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Kivonat

A biztonságkritikus rendszerek helyes működésének szavatolása kulcsfontosságú, mivel
az azokban jelenlévő legkisebb hiba is súlyos anyagi kárral járhat, szélsőséges esetekben
akár emberi életekbe is kerülhet. A formális verifikáció képes a rendszerek helyességé-
nek matematikailag precíz bizonyítására és a rejtett hibák megtalálására is, széleskö-
rű elterjedését azonban hátráltatja nagy számításigénye. A beágyazott fejlesztők és a
hardvertervező mérnökök számára mára kiterjedt formális verifikációs eszközkészlet áll
rendelkezésre, ugyanez azonban a rendszertervező mérnökökről sajnos nem mondható el.

A rendszertervező mérnökök jellemzően magas szintű, összetett, heterogén model-
leken dolgoznak. Egy ilyen rendszermodell ellenőrzése más jellegű kihívást jelent, mint
szoftverek vagy hardvermodellek analízise - az ezeknél használt reprezentációk, algorit-
musok más jellegű problémákhoz lettek kifejlesztve. Egy rendszerterv általában több
heterogén komponenst is tartalmaz, így a teljes rendszer formális leírásához egy olyan
közös nyelvre van szükség, amely jó kompromisszumot jelent a különböző paradigmák
között. Egy ilyen nyelv megtervezése során az általánosság és a hatékonyság között
egyensúlyozunk: hogyan tudunk minél több problémaspecifikus információt kihasznál-
ni az ellenőrzés során úgy, hogy az általánosságot - és ezáltal a különböző heterogén
komponensek közös leírásának lehetőségét - ne veszítsük el?

Korábbi kutatási munkám során kidolgoztam a kiterjesztett szimbolikus rendszer
(röviden XSTS) formalizmust, mely az első lépés volt egy ilyen nyelv megalkotásának
irányába. Jelen dolgozatomban olyan kiegészítéseket és optimalizációkat mutatok be,
melyekkel az XSTS nyelv és infrastruktúra képessé vált nagyméretű, ipari modellek el-
lenőrzésére. A nyelv kifejezőerejének növelésével szélesítettem az ellenőrizhető magas
szintű modellek körét. A szorzat absztrakciós domén továbbfejlesztésével létrehoztam
egy olyan dedikált absztrakt domént, mely hatékonyan képes együtt kezelni a vezérlési
és általános információkat. Kidolgoztam olyan algoritmikus optimalizációkat is, melyek
az adott absztrakciós szinten rendelkezésre álló információ leghatékonyabb felhasználá-
sát segítik, ezzel egyszerűsítve az algoritmus mögötti kényszermegoldónak átadott logikai
kifejezéseket. Emellett javaslok olyan modellezési, illetve leképzési gyakorlatokat, melyek
a legjobb teljesítményhez vezetnek adott forrásmodell esetén. A dolgozatban bemutatott
kiegészítések egy jelentős és határozott lépést jelentenek a heterogén rendszertervek el-
lenőrzéséhez optimális absztrakciós szint megtalálásában. Eredményeim alátámasztására
dolgozatomban egy olyan, SysML modellezési nyelven készült esettanulmányt is bemu-
tatok, amely az XSTS nyelv segítségével vált verifikálhatóvá és demonstrálja a nyelv
gyakorlati alkalmazhatóságát. Megközelítésem alaposabb kiértékeléséhez egy kiterjedt
mérési kampányt folytattam, melynek eredményei alátámasztják az XSTS nyelv kiegé-
szítéseinek hatékonyságát.

Az Innovációs és Technológiai Minisztérium ÚNKP-21-2 kódszámú Új Nemzeti Kiválóság Programjá-
nak a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatásával készült.

Az Európai Bizottság és Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal támogatásával az Arrow-
head Tools projekt keretében készült (EU grant agreement No. 826452, NKFIH grant 2019-2.1.3-NEMZ
ECSEL-2019-00003).
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Abstract

Ensuring the correct functioning of safety critical systems is essential, as even the small-
est mistakes can lead to significant material damage or - in extreme cases - cost human
lives. Formal verification is capable of proving the correctness of the system and uncov-
ering hidden faults. As opposed to testing, formal verification can give a mathematically
sound proof of correctness, but its resource intensiveness hinders widespread application.
Embedded developers and hardware design engineers can already make use of an exten-
sive set of formal verification tools, but the same cannot be said about systems engineers
sadly.
Systems engineers typically use high-level, complex, heterogeneous models. Verifying
such systems poses a different challenge than the verification of software or hardware
- the representations and algorithms used for these two have been developed to solve
problems of a different nature. A system model typically contains multiple heteroge-
neous components, which means that in order to verify the complete system, a common
language is required that is a good compromise between the different paradigms. When
designing such a language, there is a trade-off between generality and efficiency. How
can we take advantage of as much domain specific information as possible without losing
generality - and thus the ability to describe the different heterogeneous components with
the same language?
During my previous research I developed the Extended Symbolic Transition System
(XSTS) formalism, which was the first step towards creating such a language. In this
work, I present extensions and optimizations, which enabled the XSTS language and
infrastructure to efficiently verify large-scale industrial models. Increasing the expres-
sive power of the language widened the scope of verifiable high-level engineering models.
By improving the product abstraction domain, I created a dedicated combined abstract
domain, which is capable of efficiently tracking control and general information together.
I also developed algorithmic optimizations that help make the most efficient use of the
information available at a given level of abstraction, resulting in a significant simplifi-
cation of the logical formulas passed to the constraint solver underlying the algorithm.
In addition, I propose modeling and transformation best practices that lead to better
performance in certain source models. The extensions presented in this work constitute
a significant and definite step towards finding the most suitable level of abstraction for
the verification of heterogeneous system models. To prove the practical applicability of
my approach, I present an industrial case study created in the SysML modeling lan-
guage, which became verifiable thanks to the additions made to the XSTS formalism
and model checker. I evaluated my approach in an extensive benchmarking campaign,
which further underlined the efficiency and necessity of the extensions presented in this
work.

Supported by the ÚNKP-21-2 New National Excellence Program of the Ministry for Innovation and
Technology from the Source of the National Research, Development and Innovation Fund.

This research was funded by the European Commission and the Hungarian Authorities (NKFIH)
through the Arrowhead Tools project (EU grant agreement No. 826452, NKFIH grant 2019-2.1.3-NEMZ
ECSEL-2019-00003).
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Chapter 1

Introduction

The correct functioning of safety critical systems is essential, as even the smallest mistakes
present in them can lead to significant material damage or cost human lives in extreme
cases. Ensuring safe behaviour is a challenging task, engineers often and easily make errors
that remain unnoticed for years or even decades, to which the ever growing complexity of
the designed systems only adds. Formal verification is capable of proving the system’s cor-
rectness and uncovering hidden faults. As opposed to testing, formal verification can give
a mathematically sound proof of the correctness of the system. Embedded developers and
hardware design engineers can already make use of an extensive set of formal verification
tools, the same cannot be said about systems engineers sadly.
Systems engineers typically use high-level, complex, heterogeneous models, the like of
which we can come across in the automotive, aerospace, and the space industries. Veri-
fying such systems poses a different challenge than the verification of software systems or
hardware models - the representations and algorithms used for the latter two were devel-
oped to solve problems of a different nature. A system model typically contains multiple
heterogeneous components, requiring a common language that is a good compromise be-
tween the different paradigms. The widespread use of formal methods is also hindered by
its high computational complexity, and the fact that its application requires deeper math-
ematical knowledge. Thus, the primary unsolved problems of the field remain improving
the performance of the verification algorithms and developing tools that are capable of so-
called ”end-to-end hidden” verification, i.e. can work with the click of a button, integrated
into widespread modeling tools, requiring no special knowledge, automatically.
During my previous research I developed the Extended Symbolic Transition System
(XSTS) formalism, which was the first step towards creating such a language. In this
work, I present extensions and optimizations, which enabled the XSTS language and in-
frastructure to efficiently verify large-scale industrial models. Increasing the expressive
power of the language widened the scope of verifiable high-level engineering models. By
improving the product abstraction domain, I created a dedicated combined abstract do-
main, which is capable of efficiently tracking control and general information together.
I also developed algorithmic optimizations that help make the most efficient use of the
information available at a given level of abstraction, resulting in a significant simplifica-
tion of the logical formulas passed to the constraint solver underlying the algorithm. In
addition, I propose modeling and transformation best practices that lead to better per-
formance in certain source models. The extensions presented in this work constitute a
significant and definite step towards finding the most suitable level of abstraction for the
verification of heterogeneous system models. To prove the practical applicability of my
approach, I present an industrial case study created in the SysML modeling language,
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which became verifiable thanks to the additions made to the XSTS formalism and model
checker. I evaluated my approach in an extensive benchmarking campaign, which further
underlined the efficiency and necessity of the extensions presented in this work.
The structure of this work is the following. In Chapter 2, I present the theoretical and
practical foundations that my work builds upon. In Chapter 3, I present new language
constructs that bring the XSTS models closer to the high-level engineering models, which
makes both the transformation process easier, and allows for more efficient model checking
by exploiting the additional information that is encoded in the model using the algorithm
presented in Chapter 4. In Chapter 5, I present optimizations of the product abstraction
domain. In Chapter 6, I evaluate my work, and in Chapter 7, I draw the conclusions.
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Chapter 2

Background

In this chapter, I describe the theoretical and practical foundations that this work builds
upon. In Section 2.1, I present model checking, and in Section 2.2, I describe the high-
level SysML, and the low-level STS formalisms. In Section 2.3, I give a brief summary of
the XSTS formalism, an intermediate language I created during my earlier research. In
Section 2.4, I introduce the CEGAR algorithm, which is an abstraction-based iterative
model checking algorithm. In Section 2.5, I present the Theta framework, an open source
model checking framework that I implemented my model checker in. In Section 2.6, I give
a brief summary about related work.
In my work, I will be describing states and transitions of a system using first-order logic
(FOL) formulas. I assume that there is an SMT (satisfiability modulo theories) solver [8]
available (such as [13]) that can answer various queries, e.g., is a formula satisfiable, does a
formula imply another formula, etc. I use the following notation [16] from first-order logic
(FOL) throughout my work. Given a set of variables V = {v1, v2, ...} let V ′ = {v′1, v′2, ...}
and V 〈i〉 = {v〈i〉1 , v

〈i〉
2 , ...} represent the primed and indexed version of the variables. I

use V ′ to refer to successor states, i.e. the values of the variables in the successor state
of a transition. I use V 〈i〉 for paths, in each state of a path the variables appear with a
different index. Given an expression ϕ over V ∪ V ′, let ϕ〈i〉 denote the indexed expression
obtained by replacing V and V ′ with V 〈i〉 and V 〈i+1〉 respectively in ϕ. For example if ϕ
is x′ = x+ 1, then ϕ〈5〉 is x6 = x5 + 1. Given an expression ϕ let var(ϕ) denote the set of
variables appearing in ϕ, e.g., var(x < y + 2) = {x, y}.

2.1 Model checking

Model checking [11] is a formal verification method that aims to exhaustively explore all
possible behaviours of an input model to see if any of them violate a given requirement.
It is formal in the sense that both the formalisms and the algorithms used must have
precise mathematical definitions. In exchange for this the results are mathematically
precise and definite (as opposed to testing for example). An overview of model checking
is seen in Fig. 2.1. A model checker receives a formal model and a formal requirement
as inputs. If the model violates the requirement, then the model checker returns unsafe
and a counterexample demonstrating what actions are required to violate the property.
Otherwise, the model checker returns safe as a result.
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Model checker

Formal model Formal requirement

Safe /  
Unsafe + counterexample

Figure 2.1: An overview of model checking.

Input models Only formalisms that have precise formal syntax and semantics can be
used for model checking. Model checking algorithms are usually defined on lower-level
mathematical formalisms, such as Kripke structures [11], control flow automata (CFA)
[16] or extended symbolic transition systems (XSTS) [23]. The verification of higher-level
formalisms such as statecharts [18], activity diagrams [25], or programming languages like
C is usually done by defining a translation to a lower-level formalism (e.g. C programs
are usually transformed to control flow automata for model checking [1]). The focus of
this work is the verification of higher-level engineering models through a translation to
the XSTS intermediate language.

Requirement properties Various different types of requirement properties are used in
model checking depending on the domain, from simple assertions or null-division proper-
ties to complex temporal logic (typically LTL or CTL [11]) expressions. The focus of this
work are safety properties, which specify a set of erroneous states. If any of the erroneous
states can be reached from the initial state, then the model is unsafe, otherwise it is safe.

State space explosion One of the biggest challenges of model checking is the so-called
state space explosion [10] effect: as the number of state variables in a system grows, the
size of its state space grows at least exponentially, quickly reaching a level, where explicitly
exploring all states of a system becomes infeasible. To combat this, model checkers usually
have to employ some sort of clever representation or simplification. One such simplification
technique is abstraction, which is the focus of this work.

2.2 Formalisms

In this section, I present two modeling formalisms that are in stark contrast of each other.
The SysML formalism presented in Section 2.2.1 is a high-level formalism that is easy-to-
use for systems engineers. The STS formalism presented in Section 2.2.2 that only consists
of two logical formulas is one of the simplest model checking formalisms that has practical
use.

2.2.1 SysML

The OMG Systems Modeling Language (SysML) [24] is a general purpose modeling lan-
guage for systems engineering. Having originally started out as a dialect of the Unified
Modeling Language (UML), SysML is an extension of a subset of the UML language.
SysML provides various easy-to-use constructs for the modeling of not only software sys-
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tems, but hardware, cyber-physical and even less technical systems like processes, person-
nel or facilities.

Figure 2.2: A heterogenous SysML model example.

SysML offers various formalisms to support the modeling of heterogeneous systems, such
as the requirement diagram, the sequence diagram or structural diagrams like the block
definition diagram and the internal block diagram. The statechart formalism, introduced
by Harel in 1987 [18], is commonly used to model complex reactive systems, while activity
diagrams are used to model control and data flow. System models are typically composi-
tions of heterogeneous components that are modeled in different formalisms. See Fig. 2.2
for an example of a heterogenous system model (a larger copy of the image is included in
Appendix A.1 for better readability). The system consists of two communicating state-
charts, whose actions are defined in activity diagrams. Similar modeling approaches are
often used in the safety critical automotive, aerospace and railway industries, which makes
the verification of such models particularly important.

2.2.2 Symbolic transition systems

A symbolic transition system [17] offers a compact way of representing the set of states,
transitions and initial states using first order logic (FOL) formulas. A symbolic transition
system is a tuple STS = (V,Tran, Init), where:

• V = {v1, v2, ..., vn} is the set of variables with domains Dv1 , Dv2 , ..., Dvn .

• Tran is the transition formula over V ∪ V ′, which describes the transition relation
between the current state (V ) and the next state (V ′). For example if V = {x, y},
then Tran ≡ x′ = x+ 1 ∧ y′ = y describes a transition, which increases the value of
x by 1, and leaves y unchanged.
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• Init is the initial state formula, which describes the values of the variables in the
initial states. For example, if Init ≡ x = 0 and V = {x, y}, then there are infinitely
many initial states (one for each possible value of y), and in all of them the value of
x is 0.

A concrete state s ∈ S ⊆ Dv1 ×Dv2 × ... ×Dvn is an interpretation that assigns a value
s(v) ∈ Dv to each variable v ∈ V of its domain Dv. A concrete state can also be regarded
as a tuple of values (s(v1), s(v2), ..., s(vn)). For example if V = {x, y}, then (x = 0, y = 1)
and (x = 1, y = 4) are possible states of the system. A state with a prime (s′) or index
(s〈i〉) assigns values to V ′ or V 〈i〉, respectively. Given a FOL formula ϕ let s |= ϕ denote
that assigning the variables in ϕ with the values in s evaluates to true. For example
(x = 0, y = 0) |= x ≥ 0. Similarly, let s 6|= ϕ denote that ϕ in s evaluates to false.
The set of initial states is {s | s |= Init}. For example, if Init ≡ x = 0 ∧ (y = 0 ∨ y = 1),
then the initial states are {(x = 0, y = 0), (x = 0, y = 1)}. A transition exists between
two states s and s′, if (s, s′) |= Tran. For example. if Tran ≡ x′ = x + 1 ∧ y′ = y, then a
transition exists between the states s = (x = 0, y = 0) and s′ = (x = 1, y = 0).
A concrete path is a finite sequence of concrete states σ = s1, s2, ..., sn, for which
(s〈1〉1 , s

〈2〉
2 , ..., s

〈n〉
n ) |= Init〈1〉∧

∧
1≤i≤nTran〈i〉, i.e. the path starts in an initial state, and the

successor states satisfy the transition relation. A concrete state s is reachable if a path
σ = s1, s2, ..., sn exists with s = sn for some n.

2.3 Extended symbolic transition systems

Systems engineers typically work on easy-to-use high-level formalisms like SysML. Model
checking algorithms on the other hand are usually defined on low-level mathematical for-
malisms like the STS formalism. The aim of the extended symbolic transition system
(XSTS) [23] formalism is to bridge this gap by introducing higher-level constructs that
make the mapping of high-level formalisms easier, but are expressible using logical formu-
las, and thus still verifiable by SMT-based model checking algorithms.
An extended symbolic transition system1 [23] is a tuple XSTS = (V, VC , Init, T r, En),
where:

• V = {v1, v2, ..., vn} is the set of variables with domains Dv1 , Dv2 , ..., Dvn . For exam-
ple, V = {x, y}. The possible domains are integers, booleans and enums. Integers
correspond to mathematical integers, meaning that their domain is ”unbound”: com-
pared to ”machine integers” they cannot overflow;

• VC ⊆ V is the set of control variables. These variables are always tracked explicitly
if tracked;

• Init is the initial state formula, which describes the values of the variables in the
initial states;

• Tr ⊆ Ops is a set of operations representing the inner transition relation. This set
describes the internal behaviour of the system;

1I originally defined the XSTS formalism with 3 transition sets in [23], but I am going to omit the
initialization transition set (In) in this work for simplification as equivalent behaviour can be expressed
with other constructs of the language.
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• En ⊆ Ops is a set of operations representing the environmental transition relation.
This is used to model the environment of the system.

In STS the transition relation is described with a single FOL formula. While this offers
great flexibility, the complex behaviour of engineering models is hard to translate to such
a low-level formalism. In XSTS a different approach is followed, where transitions can be
described using operations. These are higher-level constructs that allow us to encode more
information in the model that we can exploit during model checking.

2.3.1 Operations

Operations op ∈ Ops describe the transitions between the system, where Ops is the set
of all possible transitions. An operation op ∈ Ops can also be regarded as a transition
formula tran(op) defining its semantics. Transition formulas are interpreted over V ∪V ′. In
other words transition formulas tran(op) are logical formulas that contain the non-primed
and primed versions of the variables of the XSTS and describe the values of the variables
after the execution of the operation. All operations are atomic in the sense that they are
either executed in their entirety or not at all. The XSTS formalism [23] the following
operations:

• Basic operations contain no inner (nested) operations. I define the following basic
operations:

– Assignments of the form v := ϕ assign a value to a single variable. Here v ∈ V
is a variable, ϕ is an expression of type Dv, and var(ϕ) ⊆ V . The semantics of
assignments are the following: tran(v := ϕ) ≡ v′ = ϕ ∧

∧
vi∈V \{v} v

′
i = vi. This

formula expresses that the value of v in the successor state is ϕ, and all other
variables stay unchanged. For example, if V = {x, y}, then tran(x := 1) ≡ x′ =
1 ∧ y′ = y;

– Assumptions of the form [ϕ], where ϕ is predicate with var(ϕ) ⊆ V . Assump-
tions act a guards, they can only be executed if their condition ϕ evaluates
to true. The semantics are the following: tran([ϕ]) ≡ ϕ ∧

∧
v∈V v

′ = v. On
other words, assumptions check a condition and leave the values of all variables
unchanged. For example, if V = {x, y}, then tran([y < 0]) ≡ y < 0 ∧ x′ =
x ∧ y′ = y.

– Havocs of the form havoc(v), where v ∈ V . Havocs are nondeterministic assign-
ments. where a variable v gets assigned a nondeterministic value of its domain
Dv. The semantics are tran(havoc(v)) ≡ ∧

vi∈V {v} v
′
i = vi, which means that v

can have any value, while all other variables keep their value. For example, if
V = {x, y}, then tran(havoc(x)) ≡ y′ = y.

• Composite operations contain other operations and can be used to model complex
behaviour. Note that the execution of these operations is still atomic in the sense,
that they either get executed in their entirety or not at all. I define the following
composite operations:

– Sequences of the form op1, op2, ..., opn, where opi ∈ Ops are lists of operations
that are executed in order after each other. Each operation of the sequence
operates on the result of the previous operation. For example, x := 2, [y <
0];x := x+ 1 is a sequence that contains 3 inner operations.
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– Choices model nondeterministic choices between multiple operations. One and
only one branch is selected for execution, which cannot contain failing assump-
tions. This means that if all branches of the choice contain failing assump-
tions, then the choice operation fails as well. Choices have the following form:
{op1} or {op2} or ... or {opn}, where opi ∈ Ops are basic or composite opera-
tions. For example, {[y > 0], x := 1} or {x := 0} is a choice with 2 branches.

By abusing the notation, let’s allow operations op ∈ Ops to appear as FOL formulas, by
replacing them with their semantics tran(op). This will allow us to use cleaner notation
later. To represent the results of the inner suboperations in the transition formula, let V ∗
denote the starred versions of the variables. Let star(V, n) denote the set of variables we get
by applying the star operator to each variable v ∈ V n times and let star(ϕ, n) denote the
FOL expression we get by replacing the primed versions of the variables with their starred
versions and then applying the star operator to each variable v ∈ var(ϕ) in ϕ (both primed
and unprimed versions) n additional times. For example if V = {x, y}, then V ∗ = {x∗, y∗},
and if ϕ ≡ x′ = x+ 1, then star(ϕ, 0) ≡ x∗ = x+ 1, and star(ϕ, 2) ≡ x∗∗∗ = x∗∗ + 1.
I define the semantics of sequences as the following: tran(op1, op2, ..., opn) ≡ ∧

v∈V v
∗ =

v ∧
∧n
i=1 star(opi, i) ∧

∧
v∈V v

′ = star(v∗, n). This definition consists of 3 parts:

• In the first part, ∧
v∈V v

∗ = v, we store the value of each non-starred variable v ∈ V
in its starred version v∗;

• In the second part, ∧n
i=1 star(opi, i) we form the conjunction of the transition for-

mulas of the suboperations, each having the star operator applied to it once more
than the previous one, so that in each operation v will refer to v′ of the previous
operation;

• In the third part, ∧
v∈V v

′ = star(v∗, n), we store the values of the variables from
the successor state of the last suboperation in the primed versions of the variables,
which means that the result of the last operation will be the result of the sequence.

As an example, let’s consider the sequence x := 2, [y < 0];x := x+ 1:

• The first part in this case will be x∗ = x ∧ y∗ = y;

• The second part will be (x∗∗ = 2 ∧ y∗∗ = y∗) ∧ (y∗∗ < 0 ∧ x∗∗∗ = x∗∗ ∧ y∗∗∗ =
y∗∗) ∧ (x∗∗∗∗ = x∗∗∗ + 1 ∧ y∗∗∗∗ = y∗∗∗);

• The third part will be x′ = x∗∗∗∗ ∧ y′ = y∗∗∗∗.

All 3 parts together: x∗ = x∧y∗ = y∧ (x∗∗ = 2∧y∗∗ = y∗)∧ (y∗∗ < 0∧x∗∗∗ = x∗∗∧y∗∗∗ =
y∗∗) ∧ (x∗∗∗∗ = x∗∗∗ + 1 ∧ y∗∗∗∗ = y∗∗∗) ∧ x′ = x∗∗∗∗ ∧ y′ = y∗∗∗∗.
The semantics of nondeterministic choices is the following:
tran({op1} or {op2} or ... or {opn}) ≡

∨n
i=1(temp = i ∧ tran(opi)), where temp is

a temporary variable that is used to achieve exclusivity among the branches: it ensures
that only one branch is executed, because two branches cannot be true at the same time
if the temp variable is assigned different values in them.
As an example, let’s consider the choice {x := 0} or {[y < 0]} or {y := 1}. The transition
formula will consist of 3 parts, one for each branch:

• temp = 1 ∧ x′ = 0 ∧ y′ = y for x := 0;
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• temp = 2 ∧ y < 0 ∧ x′ = x ∧ y′ = y for [y < 0];

• temp = 3 ∧ y′ = 1 ∧ x′ = x for y := 1.

All 3 parts together: (temp = 1 ∧ x′ = 0 ∧ y′ = y) ∨ (temp = 2 ∧ y < 0 ∧ x′ = x ∧ y′ =
y) ∨ (temp = 3 ∧ y′ = 1 ∧ x′ = x).
During any execution the temp variable is assigned a single value (non-deterministically
by the SMT solver), ensuring that only one branch of the choice is executed.

2.3.2 State space

A concrete data state c ∈ Dv1 ×Dv2 × ... ×Dvn is an interpretation that assigns a value
c(v) ∈ Dv to each variable v ∈ V of its domain Dv. Concrete data states can also be
regarded as tuples (c(v1), c(v2), ..., c(vn)). For example, if V = {x, y}, then (x = 1, y = 0)
is a possible concrete data state. States with a prime (c′) or an index (c〈i〉) assign values
to V ′ or V 〈i〉 respectively. A concrete state s = (c, e) is a pair of a concrete data state
c ∈ Dv1 ×Dv2 × ...×Dvn , and a flag e ∈ {Lt,Le}, which stores whether the last executed
transition was from the Tr or the En set (Lt corresponding to ”last was from Tr” and Le
corresponding to ”last was from En”). The initial states are {(c, e) | c |= Init ∧ e = Lt},
i.e. concrete states, whose concrete data state satisfies the initial state formula, and whose
e flag is Lt. The intent behind introducing the e flag is to limit the number of executable
transitions in the states of the system and ensure that the transition sets follow each other
in the desired order along all execution paths.
The set of available transitions in any state (c, e) depends on the value of the e flag.
If the value of e is Lt, then transitions from the En set will be able to fire, and the
value of the flag in the successor state will be Le. Analogously, if the value of e is Le
in a state, then transitions from Tr will be able to fire, and the value of e will be Lt in
the successor state. Formally, a transition exists between two states (c, e) and (c′, e′), iff
opEn ∈ En exists with (e = Lt ∧ e′ = Le ∧ (c, c′) |= opEn) or if opTr ∈ Tr exists with
(e = Le ∧ e′ = Lt ∧ (c, c′) |= opTr).
A concrete path σ = (c1, e1), op1, (c2, e2), op2, ..., opn−1, (cn, en) is a finite, alternating se-
quence of concrete states and operations, iff c1 |= Init ∧ e1 = Lt (i.e. the first state is an
initial state), ∧

1≤i<n ei 6= ei+1 (i.e. the value of the e flag alternates between consecutive
states) and (c〈1〉, c〈2〉, ..., c〈n〉) |= ∧

1≤i<n op〈i〉 (i.e. the interpretations satisfy the semantics
of the operations), where for every 1 ≤ i < n, opi ∈ En if i is odd, and opi ∈ Tr if i is
even. A concrete state (c, e) is reachable if a concrete path σ = (c1, e1), (c2, e2), ..., (cn, en)
exists, so that c = cn and e = en for some n.

2.3.3 XSTS grammar

To enable easy parsing of XSTS models, I defined an Antlr grammar for the XSTS lan-
guage. The primary goal of this language is to aid the transformation of high-level en-
gineering models to XSTS models by defining a textual interface between modeling tools
and the XSTS model checker.

Types

XSTS supports the integer and boolean types by default. There is also an option to
declare custom types, which are similar to enums in programming languages. Custom
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types can be declared with the following syntax, where <name> is the name of the type,
and <literal> are the literals of the type:

type <name> : { <literal>, . . . , <literal> }

For example, a type for storing colours can be declared with the following line:

type Colour : { RED, GREEN, BLUE }

Variable declarations

Global variables can be declared with the following syntax, where <name> is the name of
the variable and <type> is the type:

var <name> : <type>

Optionally an initial value can be given as well, which will appear in the init formula Init
if specified:

var <name> : <type> = <value>

Control variables can be declared with the ctrl keyword:

ctrl var <name> : <type> = <value>

Some examples for variable declarations can be seen below:

var a : integer
var b : boolean = true
ctrl var c : Colour = RED

Expressions

Expressions in XSTS are defined with the following grammar:

ϕ ::=>| ⊥ | v | n |¬ϕ|[ϕ ∧ ϕ]|[ϕ ∨ ϕ]|[ϕ⇒ ϕ]|[ϕ > ϕ]|[ϕ < ϕ]|[ϕ ≥ ϕ]|
[ϕ ≤ ϕ]|[ϕ = ϕ]|[ϕ+ ϕ]|[ϕ− ϕ]||[ϕ ∗ ϕ]|[ϕ/ϕ]|[ϕ%ϕ]|(ϕ)

Operations

Assumptions have the following syntax, where <expr> is a boolean expression:

assume <expr>

Assignments have the following syntax, where <varname> is a variable, and <expr> is an
expression of the appropriate type:

<varname> := <value>
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Havocs have the following syntax, where <varname> is a variable:

havoc <varname>

Sequence operations have the following syntax, where <operation> are arbitrary opera-
tions:

<operation>
<operation>
. . .
<operation>

Choice operations have the following syntax, where <operation> are arbitrary operations:

choice {
<operation>

} or {
<operation>

} or
. . .
or {

<operation>
}

An example illustrating all operations can be seen below:

choice {
havoc x
assume y > x
choice {

z := 1
} or {

z := 0
}

} or {
assume x > 0

}

Transition sets

The inner transition set of the model can be defined with the syntax below. Each branch
is interpreted as a transition, <operation> are arbitrary operations.

tran {
<operation>

} or {
<operation>

} or
. . .
or {

<operation>
}
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The environmental transition set is defined similarly:

env {
<operation>

} or {
<operation>

} or
. . .
or {

<operation>
}

Structure of the model

The structure of an XSTS model is the following:

<type declarations>
<variable declarations>

<inner transition set>

<environmental transition set>

Below is a simple example from [23] illustrating the syntax of an XSTS model. This
XSTS model was generated from the statechart in Fig. 2.4 by the Gamma Statechart
Composition Framework [22].

type Main_region : { __Inactive__, Normal, Error}
var signal_alert_Out : boolean = false
var signal_step_In : boolean = false
var main_region : Main_region = Normal

tran {
assume (main_region == Normal && signal_step_In == true)
main_region := Error
signal_alert_Out := true

} or {
assume (main_region == Error && signal_step_In == true)
main_region := Normal

} or {
assume (!(main_region == __Inactive__) \\
&& !((main_region == Normal && signal_step_In == true) \\
|| (main_region == Error && signal_step_In == true)))

}

env {
choice {

signal_step_In := true
} or {

signal_step_In := false
}
signal_alert_Out := false

}

Figure 2.3: A simple XSTS model generated from the statechart model in Fig. 2.4.

Note how the incoming and outgoing events are transformed to boolean variables and
are handled in environmental transitions. Regions are expressed with custom types, and
transitions are transformed to inner XSTS transitions.
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Figure 2.4: A simple statechart model.

2.4 CEGAR

State space explosion often hinders successful verification as the state space of the models is
usually so large that its explicit exploration is impossible [10]. The idea behind abstraction
[9] is to perform the model checking on a simplified model that has a smaller state space.
This means that we construct an abstract state space by merging concrete states and
treating them as if they were a single state. When using over-approximating abstract
domain, the abstract model contains all possible behaviours of the concrete model, but
can also contain additional behaviour that isn’t present in the original model. This means
that if no counterexamples are found in the abstract model, then the concrete model
doesn’t contain any either. However, all abstract counterexamples found in the abstract
state space have to undergo further analysis to determine if they are present in the concrete
state space as well. If the analysis finds that the counterexample was spurious, then the
abstraction has to be refined accordingly. This iterative cycle of abstraction and refinement
phases is called counterexample-guided abstraction refinement (CEGAR).

2.4.1 Abstraction

Abstraction [16] is defined based on an abstract domain D, a set of precisions Π, a transfer
function T , and an init function I. An abstract domain is a tuple D = (S,>,⊥,v, expr),
where:

• S is a (possibly infinite) lattice of abstract states;

• > ∈ S is the top element;

• ⊥ ∈ S is the bottom element;

• v ∈ S × S is a partial order conforming to the lattice;

• expr : S 7→ FOL is the expression function that maps an abstract state to its meaning
(the concrete data states it represents) with a FOL formula.
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By abusing the notation, let’s allow abstract states s ∈ S to appear as FOL formulas by
automatically replacing them with their meaning, expr(s). This will allow us to use cleaner
notation later.
Elements π ∈ Π in the set of precisions define the current precision of the abstraction. The
transfer function T : S×Ops×Π 7→ 2S calculates the successors of an abstract state with
respect to an operation and a target precision. The init function I : Π 7→ 2S calculates
the initial states for a target precision.
In the following, I introduce two pure abstract domains - explicit value abstraction and
predicate abstraction, and a simple product domain which combines the two.

Predicate abstraction

In predicate abstraction [16], instead of tracking the values of the variables explicitly, we
only track if certain predicates (defined by the current precision) hold in a state or not.
The motivation behind this is that in many cases in order to prove a property we don’t
need to know the exact value of a variable, only whether some condition applies to it or
not. Predicates are logical expressions that can contain variables of the model, for example
(x > 0), (x < y), or true.
In Boolean predicate abstraction [16] an abstract state s ∈ S, is an arbitrary Boolean
combination (negation, disjunction, conjunction, etc.) of FOL predicates. The top and
bottom elements are > ≡ true and ⊥ ≡ false, respectively. The partial order corresponds
to implication, i.e. s1 v s2 if s1 ⇒ s2, for s1, s2 ∈ S. For example, if s1 is (x > 0)∧(y 6= 2),
and s2 is (x > 0), then s1 v s2. The partial order will be used to express that an abstract
state ”covers” another abstract state, i.e. s1 v s2 informally means that s2 expresses all
concrete states and behaviours that s1 does. This information can be exploited during
state space calculation, because if all successors of s2 were calculated, then there is no need
to calculate the successors of s1, because all successors of s1 appear among the successors
of s2. The expression function is the identity function as abstract states are formulas
themselves, i.e. expr(s) = s.
A precision π ∈ Π is a set of FOL predicates currently tracked by the algorithm. For
example, π = {(x > 0), (y 6= 2)}. The result of the transfer function T (s, op, π) is the
strongest Boolean combination of predicates that is entailed by the source state s and the
operation op. For example, if s = (x > y), π = {(x > y)}, then T (s, x := x− 1, π) = true,
and T (s, x := x+1, π) = (x > y). This can be calculated using an SMT solver by assigning
a fresh propositional variable vi to each predicate pi ∈ π and enumerating all satisfying
assignments of the formula s ∧ op ∧

∧
pi∈π(vi ↔ p′i). For each satisfying assignment, a

conjunction is formed by taking predicates with positive variables and taking the negation
of predicates with negative variables. The successor state s′ is the disjunction of all such
conjunctions. The result of the init function I(π) is the strongest Boolean combination of
predicates in the precision that is consistent with the init formula Init, which is calculated
similarly.
In Cartesian predicate abstraction [16] an abstract state s ∈ S is a conjunction of FOL
predicates, i.e. it is more restricted than Boolean predicate abstraction. Only the trans-
fer function and the init function are defined differently, T (s, op, π) yields the strongest
conjunction of predicates from the precision that is entailed by the source state s and the
operation op, i.e. T (s, op, π) = ∧

pi∈π{pi | s ∧ op ⇒ p′i} ∧
∧
pi∈π{¬pi | s ∧ op ⇒ ¬p′i}.

Analogously, the init function yields the strongest conjunction of predicates from the pre-
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cision that is consistent with the init formula Init. Cartesian predicate abstraction is not
as precise as Boolean predicate abstraction, but more efficient.

Explicit-value abstraction

In explicit-value abstraction [16], the state space is reduced by marking only a subset of
the variables as ”interesting”, and only tracking the value of those variables. For example,
if a model has two variables, x and y, then we might only track the value of x. The
motivation behind this domain is that we often don’t have to know the exact values of all
variables to decide whether a property holds. The goal when using this domain is to find
the smallest subset of variables (via transitive dependencies) that is enough to prove or
refute a property.
In explicit-value abstraction, an abstract state s ∈ S is an abstract variable assignment
mapping each variable v ∈ V to its domain extended with top and bottom values (i.e.
Dv ∪ {>dv ,⊥dv}). The top element > with >(v) = >dv holds no specific value for any
v ∈ V (it represents an unknown value). The bottom element ⊥ with ⊥(v) = ⊥dv

means no assignment is possible for any v ∈ V . For example, if V = {x, y, z}, then
(x = 0, y = 1, z = >dv ) is an abstract state, where the value of z is unknown. If the domain
of z is infinite, then this abstract state represents infinitely many concrete states. The
partial order v is defined as follows: s1 v s2 if s1(v) = s2(v) or s1(v) = ⊥dv or s2(v) = >dv

for each v ∈ V . For example, (x = 0, y = 0) v (x = 0, y = >dy ). The expression function
is defined as follows: expr(s) ≡ true if s = >, expr(s) ≡ false if s(v) = ⊥dv for any
v ∈ V , and expr(s) = ∧

v∈V,s(v)6=>dv
v = s(v). For example, if s = (x = 0, y = >dv ), then

expr(s) = (x = 0).
A precision π ∈ Π is a subset of the variables π ⊆ V that is currently tracked by the
algorithm. The transfer function is T (s, op, π) = {s′ | s ∧ op ⇒

∧
v∈π v

′ = s′(v)}. In-
formally, s′ is a successor of s with respect to the precision π and the operation op, if
assigning the values in s to the non-primed, and the values in s′ to the primed variables
in the formula s ∧ op results in a satisfying assignment. The init function is defined as
I(π) = {s | Init ⇒ ∧

v∈π v = s(v)}. Informally, s is an initial state, if substituting the
variables in Init with the values assigned to them in s evaluates to true.

Product abstraction

It quickly becomes clear to anyone applying abstraction in practice that each abstract
domain has its strengths and limitations. Product abstraction handles loops and counting
with predicates difficulty, while explicit-value abstraction struggles if there is too much
nondeterminism present in the model. Product abstraction aims to tackle this problem
by combining the two domains.
The approaches of Beyer et al. [5, 6] combine explicit-value model checking and abstraction
with algorithms that switch between the domains dynamically. Bajkai et al. present an
approach in [3] that tracks all variables explicitly by default and introduces predicates
whenever a variable’s value can’t be determined explicitly.
In a product abstraction domain with explicit-value abstraction and predicate abstraction
as subdomains, the state space is the product of the state space of the explicit-value
and predicate state spaces: S = SE × SP , where SE and SP are the explicit-value and
predicate state spaces, respectively. An abstract state s = (sE , sP ) is a pair of an explicit-
value state and a predicate state, where sE ∈ SE and sP ∈ SP . The partial order is defined
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as follows: (sE1 , sP1) v (sE2 , sP2) iff sE1 v sE2 and sP1 v sP2 . The expression function
expr yields the conjunction of the expression functions of the subdomains: expr((sE , sP )) ≡
exprE(sE)∧ exprP (sP ), where exprE and exprP are the expression functions of the explicit-
value and the predicate domains, respectively. A precision π = (πE , πP ) ∈ ΠE × ΠP is
a pair of an explicit-value precision πE ∈ ΠE and a predicate precision πP ∈ ΠP , where
ΠE ,ΠP are the precision sets of the explicit-value and the predicate domains, respectively.
The transfer function T (s, op, π) uses the transfer functions of the subdomains
TE(sE , op, πE) and TP (sP , op, πP ) as black-boxes to form a joint transfer function. The
transfer function calculates the Cartesian product of the results of the subdomains’ trans-
fer functions, then removes the invalid states where the semantics of the two substates
contradict each other: for example if sE = (x = 0, y = 0) and sP = (x > y). This filtering
is done using the so-called strengthening-operator strengthen, which removes a product
state s = (sE , sP ) if expr(s) is unsatisfiable. This can be decided with an SMT solver.
Formally, T ((sE , sP ), op, (πE , πP )) ≡ strengthen(TE(sE , op, πE)× TP (sP , op, πP )).
The main weakness of this approach is that there is no information-exchange between
the two domains: the information present in sE can’t be used by TP , and similarly the
information present in sP can’t be used by TE . Consider the following scenario as an
example: let’s assume sE = (x = 0) and sP = (y > x), πE = {x} and πP = {(y > x)} and
op = [y < 0]. When looking at the information present in both domains, we can clearly
see that op can’t executed, because if x is 0 and y > x, then y > 0, which contradicts the
assumption [y < 0]. However, the transfer functions of the subdomains will only see either
sE or sP , and will calculate states that don’t get filtered by the strenghening-operator
as the don’t contradict each other: (x = 0), (y > x) and (x = 0), !(y > x). This can
lead to scenarios where the analysis gets stuck in an infinite loop where the refinement
will always return the same precision but the abstraction process won’t exploit all the
available information.

Pre-strenghtening

Strengthening

Explicit-value 
transfer function

Predicate 
transfer function

X

Figure 2.5: An overview of the product transfer function extended with the pre-
strengthening operator.

In [23], I presented an improved product transfer function that enables information ex-
change in one direction: the predicate transfer function TP can exploit the information
present in the explicit state sE . The pre-strengthening operator ps : S 7→ SE × SP
takes a product state as input and returns a pair of a strengthened explicit state and
strengthened predicate state, that can be used as inputs to the black-box subdomain
transfer functions. I proposed the following pre-strengthening operator: ps((sE , sP )) ≡
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(sE , {s∗P | expr(s∗P ) = exprE(sE) ∧ exprP (sP )}). Informally, this operator returns the un-
changed explicit state, and a predicate state that is constructed by forming the conjunction
of the expressions of the two input states and interpreting it as a predicate state. For exam-
ple, if sE = (x = 0) and sP = (y > x), then ps((se, sP )) = ((x = 0), (x = 0)∧(y > x)). The
strengthened predicate state returned by the operator contains the information present
in sE as well. The transfer function extended with the pre-strengthening operator is
Tps((sE , sP ), op, (πE , πP )) = {TE(s∗E , op, πE) × TP (s∗P , op, πP ) | (s∗E , s∗P ) = ps(sE , sP )}.
Informally, the extended transfer function feeds the outputs of the pre-strengthening op-
erator as inputs to the black-box transfer functions and returns the Cartesian product of
the results. An overview of the extended transfer function can be seen in Fig. 2.5.
The approach I presented in [23] is a static in the sense that it tracks the control variables
VC of an XSTS model explicitly, and all other information using predicates, not switching
domains dynamically during execution.

Extensions for XSTS

The e flag that keeping track of the last transition set that fired is tracked explicitly in
XSTS regardless of the abstract domain used. To enable explicit tracking of the e flag, I
am going to introduce extensions that build upon (wrap) the previously defined constructs
of abstract domains (transfer functions, init functions, etc.). Given an abstract domain
D = (S,>,⊥,v, expr), let DX = (SX ,⊥X ,vX , exprX) denote its extension for XSTS.
Abstract states (s, e) ∈ SX = S × {Lt,Le}, wrap abstract states of an abstract domain,
and an explicitly encoded e ∈ {Lt,Le} flag denoting which set the last executed transition
belonged to. The bottom element becomes a set ⊥X = {(⊥,Lt), (⊥,Le)}. The partial
order between two states (s1, e1) and (s2, e2) is defined as (s1, e1) v (s2, e2) if e1 = e2 and
s1 v s2. The expression function is exprX(s) ≡ expr, i.e. the e flag is not required in the
expression, as the transfer function tracks it explicitly.
The extended transfer function selects the appropriate transition set based on the e flag,
and applies the wrapped transfer function to it. Formally, the extended transfer function
TX : SX × Π 7→ 2SX is defined as TX((s, e), π) = {(s′,Lt) | op ∈ Tr, s′ ∈ T (s, op, π)} if
e = Le and TX((s, e), π) = {(s′,Le) | op ∈ En, s′ ∈ T (s, op, π)} if e = Lt. Informally,
(s′, e′) is a successor of (s, e), if e′ 6= e and s′ is the successor of s with respect to the
wrapped transfer function, the precision, and an operation from the appropriate set.
The extended init function IX : Π 7→ 2SX is the following: IX(π) = {(s, e) | s ∈ I(π), e =
Lt}, i.e. the states returned by the wrapped init function extended with the Lt flag. This
ensures that the first transition that fires will be from the En set.

Abstract reachability graph

The abstract state space is represented with the abstract reachability graph. This is a
representation which ensures that each state will be explored only once.
An abstract reachability graph is a tuple ARG = (N,E,C), where:

• N is the set of nodes, each corresponding to an abstract state in some domain D;

• E ⊆ N × Ops × N is the set of directed edges, labeled with operations. An edge
(s1, op, s2) ∈ E is present if s2 is a successor of s1 with respect to op;

• C ⊆ S × S is the set of covered-by edges. A covered-by edge (s1, s2) ∈ C is present
if s1 v s2.
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A node s ∈ N is expanded if all of its successors are included in the ARG with respect to
the transfer function, and expanded if it has an outgoing covered-by edge (s, s′) for some
s′ ∈ N . A node that violates the safety propety ϕ is called unsafe. Formally, s ∈ N is
unsafe if s 6|= ϕ. A node that is not expanded, covered or unsafe is called unmarked. When
building the ARG, expanded and covered nodes can be disregarded, only unmarked nodes
have to be processed. An ARG is complete if there are no unmarked nodes and unsafe if
it has at least one unsafe node.
An abstract path σ = s1, op1, s2, ..., opn−1, sn is an alternating sequence of abstract
states and operations. An abstract path is feasible if a corresponding concrete path
c1, op1, c2, ..., opn−1, cn exists, where each ci is mapped to si, i.e. ci |= expr(si). In practice,
this is decided by querying an SMT solver with the formula s〈1〉1 ∧op

〈1〉
1 ∧s

〈2〉
2 ∧ ...∧op

〈n−1〉
n−1 ∧

s
〈n〉
n . If this formula is satisfiable, then the abstract path is concretizable, and a satisfying
assignment corresponds to a concrete path.
The extended ARG for XSTS is defined as ARGX = (NX , EX , CX), where:

• NX ⊆ SX is the set of nodes, each node corresponding to an abstract state (s, e) ∈
SX ;

• EX ⊆ NX ×Ops×NX is the set of directed edges, labeled with operations. An edge
(s1, e1, op, s2, e2) ∈ E is present if s2 is a successor of s1 with respect to op, e1 6= e2,
and op is from the set corresponding to the e1 and e2 flags (i.e. op ∈ Tr if e1 = Le
and op ∈ En if e1 = Lt);

• CX ⊆ SX×SX is the set of covered-by edges. A covered-by edge (s1, e1, s2, e2) ∈ CX
is present if s1 v s2 and e1 = e2.

Abstraction algorithm

The abstraction algorithm explores the abstract state space based on the current precision
and decides if it contains any abstract counterexamples. I define the abstraction algorithm
is based on the constructs I introduced above.
The abstraction algorithm receives a partially constructed abstract reachability graph
ARG(N,E,C), a FOL safety property ϕ, an abstract domain D = (S,>,⊥,v, expr), the
current precision π, and a transfer function T as inputs. The result of the algorithm
is whether the abstract model is safe or unsafe (i.e. whether a state that violates the
safety property ϕ is reachable from the initial states). The algorithm also returns a
complete ARG in the former case, and an ARG containing an abstract counterexample
counterexample in the latter case.
In the first iteration, the ARG only contains the set of initial states returned by the init
function I, and the precision is usually empty (or generated using some heuristic from the
model or the safety property ϕ).
The algorithm (see Alg. 1) first initializes the reached set with the nodes of the ARG,
and the waitlist with all unmarked nodes. The algorithm then processes the nodes of
the waitlist based on some search strategy (BFS or DFS). If the current state does not
satisfy the property ϕ, then the algorithm terminates with an unsafe result. If the state
doesn’t violate the property, then we check if the state is covered by an already visited
state with respect to the partial order. If it’s covered, then we add a covered-by edge, else
we calculate the successors with the transfer function an mark the state as expanded.
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Algorithm 1 Abstraction algorithm (based on [16])
Input: ARG(N,E,C): partially constructed abstract reachability graph

ϕ: FOL safety property
D = (S,>,⊥,v, expr): abstract domain
π: current precision
T : transfer function

Output: (safe or unsafe, ARG)
1: reached← N
2: waitlist← unmarked nodes from N
3: while waitlist 6= ∅ do
4: s← remove from waitlist
5: if s 6|= ϕ then
6: // s is unsafe
7: return (unsafe,ARG)
8: if s v s′ for some s′ ∈ reached then
9: // s is covered

10: C ← C ∪ {(s, s′)} // Add covered-by edge
11: else
12: // s is expanded
13: for all s′ ∈ T (s, π) \ ⊥ do
14: reached← reached ∪ {s′}
15: waitlist← waitlist ∪ {s′}
16: N← N ∪ {s′} // Add new node
17: E← E ∪ {(s, s′)} // Add successor edge
18: return (safe,ARG)
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If all reachable states were explored and none violated the safety property, then the algo-
rithm concludes that the model is safe.

2.4.2 Refinement

Due to the over-approximating nature of the abstract domains used, abstract counterex-
amples found in the abstract state space are not necessarily present in the concrete state
space as well. Abstract countexeramples have to be further analysed to decide if they’re
concretizable. If an abstract counterexample is found spurious, i.e. not concretizable, then
the precision has to be refined: ideally introducing just enough additional information in
the abstract model to avoid finding the same spurious counterexample again.
The Refinement algorithm (see details in [16]) receives an abstract-reachability graph
and the current precision as arguments. I used this algorithm as black-box during my
work, so I’m only giving a short overview of it here. The abstract reachability graph that
the algorithm receives contains one or multiple abstract counterexamples: alternating
sequences of abstract states and operations. The algorithm constructs SMT formulas
from the counterexamples. If the SMT formula is satisfiable, then the counterexample is
concretizable and a satisfying assignment to the formula corresponds to values that the
variables could take during the execution. If a satisfying assignment is found, then the
algorithm returns with a concrete counterexample formed from it. If the formula is not
satisfiable, i.e. the counterexample is spurious, then the algorithm queries the SMT solver
for a Craig interpolant [21], a formula that ”explains” the reason for the unsatisfiability.
In predicate abstraction, the interpolant is usually interpreted as a predicate, and added
to the precision. In explicit-value abstraction, the variables are usually collected from the
interpolant and added to the precision. The algorithm also finds the longest satisfiable
prefix of the formula generated from the counterexample to prune unreachable states from
the ARG. The algorithm then returns the pruned ARG and the new precision.

2.4.3 The CEGAR loop

The heart of the CEGAR algorithm is the CEGAR-loop (see Fig. 2.6, Alg. 2), a cycle of
repeated invocations of the Abstraction and Refinement algorithms. The algorithm
first initializes an ARG with the results of init function as nodes, and no edges. The
initial precision is usually empty, or constructed with some heuristic from the model or
the property.

RefinerAbstractor

Initial precision

Abstract counterexample

Refined precision

Safe Unsafe + concrete
counterexample

Figure 2.6: An overview of the CEGAR algorithm.

In each iteration of the loop, the Abstraction algorithm is called with the current preci-
sion to generate the corresponding abstract state space. If no counterexamples are found
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during the abstraction, then the algorithm returns with a safe result. If a counterexample
is found, then the Refinement algorithm is called to analyze it. If the counterexample is
concretizable, then the algortihm returns with an unsafe result. Otherwise, the precision
is refined and a new iteration is started.

Algorithm 2 CEGAR loop (based on [16])
Input: ϕ: FOL safety property

D = (S,>,⊥,v, expr): abstract domain
π0: initial precision
T : transfer function
I: init function

Output: safe or unsafe
1: π ← π0
2: ARG← (N← I(π0),E← ∅,Cov← ∅)
3: while true do
4: result,ARG← Abstraction(ARG, ϕ, π,T)
5: if result = safe then return safe
6: else
7: result, π,ARG← Refinement(ARG, π)
8: if result = unsafe then return unsafe

2.5 Theta

Theta [26] is ”a generic, modular and configurable model checking framework developed
at the Critical Systems Research Group of Budapest University of Technology and Eco-
nomics, aiming to support the design and evaluation of abstraction refinement-based al-
gorithms for the reachability analysis of various formalisms. The main distinguishing
characteristic of Theta is its architecture that allows the definition of input formalisms
with higher level language front-ends, and the combination of various abstract domains,
interpreters, and strategies for abstraction and refinement. Theta can both serve as a
model checking backend, and also includes ready-to-use, stand-alone tools” [15].

Common CFA STS XTA XSTS
Tools cfa-cli sts-cli xta-cli xsts-cli
Analyses analysis cfa-analysis sts-analysis xta-analysis xsts-analysis
Formalisms core, common cfa sts xta xsts
Solvers solver, solver-z3

Table 2.1: An overview of the Theta architecture.

Theta has a modular architecture, which is illustrated in Table 2.1. The core module
contains various general building blocks for model verification, e.g. variable declarations,
expressions, statements which are used in the control flow automaton (CFA), symbolic
transition system (STS), timed automaton (XTA) formalisms. Since September 2020, the
extended symbolic transition system (XSTS) formalism developed and maintained by me
is also part of the Theta framework. Each formalism has a corresponding domain-specific
language for easy parsing. The analysis backend is located in the analysis module and
contains various constructs for the CEGAR algorithm with support for multiple abstract
domains, such as predicate abstraction and explicit-value abstraction. Each formalism has
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a corresponding analysis module that contains formalism-specific concretizations of the
CEGAR algorithm. In order to enable the algorithms of the analysis module to operate
on a specific formalism, a formalism-specific implementation of the general interfaces de-
fined in the analysis module has to be provided. These implementations can also contain
formalism-specific extensions and optimizations to the algorithm that can make the anal-
ysis more efficient by using additional information present in the models. The CEGAR
algorithm relies on the SMT solver available through the solver module and its implemen-
tation in the solver-z3 module. Each formalism has a formalism-specific command line
interface in the corresponding cli module.

2.6 Related work

The Promela language of the SPIN model checker [19] primarily focuses on modeling of
asynchronous distributed algorithms and is commonly used as an intermediate language
for verification. The model checker supports LTL specifications as requirement properties
and can also work as a simulator. The Promela language offers high-level constructs such
as processes and message channels with synchronous and asynchronous semantics for the
modeling of distributed asynchronous systems.
BoogiePL [14] is a general intermediate language for model checking of object oriented
languages. BoogiePL offers constructs known from programming languages like procedures
or arrays. BoogiePL is used as the input formalism of the Boogie model checker. The
main distinguishing feature of BoogiePL compared to XSTS is that it has been specifically
tailored to programming languages and offers constructs for this domain (such as the
procedures mentioned above).
Hajdu et al. present an explicit-value transfer function in [16] that uses a similar substitu-
tion method for the calculation of successor states as the operation substitution presented
in this work. They only define this substitution for the assumption and assignment oper-
ations, and do not carry out a best-effort substitution of the operations.
Beyer et al. present a static product domain in [2] that categorizes variables based on
what kind of expressions they appear in in the model to automatically assign abstract
domains to them.
Bajkai et al. present a dynamic product domain in [3]. Their approach works in the other
direction: they start by tracking all variables explicitly and switch to tracking a variable
with predicates if too many possible values are enumerated for it in the same location.
Their approach uses the transfer functions of the subdomains as black-boxes, while the
approach I present in this work uses a combined transfer function.
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Chapter 3

Enriching the language

In this chapter, I introduce additions to the XSTS language that widen the range of
high-level engineering models that can be verified using XSTS. Local variables introduce
additional information to the model that can result in a smaller state space. Arrays are
a well-known data structure that can make many calculations easier to express. If-else
operations and loop operations are higher-level constructs1 whose addition makes control
structures known from activity diagrams and programming languages easier to express in
XSTS.

3.1 Local variables

Calculations often use temporary variables: either to store partial results, or to store the
values of variables at certain points in time for later use. The latter is often used in the
models generated from orthogonal regions of statecharts for example. If the temporary
variables are only needed during the execution of a single transition, and don’t have to
keep their values between transitions, then they don’t have to appear in the state vector.
Local variables provide a way to handle temporary variables more efficiently in XSTS, by
omitting them from the state vector and thus reducing the state space of the model.
Local variables in XSTS can be declared with the following syntax, where <name> is the
name, <type> is the type and <value> is the optional initial value of the variable:

local var <name> : <type> = <value>

After its declaration, a local variable is only added to the scope of the current block,
similarly to how local variables are created on the stack in most programming languages.
It’s not accessible in any way outside the block, it only exists inside the transition and
isn’t part of the state vector even if all variables are tracked explicitly.

3.2 Arrays

Arrays are among the oldest and most important data structures that are used by almost
all computer programs. They have their use in the transformation of engineering models as

1The if-else and loop operations are high-level in the context of the XSTS language and SMT solvers,
and not in the context of high-level programming languages like C or Java of course.
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well: together with loops (see Section 3.4) they can be used to describe message queues be-
tween communicating components of a composite network. Equipping the XSTS language
with an array-like data structure significantly widens the range of verifiable high-level
engineering models.
The array types of the XSTS language are based on associative arrays of SMT solvers.
This means that they don’t have a fixed size and store key-value pairs, similarly to maps
known from programming languages. XSTS arrays can be indexed not only with integers,
but with other types as well.
An XSTS array can be declared using the following syntax, where <arrayname> is the
name of the array, <keytype> is the type of the keys, and <valuetype> is the type of the
stored value:

var <arrayname> : [<keytype>] -> <valuetype>

An array must be initialized with an array literal, which specifies initial key-value pairs
and a default value for unknown keys. An array literal has the following syntax, where
<key_*> are literals of the key type and <value_*> are literals of the value type:

[<key_1> <- <value_1>, <key_2> <- <value_2>, . . ., default <- <value_n>]

Figure 3.1 shows an example of an array, which maps booleans to integers.

var arr : [integer] -> boolean
arr := [0 <- true, default <- false]
arr[1] := true

Figure 3.1: Declaring and initializing an array in XSTS.

3.3 If-else operations

The nondeterministic choice operation of the XSTS language is a powerful construct.
Together with assume operations, choices can express a very diverse set of branching sce-
narios. There are certain patterns however, that are used frequently, but are cumbersome
to express using choice and assume operations. One such pattern is the ”if-else-if chain”,
a simple chain created from if-else statements - perhaps one of the most basic building
blocks of procedural programming languages.
To make both the transformation of engineering models to XSTS easier, and the model
checking more efficient, I added the XSTS equivalent of if-else statements to XSTS: if-else
operations. If-else operations are composite operations that contain a condition and 2
suboperations.
Formally, an if-else operation is a composite operation if(ϕ) op1 else op2, where ϕ is a FOL
condition, and op1, op2 ∈ Ops are operations. For example, if(x > 0) x := 0 else x := x+1.
If the condition ϕ evaluates to true, then op1 is executed, else op2 is executed. The
semantics of the if-else operations are the following tran(if(ϕ) op1 else op2) ≡ (ϕ ⇒
op1) ∧ (¬ϕ⇒ op2), i.e. if ϕ is true, then op1 should be true, else op2 should be true. For
example, if op is if(x > 0) x := 0 else x := x+ 1, then tran(op) = (x > 0⇒ x′ = 0)∧ (x 6=
0⇒ x′ = x+ 1).
To demonstrate how the if-else operation helps make the transformation of engineering
models easier, consider the example in Figure 3.2, which illustrates a simple if-else-if
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if (cond1) {
<operation>

} else if (cond2) {
<operation>

} else if (cond3) {
<operation>

} else {
<operation>

}

choice {
assume cond1
<operation>

} or {
assume !cond1 && cond2
<operation>

} or {
assume !cond1 && !cond2 && cond3
<operation>

} or {
assume !cond1 && !cond2 && !cond3
<operation>

}

Figure 3.2: A simple if-else-if chain on the left, and the same control structure expressed
using choice and assume operations on the right.

chain and the same control structure expressed using choice and assume operations. The
<operation> lines are arbitrary operations. We can see that the biggest difference is
how the else branches are expressed, which stems from semantic differences of the if-else
and choice operations. In if-else operations, the else branch can only be executed if the
condition is false, while the same has to be expressed by adding an assumption of the
negated condition to the else branch for choice operations. In longer else-if chains - which
appear often in XSTS models generated from statecharts for example, these assumptions
of the negated conditions can quickly become lengthy expressions, which are cumbersome
to write and maintain. By using the if-else operation of XSTS, these lengthy assumptions
can be avoided.
The if-else operation in this form already simplifies the transformation of engineering
models to XSTS models, but the model checker can’t benefit from it yet: the generated
SMT formulas aren’t significantly simpler, than if the same was expressed using choice
and assume operations. The SMTLIB standard defines a native if-then-else construct: the
ite(ϕ1, ϕ2, ϕ3) expression is semantically equivalent to the formula (ϕ1 ⇒ ϕ2) ∧ (¬ϕ1 ⇒
ϕ3). By modifying the transition formula of the if-then-else operation to use the ite
expression, we can take advantage of various optimizations offered by SMT solvers for the
ite expression. Formally, the modified transition function of the if-then-else operation is
tran(if(ϕ) op1 else op2) ≡ ite(ϕ, op1, op2).

3.4 Loop operations

Loops are sequences of statements that are specified only once, but can be carried out
several times in succession. Loops can be expressed in XSTS by exploiting the main
control loop, and using flags to keep track of whether we are before, after, or inside the
loop at the moment.
Figure 3.3 shows a simple while loop on the left, and illustrates how the same control
structure can be expressed in XSTS. Please note that the code snippet on the left is not
valid XSTS code, only an illustration of what a while loop in the XSTS language could
look like. It is easy to see, that even though expressing a loop in XSTS is possible, it is
cumbersome and quickly becomes chaotic and unmanageable if there are multiple loops.
Extending the XSTS language with a dedicated loop operation could significantly simplify
the way loops are expressed. However, introducing loops to the XSTS language has its
theoretical constraints. Condition-based loops (e.g. the while loop) known from program-
ming languages cannot be transformed to closed SMT formulas. Deciding the number of
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//before the loop
while(x<5){

x := x+1
}
//after the loop

var before : boolean = true
var after : boolean = false

tran {
assume before
//before the loop
before := false

} or {
assume !before && !after
[x<5]
x := x+1

} or {
assume !before && !after
assume !(x<5)
after := true

} or {
assume after
//after the loop

}

Figure 3.3: A simple while loop on the left, and how it can be expressed in XSTS using
the main control loop on the right.

iterations of a while loop is a model checking problem in itself. Thus, adding while loops
to XSTS transitions would mean that the calculation of successor states after a transition
would involve running a separate nested model checking analysis. This is called ”recur-
sive model checking” and is an active area of research. Even though techniques based on
loop invariants show promising results in deciding loop termination, adding conditional
loops to the XSTS language would introduce a new magnitude of complexity and several
unsolved problems. For this reason, the loop operation of the XSTS language resembles
the range-based for loops known from the Python and Pascal programming languages.
A loop operation is a composite operation for v from ϕ1 to ϕ2 do op, where v ∈ V called
the loop variable the is an integer variable, ϕ1, ϕ2 are integer expressions, and op ∈ Ops
is an operation. The variable v gets assigned the value ϕ1 in the first iteration, then
gets incremented/decremented by 1 in each iteration until it reaches the value ϕ2. An
additional constraint is that op cannot modify the value of the variable v or have any
effect on the values ϕ1, ϕ2.
The semantics of the loop operation are defined differently than in the case of the other
operations. Even this constrained loop can’t be expressed as a closed SMT formula. An
additional unrolling step is required before passing loops to the SMT solver. Unrolling
involves evaluating the expressions ϕ1, ϕ2 to integer literals and replacing the loop opera-
tion with a sequence that repeats the operation op |ϕ1 − ϕ2| times, while also increment-
ing/decrementing the variable v. Loop unrolling happens during operation substitution,
which is described in more details in Section 4.1.
The syntax of loop operations in the XSTS DSL is the following, where <varname> is the
name of the loop variable, <value1> is the value where the loop variable starts , <value2>
is the value the loop variable reaches in the last iteration, and <operation> is an arbitrary
operation:

for <varname> from <value1> to <value2> do <operation>
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Chapter 4

Algorithmic optimizations

In this chapter, I present optimizations to the CEGAR algorithm that make it possible to
utilize the additional information that is present in XSTS models.

4.1 Operation substitution

Defining the transition semantics of XSTS with operations instead of FOL formulas (like
in the case of STS) means there is significantly more semantic information present in
the model. In this section, I introduce a novel technique that exploits the additional
information present in XSTS operations to simplify transitions based on the state they’re
firing from. This can lead to smaller and simpler SMT formulas, which can greatly improve
performance, as experience shows that queries to SMT solvers are usually the bottleneck
during SMT-based model checking.
A valuation s ∈ S is a variable assignment mapping each variable v ∈ V to its domain
extended with top and bottom valuesDv∪{>Dv ,⊥Dv}. For example, (x = 1, y = 2, z = 3).
To simplify the notation, variables v ∈ V whose value is not explicitly specified in a
valuation s, are assumed to have an unknown value s(v) = >Dv . The top element > (with
>(v) = >Dv for all v ∈ V ) holds no specific value for any of the variables, and the bottom
element ⊥ represents an unreachable state. Let ϕ/s denote the expression obtained by
substituting all variables in the expression ϕ with values from the valuation s ∈ S. For
example, if ϕ is (x > y), and s is (x = 1), then ϕ/s = (1 > y).
Let sub : Ops × S 7→ Ops × S denote the substitution function. For a valuation s ∈ S,
and an operation op ∈ Ops, where (ôp, ŝ) = sub(op, s), ŝ and ôp denote the results of the
substitution of s into op.

Assignments

For an assignment op = v := ϕ, and a valuation s ∈ S, the substitution (ôp, ŝ) = sub(v :=
ϕ, s) is defined as follows. The substituted operation ôp is v := ϕ/s, i.e. the variables in
the expression ϕ are substituted with the values of s. For example, if op is x := y + z,
and s is (x = 0, y = 1), then ôp is x := 1 + z. For all w ∈ V , the resulting valuation ŝ is
defined as:
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ŝ(w) =


s(w), if v 6= w

c, if v = w and ϕ/s evaluates to some literal c
unknown, otherwise

This means that if ϕ/s evaluates to some literal c, then we store that value for v in ŝ, else v
has an unknown value in ŝ. All other variables’ values remain the same in ŝ. For example,
if op is x := y + z and s is (y = 1, z = 2), then ôp is x := 3, and ŝ is (x = 3, y = 1, z = 2).
However if s is (x = 0, y = 1) instead, then ŝ is (y = 1) as ϕ/s didn’t evaluate to a literal.

Assumptions

If op is an assumption [ϕ] and s ∈ S is a valuation, then (ôp, ŝ) = sub([ϕ], s) is defined
as follows. The substituted operation ôp is [ϕ/s], i.e. the variables in ϕ are substituted
with the values of s, and ŝ = s, i.e. all variables keep their values. For example, if op
is [x > 0], and s is (x = 1, y = 1), then ôp is [true], and ŝ is (x = 1, y = 1). The
most interesting assumption substitution scenario for us will be when ϕ/s evaluates to
false, as this will allow us to remove unreachable branches of choice operations. For this
reason, failed assumptions will be propagated from composite operations, e.g. if any of
the suboperation of a sequence fails, then the sequence will be substituted with a failing
assumption.

Havocs

For a havoc operation havoc(v) and a valuation s ∈ S, where v ∈ V , the substitution
(ôp, ŝ) = sub(havoc(v), s) is defined as ôp = op and for all w ∈ V , ŝ is:

ŝ(w) =
{
s(w), if v 6= w

unknown, if v = w

This means that all variables keep their value, except v, which will have an unknown value
in ŝ. For example, if op is havoc(x) and s is (x = 0, y = 1), then ôp is havoc(x) and ŝ is
(y = 1).

Sequences

If op is a sequence op1, op2, ..., opn, and s ∈ S is a valuation, then (ôp, ŝ) =
sub((op1, op2, ..., opn), s) is defined with the algorithm in Alg. 3.
The valuation s∗ stores partial results for the valuation. The algorithm first initializes
s∗ with s. The algorithm then substitutes all opi suboperations of the sequence. The
valuation s∗ obtained from the substitution of opi serves as an input for the substitution of
opi+1, and is updated with each iteration. If any of the substituted suboperations evaluate
to a failed assumption [false], then the algorithm terminates and returns ([false],⊥) as a
result, because if a single assumption of a sequence fails, then the entire sequence fails. If
no failing assumptions were found, then a sequence ôp = ôp1, ôp2, ..., ôpn is formed from
the substituted suboperations, and is returned together with the valuation obtained from
the last iteration. For example, if op is (x := 2, z := x+y, [z > x]), and s = (x = 1, z = 3),
then ôp is (x := 2, z := 2 + y, [z > 2]) and ŝ is (x = 2).
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Algorithm 3 Substitution algorithm for sequence operations
Input: op : op1, op2, ..., opn: sequence operation

s: valuation
Output: (ôp, ŝ)

1: s∗ ← s
2: for all i ∈ {1, 2, ..., n} do
3: (ôpi, s∗)← sub(opi, s∗)
4: if ôpi = [false] then
5: // one of the operations is a failed assumption
6: return ([false], ⊥)
7: ôp← ôp1, ôp2, ..., ôpn
8: ŝ← s∗

9: return (ôp, ŝ)

If-else operations

If op is an if-else operation if(ϕ) op1 else op2, and s ∈ S is a valuation, then (ôp, ŝ) =
sub((if(ϕ) op1 else op2), s) is defined as follows. First, the suboperations op1 and op2
are substituted, which results in (ôp1, ŝ1) = sub(op1, s) and (ôp2, ŝ2) = sub(op2, s) The
substituted if-else operation ôp is:

ôp =


ˆop1, if ϕ/s evaluates to true
ˆop2, if ϕ/s evaluates to false

if(ϕ/s) ôp1 else ôp2, otherwise

If ϕ/s evaluates to true, then ŝ = ŝ1, if ϕ/s evaluates to false, then ŝ = ŝ2, otherwise for
all v ∈ V , ŝ is defined as:

ŝ(v) =
{
ŝ1(v), if ŝ1(v) = ŝ2(v)
unknown, otherwise

For example, if ôp is (if(x > 0) x := x + y else x := x − 1), and s = (x = 2, y = 1),
then ôp is x := 3, and ŝ = (x = 3, y = 1). However, if s = (y = 1), then ôp is
(if(x > 0) x := x+ 1 else x := x− 1), and ŝ = (y = 1).

Loop operations

If op is a loop operation for v from ϕ1 to ϕ2 do op, and s ∈ S is a valuation, then
(ôp, ŝ) = sub((for v from ϕ1 to ϕ2 do op), s) is defined as follows. First, the expressions ϕ1
and ϕ2 are substituted, resulting in ϕ1/s and ϕ2/s. If any of the substituted expressions
ϕ1/s or ϕ2/s doesn’t evaluate to a literal, then the analysis stops and the problem can’t be
decided, because the loop can’t be transformed to a closed SMT formula. In the following,
let’s assume that ϕ1/s and ϕ2/s evaluate to integer literals c1 and c2, respectively.
The substitution algorithm for loop operations is defined in Alg. 4. Depending on
whether c1 or c2 is greater, the algorithm will run a loop counting either up from c1
to c2 or down from c1 to c2, with i as the loop variable. In each iteration, the algo-
rithm substitutes two operations, an assignment operation and the inner suboperation
and stores them in assigni and inneri, respectively. In each iteration the assignment
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operation assigns i to v. If in any of the iterations the substituted inner operation eval-
uates to a failed assumption (i.e. [false]), then the algorithm terminates and returns
([false],⊥) as a result. After the loop finishes, ôp is constructed by forming a sequence
from the substituted assignments and inner operations. Depending on whether c1 or c2
is greater, this means either assignc1 , innerc1 , assignc1+1, innerc1+1, ..., assignc2 , innerc2 or
assignc1 , innerc1 , assignc1−1, innerc1−1, ..., assignc2 , innerc2 . The returned valuation ŝ will
be the valuation s∗ obtained from the last iteration.
For example, if op is (for z from x to x+2 do y := y+z), and s is (z = 0, x = 3), then ôp is
a sequence (z := 3, y := y+ 3, z := 4, y := y+ 4, z := 5, y := y+ 5), and ŝ is (x = 3, z = 5).

Algorithm 4 Substitution algorithm for loop operations
Input: op : for v from ϕ1 to ϕ2 do inner: loop operation

s: valuation
Output: (ôp, ŝ)

1: if ϕ1/s or ϕ2/s doesn’t evaluate to a literal then
2: throw IllegalArgumentException
3: else
4: c1 ← ϕ1/s, c2 ← ϕ2/s,
5: s∗ ← s
6: if c1 ≤ c2 then
7: for all i ∈ {c1, c1 + 1, ..., c2} do
8: (assigni, s∗)← sub(v := i, s∗)
9: (inneri, s∗)← sub(inner, s∗)

10: if inneri = [false] then
11: // one of the operations is a failed assumption
12: return ([false], ⊥)
13: ôp← assignc1 , innerc1 , assignc1+1, innerc1+1, ..., assignc2 , innerc2

14: else
15: for all i ∈ {c1, c1 − 1, ..., c2} do
16: (assigni, s∗)← sub(v := i, s∗)
17: (inneri, s∗)← sub(inner, s∗)
18: if inneri = [false] then
19: // one of the operations is a failed assumption
20: return ([false], ⊥)
21: ôp← assignc1 , innerc1 , assignc1−1, innerc1−1, ..., assignc2 , innerc2

22: ŝ← s∗

23: return (ôp, ŝ)

Choice operations

If op is a nondeterministic choice operation {op1} or {op2} or ... or {opn}, and s ∈ S
is a valuation, then (ôp, ŝ) = sub(({op1} or {op2} or ... or {opn}), s) is defined with the
algorithm in Alg. 5.
The algorithm first carries out the substitutions for all opi suboperations using the val-
uation s as input (this is because the operations of a choice aren’t executed in succes-
sion). The substituted suboperations that don’t evaluate to a failing assumption [false],
are collected in the nonfailing set, and their corresponding valuations in the valuations
set. If all suboperations were found failing, then the entire choice fails, thus we re-
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Algorithm 5 Substitution algorithm for choice operations
Input: op : {op1} or {op2} or ... or {opn}: choice operation

s: valuation
Output: (ôp, ŝ)

1: nonfailing← ∅
2: valuations← ∅
3: for all i ∈ {1, 2, ..., n} do
4: (ôpi, ŝi)← sub(opi, s)
5: if ôpi 6= [false] then
6: // if the operation is not a failing assumption, add it to the nonfailing set
7: nonfailing← nonfailing ∪ {ôpi}
8: valuations← valuations ∪ {ŝi}
9: if |nonfailing| = 0 then

10: return ([false], ⊥)
11: if |nonfailing| = 1 then
12: // nonfailing only contains ôpi, valuations only contains ŝi
13: return (ôpi, ŝi)
14: ôp← choice(nonfailing)
15: for all v ∈ V do
16: if ŝi(v) = ŝj(v) for all ŝi, ŝj ∈ valuations then
17: ŝ(v)← ŝi(v)
18: else
19: ŝ(v)← unknown
20: return (ôp, ŝ)

turn ([false],⊥). If only a single branch was found not failing, then this single subop-
eration and its corresponding valuation are returned. Otherwise, a choice operation is
created from the operations of the nonfailing set using the choice operation constructor
choice : 2Ops 7→ Ops, which given a set of operations {op1, op2, ..., opn} returns the choice
operation {op1} or {op2} or ... or {opn}. The valuation ŝ is calculated as follows: if a
variable v ∈ V has the same assigned value in all ŝi ∈ valuations valuations, then it will
have this same value in ŝ. Otherwise, ŝ(v) = unknown.
For example, if op is a choice ({x := 1, y := 0} or {x := 1, y := 2} or {[x > 2]}), and s
is (x = 0, y = 0), then ôp is ({x := 1, y := 0} or {x := 1, y := 2}), and ŝ is (x = 1). As
we can see, the third branch is removed because of a failing assumption, and ŝ(x) = 1
because x is assigned the same value on both remaining branches.

4.2 Extended transfer functions

To be able to utilize operation substitution in the CEGAR algorithm, I define extensions
that wrap the previously introduced transfer functions. This will be different for the three
domains (explicit-value, predicate, product), as explicit-value states can be interpreted
as valuations, while predicate states can’t. The extended transfer function for explicit-
value abstraction is defined as Tsub(sE , op, πE) ≡ {s′E | s′E ∈ TE(sE , ôp, πE), (ôp, ŝ) =
sub(op, sE)}, i.e. the transfer function carries out the substitution on the operation using
the explicit state as input valuation, then passes the substituted operation ôp instead of
op to the transfer function. Note that the valuation ŝ is not used. In case of predicate
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abstraction, the state sP can’t be interpreted as a valuation, so > is used as input for
the substitution instead: this means that the substitution can only happen based on
information that is present in the operations, and not based on the state. Formally,
Tsub(sP , op, πP ) ≡ {s′P | s′P ∈ TP (sP , ôp, πP ), (ôp, ŝ) = sub(op,>)}. In case of product
abstraction, the explicit part sE of a product state (sE , sP ) is used in the substitution:
Tsub((sE , sP ), op, (πE , πP )) ≡ {(s′E , s′P ) | (s′E , s′P ) ∈ TP ((sE , sP ), ôp, (πE , πP )), (ôp, ŝ) =
sub(op, sE)}. The consequence of this is that using loops in the predicate domain is only
possible if the expressions specifying the lower and upper bounds of the loop variable can
be evaluated to literals based on only the transition, i.e. the operations that appear in
the transition before the loop.
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Chapter 5

Product domain

In this chapter, I present optimizations to the product abstraction domain. The com-
bined transfer function presented in Section 5.1 calculates the successor states in both
subdomains simultaneously to allow for more information exchange.

5.1 Combined transfer function

The main weakness of the product abstraction domain presented in Section 2.4.1 is the
lack of information-exchange between the two subdomains. The black-box transfer func-
tions can’t take advantage of the information present in the other domain. The pre-
strengthening operator presented in [23] allows for information-exchange in the explicit-
to-predicate direction: the predicate transfer function TP can use the information that is
encoded in the explicit state sE as well. The predicate-to-explicit direction on the other
hand has its theoretical limits: simple heuristics can be given for some edge cases (for
example checking if there are predicates of the form v = c, where v ∈ V is a variable and
c ∈ Dv is a literal), but a general solution is not possible, because the predicates can be
arbitrarily complex FOL expressions.
In this section, I present a different approach: instead of reusing the transfer functions
of the subdomains as black-boxes, I define a combined transfer function that calcu-
lates the successor states in both domains together. The combined transfer function
T ((sE , sP ), op, (πE , πP )) is defined as follows. Similarly to the Boolean predicate abstrac-
tion domain, a fresh propositional variable vi is assigned to each predicate pi ∈ πP of the
predicate precision. After this, an SMT solver is used to enumerate all satisfying assign-
ments to the formula (sE ∧ sP ) ∧ op⇒ (∧v∈πE

v′ = s′E(v)) ∧ (∧pi∈πP
vi ↔ p′i). From each

satisfying assignment, a product state (s′E , s′P ) is formed the following way: the explicit
state s′E is constructed from the s′E(v) values, and the predicate state s′P is constructed
by forming a conjunction of the pi predicates with positive vi variables and the negations
of the predicates with negative variables.
Using this transfer function, information exchange happens in both directions: the explicit-
value domain can also benefit from the information encoded in the predicate state. There
is no need for the strengthening operator either, as the transfer function by definition will
only return pairs of states that don’t contradict each other.
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5.2 Dynamic product domain

The static product domain presented in [23] tracks the control variables VC of an XSTS
model explicitly, and all other information with predicates. In this section, I present
a dynamic approach that is capable of switching between domains automatically. This
differs in its direction from the algorithm presented in [3]. Their approach starts by
tracking all variables explicitly, then switches a variable to the predicate domain if too
many different values are enumerated for it in the same state. The approach I present
here works in the other direction: by default everything except the control variables are
tracked with predicates and the algorithm starts tracking further variables explicitly when
certain conditions are met.
My experience shows that in most cases on safe models predicate abstraction performs
better, because the CEGAR algorithm usually only has to reach the point where the guard
conditions of the model appear in the precision as predicates to prove that no unsafe state
is reachable. On unsafe models on the other hand, explicit-value abstraction is usually
more efficient as in order prove that the model is unsafe, a precise counterexample has to
be found which is usually easier to do with the variables tracked explicitly. The intuition
behind my approach is to optimistically assume first that the model is safe and thus start
tracking almost everything with predicates, then switch to explicit tracking when we detect
signs that the model is probably unsafe.
The mechanism behind detecting that the model is unsafe and we should start tracking
variables explicitly is based on the assumption that in order to prove the correctness of
a model using predicate abstraction, it is enough that the guard conditions are tracked
as predicates. Based on this, the conditions from all assume statements of the model are
collected before the analysis and split into atomic expressions. The expressions are then
brought to a canonical form, to avoid semantically equivalent but syntactically different
expressions to be identified as different. For example, (x > 5), (5 < x) and !(x ≤ 5)
are all transformed to the same expression, (x > 5). Whenever the SMT solver returns
an interpolant during refinement, the algorithm analyses whether it only contains atomic
expressions that were present in the model. If a variable appears in an unknown atom,
then we start tracking it explicitly.
The atom-based refinement algorithm presented above proved too strict in practice: the
solver often returns formulas that only contain knowledge that is present in the model,
but are formulated in a way that causes the algorithm to classify them as unknown atoms.
For example, even though we are expecting (x ≤ 5) because it is present as a condition
in the model, a solver might return (x = 5) or (x < 5) if they are valid interpolants with
respect to the input formulas as well. To tackle this, a less strict version of the atom-based
dynamic refinement algorithm is used which only starts tracking a variable explicitly if it
appears in an atom with an operand that it doesn’t appear together with in the model. For
example, if (x ≤ 5) is a condition in the model, and the solver returns (x < 5), (x = 5), or
(x ≥ 5), then the algorithm doesn’t start tracking x explicitly. However, when x appears
in (x ≤ 4) or (x = 6), the algorithm starts tracking x explicitly.
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Chapter 6

Evaluation

In this chapter, I evaluate my work. In Section 6.1, I present a case study where the XSTS
language was successfully applied, which proves its practical applicability. In Section
6.2, I present the results of the experimental evaluation of the algorithmic optimizations
presented in this work.

6.1 MCaaS

Model checking as a service (MCaaS) [20] is a collaboration of the NASA Jet Propulsion
Laboratory1, the IncQuery Labs Zrt.2 and the Budapest University of Technology and
Economics with the aim of creating a cloud-based, one-click, automatic model checking
service for the verification of SysML models.

SysML model Gamma 
 model

XSTS model

Uppaal model

Figure 6.1: An overview of the MCaaS architecture.

Fig. 6.1 shows an overview of the MCaaS architecture. In the MCaaS workflow, users
define their SysML models in well-known and familiar modeling tools, like the Cameo
Systems Modeler platform, which are then transformed to an internal representation of the
Gamma Statechart Composition Framework3. The Gamma models are then transformed
to the input languages of various model checkers. Currently the timed automata language
of the Uppaal model checker [4], and the XSTS language of the Theta model checker are
supported.
The Thirty Meter Telescope (TMT) is an extremely large telescope that is planned to
be the 2nd largest telescope in the world when constructed. With the extensions and
optimizations presented in this work, parts of the open-source SysML model [12] of the
TMT became verifiable: the XSTS language was successfully applied for formal verification
of heterogeneous system models.

1https://www.jpl.nasa.gov
2https://incquerylabs.com
3The Gamma Statechart Composition Framework [22] is an open-source framework for the modeling

and verification of component-based reactive systems developed at the Budapest University of Technology
and Economics, available at: https://github.com/FTSRG/gamma
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6.2 Experimental evaluation

To evaluate my algorithmic extensions and optimizations, I conducted a benchmarking
campaign. My goal during the benchmarking was to answer the following questions:

RQ1 How does the combined product transfer function compare to the black-box transfer
functions?

RQ2 Does operation substitution improve the overall performance?

RQ3 How do the dynamic product domains compare to the previous static solution?

Benchmarking environment The benchmarks were ran in the BME Cloud on virtual
computers with 8 CPU cores4 and 16384 MiB of RAM equipped with the Ubuntu 18.04
LTS Server operating system. To ensure reliable results, I used the BenchExec [7]
framework, which provides proper isolation of the measured process and independence
from outer noises. Each measurement was run with a timeout of 120s.

Benchmark models To increase the reliability of the results, I collected a diverse set of
XSTS models, which includes simple handcrafted models as well as real-world industrial
examples. The models range from smaller systems with only a few variables to large-scale
examples with more than 300 variables. The models are grouped into the following sets:

• simple: Simple handcrafted models that cover all language constructs and features;

• TrafficLight: Generated from a composite statechart network with 2 traffic light
components and a controller component;

• Spacecraft: Generated from the SysML statechart model modeling a spacecraft
from [20];

• INPE5: A composite system modeling two components a communication protocol
inside a nanosatellite;

• COID: A composite statechart network modeling components of railway safety
equipment. Provided by a confidential partner of the university;

• PIL: A composite statechart network that models components of railway safety
equipment. Models in this set are more complex than the COID set. Provided by
a confidential partner of the university;

• mcaas: These models are generated from the open-source model of the Thirty Meter
Telescope [12]. The models were modified by hand to remove language elements
currently not supported by the mcaas framework;

• mcaas-sliced: These models were created by hand from the models in the mcaas
set by splitting up the singl monolithic transition into 80 smaller transitions. The
models express equivalent behaviour.

4The cloud provider does not provide more detailed information about the virtual machines.
5INPE (Instituto Nacional de Pesquisas Espaciais) refers to the brazilian National Institute for Space

Research, who provided the INPE model set, see http://www.inpe.br
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6.2.1 Benchmark results

In this section, I present the benchmarking results.

RQ1: Combined transfer function

To measure how the combined transfer function performs against the black-box transfer
functions, I created 4 configurations:

• EXPL_PRED_BOOL: A black-box domain combining explicit-value abstraction
and Boolean predicate abstraction;

• EXPL_PRED_SPLIT : A black-box domain combining explicit-value abstrac-
tion and Boolean predicate abstraction. The difference compared to
EXPL_PRED_BOOL is that states are split among conjunctions;

• EXPL_PRED_CART : A black-box domain combining explicit-value abstraction
and Cartesian predicate abstraction;

• EXPL_PRED_COMBINED: The combined transfer function.

All other parameters were the same for all 4 configurations. The values were all selected
based on previous benchmarks:

• Refinement = SEQ_ITP: Sequence interpolant refinement [16];

• Search = BFS : Breadth-first search strategy;

• PredSplit = WHOLE : No predicate splitting;

• MaxEnum = 250 : When more than 250 successors are enumerated with respect to
a state and an operation, then the analysis continues with a top state instead [16];

• PruneStrategy = LAZY : Only unreachable states are pruned during refinement;

• OptimizeStmts = ON : Operation substitution is enabled;

• AutoExpl = NEWOPERANDS : When a variable appears in a refinement interpolant
with an operand that is does not appear with in the model, the algorithm starts
tracking it explicitly.

The results of the measurements are plotted on a heatmap in Fig. 6.2. The rows of
the table correspond to the 4 configurations, and the columns correspond to the 8 model
categories. If a cell is greener, it means that the corresponding configuration had a higher
success rate (was able to verify more) models in the corresponding category within the
timeout bounds. We can see that the combined domain performed the best: it was capable
of verifying 66 out of the 82 models, while the second best configuration could only verify
43. There is only one category where the combined domain performed worse: in the PIL
category it could only verify 1 model, while other configurations were able to verify 2.
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Figure 6.2: Benchmark results for RQ1.

RQ2: Operation substitution

In order to measure the effectiveness of operation substitution, I constructed a diverse
set of configurations. The Theta framework has more than 9 configuration parameters
(domain, refinements strategy, search strategy, etc.) each with 4 options, all combinations
of them can’t realistically be tested. In order to get a reasonable coverage, I used the
Pairwise Independent Combinatorial Testing6 (PICT) tool of Microsoft. I bound the
values values of some parameters which previous experience showed less important, and
left other parameters unbound:

• Domain: the abstract domain used.

– EXPL: Explicit-value abstraction;
– PRED_CART : Cartesian predicate abstraction;
– PRED_BOOL: Boolean predicate abstraction;
– PRED_BOOL: Boolean predicate abstraction with states split among conjunc-

tions;
– EXPL_PRED_COMBINED: The combined transfer function.

• Refinement: the refinement strategy used.

– BW_BIN_ITP: Backwards binary interpolation [16];
– SEQ_ITP: Sequence interpolation.

• Search = BFS : Breadth-first search;

• PredSplit = CONJUNCTS : Predicates are split among conjunctions;

• MaxEnum: if this many explicit states are enumerated with respect to a state and
operation, then the analysis continues with a top state [16]

– 0
– 10
– 250

6https://github.com/microsoft/pict
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• InitPrec: the inital precision

– EMPTY : Nothing is tracked by default;
– CTRL: Control variables are tracked by default.

• PruneStrategy = LAZY : only unreachable states are pruned during refinement;

• OptimizeStmts: operation substitution

– ON ;
– OFF.

• AutoExpl: dynamic predicate-to-explicit switching

– STATIC : no dynamic switching, static product domain;
– NEWATOMS : whenever a variable appears in an unknown atom in a predicate,

the algorithm starts tracking it explicitly;
– NEWOPERANDS : whenever a variable appears with an unknown operand in

a predicate, the algorithm starts tracking it explicitly.

Some further constraints were introduced to filter unnecessary combinations: for example
when the EXPL domain is used, then the AutoExpl parameter is fixed to a value, because it
has no influence on the performance of the explicit domain. I generated 32 configurations
using the PICT tool.

Figure 6.3: Benchmarking results for operation substitution.

The benchmarking results for operation substitution are plotted on the diagram in Fig.
6.3. Each dot represents a single run, with its x coordinate corresponding to the CPU
time with operation substitution disabled, and its y coordinate to corresponding to the
CPU time with operation substitution enabled. Dots that are below the line correspond
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to measurements where the configurations with operation substitution performed better,
while the dots above correspond to configurations where disabled operation substitution
performed better. The most interesting dots are the one that are on the rightmost side
of the diagram on a vertical line above each other. These are measurements where only
the configuration that had operation substitution enabled could verify the models. The
points that line on the diagonal correspond to measurements where both configurations
performed roughly the same. We can see that in most cases either operation substitution
performed better or roughly the same. There are some exceptions to this from the INPE
set, which require further analysis. We can also see that operation substitution has a
greater impact on the performance of larger models, then simpler ones.

RQ3: Dynamic product refinement

To evaluate the dynamic product refinement strategies, I defined 2 unbound parameters:

• InitPrec: the initial precision

– EMPTY : Nothing is tracked by default;
– CTRL: Control variables are tracked by default.

• AutoExpl: dynamic predicate-to-explicit switching

– STATIC : no dynamic switching, static product domain;
– NEWATOMS : whenever a variable appears in an unknown atom in a predicate,

the algorithm starts tracking it explicitly;
– NEWOPERANDS : whenever a variable appears with an unknown operand in

a predicate, the algorithm starts tracking it explicitly.

The other parameters were bound to the following values:

• Domain = EXPL_PRED_COMBINED: combined product domain;

• Refinement = SEQ_IPT : sequence interpolation;

• Search = BFS : Breadth-first search;

• PredSplit = CONJUNCTS : Predicates are split among conjunctions;

• PruneStrategy = LAZY : only unreachable states are pruned during refinement;

• OptimizeStmts = ON : operation substitution enabled;

• AutoExpl: dynamic predicate-to-explicit switching

A comparison of the measurements for the earlier static product domain the dynamic
refinement based on new atoms is plotted in Fig. 6.4, while a comparison of the static
option and the dynamic refinement based on new operands is plotted in Fig. 6.5. In both
diagrams, the CPU times measured for the static option are the x coordinates of the dots,
while the measurements for the dynamic domains are the y coordinates. Dots that lie
below the diagonal correspond to measurements where the dynamic domains performed
better, and analogously dots above the diagonal to measurements where the static option
performed better. The diagrams show that the dynamic refinement rarely brought better
performance and in most cases lead to worse performance.
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Figure 6.4: Benchmarking results for dynamic refinement based on new atoms.

Summary

The benchmarking showed promising results in the case of the combined transfer func-
tion: the configuration using it outperformed the configurations of the black-box product
domains. Operation substitution showed promising results as well, the measurements in-
dicated that in most cases it brings a performance improvement, especially in the case of
larger models. The dynamic product domain refinement strategies sadly didn’t perform
as well as expected and require further analysis.
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Figure 6.5: Benchmarking results for dynamic refinement based on new operands.
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Chapter 7

Conclusions

In this chapter, I draw the conclusions of my work and present possible future directions.
My primary goal during this work was to create extensions and optimizations that make
the XSTS language and infrastructure capable of verifying large-scale industrial models.
The language extensions presented in this work bring the abstraction level of the XSTS
language closer to that of the high-level engineering models, while keeping the generality.
The local variables offer a way of reducing the state space by encoding more information
in the model. Arrays are a commonly used data structure that make the transforma-
tion of several high-level engineering formalisms easier. The if-else operation makes many
branching scenarios easier to express in the XSTS language by introducing a construct
that is known from many formalisms. The loop operation offers an easy-to-use construct
for expressing loops but comes with strict constraints that stem from theoretical consid-
erations.
I presented various algorithmic optimizations that make the verification of XSTS models
more efficient. Operation substitution uses the additional information that is encoded
in XSTS operations to simplify the SMT formulas generated from transitions based on
the current state before passing them to the solver. The combined transfer function for
product domains makes information exchange possible between the two subdomains of
the analysis. The dynamic refinement strategies for product domains offer an automatic
solution for detecting variables that should be tracked explicitly.
I implemented the language extensions and algorithms I presented in the open-source
Theta framework. The XSTS language and model checker were successfully applied in
the MCaaS collaboration for the verification of heterogeneous SysML system models.
The open-source SysML model of the Thirty Meter Telescope (TMT) became partially
verifiable in the XSTS language thanks to the extensions presented in this work. To
evaluate the algorithmic extensions and optimizations presented in this work, I conducted
a benchmarking campaign on a diverse set of models that included real-world industrial
examples. The benchmarking showed promising results in case of operation substitution
and the combined transfer function for product domains.
Possible future extensions of the language include introducing types for rational numbers
and bitvectors, as well as introducing state invariants that have to hold in all possible
states of the system. I plan on further examining the product abstraction domain. I
intend to extend the scope of verifiable properties to temporal logical expressions (LTL or
CTL) as well.
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Appendix

A.1 Heterogeneous system model

Figure A.1.1: A heterogeneous SysML model.
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