
Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar

Irányítástechnika és Informatika Tanszék

Háromszöghálók paraméterezése geometriai
kényszerek figyelembevételével

Triangle Mesh Parameterization with
Geometric Constraints

Tudományos Diákköri Dolgozat/ Scientific Students’
Association Paper

Készítette/Author Konzulens/Supervisor
Vaitkus Márton Dr. Várady Tamás

October 25, 2013



Contents

Introduction 3

1 Preliminaries 6

2 Overview of previous results 10

2.1 Parameterization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Geometric constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Geometric Constraints 14

3.1 Analysis of possible constraints . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Evaluation of known parameterization methods . . . . . . . . . . . . . . . . 16

4 Discrete Natural Conformal Parameterization (DNCP) with geometric
constraints 18

4.1 General algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Geometric constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 LinABF with Geometric Constraints 23

5.1 General algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Constructing the mesh from the angles . . . . . . . . . . . . . . . . . 25

5.2 Geometric constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



6 ARAP Parameterization with Geometric Constraints 28

6.1 The ARAP energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1.1 Local phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.2 Global phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1.3 Initialization with rotation field . . . . . . . . . . . . . . . . . . . . . 31

6.2 Geometric constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Initialization Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.2 Global Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.3 Local Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Preventing overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Enforcing constraints by iterative deformation of a parameterization 42

7.1 Enforcing geometric constraints . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Deforming the parameterization . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Implementation and Performance 45

8.1 User Interface and data structures . . . . . . . . . . . . . . . . . . . . . . . 45

8.2 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.4 A reverse engineering application: fitting trimmed surfaces . . . . . . . . . . 48

Conclusions and Future Work 51

Bibliography 59

2



Introduction

Mesh parameterization is one of the fundamental operations in computer graphics and ge-
ometry processing. Initially motivated by the needs of texture mapping, it has since become
indispensable for applications such as surface fitting, remeshing, mesh repair, deformation
and simplification. The problem is inherently difficult, and for its analysis and solution
one must utilize concepts from highly advanced mathematical fields such as differential
geometry and complex analysis. As such, it has generated some of the most diverse and
extensive research in the field, resulting in dozens of publications each year.

Parametric curves and surfaces are ubiquitous in computer graphics. In mesh parameteri-
zation, we would like to solve an inverse problem, as illustrated in Figure 1: given a surface,
represented by a triangle mesh in R3, we would like to find a mapping into R2, i.e. the
Euclidean plane. Although we would prefer to do so without any distortion, a fundamental
result in differential geometry tells us, that this is not possible: surfaces cannot be mapped
to the plane without distortion if their (Gaussian) curvature is not zero. This means that,
in practice, some kind of compromise has to be made: distortion of angles, lengths or areas
has be tolerated to a certain extent.

Historically, the original motivation for mesh parameterization has been texture mapping,
where we would like to add some detail (color or geometry) to the mesh, using information
stored in some kind of image.

Another problem, where a parameterization of the mesh could be necessary, is reverse engi-
neering [Varady et al., 1997], or more precisely the fitting of triangle meshes with paramet-
ric surfaces. The challenging task of computing optimal control point and knot positions
can be reduced to a regression problem - assuming that a suitable parameterization is
available.

The generation of a quadrilateral mesh from a triangular one is a difficult task
[Bommes et al., 2012]. Most of the state-of-the-art methods for quad remeshing are based
on parameterization, as the coordinate lines of the plane can be sampled to define a quadri-
lateral cell structure.

Minimizing geometric distortion has been the focus of the majority of parameteriza-
tion research, but for most practical applications it is necessary to adhere to addi-
tional constraints. For example, in the case of automated texture mapping, it is a nat-
ural requirement, that certain points are mapped to given locations in the parameter
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Figure 1: Illustration of parameterization.

domain [Eckstein et al., 2001], [Kraevoy et al., 2003]. Another popular research topic in
constrained parameterization is motivated by quad mesh generation, where it is crucial
that sharp edges and other salient mesh features are mapped to constant coordinate lines
[Bommes et al., 2009], [Myles and Zorin, 2013]. The main topic of this paper concerns the
enforcement of higher level, geometric constraints in parameterization methods. Examples
of such constraints are:

• A curve shall be mapped to a straight line.

• A closed curve shall be mapped to a circle.

• Certain lines shall be perpendicular or parallel to each other.

• A feature curve that is (approximately) planar shall be preserved.

• A region that is (approximately) planar shall be preserved.

Note that it is not necessary to prescribe the exact position, orientation or size of the
features considered, only certain geometric properties.

Constraints like these have been scarcely considered in the literature of mesh parametriza-
tion. In this paper, we give an analysis of these constraints and develop algorithms that are
capable of enforcing them. We assume that the constraints are predetermined by the user,
i.e. we do not consider methods for the detection of features, symmetries, etc. Also, we re-
strict our scope to the parameterization of surfaces with multiply connected disc topology;
thus we do not concern ourselves with problems related to cutting or segmenting closed
meshes prior to parameterization.
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(a) Texture mapping (b) Surface fitting

(c) Quad remeshing

Figure 2: Examples of parameterization applications.

We first summarize the necessary mathematical background (Chapter 1), then give an
overview of the relevant literature, focusing on methods capable of enforcing geometric
constraints (Chapter 2). Next, we discuss how to reduce typical higher-level geometric
constraints to low-level relations between positions or angles (Chapter 3). As our main
contribution, we present extensions to three widely used parameterization methods: Dis-
crete Natural Conformal Mappings (Chapter 4), Angle-Based Flattening (Chapter 5) and
As-Rigid-As-Possible Parameterization (Chapter 6) and also develop a method to itera-
tively deform an existing parameterization such that it satisfies our constraints (Chapter
7). Finally we discuss the details of our implementation, evaluate and compare the per-
formance of the different methods, and present a practical application of the presented
algorithms in the context of reverse engineering (Chapter 8).
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Chapter 1

Preliminaries

The results presented here can be found in the literature, e.g. in [Pinkall and Polthier, 1993]
and [Hormann et al., 2007], we include them in a succinct form to make our treatment more
self-contained.

Triangle meshes, differential geometry A triangle mesh M is given as a set of vertex
positions in R3: pi = (x, y, z), i = 1, . . . , NV , together with a simplicial complex (V,E, F )

describing its topology. A parameterization of the mesh is a mapping ofM to the Euclidean
plane - f : (x, y, z) 7−→ (u, v).

We often consider the dual mesh, which is constructed1 by replacing each face with a dual
vertex in its circumcenter, each edge with a perpendicular dual edge, and each vertex with
a dual cell.

For a general surface in R3, we can measure its curvature at a given point, by intersecting it
with a plane parallel to the normal vector. The intersection is a plane curve that has a well
defined curvature at the given point, called the normal curvature. Its maximal and minimal
values (always attained in orthogonal directions) are called the principal curvatures at the
point. The product of the principal curvatures is the Gaussian curvature.

It is a fundamental result of differential geometry that the Gaussian curvature is an intrinsic
property of the surface, invariant to isometric deformations. As the plane has 0 Gaussian
curvature everywhere, surfaces that have non-zero curvature cannot be mapped to the
plane without distortion. Surfaces with zero Gaussian curvature are called developable.

On triangle meshes, we only consider Gaussian curvature at the vertices where it is actually
equal to the angle defect of the triangle fan, see Figure 1.1

K = 2π −
∑

α.

1We assume a circumcentric, or Voronoi dual.
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(a) (b)

Figure 1.1: Triangle fan of a vertex (a) in R3, (b) : flattenedisometrically.

Gradient in a triangle An important assumption about a triangle mesh parameteriza-
tion is that it is piecewise-affine, i.e. it is uniquely determined by the images of the vertices.
As a consequence, the derivatives of the parameterization are constant within each triangle.
Using barycentric coordinates and choosing an arbitrary local coordinate system2 (X,Y )

it is easy to show that if u1, u2, u3 are the u-coordinates of the vertices of a triangle, the
gradient (the vector of first derivatives) of the u coordinate function can be computed,
(with the notations of Figure 1.2) as the following:

∇u =

[
∂u
∂X
∂u
∂Y

]
=

1

2Ap1,p2,p3

[
0 1

−1 0

] [
e23 e31 e12

] u1

u2

u3

 =

=
1

2Ap1,p2,p3

[
Y3 − Y2 Y2 − Y1 Y1 − Y3
X2 −X3 X1 −X2 X3 −X1

] u1

u2

u3

 ,
where A is the area of the triangle.

Using the gradient vectors ∇u,∇v one can form3 the Jacobian matrix J of the parameter-
ization, which is again constant for each triangle of the mesh:

2In practice, we use (after normalization) e12 and N×e12, where N = e12×−e31 is the triangle normal.
3In the differential geometry literature, along with several surveys on parameterization, the Jacobian

matrix is often defined as the transpose of the matrix that we have given. Our convention corresponds to
the practically relevant case when vectors are multiplied by matrices from the left.
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Figure 1.2: Notations for gradient in triangle.

J =

[
∂u
∂X

∂u
∂Y

∂v
∂X

∂v
∂Y

]
=

[
∇uT
∇vT

]
=

1

Ap1,p2,p3

[
Y3 − Y2 Y2 − Y1 Y1 − Y3
X2 −X3 X1 −X2 X3 −X1

] u1 v1

u2 v2

u3 v3

 .
Note that the Jacobian can be interpreted as the linear part of the affine mapping that
brings the triangle from a reference position (as per the chosen local coordinate frame), to
its place in the parameterization, as illustrated in Figure 1.2.

Conformal mappings, the cotangent Laplacian Most of the common parameteriza-
tion algorithms make use of the analytical theory of conformal mappings and the so-called
cotangent discretization of the Laplacian.

As a starting point, consider Dirichlet’s principle, which states that a conformal mapping
minimizes Dirichlet’s energy [Courant, 1950]:

ED =
1

2

∫
‖∇u‖2 + ‖∇v‖2 dA. (1.1)

It is a well known fact of complex analysis, that conformal mappings are equivalent to
complex differentiable functions and thus, they satisfy the Cauchy-Riemann equations
[Needham, 1999]:

∂u

∂X
=

∂v

∂Y

∂u

∂Y
= − ∂v

∂X
.
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As a consequence, conformal mappings are also also harmonic, i.e. their coordinate func-
tions satisfy the Laplace equation:

∆u = 0

∆v = 0

Rewriting the integral as a finite sum over triangles than using the previous expression
for the gradient one can easily prove4 [Pinkall and Polthier, 1993] that on triangle meshes
the Laplacian can be approximated by a symmetric, positive definite matrix L, with the
following entries (see Figure 1.3):

Lij =

−(cot(θij) + cot(θji)) i 6= j, eij ∈ E∑
eik∈E(cot(θik) + cot(θki)) i = j

θji θijeij

pi

pj

Figure 1.3: Notations for the cotangent Laplacian.

Matrices with this structure (diagonals holding the sums of the corresponding rows) are
called Laplacian matrices5.

Observe that for certain geometries, the off-diagonal entries of this matrix can become pos-
itive, which can lead to artifacts, e.g. triangles flipping their orientation. There are alterna-
tive discretizations of the Laplacian on triangle meshes [Floater, 2003], [Belkin et al., 2008],
but they lead to matrices that are not symmetric or much less sparse. It is theoreti-
cally impossible to construct a ’perfect’ discrete Laplacian on general triangle meshes
[Wardetzky et al., 2007].

4The same expression can be derived using the Finite Element Method or Discrete Exterior Calculus
[de Goes et al., 2013].

5Note how such a matrix acts similarly to the continuous Laplacian: at a given point, it computes the
difference between the value of the function and its local average.
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Chapter 2

Overview of previous results

2.1 Parameterization algorithms

Mesh parameterization has an extensive and diverse literature. We refer the un-
acquainted reader to one of the several surveys and tutorials on the topic
[Floater and Hormann, 2005], [Sheffer et al., 2006], [Hormann et al., 2007] or Chapter 5 of
the textbook [Botsch et al., 2010]. As we have mentioned in the introduction, we limit our
scope to the parameterization of (possibly multiply connected) discs, i.e. we ignore the
wide range of methods developed for the global parameterization of closed meshes.

The simplest nontrivial methods for mesh parameterization are based on Floater’s gen-
eralization [Floater, 1997] of Tutte’s theorem [Tutte, 1963] characterizing straight edge
drawings of planar graphs: [Pinkall and Polthier, 1993], [Eck et al., 1995], [Floater, 2003].
These methods require us to fix the boundary of the mesh on a convex polygon. This lim-
itation can be relaxed by adding some sort of ’scaffolding’ to the mesh [Lee et al., 2002],
[Kós and Várady, 2003], [Kami et al., 2005], but methods that explicitly optimize the
shape of the boundary are considered more practical. These fall into two major categories:
conformal methods, aiming for the preservation of angles; and area- or length-preserving
methods.

Conformal methods The first published conformal method was Discrete Natural Con-
formal Paramterization (DNCP) [Desbrun et al., 2003], which - along with the equivalent
Least-Squares Conformal Mappings (LSCM) [Lévy et al., 2002] - exploits the analytical
properties of conformal mappings and requires the solution of a homogeneous system
with a Laplacian matrix. After two vertices have been fixed, these methods compute a
mapping that is very close to being exactly angle-preserving with a ’natural’ boundary.
Still, the quality of the parameterization depends on the choice of the two vertices in
a non-trivial way. Spectral Conformal Parameterization (SCP) [Mullen et al., 2008] dis-
tributes the constraint on the whole boundary by solving a generalized eigenvalue prob-
lem for the Laplacian matrix. This method can also be generalized to polygonal meshes
[Alexa and Wardetzky, 2011], [Bouaziz et al., 2012].
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Angle-Based Flattening (ABF) [Sheffer and de Sturler, 2001] enforces conformality in a
direct way, by minimizing the deviation of the flattened angles from the original ones in a
least-squares sense, while satisfying a set of constraints ensuring the planar nature of the
result. This leads to a nonlinear, non-convex optimization problem, which can be solved via
Newton’s method. The method can be made more practical by reducing the size of the Hes-
sian (ABF++) [Sheffer et al., 2005], using a progressive mesh data structure (Hierarchical
ABF) [Sheffer et al., 2005] or by linearizing the constraints (LinABF) [Zayer et al., 2007].

More modern methods for conformal parameterization [Kharevych et al., 2006],
[Springborn et al., 2008], [Ben-Chen et al., 2008], [Crane et al., 2011],
[Myles and Zorin, 2012] follow the Discrete Differential Geometry paradigm
[Grinspun et al., 2008], by developing a proper discrete notion of conformality, in-
stead of merely approximating the continuous mathematics. These methods exploit
far-reaching mathematical connections between conformality, metric distortion and
curvature and optimize for the scaling factors of the edge lengths.

Area-preserving and isometry-preserving methods Conformal methods have very
advantageous properties, most importantly their low computational cost; but their lack
of regard for area and length distortion could be problematic for many applications. Al-
gorithms that try to strike some balance between angle and area reservation or isometry
typically require expensive non-linear, non-convex optimization, thus scaling considerably
worse than conformal methods.

In one of the earliest works on parameterization [Maillot et al., 1993] proposed an elasticity-
based method, that involves optimization with rational functions, derived from the Green-
Lagrange deformation tensor.

The MIPS method [Hormann and Greiner, 2000] computes the ’most isometric’ mapping
with free boundary by minimizing a nonlinear, transcendent function.

Some methods, stemming from the groundbreaking work of [Sander et al., 2001]
iteratively improve some kind of distortion measure for an existing param-
eterization [Sander et al., 2002], [Sorkine et al., 2002], [Degener et al., 2003],
[Dong and Garland, 2007].

All of these methods require expensive nonlinear optimization. This is in sharp
contrast with [Liu et al., 2008], which applies the local-global variant of the As-
Rigid-As-Possible mesh deformation algorithm [Alexa et al., 2000], [Igarashi et al., 2005],
[Sorkine and Alexa, 2007] to parameterization. Although, this method also minimizes a
nonlinear energy, measuring the local isometry of the parameterization, it does so by alter-
nating between a local and global optimization phase, which only requires singular value
decomposition of 2 × 2 matrices and a linear solve with a (constant) Laplacian matrix
respectively.
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In [Li et al., 2010] the parameterization problem for a sheet metal component is solved via
physical principles by inverting the metal forming procedure using the so-called one-step
approach [Guo et al., 2000], that constitutes of a non-linear Finite Element problem.

Preventing and resolving overlaps It should be noted that most of the mentioned pa-
rameterization algorithms cannot guarantee that the resulting mapping will be one-to-one,
which means that some of the triangles could invert their orientation, or overlap. Because
of this a significant part of the relevant literature concentrates on the problem of preventing
or resolving such artifacts [Eckstein et al., 2001], [Tang et al., 2003], [Kraevoy et al., 2003],
[Kami et al., 2005], [Lee et al., 2008],[Yu et al., 2012].

Almost all of the common parameterization methods employ the famous cotangent dis-
cretization of the Laplacian in some shape or form, and the lack of injectivity usually
stems form the fact that the cotangent weights can become negative on lower quality
(non-Delaunay) triangulations. There are ways to improve the situation without explicitly
modifying the original mesh [Fisher et al., 2007], [Mullen et al., 2011], but these are com-
putationally expensive options. A commonly used heuristic approach is that if a triangle
happens to flip, add some additional positive weight to the corresponding entries of the
Laplacian matrix and recompute the parameterization1, see [Bommes et al., 2009] for a
relatively sophisticated variant of this strategy. Although this heuristic could work very
well in practice (see our solution later), there is no guarantee for convergence let alone its
rate.

We would also like to mention the recent progress in optimization with explicit (non-
convex) injectivity constraints [Bommes et al., 2013] [Schüller et al., 2013] and the work
of Lipman on the theory of injective parameterizations of triangle meshes [Lipman, 2012],
[Lipman, 2013].

2.2 Geometric constraints

Parameterization We know of only a few, isolated works in the parameterization lit-
erature that consider some kinds of geometric constraints. In [Bennis et al., 1991] and
[Azariadis and Aspragathos, 2001] the problem of preserving the shape (geodesic curva-
ture) of feature curves is investigated. Mesh parameterization is an essential part of ap-
plications for cloth and garment modeling, where it is crucial that the length of certain
feature curves are preserved. [Wang, 2008] and [Igarashi et al., 2009] give methods that en-
force this constraint. [liang Chen et al., 2011] gives a method for the preservation of shape
of feature curves that is very similar to what we have formulated for LSCM, but enforces
them as part of a physics-inspired finite element-based algorithm. [Vallet and Lévy, 2009]
extends the ABF algorithm to handle line-based geometric constraints by adding simple
linear constraints on the flattened angles to the optimization problem, and has been our
main inspiration for our approach in Chapter 5.

1Personal communication of Kai Hormann.
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Constrained modeling and fitting Although geometric constraints are relatively
novel to the subfield of mesh parameterization, they are in no way unknown to
the wider field of computer geometry. The enforcement of geometric constraints,
known as constrained modeling, is a quintessential part of any geometric modeling
or CAD system and was already considered in some of the pioneering works on
computer-aided design [Sutherland, 1964], [Gopin, 1978], [Light and Gossard, 1982]. Con-
strained modeling has a very voluminous literature, and is a topic ongoing research;
we refer to the surveys [Brüderlin and Roller, 1998], [Hoffmann and Joan-Arinyo, 2005],
[Jermann et al., 2006] and [Bettig and Hoffmann, 2011]. An important difference between
our approach and traditional constrained modeling techniques is that we operate with
’unorganized’ triangle meshes, not the ’organized’ models made up from larger scale ge-
ometric primitives common in CAD-systems. The constrained fitting problem in reverse
engineering [Benko et al., 2002] is another related research field.

Constrained mesh deformation More closely related is the actively develop-
ing field of constrained mesh deformation [Masuda et al., 2007], [Gal et al., 2009],
[Zheng et al., 2011], [Habbecke and Kobbelt, 2012], [Deng et al., 2013] see the recent sur-
vey [Mitra et al., 2012]. Our approach is novel in the sense that the features we are consid-
ering are not required to be present in the original model. One recent work that is close to
ours in spirit is [Bouaziz et al., 2012], where certain kinds of geometric constraint are en-
forced during the deformation process by a generalization of the local-global algorithm for
the minimization of the ARAP energy [Sorkine and Alexa, 2007]: first, for each constrained
set of vertices they fit them with the ’best’ shape satisfying the constraints independently,
then merge these ’projections’ together in a global step, and iterate until convergence. We
do something similar in our post-processing algorithm, but we use a curvature flow to de-
form the constrained vertices to the desired shape, if it is a circle and keep their positions
fixed throughout the ARAP iterations.

13



Chapter 3

Geometric Constraints

3.1 Analysis of possible constraints

It is time to turn our attention to the main topic of our paper, which is the enforcement
of geometric constraints during the parameterization process. First, let us survey the kind
of constraints we will consider:

• A set of vertices shall be mapped to a straight line.

• A set of vertices shall lie on a circle.

• A set of edges shall map to some prescribed shape.

• Two lines or edges should be perpendicular or parallel.

• A curve of a coplanar sequence of edges in 3D shall retain its shape after being
mapped to the parameter plane.

• A developable region shall retain its shape after being mapped to the parameter
plane.

As we are working with an ’unstructured’ triangle mesh, these requirements should be
transformed into lower level constraints involving angles, vertices or edges before they can
be enforced during the parameterization. This requires nontrivial arguments (independent
of the employed parameterization method) only in the case of mapping vertices to a circle,
or if a planar curve is to be preserved.

Assume that we have a closed loop made out of N edges on the mesh, with edge lengths
l0, l1, . . . , lN−1. Now imagine that in a parameterization of the mesh, the related vertices
lie on a circle, i.e. the image of the loop is a cyclic polygon and each of the edges keeps
its length or gets scaled by the same factor. It is a well-known property of cyclic polygons
that the side lengths divide the length of the whole polygon as the respective sector angles

14



αi

αi+1

βi+1
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βi

li

li+1

Figure 3.1: Notations for the circle constraints.

divide 2π. Also observe that the triangle corresponding to each sector is equilateral. Then,
given two neighboring edges li and l(i+1) (see Figure 3.1):

li + li+1∑N−1
i=0 li

=
αi + αi+1

2π

βi + βi+1 = π − αi + αi+1

2

Substituting the former equation into the latter, we get the following for the interior angle
between the edges:

βi + βi+1 = π(1− li + li+1∑N−1
i=0 li

).

If the loop is actually an inner boundary curve of a multiply connected surface, we take
the conjugate of these angles. We have made no assumption about the coplanarity of the
edges, as for any set of edge lengths (that is possible on meshes), there exists a unique
cyclic polygon [Pinelis, 2005].

For planar curves, the situation is trivial if the edges are exactly coplanar. In other cases,
we fit a plane to the vertices, by taking the eigenvectors corresponding to the two largest
eigenvalues to their covariance matrix (after removing their mean), then project the vertices
on it for the angle calculations.

In summary, all of the constraints we have been considering can be reduced to some com-
bination of the following two kinds of low-level constraints:

• Two edges shall make a prescribed angle in the parameterization.

• A triangle shall keep its angles and/or edge lengths.

15



3.2 Evaluation of known parameterization methods

Now that we have our higher-level, ’semantic’ constraints to lower-level ones, we can eval-
uate the known parameterization methods according to their potential for enforcing such
constraints. We only consider free-boundary methods.

First, it should be noted that the low-level constraints can be expressed (up to similarity) as
linear equations in the positions, thus they can be added as hard or soft constraints to any
parameterization method that optimizes for the positions directly. Of these the simplest
methods are arguably the angle-preserving DNCP [Desbrun et al., 2003] and the equivalent
LSCM [Lévy et al., 2002], which minimize a quadratic form of the vertex positions, thus
our constraints can be enforced easily by Lagrange multipliers or adding penalty terms.
This is our approach in Chapter 4. Most other methods that optimize for positions require
computationally expensive nonlinear optimization or use a per-vertex iterative method,
and it is not yet obvious how to enforce our constraints in such a context.

Geometric constraints can also be expressed in terms of mesh angles, which makes the
angle-based ABF method [Sheffer and de Sturler, 2001], more precisely its linearized vari-
ant called LinABF [Zayer et al., 2007] a very promising alternative. This possibility has
been explored before in [Vallet and Lévy, 2009], but we take into account a wider class of
constraints in Chapter 5.

These conformal methods give us practically no control over the ’metric’ properties,
e.g. we cannot preserve edge lengths without adding expensive quadratic equality con-
straints to the problem. On the other hand, there is a wide class of algorithms, includ-
ing methods like Curvature Prescription [Ben-Chen et al., 2008], Conformal Equivalence
[Springborn et al., 2008] and Incremental Flattening [Myles and Zorin, 2012] where the op-
timization variables are actually edge length scaling factors, which seemingly opens up the
possibility to directly control the metric properties. Unfortunately, after careful examina-
tion we have found that these methods have limited capabilities for accommodating geo-
metric constraints. All of these algorithms build upon a discrete analogue of the differential
geometric characterization of conformality, i.e. they assume that the edge length scaling
factors are not independent for each edge, but computed from a scalar function defined on
the vertices and the actual optimization variables are the values of this function. Although
[Springborn et al., 2008] seem to employ a variational principle, i.e. minimize a convex en-
ergy, unlike other methods this functional does not correspond to some kind of distortion
measure, but is actually reverse-engineered to have the unique, conformally equivalent pla-
nar mesh as its minimum. To get another perspective, observe that [Ben-Chen et al., 2008]
and [Myles and Zorin, 2012] solve a square linear system of full rank, as a rough approx-
imation of the Conformal Equivalence method, and this system is actually a set of linear
constraints ensuring the planarity (zero curvature) of the resulting parameterization. As
the system is not underdetermined, adding any additional linear constraint would require
us to solve it in a least-squares sense which will not result in a valid planar mesh in gen-
eral. The key observation is that the assumption of this precise sense of conformality, along
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with boundary conditions actually define a unique planar mesh [Springborn et al., 2008],
i.e. the only degrees of freedom we have are on the boundary1: we can prescribe arbi-
trary edge lengths and angles for boundary edges but doing so for the interior will most
probably violate the assumptions behind these methods and lead to unpredictable results.
Although finding ways to incorporate geometric constraints into these methods is an in-
teresting potential research topic, it appears that there might be no straightforward way
to do so.

A similar obstruction arises when one considers eigenvector-based methods, such as
[Mullen et al., 2008] or [Crane et al., 2011]: (smallest) eigenvalue problems are exceptional
in the sense that they find the unique solution to a seemingly difficult nonlinear optimiza-
tion problem, with the practical computational complexity of a simple linear solve. Adding
a simple additional constraint forces the problem out of the scope of traditional numerical
linear algebra; but future we plan on investigating the practicality of methods such as
[Gander et al., 1989] and [Golub et al., 2000] for its solution in the future.

We also observe that the optimization objective of most common parameterization
algorithms, such as DNCP/LSCM [Desbrun et al., 2003], [Lévy et al., 2002], ARAP
[Liu et al., 2008], Stretch-minimization [Sander et al., 2001] and its variants, MIPS
[Hormann and Greiner, 2000] and Green-Lagrange deformation [Maillot et al., 1993], can
be reformulated in terms of the singular values of the Jacobian matrix, see the survey
[Hormann et al., 2007] for an overview. As the singular values characterize the distortion
of the parameterization for each triangle, it might appear that this will allow us to control
the metric properties, as we wish. However, this equivalence of objectives is mostly of the-
oretical significance: we cannot optimize directly for the singular values i.e. the local linear
mappings of the triangles, as we have to take the actual geometry and topology of the mesh
into account; which leads us back to the original objectives, expressed in terms of positions,
angles, etc. The relation between positions and the singular values is highly nonlinear, thus
we conjecture that for practical problem sizes it is computationally infeasible to constrain
the Jacobian singular values during the parameterization process.

There is one way, however, to get partial control over the Jacobians in a computation-
ally inexpensive way: the minimization of the ARAP energy by local-global iterations as
proposed by [Liu et al., 2008]; which is the topic of Chapter 6.

1More precisely our degrees of freedom are Möbius transformations - angle-preserving mappings of the
plane to itself [Needham, 1999].
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Chapter 4

Discrete Natural Conformal
Parameterization (DNCP) with
geometric constraints

Among the numerous parameterization algorithms available, angle-preserving methods en-
joy the greatest popularity, as conformal mappings have surprisingly elegant and convenient
mathematical properties and most methods ultimately require the solution of a single linear
system. Among these Discrete Natural Conformal Parameterization - and the equivalent
Least Squares Conformal Mapping (LSCM) - are arguably the simplest, and have been
already implemented as part of popular modeling software, such as Blender3D, Autodesk
3ds Max or Maya and the computer geometry library CGAL [cga, ]. As such, it has been
our first choice to explore the possibilities for incorporating geometric constraints into mesh
parameterization.

In sharp contrast to the smooth case, triangle meshes of disc topology cannot be confor-
mally mapped to the plane in general. The reason for this is obvious: even a single triangle
fan can have nonzero angle defect, i.e. curvature, and as such it cannot be flattened in
an angle-preserving way. What we can hope to achieve during parameterization then is
conformality in some least-squares sense.

4.1 General algorithm

Recalling what we have discussed earlier in Chapter 1, a conformal mapping minimizes
Dirichlet’s energy ED:

minimize
for u,v∈RNV

∑
T∈F AT (‖∇u‖2 + ‖∇v‖2)

As our mapping cannot be expected to be fully conformal, we shall refer to the fact that
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Dirichlet’s energy is bounded from below by the area of the image, and this lower bound
is attained precisely for a conformal mapping:

1

4
(‖∇u‖2 + ‖∇v‖2) ≥ 1

2
(‖∇u‖ ‖∇v‖) ≥ 1

2
(∇u×∇v) = A

Thus it is natural to consider the difference between Dirichlet’s energy and the Area func-
tional A as a measure of conformality, called the conformal energy EC :

EC = ED −A.

We have shown earlier that on a mesh Dirichlet’s energy is a quadratic form in the vertex
positions with a cotangent Laplacian as its matrix, while the area can be calculated as:

A =
∑
eij∈E

uivj − ujvi.

One can observe that for edges on the interior, the contributions of neighboring faces cancel
each other out, leaving those corresponding to boundary edges the only nonzero entries in
the matrix.

Unlike the cotangent Laplacian, this quadratic form is not symmetric, with which we deal in
the standard way: A′ = A+AT

2 . The difference of the Laplacian LD and the area functional
A is a symmetric, positive-definite form, denoted by LC , with the following entries:

(LC)ij =



−(cot(θij) + cot(θji)) i 6= j; i, j < NV or i, j ≥ NV∑
k∈Ni

(cot(θik) + cot(θki)) i = j; i, j < NV or i, j ≥ NV

1 i < NV ; j ≥ NV ; epi,pj ∈ ∂M
−1 i ≥ NV ; j < NV ; epi,pj ∈ ∂M

After setting its derivative to zero, we can minimize this energy by solving the resulting
homogeneous linear system. Note that the area functional establishes a coupling between
the u and v coordinates, so the system is actually of size 2V ×2V . It can be shown that LC
has rank 2V − 4 [Lévy et al., 2002], which is also obvious from the context: the flattened
mesh is defined up to its angles, and has four degrees of freedom: position in the plane,
orientation and rotation. So, two vertices have to be fixed to make the system full rank.

Unfortunately, picking the vertices to be fixed is not as trivial a matter as it might ap-
pear at first: the resulting parameterization depends in a nontrivial way on this choice.
The most natural candidates are the pair of vertices furthest apart on the mesh. For the
computation of geodesic distances we have implemented the recently published Geodesics
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In Heat method [Crane et al., 2013b], which, by utilizing a heat diffusion analogy only
requires the factorization of two (cotangent) Laplacian matrices for the entire mesh, after
that the distance field from any subset of vertices can be computed by back-substitution,
which has negligible cost relative to the factorization (assuming that we solve the systems
with sparse direct methods).

An alternative is Spectral Conformal Parameterization (SCP) [Mullen et al., 2008], which
distributes the constraint over the entire boundary - without fixing a single vertex - by
solving a (generalized) smallest eigenvalue problem with the matrix LC . As we have dis-
cussed in Chapter 2, adding constraints to eigenvalue problems is highly nontrivial, so we
did not pursue this avenue as of yet.

We do implement, however, the area weighting scheme proposed in [Mullen et al., 2008], i.e.
we divide each cotangent weight and area term by the area of the corresponding triangle.
This is known to lead to smaller area distortion and more natural behavior for meshes with
inhomogeneous sampling.

The equivalent1 LSCM method [Lévy et al., 2002] provides an alternative interpretation
of the conformal energy as the least squares error of the Cauchy-Riemann equations:

EC =
∑
T∈F

∥∥∥∥∥∇v(T )−
[

0 1

−1 0

]
∇u(T )

∥∥∥∥∥
2

.

4.2 Geometric constraints

As we are minimizing a symmetric, positive definite quadratic form of the vertex positions,
we can easily impose linear constraints on the problem:

minimize
for u,v∈RNV

[
uT vT

]
LC

[
u

v

]

subject to C

[
u

v

]
= d

Problems like this are readily solved by the method of Lagrange multipliers, i.e. by forming
the Lagrangian dual function and setting its gradient w.r.t. to the original variables to zero,
which together with the original constraints forms a square, symmetric, yet indefinite linear
system [Boyd and Vandenberghe, 2004]:

[
LC CT

C 0

] u

v

ν

 =

 bu

bv

d

 ,
1The oft-cited original equivalence proof of [Cohen-Steiner and Desbrun, 2002] is incorrect, as pointed

out on the website of the author of LSCM. We note that in his comments, the author falsely claims that
the DNCP matrix is not symmetric.
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where ν is the vector of Lagrange multipliers, and bu, bv are the boundary conditions for
the u, and v coordinates.

Fortunately, most geometric constraints can be expressed as linear equations in the posi-
tions:

• When we require that two edges (whether they share vertex in the mesh or not) shall
make an angle in the parameterization, this is equivalent to demanding that one edge
is the scaled and rotated version of the other. The scaling can be arbitrary but the
most natural choice is the ratio of the edge lengths, which results in curve similar to
their original counterparts on the 3D mesh. Quantitatively this can be expressed as:

ul − uk =
|ekl|
|eij |

(cos(ϕ)(uj − ui)− sin(ϕ)(vj − vi))

vl − vk =
|ekl|
|eij |

(sin(ϕ)(uj − ui) + cos(ϕ)(vj − vi))

• In many practical cases DNCP computes parameterizations that have very small
angle distortion, but it is effectively a least-squares method, i.e. it favors nonzero but
negligible-after-squared errors over exactly zero ones. So it can happen, especially
with relatively coarse, highly curved meshes, that developable regions get distorted
to mitigate the distortion of other parts of the mesh. In optimization such problems
are traditionally handled via weighting or sparsity-inducing methods such as `1-norm
minimization, but in our case it can be avoided completely, by requiring that certain
regions get mapped in an exactly conformal way, or in other words by a similarity.
Recall that a conformal mapping of a triangle satisfies the Cauchy-Riemann equation,
i.e. the gradient of the v-coordinate function equals the gradient of the u-coordinate
rotated by 90 degrees:

∇v =

[
0 −1

1 0

]
∇u

Using the expression of the parameterization gradients presented earlier, this can be
written as:

(Yj−Yk)vi+(Yk−Yi)vj +(Yi−Yj)vk− (Xj−Xk)ui− (Xk−Xi)uj− (Xi−Xj)uk = 0

(Xk−Xj)vi+(Xi−Xk)vj +(Xj−Xi)vk− (Yj−Yk)ui− (Yk−Yi)uj− (Yi−Yj)uk = 0

4.3 Results

We have found that constraints involving edges on the interior can be enforced without
much difficulty, see Figure 4.1 for an example with edges constrained to straight lines.
We have run into problems however, when constraining boundary edges: the algorithm
can occasionally work if the entire boundary curve is constrained, but if e.g. we want to
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preserve only a certain part of it, the parameterization often degenerates. We conjecture
that this is due to the employed boundary conditions. We have experimented with several
modifications to the boundary conditions, but have not managed to find a universal solution
to the problem. Thus, although we plan on investigating this topic further in the future,
for now we conclude that this method is only suitable for the enforcement of constraints in
the interior of the mesh. The method is capable constraining developable regions to keep
their shape up to similarity, but due to the very low angular distortion of the method, the
results are visually indistinguishable from the unconstrained ones.

(a) Model with constraints (b) Constrained DNCP parameterization

Figure 4.1: Results for Maxface model.
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Chapter 5

LinABF with Geometric Constraints

5.1 General algorithm

ABF considers angle-preservation as a direct optimization problem
[Sheffer and de Sturler, 2001]. That is, if α∗i are the original angles and αi are the
angles of the flattened mesh, conformality is equivalent to the problem:

minimize
for α∗i , i=1,...,3T

∑3T
i=1 (α∗i − αi)2

As most meshes are non-developable, i.e. have non-zero curvature and thus angular defect,
we first scale the original angles to add up to 2π around each interior vertex:

α∗i = 2π
αi∑
(j) αj

Unfortunately, this will not result in a valid planar triangulation, thus additional con-
straints must be imposed on the problem:

• Around each interior vertex the angles add up to 2π.

• In each triangle, the angles add up to π

These are linear constraints on the optimization variables, i.e. we shall minimize a quadratic
function with equality constraints, which can be easily done by solving a single linear
system. Unfortunately, we must also ensure the consistency of the edge lengths, to avoid
situations like the one on the left side of Figure 5.1. This can be done by prescribing the
equality of the first and the last edge as we traverse the faces adjacent to an inner vertex.
It follows from basic trigonometry, that this is equivalent to the following non-linear, non-
convex constraint for each interior vertex:
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Figure 5.1: Notations for Angle-Based Flattening. Taken from
[Zayer et al., 2007].

∏
i∈Ti

sin(βi)

sin(γi)
= 1

With this constraint, our task becomes a non-convex optimization problem, which can
potentially have multiple local minima, and thus might require computationally expensive
iterative methods to solve. One could use algebraic manipulations or decimation to reduce
the computational cost of iterations [Sheffer et al., 2005], but somewhat surprisingly, a sim-
ple linearization of the most difficult constraint leads to a drastic decrease in the required
computational effort, with practically negligible impact on accuracy [Zayer et al., 2007].

First, reformulate the problem and the constraints in terms of the (relative) estimation
error eα = α∗ − α and take the logarithm of the last constraint:

minimize
for e1,...,e3T

∑3T
i=1

e2i
α∗i

2

subject to
∑N

i=1 ei = 2π −∑N
i=1 αi, ∀p ∈ V

eα + eβ + eγ = π − (α+ β + γ), ∀T ∈ F∑N
i=1 (log(sin(βi + eβi))− log(sin(γi + eγi))) = 0,∀p ∈ V

Finally, take the first-order Taylor-series approximation of the terms, to arrive at an ex-
pression, that is linear in the unknowns:

N∑
i=1

(cot(βi)eβi − cot(γi)eγi) =

N∑
i=1

(log(sin(γi))− (log(sin(βi))

In conclusion we have to minimize a quadratic function, subjected to linear equality con-
straints, which could be readily solved by the method of Lagrange multipliers. To simplify
the process even further, one could make yet another change of variables: ri = ei

αi
, which

transforms the problem into finding the least-norm solution of an underdetermined linear
system:
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minimize
for r1,...,r3T

‖r‖22
subject to A diag(α) = b

This is a standard problem in optimization theory, with a closed-form solution
[Boyd and Vandenberghe, 2004]:

r∗ = CT(CCT)−1b

where C = A diag(α).

5.1.1 Constructing the mesh from the angles

Having the optimal angles at our disposal, we can construct the planar triangulation by any
means suitable. One could, following the original algorithm on ABF, use a trivial greedy
algorithm, reconstructing triangles one-by-one, but this method is numerically unstable for
larger data sizes. A much more robust alternative - first proposed in [Sheffer et al., 2005] -
is to solve a DNCP system (with the matrix entries computed using the flattened angles)
for the positions.

As mentioned in Chapter 4, this method requires us to fix two points on the mesh, to set
the orientation and scale of the parameterization. As, at this point our mesh is a planar
triangulation, the choice shall have no effect on the parameterization outcome.

5.2 Geometric constraints

As we optimize directly for the angles, and our equations form an underdetermined system
any geometric constraint that can be defined in such terms can be enforced by modifying
existing equations or adding new ones:

• If two edges, connected by a common vertex, are required to make an angle, for
interior vertices we split the corresponding equation to two parts, requiring a subset
of angles to add up to the required amount of one side and 2π minus the required
amount the other side. For boundary edges we simply add a new equation in a similar
vein.

• If two edges are required to make an angle but they are not adjacent, we build a path
out of triangles between two adjacent faces and add a new equation to the system,
requiring that the sum of the corresponding (signed) angles add up to the required
amount. See Figure 5.2
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• If a triangle is to keep its shape, we simply remove its angles from the optimization
problem. Vertices on the boundary of the constrained regions require special care:
there the rescaling of at the beginning is done only using the unconstrained angles.

α0

α1

α2

α3

ϕ
α4 α5

Figure 5.2: Notations for constraints involving two separate edges in ABF.

Note that we have roughly 4NV constraints for 6NV unknowns by default, which means
that we can add as much as 2NV (non-contradictory) additional constraints to the problem
before it becomes overdetermined.

5.3 Results

Some results with the use of this algorithm can be seen in Figure 5.3 and Figure 5.4.
An important property of conformal methods can be observed, as it might appear that
the algorithm has failed to preserve the exact shape of the curve, but a closer inspection
reveals that while the angles have been preserved, the length of the edges are different. It
is known, for example, that an N -sided polygon has N − 4 degrees of freedom, in addition
to the N we can constraint via the angles. As the method based on DNCP is incapable
of constraining boundary curves, we conclude that the angle-preserving methods we have
implemented have limited capabilities to preserve the shape of a planar curve. However,
ABF can handle line constraints on both the boundary and the interior (results omitted
due to spatial limitations). Similarly to DNCP, the method has very low angular distortion
by default, thus constraining developable regions to retain their shape up to similarity has
a mostly negligible effect.
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(a) Model with constraints (b) Constrained ABF parameterization

Figure 5.3: Results for Dolphin model. Note the distortion of the boundary.

(a) Model with constraints (b) Constrained ABF parameterization

Figure 5.4: Results for Giraffe model.
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Chapter 6

ARAP Parameterization with
Geometric Constraints

Angle-preserving parameterization methods are very attractive and widely used, due to
their elegant mathematical properties and low computational cost. However area or length
preservation can be important in many potential applications, and from the viewpoint of
enforcing geometric constraints, it can be said that conformal methods give us little to
no control over the metric properties of the parameterization. For example, with LSCM
or ABF we can easily preserve the shape of two identical regions of the mesh, but we get
no say regarding their size in the parameterization. This limitation motivates our search
for a method which optimizes directly fro the metrical properties of the parameterization
(i.e. aims at maximal isometry in some sense) and allows for the incorporation of a wider
range of geometric constraints. As we have already discussed in, there are many isometric
parameterization methods available, but most of them require computationally expensive
nonlinear optimization, and can be applied to data sizes typical in current practice only
by using sophisticated ’multigrid’ linear solvers. There is one known exception: the mini-
mization of the As-Rigid-As-Possible energy through local-global iterations.

6.1 The ARAP energy

Restricted to a single triangle a paramterization acts as an affine mapping, the linear
part of which is the Jacobian matrix J , known to be constant within each triangle and
represented in a local coordinate system by a two-by-two matrix as see in Chapter. The
As-Rigid-As-Possible (ARAP) energy measures the ’distance’ (in Frobenius norm) between
the Jacobian and the closest rigid transformation (rotation):

EARAP (T ) = minR∈SO(2)(‖J −R‖F)
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To compute the ’most isometric’ mapping of the mesh, we can minimize the area-weighted
sum of the ARAP energy in each face:

minimize
for JT ,T∈F

∑
T∈F AT ‖JT −RT ‖F

subject to RT ∈ SO(2)

As the closest rotations are not known a priori, but depend on the Js in a nontrivial
way, this is a nonlinear energy. Its gradient and Hessian has a closed form expression1,
and thus Newton’s method can be applied to its minimization [Chao et al., 2010], but
instead we consider a simpler, computationally less expensive alternating optimization
algorithm, known in the literature as the Local-Global method [Sorkine and Alexa, 2007],
[Liu et al., 2008].

The key observation of the Local-Global algorithm is that, if we fix either one of the terms
in the per-triangle energy, we get a very simple problem:

• Given a mapping and thus its Jacobian, we want to find the rotation matrix clos-
est to it. This can be computed via Singular Value Decomposition (SVD) or Polar
Decomposition of a 2× 2 matrix. This can be done independently for each triangle,
thus this is called the local phase.

• Given a set of rotations we want to compute a mapping, represented by its Jacobians,
that fits them in a Least-Squares manner. This requires the solution of a sparse linear
system for the vertex positions, so it is called the global phase.

It is easy to see that neither of these steps can increase the energy, so by alternating
between them, we can find a local minimum.

The ARAP energy was first considered for 2D and 3D mesh defor-
mation [Alexa et al., 2000], [Igarashi et al., 2005], [Igarashi et al., 2009],
[Sorkine and Alexa, 2007]. Its application to parameterization is due to [Liu et al., 2008].
Although the local-global algorithm could appear an ad-hoc procedure, it was noted
in [Bouaziz et al., 2012] that it belongs to a well-known class of large-scale nonlinear
optimization methods known as proximal algorithms [Parikh and Boyd, 2013].

6.1.1 Local phase

Finding the optimal rotation aligning two corresponding sets of points is known as the
Orthogonal Procrustes Problem [Gower and Dijksterhuis, 2004], which has a solution using
the SVD of the covariance matrix of the positions, or in our case, the Jacobian.

1They are very similar to the cotangent Laplacian.
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Indeed, given the SVD of the Jacobian matrix of a triangle:

JT = UTΣTV
T
T

The optimal rotation is given as:
R∗T = VTU

T
T

For 2× 2 matrices, the situation is even simpler, as there is a closed form expression avail-
able. First, instead of the optimal rotation we compute the optimal similarity transform:

minimize
for ST ,T∈F

∑
T∈F AT ‖JT − ST ‖F

subject to ST =

[
aT −bT
bT aT

]

This is a diagonal quadratic form and with J =

[
a b

c d

]
its minimization results in the

following:

ST =

[
a+d
2

c−b
2

b−c
2

a+d
2

]

For a rotation it is required, that det(R) = 1. At this point this can be achieved by simply
dividing S, with its determinant:

RT =
ST

det(ST )

A popular alternative is to compute the Polar Decomposition of J : J = Y R, where
R is by definition the rotation closest to J in Frobenius norm. As it was observed by
[Chao et al., 2010], this allows for a mechanical interpretation of the ARAP energy: in the
context of finite strain theory J is called the deformation gradient, while the term Y − I,
where I is the identity matrix is known as the Biot strain [Biot, 1938].

6.1.2 Global phase

Given a set of rotations our task is to find a parameterization, the Jacobians of which fit the
rotations (in a least-squares sense). It can be shown that this is equivalent to minimizing
a quadratic form with the cotangent Laplacian, which is in turn requires the solution of a
pair of sparse linear systems for the positions [Liu et al., 2008]:

Lu = bu

Lv = bv
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Lij =

−(cot(θij) + cot(θji)) i 6= j∑
k∈Ni

(cot(θik) + cot(θki)) i = j

bu,i =
∑
j∈Ni

[
cot(θij)(aT (ij)(Xi −Xj) + bT (ij)(Yi − Yj)) + cot(θji)(aT (ji)(Xi −Xj) + bT (ji)(Yi − Yj))

]
bv,i =

∑
j∈Ni

[
cot(θij)(aT (ij)(Yi − Yj)− bT (ij)(Xi −Xj)) + cot(θji)(aT (ji)(Yi − Yj)− bT (ji)(Xi −Xj))

]
,

where aT (ij), bT (ij), are the elements of the rotation matrix RT (ij) =

[
a −b
b a

]
for triangle

T (ij) of eij , while Xi, Yi are local coordinates of pi, as per Chapter 1.

These are actually Poisson’s equations ∆f = ∇ · g with the discrete divergences of the
gradient vector fields on the right hand side.

The coefficient matrix remains constant throughout the iterations, which means that we
can factor it once and only do forward and back-in each iteration.

6.1.3 Initialization with rotation field

Up until now, we have ignored the problem of initializing the local-global iterations. The
most common approach is to take an arbitrary mapping as our starting point and proceed
with a local step. This approach has its merits for many potential applications, and the
choice of the concrete mapping has surprisingly small effect on the speed of convergence
[Liu et al., 2008], but can be considered ill-suited if we would like to incorporate geometric
constraints. Thus, although some specific problems involving geometric constraints might
benefit from this ’global’ initialization, we have instead decided to fix the rotations as the
first step of our algorithm. This approach has been first considered by Myles and Zorin
[Myles and Zorin, 2012] in the context of quad mesh generation on closed meshes and it is
inspired by state-of-the-art methods for vector field generation.

The main idea stems from the observation that our rotations need not define a valid
parameterization of the mesh, they should only be not too far from one. Let us see how
one would approach constructing such a rotation field: first, fix an arbitrary triangle of
the mesh on the plane; then, proceed to recursively flatten its neighbors isometrically, by
traversing a spanning tree of faces (or equivalently, dual edges). It is easy to see that this
procedure will eventually produce a degenerate result; as on meshes Gaussian curvature at
a vertex equals the angular defect, i.e. the amount by which the triangle fan around the
vertex will fail to close when flattened isometrically. To get a more fitting set of rotations
then, we shall apply some amount of additional rotation ωij when traversing a dual edge
eij . The question is: how much additional rotation shall be applied along each dual edge?
A natural requirement is that they should make each triangle fan approximately closed,
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Figure 6.1: Interpretation of the ARAP initialization algorithm.

i.e. they should counteract the effect of Gaussian curvature at each of the vertices, see
Figure 6.1.

So, for each interior vertex pi we would like to satisfy the following constraint:∑
eij∈E

ωij = 2π −
∑

αi.

These equations form a sparse, underdetermined linear system, which is guaranteed to have
full row rank [Crane et al., 2010] and which we solve in a least-norm manner, to get a set
of rotations closest to the ones from naive isometric flattening:

minimize
for ωij , ij∈E

‖ω‖22
subject to dT

0 ω = K

where d0 is the vertex-edge adjacency matrix (the exterior derivative for 0-forms, see
[de Goes et al., 2013]), ω is the vector of unknown rotation values for each (dual) edge,
and K is the vector of Gaussian curvatures (for the interior vertices).

As before, we solve this problem in the standard way:

ω∗ = −dT
0 (d0d

T
0 )−1K.

Given these rotation increments, we can construct the rotation set as before by placing
a triangle on the plane and traversing a spanning tree of faces, now applying the right
amount rotation between each adjacent face.

Although this argumentation might appear ad-hoc, it can be put on firm mathematical
grounds. The columns of the rotation matrices are pairs of orthogonal vectors, defined in
the local coordinate system of the triangles. Our task then can be interpreted as computing
a maximally smooth discrete vector field on the surface, which is an active field of research
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the geometry processing. Indeed, the algorithm we have described has appeared several
times in the literature on vector field design, in different forms [Kälberer et al., 2007],
[Ray et al., 2008], [Bommes et al., 2009], [Crane et al., 2010]. Our approach is practically
equivalent to that described in [Crane et al., 2010].

6.2 Geometric constraints

As we employ a multi-phase iterative process, constraints must be enforced during each
phase and between iterations. We note beforehand that the shape and alignment of the
constrained regions will become fixed during the initialization phase, in the global and
local phases we can only control their scale, or can decide to ignore them.

6.2.1 Initialization Phase

As in the case of ABF, we have an underdetermined linear system, to which we can add
any linear equations or split one of the existing ones.

• If two adjacent edges are required to make a prescribed angle, for interior vertices
we split the corresponding equation, requiring that the rotations for the dual edges
between the two constrained ones result in the given alignment, while assigning con-
stant zero value to the rotations over the constrained edges. For boundary vertices we
simply add an additional constraint. We have observed that for multiply connected
meshes, constraints involving inner boundary curves might conflict with the ones
prescribing ’zero-curvature’. Thus, we omit the default constraint for inner loops in
the presence of a user-defined one.

• When two separate edges are required to make an angle, we build a dual path (by
simple breadth-first search) between them and constrain the sum of rotations accord-
ingly. More precisely, refer to Figure 6.3 assume that we have two (oriented) edges e1
and e2 constrained to make an angle ϕ, belonging to faces f1 and f2, which have, as
their basis vectors the (oriented) edges b1 and b2. If α and β are the angles between
e1 and b1 and e2 and b2 respectively, our constraint can be expressed as β − α′ = ϕ,
where α′ is the angle between b2 and e1. Along the chosen dual path b2 is rotated
with respect to b1 by the angles dictated by the isometric flattening, denoted by ω
and by the additional unknown rotations we apply along the traversed dual edges;
thus, as vectors transform with the inverse of coordinate transforms, these rotations
have to be subtracted from α, so in summary: α′ = α−∑ω and after separating the
constants and the unknowns, our constraint becomes the following:∑

(dual path)

ωadd. = ϕ− β + α−
∑

(dual path)

ωisom..
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• For the preservation of planar regions, when an edge belongs to two constrained
faces, we consider the corresponding rotation as constant zero and simply remove
them from the optimization problem. It might be tempting to do the same for the
edges on the boundary of the constrained region, but we have run into numerical
stability problems doing so.

ω1 = 0

ω2

ω3

ω5

ω6

ω4 = 0

ϕ

Figure 6.2: Notations for constraints involving two adjacent edges in ARAP.
On the right we illustrate the effect of the constraint, if the pre-
scribed angle is ϕ = 0.

ϕ

ω0

ω1

ω2

ω3

ω4

b2

b1

β

α

β − α
′

e1

e2

α
′

Figure 6.3: Notations for constraints involving two separate edges in ARAP.

6.2.2 Global Phase

As for LSCM in Chapter, we enforce linear constraints by the use of Lagrange multipliers
so the optimization problem for the u (resp. v) coordinates

minimize
for u∈RNV

uTLDu− bTuu

subject to C
[
u
]

= du

is solved via the symmetric, indefinite linear system
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[
LD CT

C 0

][
u

ν

]
=

[
bu

du

]
,

For edge-based constraints, we simply require that the given edges are mapped to the plane
exactly with the corresponding rotation matrices The same constraints could, in principle
be used on the edges of preserved regions, but we have found that it is numerically more
stable to constrain the Jacobian of each triangle to be equal to the corresponding rotation.

Note that these constraints enforce isometry for said edges or triangles. This is one of the
major advantages the ARAP-based algorithm has over the previous ones: we have control
over the absolute scale of the features in the parameterization, while for conformal methods
the most we could influence is the relative size of certain, coupled features. Thus, the user
has the opportunity to prescribe arbitrary scaling factors for each feature independently.
This approach is not without its drawbacks however: examine the task shown in Figure 6.5.
One part of the boundary (colored cyan) is to be preserved exactly in the parameterization,
while another one (colored green) is to be mapped to a straight line. It is obvious, that it is
impossible to satisfy both of these constraints by mapping the boundary edges isometrically.
Although in this case we could come up with some tailor-made heuristic to find appropriate
scaling factors, the general solution is to allow constraints that enforce geometric properties
only up to similarity as done in the case of DNCP. We could still run into problems, if we
also prescribe angles between features, see our discussion in Chapter 8.

6.2.3 Local Phase

To preserve constraints enforced in a preceding phase, we simply ignore those triangles
that are part of a preserved region or contain a bounded edge.

6.3 Preventing overlaps

As a cotangent Laplacian is used to fit a valid parameterization to the rotations, the
resulting map might not be one-to-one. This could happen for a single triangle, or what
is more common with geometric constraints, an entire region could ’spill over’ a highly
curved, concave boundary. We have already discussed methods for the handling of such
artifacts in , for our experiments we have implemented a fairly simple heuristic, with great
success. If, at the end of a global iteration, a triangle reverses its orientation, we modify the
Laplacian matrix by adding a positive weight to the entries that correspond to said triangle,
and repeat the global phase with the updated matrix. We iterate until there are no flipped
triangles, or a threshold on the number of iterations has been reached. Although this is
a completely ad-hoc procedure, without any theoretical guarantees, it works remarkably
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well in practice, and with its help, we have managed to eradicate overlaps completely from
all of our examples.

We have also experimented with the more refined weighting scheme in
[Bommes et al., 2009], called local stiffening. We have found that this variant might
be well-suited for the prevention of local, isolated overlaps; but it fails to converge in a
reasonable time for the more expansive ’spills’ that we have encountered.

6.4 Results

Dolphin model We require one part of the boundary (teal) to preserve its shape. Com-
pared to ABF, with ARAP we can preserve the shape exactly, due to the fact that we
can keep the length of the edges in addition to the angles. The results with and without
constraints are compared in Figure 6.4.

Ford model We require one part of the boundary (teal) to preserve its shape, while the
other part (green) to map to a straight line. As we cannot satisfy both of these requirements
with isometric boundaries, we preserve the shape of the teal part only up to similarity. The
results with and without constraints are compared in Figure 6.5.

Giraffe model We require one part of the boundary (teal) to preserve its shape, while
the other part (purple) to map to a circle. The results with and without constraints are
compared in Figure 6.6.

Maxface model We require parts of the boundary (green) to map straight lines, while
also constraining them to be perpendicular. The results with and without constraints are
compared in Figure 6.7.

Darmstadt model We require selected regions (green) to keep their shape. The results
with and without constraints are compared in Figure 6.8.
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(a) Model with constraints

(b) Unconstrained ARAP parameteri-
zation (c) Constrained ARAP parameterization

Figure 6.4: Results for Dolphin model.
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(a) Model with constraints

(b) Unconstrained ARAP parameterization (c) Constrained ARAP parameterization

Figure 6.5: Results for Ford model.
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(a) Model with constraints

(b) Unconstrained ARAP parameterization
(c) Constrained ARAP parameteriza-

tion

Figure 6.6: Results for Giraffe model.
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(a) Model with constraints

(b) Unconstrained ARAP parameterization (c) Constrained ARAP parameterization

Figure 6.7: Results for Maxface model.
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(a) Model with constraints

(b) Unconstrained ARAP parameterization (c) Constrained ARAP parameterization

Figure 6.8: Results for darmstadt model.
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Chapter 7

Enforcing constraints by iterative
deformation of a parameterization

In the previous chapters we have incorporated geometric constraints into popular param-
eterization algorithms. In practice however, a parameterization might be already avail-
able, or the user would like to discover the different possibilities and combinations in an
interactive way. This motivates our method for the iteratively modification of a planar
triangulation according to given geometric constraints.

The basic outline of our approach is the following: we first take the constrained vertices
and gradually modify their positions to satisfy the prescribed geometric criterion. Then,
we deform the rest of the mesh accordingly.

7.1 Enforcing geometric constraints

Assume that the user has selected a set of edges or triangles and wants to enforce one of
the constraints we have discussed in. If the desired shape is already present on the original
mesh (i.e. we want to preserve a curve or a developable region), we simply fit that shape to
the vertices in the parameterization, by solving the Orthogonal Procrustes Problem then,
if we want to make the deformation more gradual, we can linearly interpolate between the
old and the new positions for the vertices for intermediate steps. However, if the shape
that we would like to achieve is not necessarily present, e.g when we want to deform a set
of edges to a straight line, or a circle; then we choose a more refined approach involving a
curvature flow.

A curvature flow is a dynamical process that gradually decreases the curvature of a curve
(or surface). For an open curve this eventually results in a straight line, while a closed
curve converges to a circle (assuming it makes only one net turn around any point within
its interior). More formally, we would like to minimize the so-called Willmore energy :
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EW =

∫
κ2ds

where κ is the curvature of the curve.

Similarly to how Gaussian curvature is discretized on meshes; for discrete curves, the
curvature is the ’angle defect’ at a vertex divided the Area of the corresponding dual
element (in this case the dual of a vertex is the union of the half of the two neighbouring
edges, and the dual of a vertex is its midpoint):

κi =
ϕi

li+li+1

2

The standard way to construct a discrete curvature flow on curves is to express κ as a
function of vertex positions and apply gradient descent to EW , an analogue of the mean
curvature flow for surfaces. This method however is quite complex and very unstable: it
is often the case that one must progress in extremely small steps to keep the curve from
developing ’kinks’. Also, the length of the edges could change by a relatively large amount,
due to numerical errors.

We instead adopt a recently published method [Crane et al., 2013a] (extending the earlier
work in [Crane et al., 2011]), which allows us to take almost arbitrary large steps while
remaining stable and ensures the preservation of edge lengths by construction, i.e it is an
isometric curve flow. The reader shall refer to [Crane et al., 2013a] for details. We note
that this algorithm can be generalized to surfaces to construct an angle-preserving, highly
stable Willmore flow.

As this method works directly with curvature, it has to reconstruct the curve in some
arbitrary reference position in the plane. To align it with the original points in the param-
eterization, we solve the Orthogonal Procrustes Problem [Gower and Dijksterhuis, 2004].
Assume we have vertex positions p0, . . . , pL−1 and p′0, . . . , p

′
L−1 for the old and new posi-

tions respectively. We first remove their mean, which, as our curve can be concave, is not
computed simply as the average of the vertices but by as follows:

Then, we compute the covariance matrix C:

C =
i−1∑
i=0

(p′ −m′)(p−m)T.

Using the singular value decomposition C = UΣV T, we can compute the optimal rotation
aligning the two sets of points as:

R = UV T

We also use this procedure for aligning other features.
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7.2 Deforming the parameterization

Given the new positions for some set of vertices, we want to deform the two-dimensional
mesh that is our parameterization accordingly. Mesh deformation is a vast topic, we only
survey a few, relatively straightforward methods here. A common approach is linear blend-
ing, which includes the well-known bone and cage-based deformation methods available in
most common modeling and animation software. The basic idea is to compute a ’weighting
field’ around each deformable object and propagate the rigid transformations applied to
them, using these weights. This approach is extremely efficient, but automatically com-
puting the weights is a difficult task and is the topic of ongoing research, especially in the
case of point-based handles.

Instead, we use a slight modification of the ARAP method presented in Chapter 6. Note
that this is the context in which this algorithm was first proposed [Alexa et al., 2000],
[Igarashi et al., 2005].

First, we initialize the rotations (to identity) and the edge vectors, based on the parame-
terization. Then, we alternate between the global and local phases, just like in Chapter 6.
The only difference is that we treat the constrained vertices as constants and remove them
from the linear system of the global phase. If there are previous constraints present in the
parameterization, we can ensure that they remain satisfied in exactly the same way as in
Chapter 6.

7.3 Results

As we build upon the ARAP algorithm, the results are practically identical to those with
line or circle constraints in Chapter 6. Thus, we omit figures to conform to spatial limita-
tions.
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Chapter 8

Implementation and Performance

8.1 User Interface and data structures

For the C++ implementation of our algorithms, we have modified the Qt-based geometric
framework developed by Péter Salvi for educational purposes. This framework uses the
OpenMesh library [Botsch et al., 2002] for the handling of triangle meshes. OpenMesh
implements the halfedge data structure, which assigns to each edge a pair of oriented
halfedges, with opposite direction. This data structure allows us to easily iterate over all
vertices, edges or faces connected to a vertex, etc. which is very convenient for geometry
processing algorithms. On the other hand, it introduces a noticeable amount of overhead,
so if performance is critical, one might use a more efficient array-based approach.

The features of OpenMesh have allowed for relatively straightforward implementation of
our algorithms. The only exception is LinABF (Chapter 5), where we need to maintain
a database of angles in the mesh, which we have done with the use of the hash table
implementation of the STL (unorderedmap).

Our user interface allows the user to add and manage any number of geometric constraints,
before and after the parameterization. We also let the user move a set of handle vertices,
updating the parameterization in real-time using the procedure in Chapter 6. This can be
used to manually resolve global overlaps (which are much harder to explicitly prevent than
local ones) in the parameterization.

8.2 Numerics

All of the presented algorithms depend on the solution of systems of linear equations that
are very large (typical sizes are around several hundred thousand), but are also extremely
sparse (e.g. a Laplacian matrix has 7-8 nonzeros per row on average). A long-held belief
in the scientific community is that the solution of such systems requires iterative methods.
This might remain true for extremely large problems (size of 10 million and above), but
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for data sizes common in geometry processing it has been known for some time that
sparse direct methods [Davis, 2006], such as sparse Cholesky or LU factorization tend
to be considerably more efficient than iterative methods [Botsch et al., 2005]. Besides the
fact that they tend to outperform Preconditioned Conjugate Gradient and its variants by a
great margin (as they scale linearly), sparse direct methods also have the advantage that if
we have to solve the same system with multiple right hand sides, or even with a coefficient
matrix with the same non-zero pattern, we can reuse the results of the factorization and
solve the system through simple forward and back-substitutions, with very small additional
cost. The main disadvantage of sparse direct methods is that they have a much higher
memory consumption compared to iterative methods (recall that the factor of a sparse
matrix can be arbitrarily dense) and that they are much more difficult to implement. The
first problem can be handled by reordering the rows and columns of the matrix which
can greatly reduce the size of the factors. Finding the optimal permutation is an NP-
hard problem, but one of the main reasons these methods are so successful in geometry
processing is that for common matrices such as the cotangent Laplacian there are very
efficient reordering heuristics available, such as Nested Dissection [George, 1973]. Compare
this to iterative methods, where the analogous problem of preconditioning is much more
complicated for such matrices [Krishnan et al., 2013].

For symmetric, positive-definite matrices such as the cotangent Laplacian, or the one we
have to invert in ABF or ARAP initialization, we use Cholesky factorization as imple-
mented in the open-source CHOLMOD library [Chen et al., 2008].

In LSCM and the global phase of ARAP we must solve so-called KKT systems with the
structure [

A CT

C 0

][
x

ν

]
=

[
b

d

]
.

Such matrices are symmetric, but indefinite, thus Cholesky solvers are not applicable1.
As we had problems with compiling and linking sparse LU or QR factorization libraries
under a Windows environment, we have instead chosen to ’export’ the ’backslash’ operator
of MATLAB to a C++ library, which automatically selects an appropriate sparse direct
solver for the system. This is a fairly efficient solution, but there are cases when it is
clearly suboptimal. For example when we employ the weighting procedure in Chapter 6
to avoid overlaps, the non-zero pattern of the matrix remains the same, but as we do not
use a Cholesky solver, we cannot reuse the symbolic factorization. There are many ways to
solve such systems more efficiently [Benzi et al., 2005] and we have experimented with the
following: notice, that if we use block Gaussian elimination, we get a block upper triangular
system

[
A CT

0 CA−1CT

][
x

ν

]
=

[
b

d− CA−1b

]
.

1CHOLMOD supports symmetric indefinite matrices, but not those with a KKT-structure.
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If the Cholesky factorization of A is given, the computation of CA−1CT requires only
forward and back-substitutions2. As A is some kind of cotangent Laplacian, and CA−1CT

is symmetric positive-definite - and also much smaller than A - we can reduce the solution of
KKT systems to two Cholesky factorizations, allowing us to reuse the symbolic factorization
of both matrices. This method has a drawback however: A−1CT can be too dense to fit in
the memory. In this case, we switch back to the MATLAB-based solver.

The 2-by-2 SVD factorizations are computed using the method presented here.

8.3 Performance

The main bottleneck of all of our algorithms is the solution of sparse linear systems; so,
as we employ highly efficient direct solvers for this task, we expect our algorithms to scale
linearly in the size of the problem. The modifications we have made to DNCP and LinABF
are relatively minor and detailed performance analysis of these algorithms can be found
in the literature. Our ARAP-based method is more novel, thus we have made runtime
measurements to evaluate the efficiency of our implementation. As we have observed in
Chapter 6, after the initialization phase and the first global step, additional local and
global iterations can be considered optional in most cases; thus, we have measured only
the time of a single initialization and global phase3. The results, seen in Figure 8.1, confirm
our earlier claims about linear scaling behavior.

Figure 8.1: Plot of runtime measurements for our ARAP algorithm.

2CHOLMOD supports sparse matrices on the right-hand side.
3Note that the local phase is trivially parallelizable, meaning that by utilizing a GPU its cost can be

made negligible, if necessary.
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8.4 A reverse engineering application: fitting trimmed surfaces

For last, we present a practical application of our algorithms in the field of reverse engi-
neering.

In reverse engineering our task is to reconstruct the precise CAD-model of a physical
object based solely on measurements. In the typical workflow, the object is first ’scanned’
into a point cloud, which is then used to generate a triangle mesh. This mesh is then
segmented into different parts, to which we can fit certain geometric primitives used in CAD
systems. Many man-made objects are composed from relatively simple primitives such as
planes, cylinders, etc., but an increasing number of engineered geometries contain free-form
surfaces, i.e. Beziér, B-Spline or NURBS patches. Besides the fact that these parametric
surfaces have many unknown degrees of freedom, the patches that are present on most
objects are trimmed, i.e. they have been cut out from a larger, unknown 4-sided parametric
surface, which makes their reconstruction particularly challenging. As these are parametric
surfaces, a crucial part of an fitting algorithm is finding a suitable parameterization for the
patch. We demonstrate that this task can be solved with relative ease, using the framework
we have developed.

We assume that the user (or some kind algorithm) has labeled parts of the boundary
that are assumed to belong to the four sides of the untrimmed surface. These parts of the
boundary are to be mapped to the sides of a rectangle, while the other parts are allowed
to move freely within this boundary. This can be achieved by prescribing the following set
of constraints:

• The labeled sets of edges of the boundary shall map to straight lines.

• Edges labeled be on the same side of the rectangle shall be parallel and mapped to
the same constant u or v coordinate.

• Edges belonging to adjacent sides of the rectangle shall be perpendicular.

Using our ARAP-based method, these constraints will not give the desired result however.
In many cases, the regions we consider have vastly different lengths on the mesh, which
means it is impossible to map them isometrically to a rectangle, as we attempt to do. Even
if we set the lines to be similar instead of isometric, the way we enforce the orthogonality
constraints in the global phase, will force them to keep their original length. However
we have explicit control over the relative and absolute length of the regions (by applying
scaling factors to the rotations in the global phase), which allows us to do the following:

• If two opposite sides of the rectangle are made up from a single region, we simply
rescale them to have the same length (the mean of their length on the mesh, for
example).
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• If two opposite sides are made up from several disconnected regions, we make an
estimate of their length using some heuristic, e.g. by taking the Euclidean distance
of the endpoints of adjacent regions along with a conservative safety factor.

An example with a surface generated with Geomagic Studio from actual measurements is
shown in Figure 8.2.
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(a) Model with constraints

(b) Unconstrained ARAP parameterization (c) Constrained ARAP parameterization

Figure 8.2: Results for 4sided model.
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Conclusions and Future Work

The enforcement of high-level geometric constraints is a novel research topic in the context
of mesh parameterization. After a survey of the relevant literature, we have reduced the
considered constraints to low-level relations involving positions and angles, and identified
three parameterization methods capable of incorporating such constraints: DNCP, ABF,
and ARAP. We have extended each of these algorithms to handle geometric constraints,
and evaluated their performance.

Based on our results, we have concluded that DNCP and ABF both have serious short-
comings regarding the enforcement of geometric constraints: the former is unable to handle
constraints on the mesh boundary, while the latter can only constrain angles, and thus leads
to incorrect results. Our ARAP-based algorithm, however, has been able to reliably handle
all of the constraints we have considered, and has been found to scale linearly, as expected.
Combining ARAP with a recently proposed algorithm for curvature flow, we have also
developed a method to iteratively modify an existing parameterization according to ge-
ometric constraints. Finally, we have successfully applied our approach to the practical
problem of parametric surface fitting.

There are many ways along which we plan to pursue this topic further in the future:

• Is it possible to make DNCP handle constraints on the boundary by using different
boundary conditions?

• Can we add geometric constraints to the eigenvector-based method of
[Mullen et al., 2008] in a practical way?

• We only consider constraints that lead to linear equations in the optimization vari-
ables. Can we enforce nonlinear constraints in an efficient way, as it is increasingly
common in mesh deformation research [Bouaziz et al., 2012], [Deng et al., 2013]?

• We prevent overlaps and similar parameterization artifacts by a brute-force heuristic.
Is there a more elegant and/or efficient solution? Can we embed our method into the
optimization framework of [Schüller et al., 2013]?

• The ARAP-based iterative deformation we employ is relatively expensive, especially
if we want to preserve previously existing constraints. We plan on investigating al-
ternative methods for the solution of KKT systems and linear blending deformation,
to achieve more interactive frame rates.
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