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Abstract

Detecting malware targeting IoT devices has became an important challenge with the
recent emergence of IoT botnets. SIMBIoTA, a recently proposed similarity-based IoT
malware detection method, has good detection performance, while being very resource ef-
ficient at the same time, but its robustness against adversarial malware samples has been
shown to be rather weak. In this paper, we propose PATRIoTA, a similarity-based IoT
malware detection method inspired by SIMBIoTA, but being significantly more robust
than SIMBIoTA is. We describe the operation of PATRIoTA, and compare its malware
detection performance and robustness against adversarial samples to that of SIMBIoTA.
We show that PATRIoTA outperforms SIMBIoTA with respect to both measures. More-
over, in this paper, we also propose a new framework for Efficient COmparisons of Mal-
ware detector Performances (ECOMP), and we illustrate its usage by implementing both
SIMBIoTA and PATRIoTA in it and comparing their performances. It is important to
emphasize that the ECOMP framework is not limited to SIMBIoTA and PATRIoTA, but
it is designed to be an easily usable framework, which simplifies and standardizes the
performance measurements and comparisons of any malware detection methods.



Kivonat

Az ToT-eszkozokre irdanyulé rosszindulatt szoftverek detektdlasa fontos kihivdssi valt
az loT botnetek kozelmultbeli megjelenésével. A SIMBIoTA egy nemrégiben javasolt
hasonlésag-alapti IoT malware-detekciés moédszer, mely kivalé detekcids teljesitményt
nyujt és nagyon erdforras-hatékony is, &m a robusztussiga az Un. adversarial mintakkal
szemben meglehetésen gyengének bizonyult. Ebben a tanulmanyban egy 1j, a SIMBIoTA-
nal lényegesen robusztusabb médszert javaslunk, amit a SIMBIoTA ihletett, ezért ezt az Gj
moédszert PATRIoTA-nak neveztiik el. Leirjuk a PATRIoTA miikddését, és Gsszehasonlit-
juk a malware detekcids teljesitményét és az adversarial mintakkal szembeni robusztussa-
gat a SIMBIoTA-éval. Megmutatjuk, hogy a PATRIoTA mindkét mérészam tekintetében
felilmilja a SIMBIoTA-t. Ezen ttlmenden ebben a tanulményban egy 1j keretrendszert
is javasolunk a rosszindulatu szoftverek detektalasi teljesitményének hatékony 6sszehason-
litdsdra (Efficient COmparisons of Malware Detector Performances, ECOMP), tovabba
a SIMBIoTA és a PATRIoTA implementalasaval és teljesitményiik Osszehasonlitasdval
illusztraljuk a hasznélatat. Fontos hangstlyozni, hogy az ECOMP keretrendszer nem kor-
latozodik a SIMBIoTA-ra és a PATRIoTA-ra, hanem egy kénnyen hasznalhaté keretrend-
szer, amely egyszerlisiti és szabvanyositja a rosszindulatu szoftverek detektalasara szolgald
modszerek teljesitménymérését és osszehasonlitasat.

ii



Chapter 1

Introduction

The expansion of the Internet-of-Things (IoT) is unwavering: the number of installed IoT
devices exceeds 15 billion and it is constantly growing!. At the same time, the security
of IoT devices is notoriously weak [10, 2]. This poses a threat from two aspects: on the
one hand, compromised IoT devices can potentially be used to build huge attacking in-
frastructures (e.g., botnets), with which Internet-based services can be effectively attacked
(see e.g. the Mirai botnet and the DDoS attacks launched from it in 2016 [4]); on the
other hand, in cyber-physical applications (e.g., industrial IoT systems, self-driving cars),
the compromise of IoT devices can lead to physical damage of expensive equipment or
even fatal accidents (see e.g. the proof-of-concept attack on a Jeep Cherokee carried out
in 2015 [15] and its potential consequences). The problem is so significant that regulatory
processes aiming at increasing the security of IoT systems have been initiated in both the
US? and Europe®.

An increasingly widespread method for compromising [oT devices at large scale is infecting
them with malware (i.e., malicious programs). This is made possible by the fact that IoT
devices are essentially embedded computers and malware can be installed on them just
like in the case of traditional computers. As a result, several malware families targeting
IoT devices have appeared in the past few years (e.g., Mirai, Gafgyt, Tsunami, Hajime).
At the same time, traditional anti-virus solutions require too many resources (e.g., storage
capacity and CPU cycles), and therefore, they cannot be applied directly on the typically
resource-constrained IoT devices. Hence, there is a great demand for efficient and effective
IoT malware detection methods.

Gateways placed at the edge between the Internet and the IoT devices deployed in the field
are particularly well-positioned for protecting IoT devices against malware [12]. The main
reasons are that malware typically spread over the Internet and that resource-constrained
IoT devices may not have the means to protect themselves. Edge gateways, on the other
hand, have more resources to support malware detection and, thanks to their placement,
they can block malware to reach IoT devices. At the same time, malware detection
on gateways must be extremely fast for not imposing delays in communications. This
essentially excludes the outsourcing of the malware detecion task to some cloud-based
backend, and requires performing all operations locally on the edge gateways themselves.

"ttps://vww.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed
on October 17, 2023)

nttps://www.security.org/blog/california-passes-first-cybersecurity-law-iot/ (accessed
on October 17, 2023)

*nttps://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act (accessed on Octo-
ber 17, 2023)
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This means that, among other things, edge intelligence should also include effective and
efficient IoT malware detection.

A recently proposed similarity-based IoT malware detection method, called SIMBIoTA
[28], fits this context perfectly: SIMBIoTA is lightweight and fast, it performs IoT malware
detection entirely locally, yet it has a remarkable malware detection capability. However,
its robustness against adversarial malware samples has been shown to be rather weak [25].
In the context of malware detection, adversarial samples are meant to be malware samples
crafted specifically to evade detection by a given malware detection method. In the case
of SIMBIoTA, such adversarial samples can be created easily by appending some extra
bytes at the end of existing malware binaries, as shown in [25].

In this paper, we propose PATRIoTA (PArticle TRained IoT Antivirus), a similarity-based
IoT malware detection method inspired by SIMBIoTA, but being significantly more robust
than SIMBIoTA is. The main idea of PATRIoTA is to split malware samples known to the
antivirus provider into multiple fixed-size parts, referred to as particles, and to perform
the same operations on those particles as the operations performed by SIMBIoTA on
entire samples. This means that the antivirus provider builds a similarity graph of known
particles, computes its dominating set, and distributes similarity preserving hash values
(in our case, TLSH [17] values) corresponding to the particles in the dominating set to
the clients, which are the edge gateways in this work. The clients also split any file to
be scanned (e.g., a binary extracted from network traffic) into particles, compute the
similarity preserving hash values of them, and if a threshold number of those computed
hashes are similar to the hashes in the dominating set, then the file is detected as malware.

PATRIoTA is robust against adversarial sample creating strategies that add extra bytes
to an existing malware binary, because the sample created in this way will always contain
in it the original binary, and, hence, all of its particles, which can be recognized by
PATRIoTA despite the presence of the added extra bytes. In addition, PATRIoTA may
be robust against even more sophisticated adversarial strategies that keep sizable chunks of
the original malware binary intact within the created adversarial sample, as those chunks
may result in particles that are similar to the particles of the original sample. Moreover,
our measurement results indicate that, besides increased robustness, PATRIoTA also has
better malware detection capabilities than SIMBIoTA has.

Moreover, in this paper, we also propose a new framework for Efficient COmparisons of
Malware detector Performances (ECOMP), and we illustrate its usage by implementing
both SIMBIoTA and PATRIoTA in it and comparing their performances. It is important
to emphasize that the ECOMP framework is not limited to SIMBIoTA and PATRIoTA,
but it is designed to be an easily usable framework, which simplifies and standardizes the
performance measurements and comparisons of any malware detection methods.

The structure of this paper is the following: In Chapter 2, we present the operation of
SIMBIoTA and introduce two simple adversarial sample creation strategies that mislead
it. In Chapter 3, we introduce PATRIoTA and present its design considerations in de-
tails. In Chapter 4, we compare PATRIoTA to SIMBIoTA in terms of malware detection
capability and robustness against the adversarial sample creation strategies introduced in
Chapter 2. We discuss the robustness of PATRIoTA against another adversarial sample
creation strategy, as well as some alternative ways of increasing robustness against adver-
sarial samples in Chapter 5. In Chapter 6 we introduce our newly proposed framework.
Finally, we present some related work in Chapter 7 and conclude the paper in Chapter 8.



Chapter 2

Background

Let us start with a more detailed introduction of SIMBIoTA and the lack of its robustness
against some simple adversarial sample creation strategies.

2.1 SIMBIoTA

SIMBIoTA [28] (SIMilarity-based IoT Antivirus) is a lightweight malware detection
method tailored to resource constrained IoT devices. It detects malware by checking
the similarity of scanned files to known malware samples, but it does this efficiently. In
particular, SIMBIoTA exploits the fact that malware samples that belong to the same
malware family are typically similar to each other, while samples from different families,
as well as benign programs are dissimilar. This means that the similarity graph of the
malware samples known to the antivirus provider is clustered and it is disconnected from
the similarity graph of benign programs. This phenomenon is illustrated in Figure 2.1.
Here, the similarity graph of a set of binary files is defined as a graph whose vertices rep-
resent the binaries and two vertices are connected with an edge if the corresponding files
are similar according to some similarity measure. Typically, each cluster in the similarity
graph can be represented by a few representative samples such that all members of the
cluster are similar to at least one of the representative samples. It is then sufficient for
malware detection to know only about the representative samples of the clusters: any
scanned file that is similar to any of these representative samples are likely to be malware,
while files that are not similar to any of the representative samples are likely to be benign.

More specifically, SIMBIoTA assumes that the antivirus provider continuously collects
malware samples from its malware intelligence network (e.g., honeypots and various mal-
ware feeds), stores them in a database, and also creates their similarity graph. The
(dis)similarity measure applied by SIMBIoTA is called TLSH difference [17] and two ver-
tices of the similarity graph are connected if the TLSH difference between the correspond-
ing malware samples is below the threshold 40. The selection of this particular threshold
value is explained in [6]. The antivirus company then calculates a dominating set of the
current similarity graph. A dominating set is a subset of the graph’s vertices such that
each vertex of the graph is either included in the dominating set or it is adjacent to a
dominating vertex. The vertices in the dominating set are the representatives of all mal-
ware in the database of the antivirus provider. Finally, the antivirus provider delivers the
TLSH hash values of the samples belonging to the current dominating set to all clients.
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Illustration of a similarity graph of a set of binaries.
Vertices represent the binaries and two vertices are
connected with an edge if the corresponding files are
similar according to some similarity measure. In this
figure, two files are considered to be similar, if their
TLSH difference score is below the threshold 40, where
TLSH is a locality sensitive hash function and TLSH
difference is a TLSH-based dissimilarity metric. Mal-
ware binaries are represented by red nodes and benign
binaries are represented by green nodes. As it can be
seen, there is no similarity between malware and be-
nign files and the malware similarity graph is strongly
clustered.



When scanning any file, the client examines how close the TLSH hash value of the scanned
file is to the TLSH hash values of the samples belonging to the dominating set. It detects
the scanned file as malware if it is similar to any of the samples in the dominating set,
and as benign otherwise.

This procedure guarantees that the client detects all malware samples seen by the antivirus
company (and included in the similarity graph), and can also detect previously unseen
malware that is similar to the samples belonging to the dominating set. In addition,
efficiency stems from the facts that the size of the dominating set is just a small fraction
of the size of the entire similarity graph, thanks to the high clusteredness of the latter, and
the TLSH value and TLSH difference calculations are very fast. Indeed, according to the
evaluation in [28], SIMBIoTA required only 6-8 KB of storage capacity and it could decide
about any file if it was malicious or benign in 0.12-0.14 ms. In addition, its malware
detection capability proved to be surprisingly accurate: it achieved approximately 95%
true positive detection rate even on previously unseen malware samples, while its false
positive rate remained at 0% throughout the experiments.

2.2 Adversarial strategies

The malware detection operation in SIMBIoTA is simple, hence, it may be easy to mis-
lead. In order to achieve that, one has to manipulate the TLSH hash value of a malware
sample by modifying the sample without harming its malicious functionality. As SIM-
BIoTA uses the TLSH difference 40 as the similarity threshold, the intuition is that if
the TLSH difference between the original sample and the modified sample becomes larger
than 40, then SIMBIoTA will likely misclassify it. A modified malware sample with the
same functionality as the original one is called an adversarial sample if it is likely to be
misclassified as benign by the malware detection mechanism.

One approach for creating adversarial samples is to append extra bytes at the end of a
malware binary such that those bytes are never executed, but they affect the calculation
of the TLSH hash value. Two specific adversarial sample creating strategies, following this
approach, have been proposed in [25]. They are called Chunker and Disguiser. Chunker
appends a carefully chosen chunk of the original sample to itself with the goal of increasing
the TLSH difference between the modified and the original samples above 40 (or beyond).
Disguiser appends an appropriately chosen benign file to the malware binary and its goal
is to decrease the TLSH difference between the modified malware and the benign file below
40 (i.e., to make the modified malware similar to the added benign file). These strategies
are simple enough to be easily implemented by a real-world attacker. In addition, as shown
in [25] (and later replicated in Chapter 4 of this paper), SIMBIoTA can be completely
misled by these simple adversarial sample creating strategies such that its detection rate
on the adversarial samples created by them is close to 0%.



Chapter 3

PATRIoTA

In Chapter 2, we mentioned that SIMBIoTA is not robust against the adversarial samples
created with the Chunker and Disguiser strategies. Both attack strategies append some
bytes at the end of an existing malware binary in such a way that those bytes are never
executed, while the TLSH value of the modified sample becomes dissimilar to that of
the original malware, and therefore, SIMBIoTA has a good chance of misclassifying it.
In the case of these, and similar, append attacks, the original malware binary can be
found in the adversarial sample. Hence, in order to detect such an adversarial sample
as malware, we need a method that identifies the original malware inside the adversarial
sample. PATRIoTA, the method we propose and describe in this section, will do exactly
this: it identifies parts of known malware samples inside any file being checked with it.
PATRIoTA can be viewed as a general method of defense against adversarial samples
created with append attack strategies.

3.1 Overview

The design of PATRIoTA was inspired by SIMBIoTA (and their similarity is also reflected
in their names). Basically, PATRIoTA is a modified version of SIMBIoTA where the
difference is that PATRIoTA works with fixed size parts of malware samples instead of
entire malware binaries. Not surprisingly, the architecture of PATRIoTA is also almost
the same as that of SIMBIoTA, as it is illustrated in Figure 3.1. Malware samples are
continuously collected from the intelligence network of the antivirus provider, and the
PATRIoTA backend splits them into fixed-size parts, which we call particles in the sequel.
Similar to SIMBIoTA, a similarity graph is built by the backend, but in this case, this graph
is built from the malware particles. In addition, PATRIoTA uses a different similarity
threshold to build the similarity graph. In Section 3.4, we explain how to determine the
optimal values for the particle size and the similarity threshold used by PATRIoTA. Again
similarly to SIMBIoTA, the backend computes a dominating set of the current similarity
graph and makes the list of TLSH hash values of the dominating vertices available to
clients.

The detection method on the client side is somewhat different in the case of PATRIoTA:
the client splits the file to be checked into particles (of the same size used by the backend);
calculates the TLSH hashes of the particles; and compares these TLSH hashes with those
of the current dominating set. A file is considered malicious if it contains a threshold
number of particles that are similar to known malicious particles. The selection of this
threshold is discussed in Section 3.3.
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3.2 Particle size and similarity threshold

PATRIoTA uses some special parameters, which we have already mentioned in the previous
subsection, including the size of the particles and the similarity threshold used during the
graph construction from the TLSH hashes. Finding the optimal configuration of these
parameters is not a trivial task. We can state that the optimal configuration (if it exists
at all) is highly context dependent; for example, we can imagine a situation where the low
latency of the detection process is more critical than its memory usage.

Despite all this, we developed an iterative methodology to determine a recommended pa-
rameter configuration. We performed measurements to determine the optimal parameters
on a smaller data set, not the one presented in Section 4.1. This data set consisted of 2000
malware and 2000 benign samples for both the ARM and the MIPS architectures.

When we were designing PATRIoTA, the first question was the size of the particles. We
first considered the values of 1 kB, 2 kB, 4 kB, 8 kB, 12 kB and 16 kB, but later excluded
1 kB and 2 kB, because the number of graph nodes built from particles of those sizes grew
unmanageably large.

PATRIoTA builds a graph from the TLSH values of malware particles, where the TLSH
hash values are the nodes and there is an edge between two nodes if the TLSH difference
of the two hash belonging to the nodes is below a certain similarity threshold value.
SIMBIoTA uses 40 as TLSH similarity threshold, because the average clustering coefficient
of the built graph is the highest in that case [6]. The same value cannot be used for
PATRIoTA, because it does not build the graph from the TLSH hashes of entire malware
samples, but from its particles. To determine the optimal value of the TLSH similarity
threshold for different particle sizes, we used the same technique as for SIMBIoTA. In
Figure 3.2, we measure the average clustering coefficient of the graph built from the
particles of the 2000 malware samples using different TLSH similarity thresholds. We
select the TLSH similarity threshold that gives the highest average clustering coefficient
for each particle sizes (e.g., for particles of size 4 kB, the selected TLSH similarity threshold
is 65 in the case of ARM samples).
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Figure 3.2: Average clustering coeflicient as a function of the
TLSH similarity threshold in the case of ARM (left)
and MIPS (right) architectures. Different curves be-
long to different particle sizes, including the case
where the particle size and the file size are equal (full).

3.3 Detection threshold

A suspicious sample is considered malicious if it contains at least a threshold number of
particles that are similar to known malware particles. If this threshold is set to 1, the true
positive detection rate (TPR) of malware will be as high as possible, but the unwanted
effect may occur that even benign files are considered malicious (e.g. a benign and a
malicious program use the same statically compiled library, therefore, both contain the
same sequence of bytes). The consequence is that the larger the detection threshold is,
the lower the false positive rate (FPR) and, unfortunately, the lower the TPR will be. So,
we choose the smallest possible value where the FPR is still below 1%, which is 2 in the
case of ARM samples and 4 in the case of MIPS samples (see Chapter 4).

3.4 Optimal configurations

At this point we have 4 possible particle size and TLSH similarity threshold configurations,
but which of them is the best?

Before answering this question let’s take a look at Figure 3.3, where we examine the number
of similar particles between malware samples with the configuration of 4k particle size and
65 similarity threshold for ARM samples. For that, we divide the 2000 malware samples to
10% train and 90% test set, we split to particles the items in the train set and we build the
graph from their TLSH hashes. Finally, we iterate over the elements of the test set, split
each file, and count how many similar particles there are between them and the particles
in the graph. In other words, we simulate the operation of PATRIoTA on a small data
set and repeat this simulation ten times (just like in Chapter 4, in the case of the large
data set). There are ca. 40 samples in Figure 3.3 that do not contain any similar malware
particles to the particles in the train set, therefore, we cannot detect these. Furthermore,
in Figure 3.3 we see how many malware samples would not be detected depending on the
selected detection threshold. For instance, if we required that at least 3 particles of the
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Figure 3.3: The x axis shows the number of particles in a sample
from the test set that are similar to items in the train
set (from 0 to 50), while the y axis shows the number
of these samples in the case of 4k particle size and
65 TLSH similarity threshold configuration for ARM
samples.

file should be similar to some known malware particle to detect the file as malicious (i.e.,
detection threshold 3), then ca. 40+50+30=120 malware samples would not be detected.

To select the best particle size and TLSH similarity threshold configuration, we examine
how it changes the TPR and FPR values depending on the detection threshold. Figure 3.4
shows the ROC (Receiver Operating Characteristic) curves of the different configurations,
where each jump in the step function corresponds to a certain detection threshold value
between 1 and 10. According to our expectations, as the detection threshold increases,
the FPR decreases, but so does the TPR. We choose the configuration with the highest
AUC (Area Under the ROC Curve) value. This is 4k particle size and 65 TLSH similarity
threshold for ARM samples and 8k particle size and 60 TLSH similarity threshold for
MIPS samples.
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Chapter 4

Evaluation

In Chapter 3, we presented PATRIoTA, including its architecture and operating principles,
as well as the selection of its parameters (particle size, similarity threshold, and detection
threshold), as the main contributions of this paper. It is time to evaluate PATRIoTA’s
performance, especially its ability to detect adversarial samples. However, before doing
that, we present the data set and methodology used for the performance measurements.

4.1 Experiment design

In this work, we perform all experiments using the same dataset as used for the evalu-
ation of SIMBIoTA [28]. This dataset is called CrySyS-Ukatemi benchmark dataset of
IoT malware 2021 (or CUBE-MALIoT-2021 for short). The dataset consists of 29,209
malicious ARM samples and 18,715 malicious MIPS samples, extended with 4,727 benign
ARM samples and 9,392 benign MIPS samples. For malicious samples, metadata is also
available, which details, among others, the date the sample was first seen in the wild (i.e.,
submitted to VirusTotal). CUBE-MALIoT-2021 is publicly available! for use by the IoT
malware research community.

As a first step for testing PATRIoTA, we split the malware samples into a 10% train set
and a 90% test set. To do this, we use K-folds cross-validation [19], which is a reliable and
frequently used model checking technique. We use K-folds with 10 folds and repeat each
measurement 10 times, where the samples of each fold belong to the train set once, and
the test set consists of the samples of the other 9 folds. This ensures that each malware
appears exactly once in the train set and 9 times in the test set.

PATRIoTA does not need benign samples for training, so we add benign samples only to
the test set. Moreover, we extend the test set with adversarial samples for measuring the
robustness of the system. These adversarial samples are created using the two strategies
mentioned in Section 2.2: Chunker and Disguiser. We create these adversarial samples
from the malware binaries in the test set, simulating that an attacker has malware samples
unknown to the antivirus company and can create adversarial samples from them. Table
4.1 shows the exact number of samples in the train and test set.

With the presented construction, we simulate the operation of PATRIoTA: we build the
model properly from the train samples, and then give samples from the test set to the
model for detection (see Chapter 3). Furthermore, since PATRIoTA was inspired by
SIMBIoTA, we compare their performances in all aspects. Indeed, we train and test the

"https://github.com/CrySyS/cube-maliot-2021 (accessed on October 17, 2023)
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Table 4.1: Number of samples in the train and test set, in the ARM and MIPS cases.

ARM
Malware | Benign Chunker Disguiser
Train 2,921 - - —
Test 26,288 4,727 24,285 26,288
MIPS
Malware | Benign Chunker Disguiser
Train 1,872 — — -
Test 16,843 9,392 | 13,862 - 13,916 | 16,813 - 16,819

Original Chunker Disguiser
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Figure 4.1: Comparison of the detection accuracy of SIMBIoTA
and PATRIoTA on unmodified malicious and benign
samples (Original), adversarial samples created with
the Chunker strategy, and adversarial samples created
with the Disguiser strategy, in the ARM and MIPS
cases.

two systems on the same samples and measure the same performance metrics. In the next
3 subsections, we present the results of the performed simulation.

4.2 Detection capability

Using the experimental setup presented in the previous subsection, we measure the detec-
tion accuracy of SIMBIoTA and PATRIoTA in 3 different cases: on unmodified malware
and benign files, on adversarial samples of the Chunker strategy, and on adversarial sam-
ples of the Disguiser strategy. Our goal is to achieve the highest possible accuracy in all 3
cases, while keeping the FPR, of benign files below 1%. To do this, we try PATRIoTA with
different detection thresholds (i.e., minimum number of particles of a file that need to be
similar to known malware particles in order for the file to be classified as malware). The
smaller the detection threshold is, the higher the TPR will be, but the FPR will increase
too. According to our measurements, the optimal value for the detection threshold is 2
for ARM samples and 4 for MIPS samples, as for smaller values, the FPR exceeds 1%.
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Table 4.2: Storage requirement of SIMBIoTA and PATRIoTA on the client side in the
ARM and MIPS cases.

| SIMBIoTA |  PATRIOTA
ARM | 8,365 - 9,030 B | 333,585 - 371,805 B
MIPS | 5,775 - 6,440 B | 111,965 - 139,370 B

In Figure 4.1, we compare the detection accuracy of the two system. PATRIoTA drastically
outperforms SIMBIoTA in terms of accuracy in all test cases! On the sample set of
unmodified benign and malicious programs, PATRIoTA has an impressive 98.5% accuracy
in the case of ARM samples and 98.2% in the case of MIPS samples. Moreover, it performs
extremely well even on adversarial samples of both the Chunker and Disguiser strategies,
with 98% accuracy on ARM samples and 95% on MIPS samples.

4.3 Storage requirement

IoT devices are usually limited by resources, including available memory and storage
capacity. Therefore, we measure the storage space requirement of PATRIoTA on the
client side (i.e., on the IoT device), which in our case is the size of the dominating set
multiplied by the size of the TLSH hash. Compared to SIMBIoTA, unfortunately, the
higher accuracy and robustness of PATRIoTA comes with a higher storage requirement,
due to the increased number of nodes in the dominating set. In Table 4.2, we present the
required memory sizes of the two system.

4.4 Run time performance

Another price we have to pay for the increased detection accuracy and robustness of PA-
TRIoTA is the increased processing time compared to SIMBIoTA. By detection time,
we mean the time that elapses from the beginning of the binary scan of any file to the
decision whether it is malicious or not. In the case of SIMBIoTA, this time consists of
the TLSH hash computation time of the binary and the decision time of the model. For
PATRIoTA, the detection time consists of the sum of 3 components: the time required to
split the binary into fixed-size particles, the sum of TLSH hash computation time of the
particles, and the sum of decision times required for particles. Basically, PATRIoTA per-
forms SIMBIoTA’s detection method multiple times, more precisely for each particle, until
the number of particles considered malicious reaches the value of the detection threshold
parameter. Therefore, PATRIoTA requires more time for detection than SIMBIoTA, as
shown in Figure 4.2.
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Chapter 5

Discussion

In this work, we were concerned with increasing the robustness of binary similarity-based
malware detection methods against adversarial samples that are crafted specifically to
mislead a given malware detector. More specifically, we proposed PATRIoTA, a robust,
similarity-based antivirus solution, which was inspired by SIMBIoTA [28]. It turns out
that SIMBIoTA has a machine-learning based variant, called SIMBIoTA-ML, proposed
n [18], and the robustness of SIMBIoTA-ML has already been studied in [26], where an
adversarial training approach was proposed as a solution. So a natural question, at this
point, is whether an adversarial training approach could have increased the robustness of
SIMBIoTA as well. If so, then the need for a new approach, i.e., our PATRIoTA, would
be much weaker.

It is clear what adversarial training means in case of a machine learning-based method: the
training set is expanded with adversarial samples created by various known adversarial
strategies. But SIMBIoTA is not a machine learning-based method. Nevertheless, we
can define adversarial training quite intuitively for SIMBIoTA too: the antivirus provider
extends the similarity graph of known malware samples with adversarial samples and
computes the dominating set of this extended graph. One can then check the detection
performance of this modified SIMBIoTA on adversarial samples to determine how robust
this approach is.

We performed adversarial training of SIMBIoTA by extending the similarity graph of
known malware samples with adversarial samples created from those known malware by
the Chunker and Disguiser strategies introduced in [26], and computed the dominating
set of the extended graph. We then measured the detection performance on adversarial
samples created from malware unknown to the antivirus provider by the same Chunker
and Disguiser strategies. The results we got were not so promising: adversarial ARM and
MIPS samples created by the Chunker strategy were detected with 92% and 90% accuracy,
respectively, while adversarial ARM and MIPS samples created by the Disguiser strategy
were detected only with 86% and 67% accuracy, respectively. These results confirm the
raison d’étre of PATRIoTA.

In addition, while PATRIoTA was designed to be robust against adversarial samples that
were created from existing malware samples by appending extra bytes to them, we have
the intuition that it is also robust against other strategies that create adversarial samples
that contain chunks of the original sample, as those chunks may result in particles that
are similar to the particles of the original sample. In order to test this intuition, we
measured the robustness of PATRIoTA against such a strategy. In particular, a very
clever adversarial sample creation strategy against similarity-based malware detection was
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proposed in [8] that consists in modifying a few unused portions of a malware binary (e.g.,
the section header tables were modified in [8]) such that the TLSH difference between the
modified and the original files is maximized, while the functionality of the original binary
is fully preserved, the size of the modified file remains the same as that of the original
one, and even the binary content is only slightly changed. As reported in [8], it is rather
easy to create adversarial samples in this way that are misclassified by SIMBIoTA: out of
2000 randomly chosen ARM malware samples, 1779 samples were suitable for such kind
of modification, and 1465 samples could be created with a TLSH difference of at least
40 (the threshold used by SIMBIoTA) between the modified and original files. We tested
both SIMBIoTA and PATRIoTA with those samples, and SIMBIoTA recognized only 17%
of them as malware, while PATRIoTA detected a remarkable 98% of them as malware!

One may wonder whether statically linked libraries decrease the detection accuracy of
PATRIoTA. Such libraries may be included in both malware and benign binaries, so ac-
tually, some portions of statically linked malware and benign samples that include the
same libraries can be identical. This may lead to multiple similar particles in them, po-
tentially above the threshold number used by PATRIoTA. In other words, benign files
may contain particles resulting from linked libraries that are similar to particles seen in
malware binaries using the same libraries. Such benign files may be classified as malware
by PATRIoTA, which leads to an increased false positive rate. Indeed, we tested PATRI-
oTA on 118 statically linked ARM and 64 statically linked MIPS benign binaries and it
misclassified 15% and 6% of them, respectively, as malware. This misclassification rate
is not really acceptable, therefore, further research is needed to reduce it. We note that
SIMBIoTA had a false positive detection rate of 0% throughout our experiments.
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Chapter 6

ECOMP Framework

Recently, in our laboratory, similarity-based IoT malware detection has become an emerg-
ing topic, with a noticeable increase in the number of detection methods and attacks
against them. Over time, numerous experiments have been conducted, each of which is
interesting and meaningful when considered individually. However, they cannot be easily
interpreted collectively. This situation called for urgent standardization.

6.1 Overview

In Chapter 4, we compared SIMBIoTA and PATRIoTA based on specific metrics, including
detection capability, storage requirements, and run time performance. We implemented
these measurements in our newly proposed framework, which was created for Efficient
Comparisons of Malware Detector Performances (ECOMP). The ECOMP Framework sim-
plifies and unifies the testing of various malware detection methods; it is not limited to
SIMBIoTA and PATRIoTA.

Malware detection methods usually use a detection model, which can be a classical
machine-learning model, like a Random Forest Classifier [18], or simply, a set of TLSH
hashes [28]. A complete workflow for testing the performance of a malware detection
solution typically involves two steps:

1. Training a model: This step requires using a training data set to train the malware
detection model.

2. Testing the model: In this step, the trained model is evaluated using a separate
testing data set, which should be different from the training data set to assess the
model’s generalization performance.

6.2 Modules

The framework divides the training and testing steps into four modules, each with a
predefined interface. To implement the specific functionality for a detection method, we
inherit from the module’s abstract class. These modules can also optionally measure
various performance metrics, such as running time, during their operations. Figure 6.1
shows the framework’s modules and their relations with each other, in the following we
present what we see in the figure in more detail.
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Figure 6.1: High-level overview of the ECOMP framework’s mod-
ules and their relations with each other.

To test a malware detection method, we require both malware and benign samples. Typi-
cally, these input data are available as raw binaries, although some methods may demand
a different format. Preprocessor modules are designed for this purpose: they take file(s)
as input, perform necessary operations, and save the results. In the case of SIMBIoTA,
which uses raw binaries as input, Preprocessor is unnecessary. However, it can be valuable
for other malware detection methods, such as those that compute Control Flow Graphs
(CFGs) from executable binary files [20].

In order to train and test a model we need to extract feature vectors from the input data.
Feature Extractor modules do exactly this, they take file(s) as input then produce the fea-
ture vectors from it, which will be used during the training and testing process. In the case
of SIMBIoTA the features are the TLSH hashes themselves, so Feature Extractor module
of SIMBIoTA calculates the TLSH hashes of the provided input files while measuring the
processing time as well.

At this point we have everything to actually train our detection method’s model. Trainer
module provides the trained malware detection model after fitting the training feature
vectors to the corresponding target labels. In the case of SIMBIoTA the trained model
is the dominating set of the similarity graph built from the TLSH hashes of the training
sample set.

The last phase of the workflow is testing the trained detection model. To do this, we
created Tester module, which uses the model created by the Trainer module on the test
feature vectors and it returns the predicted labels (or the probabilities of each target
labels) to the given features. Tester module of SIMBIoTA for each scanned file examines
how close the TLSH hash value of the scanned file is to the TLSH hash values of the
samples belonging to the dominating set. It detects the scanned file as malware if it is
similar to any of the samples in the dominating set, and as benign otherwise.

Different circumstances call for different approaches in orchestrating the four modules. In
the context of ECOMP framework we have two options: either write code to configure
and use the modules, or use the modules from the command line by passing parameters.

6.3 Discussion

Driven by our intention to standardize the performance measurements of IoT malware
detection methods, we managed to create a truly flexible system. Indeed, the ECOMP
framework offers a set of interfaces that establish the required constraints for uniformity
while granting researchers the flexibility to carry out their desired malware detection
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and performance measurement tasks. The framework also supports unit testing, which
comes with its every well-known advantages. Furthermore, it gives a concise and stylish
visualization template for comparing different performance metrics (see the figures in
Section 4). Finally, the ECOMP framework is implemented in Python 3.10 and it is
available among the CrySyS Lab’s private GitLab repositories. As this framework serves
educational purposes, there is also a useful tutorial available in the repository, which
provides a more precise, step-by-step guide on how to properly use the ECOMP framework.
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Chapter 7

Related Work

Although SIMBIoTA, and thus PATRIoTA as well does not belong to ML-based malware
detectors, adversarial examples and adversarial robustness, the main focus of this work
are closely tied to machine learning. Additionally, the ECOMP framework is suitable to
compare not only SIMBIoTA and PATRIoTA but ML-based malware detectors as well.
Indeed, the ECOMP framework was developed with ML-based malware detectors in mind,
and it has features that are particularly advantageous when the tested detector is ML-
based. Therefore, we include an outlook on ML-based malware detection in this section.

ML-based malware detection solutions, unlike their traditional counterparts, are highly
automated[29], thus they can keep pace with the increasing amount of malware. They
use static, dynamic or hybrid program analysis techniques to extract information from
samples which they use to construct feature vectors[21].

Statically obtained features could include opcode-based solutions, where the samples’
instructions[27] are used to construct such a vector, gray scale images created from
binaries[16] or solutions built to perform detection based on the control-flow graph of
samples[20]. Dynamic analysis-based solutions can rely on API or system call traces[1] or
network traffic, observed during the execution of the sample[14].

Solutions, where ML-based and cloud-based approaches are combined, can be highly ad-
vantageous in the IoT domain, since these solutions can relieve resource constrained devices
from performing computationally heavy tasks[24], thus more complicated models can be
used as well, like convolutional neural networks[22] and recurrent neural networks, while
they can also boost the performance of more light-weight models, like random forests[27]
and fuzzy pattern trees[7].

Adversarial attacks against malware detectors can also use multiple approaches[5]; here
we highlight two of these, called append and slack attacks[23]. Append, as the name
suggests, works by adding extra bytes to the end of samples, that will never be executed,
thus they don’t have any affect on the functionality of the modified sample. The strategies
Chunker and Disguiser implement this approach. Slack attacks, on the other hand modify
the content of so-called slack spaces in binary files. These are regions that contain no
useful data, and usually exists because of alignment-related reasons: for example, the size
of a section cannot be divided by the page size, but the next section’s beginning must be
aligned to another page, thus creating a slack space between the end of the section and
the beginning of the next one. A special case of this approach is the strategy where the
section header table is overwritten; as it is not required for loading and executing ELF
files, it can be categorized as slack space. To use these strategies to fool the ML model,
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solutions like a gradient-based approach can be used[13], or the feature extraction process
can be attacked as well[9].

More advanced techniques, like program obfuscation can be used as well, to change the
binary file while preserving its original functionality; to do so, one could use reinforcement

learning|3], like Recurrent Neural Networks (RNNs) or Generative Adversarial Networks
(GANSs)[11].

Increasing the adversarial robustness of ML-based malware detectors is a logical next step
in the decades old arms race between malware developers and antivirus vendors. One such
attempt was to improve SIMBIoTA-ML by applying adversarial training[26], meaning that
the training set was extended with adversarial examples. Our solution aims to achieve
the same goal (i.e. increasing adversarial robustness), but using another approach. This
method works on SIMBIoTA as well, which wasn’t suitable for adversarial training. We
also believe that this approach is superior, since it does not require adversarial examples
and only employs more general assumptions regarding the strategy of the attacker.
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Chapter 8

Conclusion

In this paper, we proposed PATRI0oTA, a similarity-based ToT malware detection method,
and showed that it has outstanding malware detection capabilities, while being robust
against various adversarial sample creation strategies too. More specifically, we compared
the performance and robustness of PATRIoTA to those of SIMBIoTA, an IoT malware
detection method in a similar vein as PATRIoTA. PATRIoTA has a higher true positive
detection rate, but it also has a higher false positive rate, it requires more storage ca-
pacity, and it has longer detection time than SIMBIoTA has. Its true advantage is its
strong robustness against adversarial samples: indeed, SIMBIoTA can be completely mis-
led by adversarial samples created from existing malware by appending extra bytes to
them, whereas PATRIoTA detects those samples with very high accuracy. In addition,
PATRIoTA proved to be robust against another adversarial sample creation strategy too
that produces adversarial samples by modifying unused portions of an existing malware
binary such that the modified binary becomes dissimilar to the original one, and hence,
likely misclassified by SIMBIoTA.

We argued that edge gateways are well-positioned for performing malware detection and
protecting resource constrained IoT devices behind such gateways. They can identify the
transfer of executable files in the network traffic, check those executables with a malware
detection mechanism, and block any traffic carrying malware. PATRIoTA can be used for
such malware detection on edge gateways. Although it has a larger storage requirement
than SIMBIoTA has, edge gateways also offer more storage space than typical IoT field
devices do. PATRI0OTA also has an increased running time, in particular when checking
benign files. We believe that this does not hinder the use of PATRIoTA on edge gateways,
but this requires further study and more measurements, in which the introduced ECOMP
framework will be particularly useful.

In Chapter 5, we discussed that PATRIoTA may make false positive decisions on statically
linked benign binaries if they include libraries that have also been used in malware. This
issue also needs further study and it is on our future research agenda.
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