MAPs utilize these

edges as well, the number of augmenting steps will grow, that leads to the experienced

execution time performance.

3.3 Real topologies

The proposed RMCA algorithm has also been tested on 10 well-known optical networks,

taken from [8]. The graphs are included on Fig. 3.7. As a comparison we used the Greedy

Link Swapping heuristic for node failures GLSnode in [11]. The objective in the GLSnode
heuristic is to minimize the total number of m-trails, while in this scenario the objective is

to minimize the average number of m-trails seen at each node of the network. Note that the

RMCA algorithm �nds solutions with smaller m-trails than GLSnode, which results smaller

average number of m-trails traversing the nodes even if the total number of m-trails is

larger. The algorithm was executed on each topology 100 times on a commodity laptop

with 1.8 GHz core i5 CPU and 4 GB RAM. The results are summarized in Table 3.1 along

with the running time for a single execution, the corresponding results of GLSnode, and

the theoretical lower bound of ||T ||V , dlog2 ne. Note, that most of the cases not only the

minimum, but also the mean values of ||T ||V provided by RMCA are signi�cantly better

than the results of GLSnode algorithm. Moreover, the running time of a single execution

of RMCA is most of the times at least an order of magnitude smaller then the GLSnode
method, while the best ||T ||V reached by RMCA is on average 24% better than the values

obtained by GLSnode proposed in [11]. An exceptionally convincing improvement of 39.4%

28

(a) Erd®s-Rényi initial (|M|=16) (b) Erd®s-Rényi initial (|M|=23)

(c) Planar initial (|M|=6) (d) Planar augmented(|M|=22)

Figure 3.6: Comparison of initial color classes of an Erd®s-Rényi graph and
a planar graph, both with n=50 and nodal degree 4.8

is achieved on the 22-node European network, possibly because of its fairly large nodal

degree.

To further investigate the running time behaviour of the two algorithms, their time-

evolution characteristics were plotted through the 100 executions. Fig. 3.9 shows the best

solution found versus the running time for the 10 optical networks.1 In these networks

RMCA turned out to �nd solution with the same quality 1000-10000 times faster than

GLSnode. The beginning of the lines represent the �rst valid solutions of the corresponding

algorithms, and the improvements over time are depicted as stair functions. Note, that

RMCA provides feasible solutions earlier, and their quality is also signi�cantly better,

than the ones given by GLSnode. Despite the continously improving results, 9 cases out of

10, GLSnode could not reach even the initial solution of RMCA in 100 executions on the

shown examples.

As a last simulation scenario, I have investigated the possible e�ects of the lack of certain

components in RMCA. Five di�erent RMCA-versions were used during the simulation:

1Note, that the lines' last point represents the last improvement, not the end of the 100 executions

29

(a) Pan-Europe (b) German (c) ARPA

(d) Europe (e) USA (f) Nobel EU

(g) Italian (h) Cost 266 (i) North American

(j) NSFNET

Figure 3.7: The 10 backbone network topologies.

• RMCA including all the previously discussed augmenting mechanisms

• RMCA without the usage of Augmenting path and MAPs (2.2.2, 2.2.3, 2.2.4)

• RMCA without unnecessary m-trail elimination (2.2.7)

• RMCA without cut vertex elimination mechanism (2.2.6)

• RMCA without all the above mechanisms

Each type of RMCA has been executed 100 times on the 10 optical networks. The results

are summarized on a barplot on Fig. 3.8. Besides the best results of the di�erent RMCA

algorithms, the lowest ||T ||V values provided by GLSnode (see in 3.1) are included on the

barplot as the 6th bars.

30

Table 3.1: Results on some well-known optical networks

Graph Results of GLSnode Results of RMCA
Network n Nodal

degree
dlog2 ne Best

||T ||V
Runtime

[s]
Mean
||T ||V

Best
||T ||V

Runtime
[s]

Improvement [%]

Pan-European 16 2.75 4 8.31 0.38 6.853 6.187 0.13 25.6
German 17 3.06 5 8.71 0.9 8.304 6.765 0.15 22.3
ARPA 21 2.38 5 10.33 0.83 8.623 7.380 0.19 28.6

European 22 4.09 5 10.5 2.24 7.779 6.364 0.24 39.4
USA 26 3.23 5 11.38 3.31 10.77 9.384 0.34 17.5

Nobel EU 28 2.93 5 12.42 3.04 10.675 8.643 0.38 30.4
Italian 33 3.4 6 14.09 10.52 12.375 9.606 0.66 31.9
Cost 266 37 3.08 6 11.75 7.56 11.308 8.540 0.82 27.3

North American 39 3.13 6 12.43 10.09 12.812 10.513 1.18 15.4
NFSNET 79 2.73 7 17.68 68.7 20.868 16.582 7.92 6.2

Surprisingly, RMCA without the usage of any augmenting methods performs better than

GLSnode on the �rst 7 graphs. Although, as the graphs sizes are increasing, the need for

improving procedures is rising as well. This few example suggests, that MAPs, and cut

vertex removals contributes the most for the initial matching-contraction on large graphs,

nevertheless, the lack of trail-reduction step has a remarkable e�ect as well.

In conclusion, the novel Recursive Matching Contraction Algorithm performs convinc-

ingly on a wide range of di�erent topologies. It works especially well on graphs with large

average nodal degree, however, due to the previosly introduced matching cardinality in-

creasing augmenting paths, it manages to solve sparse networks quite e�ciently as well.

Figure 3.8: Comparison of di�erent variations of RMCA, and GLSnode.

31

10
0

10
1

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

RMCA

GLS
node

(a) Pan-European

10
−1

10
0

10
1

10
2

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(b) German

10
−1

10
0

10
1

10
2

7

8

9

10

11

12

13

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(c) ARPA

10
−1

10
0

10
1

10
2

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(d) European

10
−1

10
0

10
1

10
2

9

10

11

12

13

14

15

16

17

18

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(e) USA

10
−1

10
0

10
1

10
2

8

9

10

11

12

13

14

15

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(f) Nobel Eu

10
0

10
1

10
2

10
3

8

10

12

14

16

18

20

22

24

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(g) Italian

10
0

10
1

10
2

10
3

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(h) Cost 266

10
0

10
1

10
2

10
3

10
4

10.5

11

11.5

12

12.5

13

13.5

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(i) North American

10
1

10
2

10
3

10
4

16

17

18

19

20

21

22

23

24

Time [s]

N
or

m
al

iz
ed

 c
ov

er
 le

ng
th

(j) NFSNET

Figure 3.9: The best found solutions versus the running time after launch-
ing the algorithms 100 times on the 10 networks. The results of
RMCA is drawn with dash-dot line, while the GLSnode with solid
line.

32

Chapter 4

Conclusion

The issue of network-wide unambigious node failure localization (NL-UNFL) through su-

pervisory lightpaths (monitoring trails) was presented in this study. The scheme of mon-

itoring trails is considered to be a simple, yet e�ective tool for fast failure localization in

all-optical networks, where certain nodes, called monitors, can inspect the on-o� statuses

of these multihop supervisory paths. Our goal in the NL-UNFL problem is to ensure, that

every node v can unambiguously identify any single node failure in the network solely by

inspecting its locally available monitoring trails via signal tapping.

I have presented a novel heuristic algorithm, called RMCA, that uses recursive matching-

contractions to assign unique binary codes to the nodes. The main advantage of the pro-

posed method is that it recursively contracts certain nodes in the input graph, so that it

rapidly provides feasible solutions even for large inputs. Minor modi�cation steps, such as

unnecessary m-trail removal or articulation point elimination were introduced in orther to

further improve RMCA's performance.

Simulations were conducted both on a large number of randomly generated graphs and

on some well-known optical networks in order to evaluate the proposed algorithm's com-

putation time and its solution quality in terms of normalized cover length, that is the

average number of m-trails seen at each node in the network. Simulations on Erd®s-Rényi

and planar graphs revealed that the diameter of the input graph signi�cantly in�uences the

proposed algorithm's execution time. Our experiments on the well-known networks showed

that the RMCA convincingly outperforms the previously known best algorithm (GLSnode)

both in terms of normalized cover length and running time. On real topologies, RMCA has

found solutions with the same quality as GLSnode 3-4 order of magnitude faster.

The results of my research are summarized in a paper, submitted to the ICC 2015

conference [5].

33

List of Figures

1.1 ACT of an Unambiguous node failure localization (UNFL) 6

1.2 Implementing NL-UNFL in a simple way on a 8-node random 2-connected

graph . 7

2.1 Augmenting path in a bipartite graph . 13

2.2 An example of the 3 di�erent MAPs . 14

2.3 An example of MAP type 1 on the Pan-European network 14

2.4 An example of MAP type 2 on the Pan-European network 15

2.5 An example of Spreading and MAP type 3 on the Pan-European network . 16

2.6 Console window of the �rst step of RMCA on the North American network 17

2.7 39-node . 18

2.8 An illustrative example of the algorithm on 16-node European reference

network. 19

2.9 Example of articulation point removal on a random planar graph 21

2.10 17-node German optical network . 21

3.1 Erd®s-Rényi graphs with 50 nodes. 24

3.2 RMCA's performance on Erd®s-Rényi graphs of 20,50 and 80 nodes. 25

3.3 RMCA's results on some Erd®s-Rényi graphs 26

3.4 Random planar graphs with average nodal degree 3.0. 26

3.5 Results of 380 randomly generated planar graphs with 50 nodes. 27

3.6 Comparison of initial color classes of an Erd®s-Rényi graph and a planar

graph, both with n=50 and nodal degree 4.8 29

3.7 The 10 backbone network topologies. 30

3.8 Comparison of di�erent variations of RMCA, and GLSnode. 31

3.9 The best found solutions versus the running time after launching the algo-

rithms 100 times on the 10 networks. The results of RMCA is drawn with

dash-dot line, while the GLSnode with solid line. 32

34

List of Tables

1.1 Notation list . 8

2.1 ACT for the 16-node European network . 20

2.2 ACT for the 17-node German network before and after m-trail elimination . 22

3.1 Results on some well-known optical networks 31

35

Bibliography

[1] LEMON: A C++ Library for E�cient Modeling and Optimization in Networks.

http://lemon.cs.elte.hu.

[2] S.S. Ahuja, S. Ramasubramanian, and M. Krunz. Single link failure detection in all-

optical networks using monitoring cycles and paths. IEEE/ACM Trans. Networking,

17(4):1080�1093, 2009.

[3] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali. A hybrid distributed fault-management

protocol for combating single-�ber failures in mesh based DWDM optical networks.

In Proc. IEEE GLOBECOM, pages 2676�2680, 2002.

[4] Jack Edmonds. Paths, trees, and �owers. Canadian Journal of Mathematics, 17:449�

456, 1965.

[5] L. Gyimothi and J. Tapolcai. A heuristic algorithm for network-wide local unambigu-

ous node failure localization. In IEEE ICC, 2015.

[6] W. He, Pin-Han Ho, Bin Wu, and J. Tapolcai. On identifying SRLG failures in

all-optical networks. Elservier Journal on Optical Switching and Networking (OSN),

10(1):77 � 88, jan 2013.

[7] C.S. Li, R. Ramaswami, I.B.M.T.J.W.R. Center, and Y. Heights. Automatic fault

detection, isolation, and recovery in transparentall-optical networks. IEEE/OSA J.

Lightwave Technol., 15(10):1784�1793, 1997.

[8] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0�Survivable Net-

work Design Library. In Proc. Int. Network Optimization Conference (INOC), April

2007.

[9] J. Tapolcai, Pin-Han Ho, P. Babarczi, and L. Rónyai. Internet Optical Infrastructure

- Issues on Monitoring and Failure Restoration. Springer, 2014.

[10] J. Tapolcai, Pin-Han Ho, L. Rónyai, and Bin Wu. Network-wide local unambiguous

failure localization (NWL-UFL) via monitoring trails. IEEE/ACM Transactions on

Networking, 2012.

[11] J. Tapolcai, L. Rónyai, É. Hosszu, Pin-Han Ho, and S. Subramaniam. Signaling free

localization of node failures in all-optical networks. In Proc. IEEE INFOCOM, pages

1860�1868, Toronto, Canada, May 2014.

36

[12] Y. Wen, V.W.S. Chan, and L. Zheng. E�cient fault-diagnosis algorithms for all-optical

WDM networks with probabilistic link failures. IEEE/OSA J. Lightwave Technol.,

23:3358�3371, 2005.

[13] Bin Wu, Pin-Han Ho, J. Tapolcai, and X. Jiang. A novel framework of fast and

unambiguous link failure localization via monitoring trails. In IEEE INFOCOM WIP,

pages 1�5, San Diego, 2010.

[14] H. Zeng, C. Huang, and A. Vukovic. A Novel Fault Detection and Localization Scheme

for Mesh All-optical Networks Based on Monitoring-cycles. Photonic Network Com-

munications, 11(3):277�286, 2006.

37

	Abstract in Hungarian
	Abstract
	Introduction
	Background
	Centralized Unambiguous Node Failure Localization (UNFL)
	Network-wide Local UNFL
	Problem Definition
	Related Work

	The Recursive Matching-Contraction Algorithm
	Integer Linear Program (ILP)
	Local Search Heuristic
	Initial coloring
	MAP type 1
	MAP type 2
	Spreading + MAP type 3
	Illustrative example
	Articulation point removal
	Unnecessary m-trail removal
	Pseudocode

	Simulation
	Erdos-Rényi graphs
	Random planar graphs
	Real topologies

	Conclusion
	List of Figures
	List of Tables
	References

