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1 Introduction

The analysis of queuing systems with generally distributed inter-arrival and/or
service time is difficult in many cases. In the absence of efficient methods
for performance analysis, simpler models are used that try to capture the
behavior of the original system. In practice different distributions are used
for approximation.

One such class of distributions are the phase type (PH) distributions.
These distributions have a nice Markovian stochastic interpretation and the
generator matrix of the overall Markov chain describing the behavior of the
queuing system has a special structure. Due to this special structure efficient
numerical methods, referred to as matrix geometric methods, are available
to determine the stationary and transient behavior of the approximating
system.

The computational complexity of these methods depend on the size of
the PH distributions. The goal of the approximation is to reach greater
accuracy without increasing the dimensions of the PH distributions too much.
From this perspective the class of PH distributions is too small. A possible
solution is to use a wider class of distributions for the fitting that can still
be analyzed with the same efficient numerical methods. Matrix exponential
(ME) distributions [1] satisfy these criteria.

ME distributions can be considered as a generalization of PH distribu-
tions since the generator of an ME distribution doesn’t have to meet the
restrictions of a PH distribution. This gives greater flexibility in the fitting
so a better fitting accuracy can be achieved without increasing the size of
the involved matrices. Furthermore, due to the same matrix exponential
form of the density function, the same efficient numerical methods are avail-
able to analyze queuing systems with ME distributions. This is why ME
distributions are gaining increasing attention in various application fields.

The drawback of the use of ME distributions is that it is difficult to decide
whether the result of a fitting algorithm determines a valid ME distribution
or not. In [2] a method is proposed based on the Laplace representation of
ME distributions and [4] introduces a time domain counterpart that checks
the non-negativity of the density function. However, even for order 3 ME
distributions (ME(3)) neither of them give explicit conditions for all the
cases.

The main aim if this paper is to show that for order 3 ME distributions
it is possible to check the non-negative property of the density function in an
explicit way in all possible cases. To this end an order reduction approach is
introduced with which all the cases can be handled in a similar fashion. We
obtain theorems that explicitly identify ME(3) distributions. These theorems
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were implemented in Mathematica, to help decide whether the result of a
fitting algorithm is a valid distribution. As an example, this implementation
is used to illustrate the difference of PH and ME fitting on the Weibull
distribution. Furthermore, we also study the effectiveness of the proposed
approach on higher order ME distributions.

Accordingly, the outline of the subsequent sections is the following:

• We define phase type (PH) and matrix exponential (ME) distributions
in Section 2. We discuss the advantages of using these distributions for
the approximation of general arrival and/or service times in queuing
systems. A matching procedure based on the moments of the general
distribution is discussed and we point out its main drawback. Namely,
we don’t know if the result is a valid density function or not.

• To deal with this problem Section 3 introduces a new general ap-
proach to decide the non-negativity of matrix exponential functions,
with which we will be able to handle all the different cases of ME(3)
distributions in the same manner.

• In Section 4 ME(3) distributions are studied in detail. With the order
reduction procedure of Section 3 we deduce necessary and sufficient
conditions for ME(3) membership. In all of the cases the conditions
can be explicitly checked without having to use any numerical methods.

• The efficiency of the approach is investigated in Section 5 on higher
order ME distributions. We will see that there are just a few cases
where the approach is able to produce further explicit conditions. The
reason why it fails in all other cases is pointed out as well.

• We devote Section 6 to present an example where the result of the
fitting is indeed better on the class of ME distributions than just re-
stricting to PH distributions.

2 Approximation of queuing systems

In this section matrix exponential (ME), phase type (PH) and a special class
of PH, acyclic phase type (APH) distributions are defined. After a brief dis-
cussion of their properties we turn our attention to Quasi-Birth-Death pro-
cesses. They form a general class of queuing systems that can be efficiently
analyzed by means of matrix geometric methods which we outline. We show
that these methods can be applied when the inter-arrival and/or service time
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has PH or ME distribution. We conclude the section by showing transforma-
tions between different representations of PH and ME distributions which is
key in order to review a moment matching algorithm.

2.1 PH and ME distributions

We begin with the formal definition of phase type (PH) distributions.

Definition 2.1. Let α and A be a 1 × n row vector and an n × n matrix
respectively. We say that a random variable X is phase type distributed,
denoted X ∼ PH(α,A), if its cumulative distribution function (CDF) is

F (t) = P (X < t) = 1 − αeAt11, t ≥ 0, (1)

where α and A satisfy the following conditions:

• αi ≥ 0, α · 11 = 1, where 11 = (1, 1, . . . , 1)T is the closing vector,

• Aii < 0, Aij ≥ 0 (i 6= j), A11 ≤ 0,

• A is non-singular, i.e. ∃A−1.

We refer to α as the initial probability vector and A as the generator.

The constraints for α and A give us a very natural stochastic interpre-
tation of the formal definition. Think of an exponential distribution with
parameter λ as a Markov chain with two states 1 and ∗. The distribution
gives us the time needed for the transition from 1 to the absorbing state ∗
with rate λ. Now let us have n different transient states {1, 2, . . . , n}. Then a
PH(α,A) distribution gives the distribution of the elapsed time of the tran-
sition from the transient states to the absorbing state ∗, assuming that the
process started from state i with probability αi and A gives the rates of tran-
sitions between the different transient states. This interpretation guarantees
that a vector matrix pair (α,A) satisfying the conditions in Definition 2.1
define a valid CDF. Illustration of the stochastic interpretation of a general
PH distribution of order two:

1

2

a12 a21 ∗

a1∗

a2∗

A =

(
a11 a12

a21 a22

)
, where

{
a11 = −(a12 + a1∗)

a22 = −(a21 + a2∗)

Now let us neglect these constraints and this stochastic interpretation.
Then (α,A) might or might not define a valid CDF of the form (1). This
way we get a wider class of distributions.
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Definition 2.2. Let the row vector α and the non-singular matrix A be arbi-
trary. We say that the pair (α,A) defines a matrix exponential distribution,
if they determine a valid CDF of the form defined in (1).

In two dimensions the class of PH and ME distributions actually coincide.
However, in any higher dimension PH distributions form a proper subset of
ME distributions of the same order. This means that we can expect to get
better results from fitting algorithms when we optimize on the class of ME
distributions than if we just restrict to PH distributions. Another important
advantage of ME distributions is that those analytic methods which do not
make use of the constraints imposed on α and A can also be used to analyze
matrix exponential distributions. The major drawback is that there is no
guarantee that an arbitrary (α,A) define a valid CDF.

Instead of the CDF we usually work with the probability density function
(PDF). The PDF, Laplace transform and moments of a random variable X
with PH or ME distribution all have explicit forms:

f(t) =
d

dt
F (t) = αeAt(−A)11, (2)

f ∗(s) = E
(
e−sX

)
= α(sI− A)−1(−A)11 =

∞∑

i=0

si(−1)iα(−A)−i11, (3)

µn = E (Xn) = n!α(−A)−n11, (4)

with which different representations of PH and ME distributions can be given:

Vector-matrix representation We defined PH and ME distributions with
this representation in Definitions 2.1 and 2.2 given by the parameters
(α,A). One of the problems is that seemingly different (α,A) and

(α̃, Ã) pairs can determine the same distribution. There is a similar-
ity transformation which determines equivalence classes among these
pairs. Namely, (α,A) and (α̃, Ã) determine the same distribution if

and only if ∃B such that it is non-singular and α̃ = αB, Ã = B−1AB
and B11 = 11 ([8, Theorem 1]). The other problem is that it has too
many parameters which is why this is not the representation used for
optimization.

PDF representation If all the eigenvalues (λi)
n
i=1 of A are real, then the

form of the PDF in (2) is
∑n

i=1 ait
kieλit, where ki is a non-negative

integer determined by the multiplicity of λi (i = 1, . . . , n). The param-
eters (ai, λi)

n
i=1 uniquely define the distribution. They have to satisfy

the constraint
∫

∞

−∞
f(t)dt = 1, so in fact we have 2n − 1 different pa-

rameters. This is a minimal representation, i.e. fewer parameters can’t
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determine the distribution. Matrices with complex eigenvalues also
have unique PDF representations.

Moments representation The first 2n moments (µ0, . . . , µ2n−1) define a
non-redundant PH distribution of order n (see [9]). In fact, if α11 =
1 then µ0 = 1, so we again have 2n − 1 parameters. We refer to
(µ1, . . . , µ2n−1) as the moments representation of the distribution. The
moments representation is minimal and unique.

Laplace representation The Laplace transform in (3) is an order n ratio-
nal function. This can be most easily seen from the first form in (3).
The determinant of sI−A is an order n polynomial of s and the minors
are of order n−1. So the inverse of sI−A is indeed a rational function.
The Laplace transform can be normalized such that

f ∗(s) =
an−1s

n−1 + . . . + a1s + a0

sn + bn−1sn−1 + . . . + b0
.

Since lims→0 f ∗(s) = 0 the coefficients a0 and b0 are equal. The 2n − 1
coefficients of the properly normalized Laplace transform is referred to
as the Laplace representation. Thus this representation is also minimal
and unique.

Other representations also exist. There are techniques to transform one rep-
resentation to another, which will be briefly discussed in Subsection 2.2. The
advantage of the PDF, Moments and Laplace representations is that they are
all minimal and unique which makes them favorable for use in finding the op-
timal fit for a general distribution. However, there are no explicit conditions
that can guarantee that as a result we get a valid distribution.

Previously, in [2] necessary and sufficient conditions were given in the
Laplace transform domain for being a member of ME(3). These transform
domain constraints still require the solution of transcendental equations. A
time domain counterpart for ME(3) characterization was developed in [4]
that in some cases still needs to use numerical methods. This paper presents
a new approach that for the PDF representation gives explicit conditions for
ME(3) membership. This procedure is discussed in detail in the following
sections.

Here we also mention a special class of PH distributions. An acyclic
phase type (APH) distribution can be interpreted as the absorption time of
a special continuous-time Markov chain, where any given transient state is
visited at most once (hence the name acyclic). This means that the states
can be labeled in such a way that the generator A of the transient states is
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a triangular matrix. This implies that all the eigenvalues of A are real, so
APH is a proper subset of PH. APH distributions are easy to work with, since
the special form of A yields efficient methods for analysis, which differ from
the ones used to analyze ME or PH distributions. Furthermore, all APH
distributions can be transformed to a canonical form (CF(1)). Denoting the
eigenvalues of A by −λn ≤ . . . ≤ −λ1 < 0, the form of the generator in the
CF(1) form is

A =




−λ1 λ1 0 . . . 0

0 −λ2 λ2
. . .

...
...

. . .
. . .

. . . 0
−λn−1 λn−1

0 . . . 0 −λn




.

This corresponds to the Markov chain:

∗n

λn

. . .

λn−1

2

λ2

1

λ1

The absorbing state can only be reached from state n and the intensities
of the transitions increase as the chain gets closer to the absorbing state. We
will deal with APH distributions again in Section 6.

2.1.1 Quasi-Birth-Death (QBD) processes

Consider queuing systems where at any given time only one demand can
arrive or leave the system. The inter-arrival and/or service times can have
arbitrary distributions, but assume the system is regular, i.e. the distribu-
tions don’t depend on how many demands are in the system. Assume that
the behavior between arrivals is regulated by a background continuous-time
Markov chain (CTMC) on a finite state space and another CTMC regu-
lates the behavior between services (the two CTMCs can have different state
spaces). Such systems can be modeled by a CTMC of the form

L

F

B

L

F

B

L′

F

B

where F,B and L describe the phase transition with arrival, with service and
the local behavior without arrival or service respectively. Note that the well
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known birth-death processes are a very special case. Namely, if the inter-
arrival time is exponentially distributed with parameter λ and the service
time with parameter µ, then F = λ, B = µ, L = −λ − µ and there is only a
1 state background MC involved. The generator of a CTMC that represents
a QBD process has a special block matrix structure:

Q =




0 1 2 3 . . .

0 L′ F
1 B L F
2 B L F
...

. . .
. . .

. . .




where the numbers on the border indicate the number of demands in the
system. If we assume that the inter-arrival and service times follow ME
distributions with parameters (α,A) and (α̃, Ã) respectively, then for each
block we obtain that

L = A ⊕ Ã, L′ = A ⊗ I,

F = (−A11)α ⊗ I, B = I ⊗ (−Ã11)α̃,
(5)

where the operators ⊕ and ⊗ denote the Kronecker sum and product of
matrices. For example, to determine the local behavior L = A ⊕ Ã =
A ⊗ I + I ⊗ Ã means that in the arrival process there is a phase transition
without arrival while the service process stays put (hence the term A ⊗ I)
or vice versa, the arrival process stays put and in the service process there
is a phase transition without an actual service taking place (hence the term
I⊗ Ã). Similarly to determine the forward behavior F = (−A11)α⊗ I means
that an arrival takes place and there is no change in the service process.

Being able to write L′, L, F, B in the forms given in (5) means that the
methods available for the analysis of QBD processes can also be applied to
special QBD processes, where the inter-arrival and service times follow an
ME distribution. As a result, when we approximate a general distribution
with an ME distribution then at the same time we can give approximations,
for example, for the stationary distribution of the original queuing system
with the analysis of a special QBD process.

The methods used for the analysis of QBD processes are referred to as
matrix geometric methods [6]. We give a brief outline on how to determine
the stationary distribution of a QBD process, i.e. we want to determine the
probability vector p = (p0, p1, p2, . . .) that solves the system of equations

pQ = 0 and p11 = 1,

9



where pi are 1 × n vectors which elements pij give the probabilities that
the system has i demands and is in state j in the stationary distribution.
Note that the state space of the CTMC is the direct product of the state
spaces of the two background CTMCs. We basically mimic the procedure
of determining the stationary distribution for a simple birth-death process.
Assume that we look for the solution in the form pi = p0R

i, hence the name
matrix exponential distribution. Substituting this into pQ = 0, we find that
for every i ≥ 1

pi−1F + pi−1RL + pi−1R
2B = 0,

which holds if and only if R satisfies the quadratic matrix equation

F + RL + R2B = 0. (6)

There are efficient numerical methods to find the right solution of (6). As-
suming we found R, we still have to find the p0 that satisfies

p0(L
′ + RB) = 0 and 1 = p11 = p0(I− R)−111.

Note that we have reduced the original problem to solving a finite linear
system of equations, which can be solved in many different ways. So we
determined the stationary distribution of the QBD process. Thus we can
determine many other attributes of the queuing system, such as the expected
number of demands in the system.

2.2 Moment matching

In this subsection we show transformations between different representations
of PH or ME distributions that were introduced in Subsection 2.1. The main
aim is to show how we can obtain a vector-matrix representation from a
sequence of moments. A procedure that is able to do this, we refer to as
moment matching. So to be able to approximate a general distribution, all
we have to know are its first 2n moments and then with a moment matching
procedure we can generate a ME distribution that replicates those exact same
moments that we started out with.

We already saw in equations (2), (3) and (4) that it is straightforward to
obtain the PDF, Laplace transform or the moments of an ME distribution
from its vector-matrix representation. The other direction is not so trivial.

Mark Fackrell showed a simple formula in his PHD dissertation (see [3,
Theorem 5.1]) to obtain a vector-matrix representation from the Laplace
transform. Assume that we are given the Laplace transform of an ME dis-
tribution in the form

f ∗(s) =
an−1s

n−1 + . . . + a1s + a0

sn + bn−1sn−1 + . . . + b0
.
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Then the ME distribution has a (β,T, t) representation, where

β = (a0, a1, . . . , an−1)

T =




0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . .

0 . . . 0 1
−b0 −b1 . . . bn−2 bn−1




t = (0, 0, . . . , 0, 1)T ,

so that the distribution function of the ME distribution can be written in
the form

F (u) = 1 − βeTuT−1t.

It is easy to calculate the inverse of T:

T−1 =




−b1
b0

−b2
b0

−b3
b0

. . . −bn−1

b0
−1
b0

1 0 0 . . . 0 0

0 1 0
...

...
. . .

. . .
. . .

0 0
0 . . . 1 0




Note that this is not exactly the representation we introduced as the defini-
tion, but it is not hard to find the similarity transformation that transforms
(β,T, t) into an (α,A, 11) vector-matrix representation.

It is well known that the moments can be calculated from the Laplace
transform with the formula

µi = (−1)i di

dsi
f ∗(s)

∣∣∣
s=0

.

It is also possible to determine the Laplace transform from the moments
(see [7, Section 2]). This way we can obtain an ME function from the given
moments.

There is also another method using the procedure of Liefvoort (see [9])
and then using a similarity transformation to obtain a closing vector 11. For
details we refer the Reader to [8, p. 11-12].

However in either case we don’t know automatically whether the resulting
vector-matrix representation actually defines a valid ME distribution. So it
is vital to be able to tell if the resulting representation of a moment matching
algorithm defines a valid distribution or not. It turns out that answering this
question is difficult. The subsequent sections explore this question.
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3 General principles of the method

In the end of Section 2 we gave the main motivation to study ME functions.
In this Section we introduce the general idea of a new approach to obtain
conditions for order n ME membership by studying the PDF representation
(defined in Subsection 2.1). As a special case, we will see in Section 4 that
the approach gives necessary and sufficient conditions for ME(3) membership
that can be explicitly checked. Furthermore, the approach is applied to
ME(4) distributions in Section 5.

Our goal is to explicitly determine whether a vector-square matrix pair,
(α,A), determines a valid matrix exponential distribution with density

f(t) = αeAt(−A)11

or not. We assume that the necessary condition limt→∞ f(t) = 0 (⇔ the real
parts of the eigenvalues of A are negative) holds and focus only on the non-
negativity of f(t) in (0,∞). Instead of working with (α,A) directly, we use
the PDF representation which of course is uniquely determined from (α,A)
by the formula for the density function.

3.1 The general approach

Let us consider a matrix exponential function of order n with distinct real
eigenvalues, i.e. f(t) =

∑n
i=1 aie

λit, where λn < λn−1 < . . . < λ1 < 0 are the
eigenvalues and ai 6= 0 are real constants. The idea is to divide the inequality
by one of the eλit terms:

f(t) ≥ 0  f̃(t) =
n−1∑

i=1

aie
(λi−λn)t ≥ −an,

which is a modified problem of one dimension less. As a result of this order
reduction step, the complexity of the problem decreases. This gives the
motivation to study the following problems simultaneously:

f̃(t) ≥ 0, ∀t ≥ 0, (7)

f̃(t) ≥ b, ∀t ≥ 0, (8)

f̃(t) = 0, (9)

f̃(t) = b. (10)

For example, equation (9) is needed to determine the extreme points of the
matrix exponential function. Our approach will be to first solve (8), (9),

12



(10) for n = 2 and then to trace back the order 3 problem of (7) to an
order 2 problem of (8). The key is that these will be simple enough to
solve explicitly, while for larger dimensions we get equations that can only
be solved numerically.

When the eigenvalues are all distinct, it is practical to do the trace back
so that all the exponents remain negative. This means that we divide by
exp(λ1t). We note that a1, the coefficient of λ1 must be positive.

In general, when the eigenvalues are not all distinct it is useful to divide
by exp(λit), where λi has multiplicity of one. This way we only have to
compare the reduced function to a constant, otherwise we have to compare
it to a different function which is a much tougher task. We show how the
order reduction works in the following sections.

4 ME(3) distributions

In this section we apply the order reduction procedure of Section 3 to ob-
tain explicit necessary and sufficient conditions for ME(3) membership. For
completeness, we quote the results for the cases where explicit conditions
have already been shown. In detail we deal with the remaining cases in sep-
arate subsections and prove our main results. Implementing the results into
a Mathematica program, we illustrate the ”shape” of the ME class if we fix
the eigenvalues of A.

In the case of ME(3) distributions we can distinguish four different cases
according to the eigenvalue structure of A:

1) three different negative real eigenvalues,

2) two different negative real eigenvalues,

3) one negative real eigenvalue,

4) one negative real and a complex conjugate pair.

In [4, Theorems 1 and 4] explicit formulas were given to decide ME(3) mem-
bership only in the cases of 1) and 3). We begin by quoting these results.

In case 1), where A has three different real eigenvalues, the general form
of the matrix exponential function is

f(t) = a1e
λ1t + a2e

λ2t + a3e
λ3t, (11)

assuming without loss of generality that λ3 < λ2 < λ1 < 0.
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Theorem 4.1. The matrix exponential function f(t) of the form (11) is
non-negative for all t ≥ 0 if and only if

• a1 + a2 + a3 ≥ 0 and

• a1 > 0 and

• if a2 < −a1
λ1 − λ3

λ2 − λ3
, then a3 ≥ a1

λ1 − λ2

λ2 − λ3

(
−a2

a1

λ2 − λ3

λ1 − λ3

)λ1−λ3

λ1−λ2

.

In case 3), where the single eigenvalue λ has multiplicity of three, the
general form of the density function is

f(t) = (a0 + a1t + a2t
2)eλt. (12)

Theorem 4.2. The matrix exponential function f(t) of the form (12) is
non-negative for all t ≥ 0 if and only if

a0 > 0, a2 > 0 and a1 ≥ −2
√

a0a2.

We now move forward by providing explicit formulas for cases 2) and 4)
with the help of the order reduction approach introduced in Section 3.

4.1 Two different eigenvalues

We have to consider two cases. Assume that the eigenvalues are λ2 < λ1 < 0
(λ1 is referred to as the dominant eigenvalue). In the case when the mul-
tiplicity of λ1 is one, the general form of the matrix exponential function
is

f1(t) = a1e
λ1t + (a2 + a21t)e

λ2t, where a1, a21 6= 0. (13)

In the other case when the multiplicity of the dominant eigenvalue is two,
we can write

f2(t) = (a1 + a11t)e
λ1t + a2e

λ2t, where a2, a11 6= 0. (14)

Dividing (13) or (14) by the exponential term of the single eigenvalue
gives the following problem of type (8):

f̂(t) = (g1 + g2t)e
γt ≥ b ∀t ≥ 0, where b, g2 6= 0. (15)
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Elementary calculations gives us the root of the function f̂(t), its extreme
point (the root of df̂(t)/dt) and its extreme value

t∗ =
−g1

g2

,

topt = −g2 + g1γ

g2γ
=

−1

γ
+ t∗,

fopt = f̂(topt) = −g2

γ
· exp

(
−1

γ
− g1

g2

)
.

t∗ and topt coincide iff g2 = 0, thus t∗ 6= topt. Depending on the sign of γ and
g2 there are four cases to consider. One of them is illustrated in Figure 1.

topt

f̂(topt)

t∗

Figure 1: Structure of f̂(t) when
γ < 0 and g2 < 0

t∗1

f̄(t∗1)

t∗2

f̄(t∗2)

Figure 2: Structure of f̄(t) when
f̄(t∗1) < 0

• γ < 0, g2 < 0. The possible values of b depend on the sign of topt. If

topt ≤ 0, i.e. g1 ≤ −g2/γ then b ≤ f̂(0) = g1. Otherwise b ≤ fopt (see
Figure 1). This gives us two possible necessary and sufficient conditions
for f̂(t) ≥ b:

γ < 0, g2 < 0, b ≤ g1 ≤
−g2

γ
(16)

γ, g2 < 0, g1 >
−g2

γ
, b ≤ −g2

γ
· e−

1

γ
−

g1
g2 (17)

• γ < 0, g2 > 0. This time the possible values of b depend on the sign
of t∗. If t∗ ≤ 0, i.e. g1 ≥ 0 then b ≤ 0. Otherwise b ≤ f̂(0) = g1. We
thus gain two more conditions:

γ < 0, b ≤ g1 < 0 < g2 (18)

γ < 0, g2 > 0, g1 ≥ 0, b ≤ 0 (19)
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• γ > 0, g2 < 0. f̂(t) ≥ b can’t hold for any b since lim
t→∞

f̂(t) = −∞.

• γ > 0, g2 > 0. The possible values of b again depend on the sign of topt.

If topt ≤ 0, i.e. g1 ≥ −g2/γ then b ≤ f̂(0) = g1. Otherwise b ≤ fopt. So
the last two conditions are:

γ > 0, g2 > 0, g1 ≥
−g2

γ
, b ≤ g1 (20)

γ, g2 > 0, g1 <
−g2

γ
, b ≤ −g2

γ
· e−

1

γ
−

g1
g2 (21)

Conditions (16), (17), (18) and (19) will be used after the trace back of (13).
Similarly (20) and (21) will be used for (14). After these preparations we
can prove the following.

Theorem 4.3. f1(t) as defined in (13) is non-negative for t ≥ 0 if and only
if λ2 < λ1 < 0 and one of the following hold

i) a21 < 0, a2 ≤ −a21

λ2−λ1

, a1 ≥ −a2;

ii) a21 < 0, a2 > −a21

λ2−λ1

, a1 ≥ a21

λ2−λ1

e

(
−

1

λ2−λ1
−

a2

a21

)

;

iii) a21 > 0, a2 < 0, a1 ≥ −a2;

iv) a21 > 0, a2 ≥ 0, a1 > 0.

Proof. Dividing f1(t) by eλ1t results in an inequality of type (15). Substitut-
ing its parameters into (16), (17), (18) and (19) we obtain the theorem.

Theorem 4.4. f2(t) as defined in (14) is non-negative for t ≥ 0 if and only
if λ2 < λ1 < 0 and one of the following hold

i) a11 > 0, a1 ≥ −a11

λ1−λ2

, a2 ≥ −a1;

ii) a11 > 0, a1 < −a11

λ1−λ2

, a2 ≥ a11

λ1−λ2

e

(
−

1

λ1−λ2
−

a1

a11

)

.

Proof. Dividing f2(t) by eλ2t results in an inequality of type (15). Substitut-
ing its parameters into (20) and (21) results the statement of the theorem.
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4.2 One real and a complex conjugate pair of eigenval-
ues

The general form of the density function in this case is

f3(t) = a1e
λ1t + a2 cos(ωt + φ)eλ2t, (22)

where t ≥ 0, a2 > 0, −π < φ < π, λ1, λ2 < 0. We want f3(t) ≥ 0 to hold so
λ2 ≤ λ1 < 0 should hold. The result of the order reduction step is

f3(t) ≥ 0 ⇔ f̄(t) ≥ b (∀t ≥ 0),

where f̄(t) = cos(ωt + φ)eλt, λ = λ2 − λ1, b = −a1

a2

and a1 > 0. The extreme

points of f̄(t) are obtained at f̄(t)′ = 0 which are

λ cos(ωt + φ) = ω sin(ωt + φ) ⇔

t∗k =
tan−1

(
λ
ω

)
− φ + kπ

ω
,

where k ∈ Z. Note that cos(ωt + φ) and sin(ωt + φ) cannot be zero at the
same time and tan(ωt+φ) is π/ω periodic. Since cos(ωt+φ) is 2π/ω periodic
and eλt is monotone decreasing it is enough to consider the t∗k which fall into
[0, 2π/ω] (see Figure 2). If k∗ = −⌊(tan−1

(
λ
ω

)
− φ)/π⌋, then the extreme

points in [0, 2π/ω] are t∗i =
(
tan−1

(
λ
ω

)
− φ + (k∗ + i − 1)π

)
/ω, i = 1, 2. It

only remans to check if f̄(t∗i ) ≥ b, i = 1, 2.

Theorem 4.5. f3(t) as defined in (22) is non-negative for t ≥ 0 if and only
if one of the following hold

• λ1 = λ2 and a1 ≥ a2 > 0,

• λ2 < λ1 < 0, a1 > 0 and f̄(t∗i ) ≥ b, i = 1, 2.

Proof. If λ1 = λ2 then f3(t) ≥ 0 simplifies to cos(ωt + φ) ≥ −a1

a2

. It follows

that −a1

a2

≤ −1, i.e. a1 ≥ a2. If λ2 < λ1 < 0 then we proceed according to

the analysis of f̄(t) ≥ b.

4.3 Visualization of ME(3)

We saw in Subsection 2.1 that, without the normalizing constraint, the 2n
parameters of the PDF representation uniquely determine the ME(n) distri-
bution it represents. For order three distributions this means 6 parameters.
To be able to visualize the class of ME(3) distributions we chose to fix the
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eigenvalues of A. This way we only have the freedom to vary the three
coefficients of the ME function. As a result we get very different behavior
according to the eigenvalue structure of A. Figures 3-6 were generated with
Mathematica.

In Figure 3 the axes are labeled by the parameters ar = a1, ac = a2, φ of
the density function defined in (22). While in Figures 4-6 the axes are labeled
by the parameters of the density functions defined in (11), (13) and (14)
respectively. The complex case shows no symmetric behavior with respect to
φ. In each of the real cases we can of course find the positive space, where all
the parameters are non-negative, but otherwise very different bahavior can
be observed. The circles in the figures start out from the origin.

Figure 3: ME(3) complex case
Figure 4: ME(3) real case:
λ1 = λ2 = λ3 = −5

5 Higher order ME distributions

A logical related question is if the order reduction method leads us to sim-
ilar results for higher order ME distributions. Unfortunately in almost all
of the cases we can’t expect to get explicit results, because we always end
up needing to solve a transcendental equation that can’t be solved explic-
itly anymore. If we allow ourselves to use numerical methods to solve such
equations, then afterwards everything else remains explicit. Even without
the help of numerical methods we can give different non-trivial necessary or
sufficient conditions for higher order ME membership. We demonstrate this
on two cases of ME(4) distributions.
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Figure 5: ME(3) real case:
λ1 = λ2 = −3, λ3 = −4

Figure 6: ME(3) real case:
λ1 = −3, λ2 = λ3 = −5

In Subsection 5.1 we show one of the few cases where explicit necessary
and sufficient conditions can be obtained with the approach. The proof is
very similar to the ones already shown. Afterwards, in Subsection 5.2 we
analyze an important case of ME(4) distributions. We identify the equa-
tion that can’t be solved explicitly and with some simple reasoning we give a
collection of non-trivial necessary or sufficient conditions to decide ME mem-
bership in this case. Note that attempts of characterizing the class of ME(4)
distributions can’t be found in the literature.

5.1 An explicit case ME(4) distribution

Let us consider 4× 4 matrices A, such that have two different real eigenval-
ues, one of which has a multiplicity of three. Let λ2 < λ1 < 0 denote the
eigenvalues. In the case when the multiplicity of λ1 is one, the general form
of the matrix exponential function is

f1(t) = a1e
λ1t + (a20 + a21t + a22t

2)eλ2t, where a1, a22 6= 0. (23)

In the other case when the multiplicity of the dominant eigenvalue is three,
we can write

f2(t) = (a10 + a11t + a12t
2)eλ1t + a2e

λ2t, where a12, a2 6= 0. (24)

In each case we apply the order reduction approach by dividing with the
exponential term of the eigenvalue with single multiplicity. As a result we
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obtain the inequality

f̂(t) := (at2 + bt + c)eλt ≥ d ∀t ≥ 0, where a, d 6= 0. (25)

The parameters (a, b, c, d, λ) equal (a22, a21, a20,−a1, λ2−λ1) in case (23) and
(a12, a11, a10,−a2, λ1−λ2) in case (24). We collect the conditions for case (23)
in the following lemma.

Lemma 5.1. For λ < 0 and a, d 6= 0, the inequality

f̂(t) = (at2 + bt + c)eλt ≥ d,

holds for every t ≥ 0 if and only if one of the following hold

i) a < 0, t′2 < 0, d ≤ c

ii) a < 0, t′2 ≥ 0, d ≤ min
(
c, f̂(t′2)

)

iii) a > 0, b2 ≤ 4ac, d < 0

iv) a > 0, b2 > 4ac, t∗2 ≤ 0, d < 0

v) a > 0, b2 > 4ac, t′1 < 0 < t∗2, d ≤ c

vi) a > 0, b2 > 4ac, t′1 ≥ 0, d ≤ f̂(t′1)

where t∗2, t′1 and t′2 are defined in (26) and (27).

Proof. Again we start by determining the roots t∗1,2 and the extreme points

t′1,2 of f̂(t). The shape of f̂(t) implies that t∗1 ≤ t′1 ≤ t∗2 ≤ t′2 (if t∗1,2 ∈ R).
Elementary calculations give us the following

t∗1,2 =
−b ±

√
b2 − 4ac

2a
, and (26)

t′1,2 =
−b̃ ±

√
b̃2 − 4ãc̃

2ã
, where






ã = λa

b̃ = λb + 2a

c̃ = λc + b

. (27)

We differentiate three different cases according to the number of real roots
of f̂(t).

• If t∗1, t
∗

2 /∈ R, i.e. b2 < 4ac, then

– if a > 0, then f̂(t) > 0 ∀t. Thus arbitrary d < 0 satisfies (25).
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– if a < 0, then f̂(t) < 0 ∀t. The possible values of d depend on
the sign of t′2. If t′2 < 0, then d ≤ f̂(0) = c. If t′2 ≥ 0, then

d ≤ min
(
c, f̂(t′2)

)
.

• If t∗1 = t∗2 ∈ R, i.e. b2 = 4ac, then t∗1 = −b/2a, t′1 = −b/2a and
t′2 = −b/2a−2/λ. The conditions for d are the same as in the previous
case.

• If t∗1 6= t∗2 ∈ R, i.e. b2 > 4ac, then

– if a > 0, then the possible values of d depend on the sign of t′1 and
t∗2. If t∗2 ≤ 0, then arbitrary d < 0 satisfies (25). If t′1 < 0 < t∗2,
then d ≤ f̂(0) = c. Finally, if t′1 ≥ 0, then d ≤ f̂(t′1).

– if a < 0, then the possible values of d depend on the sign of t′2 the
same way as in the first case.

By joining the obtained conditions, we get conditions i)-vi) of the lemma.

From here we just have to substitute (a22, a21, a20,−a1) for (a, b, c, d) and
λ2 − λ1 for λ into the conditions of Lemma 5.1 and equations (26) and (27)
to obtain the desired explicit necessary and sufficient conditions.

Theorem 5.2. A matrix exponential function of the form (23) is non-negative
for every t ≥ 0 if and only if one of the following hold

i) a22 < 0, t′2 < 0, a1 + a20 ≥ 0

ii) a22 < 0, t′2 ≥ 0, −a1 ≤ min
(
a20, (a22(t

′

2)
2 + a21t

′

2 + a20) e(λ2−λ1)t
)

iii) a22 > 0, a2
21 ≤ 4a22a20, a1 > 0

iv) a22 > 0, a2
21 > 4a22a20, t∗2 ≤ 0, a1 > 0

v) a22 > 0, a2
21 > 4a22a20, t′1 < 0 < t∗2, a1 + a20 ≥ 0

vi) a22 > 0, a2
21 > 4a22a20, t′1 ≥ 0, −a1 ≤ (a22(t

′

1)
2 + a21t

′

1 + a20)e
(λ2−λ1)t,

where

t∗1,2 =
−a21 ±

√
a2

21 − 4a22 · a20

2a22
, and

t′1,2 =
−(λ2 − λ1)a21 ±

√
((λ2 − λ1)a21)2 − 4(λ2 − λ1)a22((λ2 − λ1)a20 + a21)

2(λ2 − λ1)a22
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Following these lines, one can also obtain necessary and sufficient con-
ditions when the matrix exponential function is of the form (24). We also
expect to get explicit results in the case when A has only one real eigenvalue
with multiplicity of four. In this case the matrix exponential function is (a0+
a1t+a2t

2 +a3t
3)eλt. This is non-negative if and only if (a0 +a1t+a2t

2 +a3t
3)

is non-negative, which can be decided since there are well known methods to
determine the roots of cubic functions. From here we suspect to get explicit
results for the ME(5) distribution with two different real eigenvalues, one of
which has a multiplicity of four. In every other case we either need to solve
a transcendental equation to obtain the extreme points or have to determine
when a function f(t) dominates another function g(t) (∀t > 0) which can’t
be solved explicitly. We show this on an order 4 case in the next Subsection.

5.2 Two real eigenvalues and a complex conjugate pair

In this Subsection we consider 4×4 matrices A, such that have two different
real eigenvalues and a complex conjugate pair. Perhaps this is the most
important case from the point of applications, since a random 4 × 4 matrix
is most likely to have this type of eigenvalue structure. Note that 4 × 4
matrices with two complex conjugate pairs of eigenvalues can’t determine a
valid distribution, since the PDF is guaranteed to go below zero because of
the cosine terms.

Let λ2 < λ1 < 0 denote the real eigenvalues and λc < 0 be the real
part of the complex eigenvalue. In this case the general form of the matrix
exponential function is

f(t) = a1e
λ1t + a2e

λ2t + ac cos(ωt + φ)eλct, (28)

where t ≥ 0, ac > 0, −π < φ < π. We want f(t) ≥ 0 to hold so λc ≤ λ1

should hold. This time we apply the order reduction step by dividing by
ace

λct to obtain

f̂(t) :=
a1

ac
e(λ1−λc)t +

a2

ac
e(λ2−λc)t ≥ − cos(ωt + φ). (29)

Assume λ1 = λc, then f̂(t)
t→∞−→ a1/ac, so

If λ1 = λc, then f(t) ≥ 0 ∀t ≥ 0 ⇔ a1 ≥ ac. (30)

From now on we assume that λ1 > λc. Notice that a1 > 0 is necessary,

since otherwise f̂(t)
t→∞−→ −∞. The problem is that to go on with the explicit

solution we need to solve the equation f̂(t) = − cos(ωt + φ). Generally this
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can’t be done explicitly. Of course we could solve the equation numerically
and proceed the usual way. Instead, we go on by giving some explicit neces-
sary or sufficient conditions that collectively cover the vast majority of ME
functions of the form (28).

Obviously f̂(0) = a1/ac + a2/ac ≥ − cos φ is a necessary condition. If
a2 > 0 then in fact f̂(0) ≥ − cos φ is also sufficient, since in this case f̂(t) is
monotone increasing. So assume from now on that a2 < 0. In this case, easy
calculations give us the root of f̂(t):

t∗ =
ln(−a2/ac) − ln(a1/ac)

λ1 − λ2

. (31)

A less trivial necessary condition is that cos(ωt∗ + φ) > 0. We also give
a sufficient condition. Namely, since the derivative of the cos function is
bounded by one from above, if the derivative of f̂(t) at t = 0 is greater than
one then the inequality f̂(t) ≥ − cos(ωt + φ) holds.

Let us continue by giving extra conditions with the help of results from
Section 4. We can bound f̂(t) from below and above:

f−(t) := a1e
λ1t + a2e

λ2t − ace
λct ≤ f(t)

f+(t) := a1e
λ1t + a2e

λ2t + ace
λct ≥ f(t)

If f−(t) satisfies Theorem 4.1, then we can conclude that f(t) is a valid density
function. If f+(t) doesn’t satisfy Theorem 4.1, then ∃t ≥ 0 : f(t) < 0, so it is
not a valid density function. It is still possible that neither of these are true.

It is easy to determine the points where f(t) = f̂(t). This holds if and

only if cos(ωt + φ) = −1, i.e. t−k = −φ+(2k+1)π
ω

. For the only t−k that falls into
[0, 2π/ω] we have

f

(−φ + π

ω

)
= f−

(−φ + π

ω

)
.

So it is necessary that f−
(
−φ+π

ω

)
≥ 0, otherwise f(t) is guaranteed to go

below zero. We provide one final condition.
We can calculate the difference between f(t) and f+(t):

f+(t) − f(t) = ac (1 − cos(ωt + φ)) eλct.

This is simple enough, so that we can determine the points where this differ-
ence has local maxima. We’re not interested in the points where f(t) = f+(t),
since we know that in these points f(t) ≥ 0. Solving (f+(t) − f(t))′ = 0 we
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obtain

λc(1 − cos(ωt + φ)) + ω sin(ωt + φ) = 0 ⇔

sin(ωt + φ)

(
λc tan

(
ωt + φ

2

)
+ ω

)
= 0 ⇔

tk =
2 tan−1(ω/|λc|) − φ + 2kπ

ω
.

So if f(t) < 0 for some t, then there is a ”good chance” that f(tk) is also
negative. Hence it is worth checking wether f(tk) is greater than zero or
not. Of course, even the collection of all these mentioned conditions are not
enough to claim that f(t) ≥ 0 if and only if these hold. It is not easy to
show an example, however functions that satisfy all of these conditions but
still go below zero exist.

We can conclude from Sections 3, 4 and 5 that the method introduced
in Section 3 is able to explicitly handle all the cases of ME(3) distributions
along the same train of thought. The approach can also be applied to higher
order ME functions, usually resulting with the problem of solving a transcen-
dental equation that requires numerical methods. We can either solve these
equations numerically and proceed with the familiar steps of the method or
we can try to give a collection of explicit necessary or sufficient conditions
that cover the majority of cases. This is a big step forward in the analysis
of ME functions compared to the previous results of [2] and [4]. We move
forward by demonstrating the usefulness of these results by showing on a
particular example that greater fitting accuracy can be achieved with the
class of ME distributions.

6 Example

In this section we demonstrate the difference one can get as a result of ap-
proximating a distribution with the class of ME distributions or just with
APH distributions, discussed in Subsection 2.1. It is difficult to compare the
class of ME and PH distributions, since the same fitting algorithms are used
and there is no efficient method to tell if a valid ME parameter pair (α,A)
does in fact define a PH distribution or not. We work with distributions only
of order three.

To be able to determine the optimal approximating distribution, we need
to define some sort of metric between distributions. Different metrics have
been introduced, some of which give better results for the body of the distri-
bution while others give better approximations for the tail of the distribution.
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In our examinations we consider the relative entropy defined by

D(f̂ , f) :=

∫
∞

t=0

f(t) log

(
f(t)

f̂(t)

)
dt ≥ 0,

where f̂ is the probability density function (PDF) of the original distribution
while f is the PDF of the approximating distribution. The relative entropy
gives a fairly good fit for the body and the tail at the same time. So the aim
of the approximation is to determine the optimal parameters (α,A) of the
ME and PH distributions that minimizes D(f̂ , f).

First, we find the optimal fit amongst all matrix exponential functions
with the help of the moment matching procedure described in Subsection 2.2.
Then we decide whether the result is a valid ME distribution by checking
the conditions of the appropriate theorem of Section 4 implemented into a
Mathematica function. This way we optimize over all ME(3) distributions.

Second, restricting the optimization to APH(3) distributions, we use Ph-
Fit (see [5]). With PhFit one can approximate continuous distributions or
any empirical data. One can choose between different metrics and select the
order of the APH distributions to use. As the output, it gives the initial
vector α and the intensities λ1 ≥ λ2 ≥ λ3 of the first canonical form of the
optimal APH(3) fit. The matrix A can be retrieved from the intensities:

A =



−λ1 0 0
λ2 −λ2 0
0 λ3 −λ3


 .

We compare the two results by calculating the relative entropy in each
case and illustrate the difference by plotting the PDFs. We studied Weibull
distributions with different parameters.

6.1 Approximation of Weibull distributions

The Weibull distribution is used in many different fields, mainly due to its
importance in extreme value theory. It is related to a number of other prob-
ability distributions. It has two parameters, the shape parameter k > 0 and
the scale parameter λ > 0. Its PDF is

f̂k,λ(x) =





k

λ

(x

λ

)k−1

e−(x/λ)k

, if x ≥ 0

0, if x < 0.

Depending on the value of the shape parameter, the PDF changes shape
radically. To apply the moment matching procedure we need to calculate
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the moments of a random variable X with Weibull distribution. The closed
form of the n-th moment is

µn = E (Xn) = λnΓ
(
1 +

n

k

)
,

where Γ is the well-known gamma function, i.e. Γ(t) =
∫

∞

0
xt−1e−xdx. From

here we see that the coefficient of variation (also called relative variance)

D2 (X)

E2X
=

λ2 (Γ (1 + 2/k) − Γ2 (1 + 1/k))

λ2Γ2 (1 + 1/k)

does not depend on the scale parameter λ. Typically, experience shows that
APH distributions give better approximations if the coefficient of variation
is large. For this reason we show a case where the coefficient of variation is
relatively small and also a case where it is large.

Consider the cases k1 = 1.55, λ1 = 50 and k2 = 1.02, λ2 = 40. In the
first case the coefficient of variation is 0.434 while in the second it is 0.961.
With Mathematica we found that the moment matching gives the following
results:

α A D(f̂ , fα,A)

Case 1
(

1
3
, 1

3
, 1

3

)



−0.0539585 0.373227 −0.286393
−0.0082287 −0.038395 0.025353
−0.0065961 0.023570 −0.040178



 0.00131286

Case 2
(

1
3
, 1

3
, 1

3

)



−0.0842461 0.286888 −0.223354
−0.0043999 −0.051695 0.030653
−0.0124034 0.034892 −0.047457



 1.3067 × 10−5

In Case 1 A has a dominant real and a complex conjugate pair of eigenval-
ues, while in Case 2 all the eigenvalues are negative real numbers. We can
already see that the relative entropy decreases if the relative variance grows,
i.e. better approximations can be given for distributions with larger relative
variance. Restricting to PH(3) distributions we found the following:

αT Intensities D(f̂ , fα,A)

Case 1




0.73673
0.21406
0.04921


 (0.0776593, 0.0550558, 0.0536794) 0.00517755

Case 2




0.17460
0.18490
0.64049


 (0.1445179, 0.0970587, 0.0285208) 0.00202499
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Again we can see that the accuracy of the approximation increased for
the case where the relative variance was greater. By comparing the relative
entropy for the same case with the different methods, we can see that in each
case we got a better approximation with the moments matching method. In
the second case the difference looks significant. To further compare the two
methods we plotted the respective probability density functions side-by-side
with the original Weibull distributions. Figures 7-10 show this.

Figure 7: Approximation of Weibull
distribution, k1 = 1.55, λ1 = 50

Figure 8: Inset of Fig. 7 , shading
difference between orig. and approx.

Figure 9: Approximation of Weibull
distribution, k2 = 1.02, λ2 = 40

Figure 10: Inset of Fig. 9 , shading
difference between orig. and approx.

All of these results lead us to the conclusion that it is indeed worth using
ME distributions for approximating general distributions. It should also be
mentioned that our experience was that unfortunately the moment matching
algorithm very rarely gave a valid matrix exponential function as its result.
It took some time even to find these parameters for the Weibull distribution.
An attempt was also made with uniform distributions with no luck for any
parameter pair.

27



7 Conclusions and future work

We saw that ME distributions are a useful tool in approximating general
queuing systems. The most difficult part of checking the validity of ME
distributions is the analysis of the non-negativity of ME density functions.
We propose a general order reduction approach for the analysis of the non-
negativity of order n ME functions. In case of order 3 ME functions this
approach results in explicit expressions for all possible cases. The approach
was also able to give useful results for order 4 ME distributions that have
not been analyzed before. On a concrete example we demonstrated that
it is indeed worth using ME distributions for approximations, since greater
accuracy can be achieved.

Future work can take multiple directions. Research plans include finding
non-trivial necessary or sufficient conditions for higher order ME member-
ship. Typically, in practice higher order distributions are needed for adequate
approximation, so an implementation of the method using numerical subrou-
tines could be useful. Perhaps most valuable would be to develop a moment
matching based optimization algorithm that stays within the class of ME
distributions or at least gives valid results in the majority of cases. This
would be useful, since we experienced in our tests that the applied moment
matching procedure very rarely gave a valid distribution.
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