
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Analysing The Effects of Network
Characteristics in Cyber Physical

Production Systems

Students’ Scientific Conference paper

Author Department Supervisors Industrial Supervisor
József Pető Dr. Sándor Molnár Dr. Géza Szabó

Associate Professor Ericsson Ltd.

Dr. Attila Vidács
Associate Professor

October 27, 2018

Contents

Összefoglaló 3

Abstract 4

Introduction 5

1 Background 7
1.1 Gazebo . 7
1.2 UR5 Robot arm . 7
1.3 Robot Operating System . 8

1.3.1 Packages . 9
1.3.2 Master . 9
1.3.3 Parameter Server . 9
1.3.4 Nodes . 10
1.3.5 Messages . 10
1.3.6 Standard and common messages . 10
1.3.7 Topics . 11
1.3.8 Services . 12
1.3.9 Actions . 12
1.3.10 Coordinate frames . 13
1.3.11 Unified Robot Description Format 13
1.3.12 Plugins . 13

1.4 Used ROS packages . 14
1.4.1 universal_robot package . 14
1.4.2 ros_control package . 14
1.4.3 moveit package . 15
1.4.4 lemniscatepublisher package . 16
1.4.5 gazebo_ros_pkgs package . 17
1.4.6 xacro package . 17
1.4.7 roslaunch package . 17

1

1.4.8 hector_trajectory_server package 17

2 Motivation and related work 18
2.1 Cyber Physical System (CPS) . 18
2.2 Cyber-Physical Production Systems CPPS 19
2.3 Traditional characteristics of robots . 19
2.4 Network aspects . 20
2.5 Robot cell optimization . 20
2.6 Competitions . 21
2.7 Choosing simulators . 22

3 Proposed method 23
3.1 Overview . 23
3.2 Introducing methods to simulate the effects of network characteristics . . . 25

4 Measurements 29
4.1 Evaluation with standard robot KPIs . 29
4.2 Evaluation using ARIAC . 31

4.2.1 ARIAC, no latency scenario . 34
4.2.2 ARIAC with fixed bidirectional network delay (15 ms) 34
4.2.3 Cumulated ARIAC KPIs in the function of network latency 36

5 Remote control of a complex platform 38
5.1 Overview . 38
5.2 Demonstrated features . 39

5.2.1 Introducing network effects into hexapod control 39
5.3 Effects of latency . 40

6 Conclusion and further work 41

Bibliography 42

2

Összefoglaló

A robotszimuláció egy nélkülözhetetlen eszköz minden robotikával foglalkozó esz-
köztárában. Egy jól tervezett szimulátor segítségével gyorsan tudunk algoritmusokat
tesztelni, robotokat tervezni, regressziós teszteket végezni és Mesterséges Intelligencia
rendszereket tanítani valósszerű környezetben.

Egy népszerű robot szimulátorral, a Gazeboval[1] képesek vagyunk pontosan és
hatékonyan szimulálni robotokat komplex beltéri és kültéri környezetben. Erős fizikai
motort, kiváló minőségű grafikát és kényelmesen használható programozói és felhasználói
interfészeket nyújt. Azonban a Gazebo-ból hiányzik a vezérlési késleltetés modellezése,
ami egy teljes értékű kiberfizikai rendszerszimulátorrá tenné.

Ebben a dolgozatban bemutatok egy Gazebo plugint ami képessé teszi a Gazebo-t,
arra hogy késleltetést szimuláljon. Ezáltal lehetővé téve különféle, a késleltetések hatását
vizsgáló mérések elvégzését szimulált környezetben.

Ezzel a pluginnal több mérést is végrehajtok. Először vizsgálom egy hat szabadságfokú
robotkar viselkedését különböző hálózati késleltetések mellett.

A plugint használva hálózati késleltetést állítok be az Agile Robotics for Industrial
Automation Competition (ARIAC)[2] környezetében, ami egy szimuláción alapuló verseny,
automatizált teljesítmény pontozással. Egy a versenyben részt vett csapat, a Figment Team
megoldását értékelem ki hálózati késleltetés esetén.

A plugint egy másik környezettel is kipróbáltam, egy szimulált hatlábú robottal. Ez
a robot hasonló egy Ipar 4.0 robotcellához amiben van hat 3 szabadságfokú kar. Ebben
a környezetben számos kihívás megjelenhet (például: szervók vezérlése, robotkarok kol-
laborációja stb.). 5 ms késleltetés a hatlábú robot vezérlésében az egyenes mozgástól
eltérést okozott.

A plugin használata különböző környezetekben demonstrálja, hogy ez az általam fe-
jlesztett plugin alkalmas hálózati hatások vizsgálatára. És jövőben segíthet kiberfizikai
gyártó rendszerek hálózatainak tervezésében a hálózatüzemeltetőknek.

A dolgozat további eredményekkel bővítve a következő helyeken jelent meg: [3] [4] [5]

3

Abstract

Robot simulation is an essential tool in every roboticist’s toolbox. A well-designed simula-
tor makes it possible to rapidly test algorithms, design robots, perform regression testing,
and train AI system using realistic scenarios.

A popular robotic simulator, Gazebo[1], offers the ability to accurately and efficiently
simulate populations of robots in complex indoor and outdoor environments. It provides
a robust physics engine, high-quality graphics, and convenient programmatic interfaces.
However, Gazebo lacks the feature of simulating the effects of control latency that would
make it a fully-fledged cyber-physical system (CPS) simulator.

I propose a Gazebo plugin to make Gazebo capable to simulate delay. Using this plugin
one can make measurements examining the effects of latency in simulated systems.

Using this plugin I make several measurements. First, I examine the behaviour of a
6-DOF arm in various latency scenarios.

I use this plugin to introduce network latency effects to the environment of Agile
Robotics for Industrial Automation Competition (ARIAC)[2], which is a simulation-based
competition, with automated performance scoring. I evaluate performance of the Figment
Team’s solution in the competition with added network latency.

I also use this plugin in a simulated environment with a hexapod robot, which can be
used as an analogue to a Industry 4.0 robot cell with six 3-DOF robotic arm. In this envi-
ronment a wide spectrum of the challenges can arise in e.g., servo control, collaboration,
etc. I found creating 5 ms of delay caused the hexapod robot to drift from the desired
direction.

The application of the plugin in various use cases demonstrates that my proposed
plugin is useful for the evaluation of network effects. In the long run network operators
can use my extended simulation environment to provision networks in Cyber Physical
Production Systems (CPPS).

Extensions of this work were published in the following works: [3] [4] [5]

4

Introduction

Designing cyber-physical systems (CPS) is challenging because of a) the vast network and
information technology environment connected with physical elements involves multiple
domains such as controls, communication, analog and digital physics and logic, and b) the
interaction with the physical world varies widely based on time and situation.

To ease the design of CPS, robot simulators have been used by robotics experts. A
well-designed simulator makes it possible to rapidly test algorithms, design robots, perform
regression testing, and train AI system using realistic scenarios [1].

There are various alternatives, sets of tools that make it possible to put together a
CPS simulation environment, but it is very difficult, needs a lot of interfacing with various
tools, and is impractical.

Gazebo was chosen as the target robot simulation environment that I intend to extend
with new functionalities to make it capable of being applied as a CPS.

The main challenge with the design principle of Gazebo is that the control of actuators
is deployed and is run practically locally to the actuators. In this case, there is no need to
consider the effects of a non-ideal link between the actuator and the controller. Considering
the CPS context, as controllers are moved away from actuators, it becomes natural and
even necessary to analyse the effects of the network link between them.

Gazebo has a plugin system that can be used to provide an interface to my modular
network simulation environment.

The goal of this paper is to show the design principles of the network plugin and
provide a tool for further research in CPS. I also show the usefulness of my plugin in
several different environments. I show that it can be used to evaluate the performance of
CPS systems in different network scenarios.

This paper is a continuation of my previous Students’ Conference Paper[6], in which I
only present my plugin, and one test scenario.

Structure of the paper
The paper consists of 6 chapters.

5

In Chapter 1 I describe the basics of cyber-physical systems, the Gazebo robot simu-
lation environment, Robot Operating System, its various concepts, and the UR5 robot.

In Chapter 2 I describe the motivations behind this paper, and present related works.
In Chapter 3 I present the CPS that I address to measure, and the Gazebo plugin that

I wrote extending the capabilities of the current Gazebo robotic simulator and turn it into
a CPS system.

In Chapter 4 I evaluate the effects of the simulated network latency — added to the
CPS by my plugin — on various standard KPIs and on a solution to ARIAC.

In Chapter 5 I use a hexapod robot platform to demonstrate the usage of my plugin
in measuring the effects of latency on the robot.

Finally, I conclude this paper in Chapter 6 and describe avenues for further research.

6

Chapter 1

Background

In this chapter I describe the Gazebo robot simulation environment, the UR5 robot, the
Robot Operating System, its various concepts, and used ROS Packages.

1.1 Gazebo
Gazebo[1] was chosen as the target robot simulation environment that I intend to ex-
tend with new functionalities to make it capable of being applied as a CPS. Gazebo is a
3D dynamic simulator with the ability to accurately and efficiently simulate populations
of robots in complex indoor and outdoor environments. While similar to game engines,
Gazebo offers physics simulation at a much higher degree of fidelity, a rich library of robot
models and environments, a suite of sensors, and interfaces for both users and programs.
Gazebo is free and widely used among robotic experts.

Typical uses of Gazebo include: testing robotics algorithms, designing robots, perform-
ing regression testing with realistic scenarios[7].

1.2 UR5 Robot arm
The UR5[8] robot arm designed by Universal Robots has 6 degrees of freedom with its 6
rotating joints. Its payload can be up to 5 kg. It has a reach of 850 mm. It is controlled by
sending text commands to it using a TCP/IP connection. The commands are in a special
script language called URScript[9]. By sending commands you can control the robot’s
Cartesian position, velocity, joint angle and velocity.

7

Figure 1.1: Gazebo simulation of the UR5 robot arm

1.3 Robot Operating System
Robot Operating System (ROS)[10] is used to control the movement of the robot arm.
ROS is an open-source, meta-operating system for robot software development. It pro-
vides standard services that would be expected from an operating system, including hard-
ware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple computers.

ROS is not a realtime framework, though it is possible to integrate ROS with realtime
code.

ROS was designed to be as distributed and modular as possible, so that users can use
as much or as little of ROS as they desire. The distributed nature of ROS also fosters a
large community of user-contributed packages that add a lot of value on top of the core
ROS system. At last count there were over 3,000 packages in the ROS ecosystem, and that
is only the ROS packages that people have taken the time to announce to the public. These
packages range in fidelity, covering everything from proof-of-concept implementations of
new algorithms to industrial-quality drivers and capabilities. The ROS user community
builds on top of a common infrastructure to provide an integration point that offers access
to hardware drivers, generic robot capabilities, development tools, useful external libraries,

8

and more.
The ROS framework is easy to implement in any modern programming language. It is

already implemented it in Python, C++, and Lisp, and there are experimental libraries
in Java and Lua.

ROS currently only runs on Unix-based platforms. Software for ROS is primarily tested
on Ubuntu and Mac OS X systems, though the ROS community has been contributing
support for Fedora, Gentoo, Arch Linux and other Linux platforms[11, 12].

1.3.1 Packages
Packages[13] are the main unit for organizing software in ROS. In the file system they are
represented by folders which contain a package manifest.

A package may contain ROS runtime processes (nodes), a ROS-dependent library,
datasets, configuration files, or anything else that is usefully organized together. Packages
are the most atomic build item and release item in ROS. Meaning that the most granular
thing you can build and release is a package.

1.3.2 Master
The ROS Master[14] acts as a nameservice ROS. It stores topics and services registra-
tion information for ROS nodes. Nodes communicate with the Master to report their
registration information. As these nodes communicate with the Master, they can receive
information about other registered nodes and make connections as appropriate. The Mas-
ter will also make callbacks to these nodes when this registration information changes,
which allows nodes to dynamically create connections as new nodes are run.

The Master is implemented via XMLRPC[15], which is a stateless, HTTP-based pro-
tocol. XMLRPC was chosen primarily because it is relatively lightweight, does not require
a stateful connection, and has wide availability in a variety of programming languages.

1.3.3 Parameter Server
The parameter server[16] is a shared, multi-variate dictionary that is accessible via net-
work APIs. It runs inside of the ROS Master. Nodes use this server to store and retrieve
parameters at runtime. As it is not designed for high-performance, it is best used for static,
non-binary data such as configuration parameters. It is meant to be globally viewable so
that tools can easily inspect the configuration state of the system and modify if necessary.

The Parameter Server API is also implemented via XMLRPC[15]. The use of XML-
RPC enables easy integration with the ROS client libraries and also provides greater
type flexibility when storing and retrieving data. The Parameter Server can store ba-
sic XML-RPC scalars (32-bit integers, booleans, strings, doubles, iso8601 dates), lists,

9

and base64-encoded binary data. The Parameter Server can also store dictionaries (i.e.
structs).

1.3.4 Nodes
Nodes[17] are processes that perform computation. ROS is designed to be modular at a
fine-grained scale; a robot control system usually comprises many nodes. Nodes are com-
bined together into a graph and communicate with one another using streaming topics,
RPC services, and the Parameter Server. The use of nodes in ROS provides several ben-
efits to the overall system. There is additional fault tolerance as crashes are isolated to
individual nodes. Code complexity is reduced in comparison to monolithic systems. Im-
plementation details are also well hidden as the nodes expose a minimal API to the rest
of the graph and alternate implementations, even in other programming languages, can
easily be substituted.

Every node has a URI, which corresponds to the host:port of the XMLRPC server it is
running[15]. The XMLRPC server is not used to transport topic or service data: instead, it
is used to negotiate connections with other nodes and also communicate with the Master.
This server is created and managed within the ROS client library, but is generally not
visible to the client library user. The XMLRPC server may be bound to any port on the
host where the node is running.

A ROS node is written with the use of a ROS client library, such as roscpp or rospy.

1.3.5 Messages
Nodes communicate with each other by publishing messages to topics[18]. A message is a
simple data structure, comprising typed fields. Standard primitive types (integer, floating
point, boolean, etc.) are supported, as are arrays of primitive types. Messages can include
arbitrarily nested structures and arrays.

They are defined by .msg files that are simple text files specifying the data structure of
a message. The ROS Client Libraries implement message generators that translate .msg
files into source code, so the messages are programming language independent.

1.3.6 Standard and common messages
The std_msgs package[19] contains wrappers for ROS primitive types, which are docu-
mented in the msg specification. It also contains the Empty type, which is useful for sending
an empty signal. However, these types do not convey semantic meaning about their con-
tents: every message simply has a field called "data". Therefore, while the messages in this
package can be useful for quick prototyping, they are not intended for "long-term" usage.

10

There is a special message type in std_msgs, the Header type which contains a sequence
number, a timestamp and a frame_id string that describes in which coordinate frame this
message is relative to. Message types ending in Stamped contain this type.

The common_msgs[20] package contains messages that are widely used by other
ROS packages. These includes messages for actions (actionlib_msgs), diagnostics (diag-
nostic_msgs), geometric primitives (geometry_msgs), robot navigation (nav_msgs), and
common sensors (sensor_msgs), such as laser range finders, cameras, point clouds.

1.3.7 Topics
Messages are routed via a transport system with publish / subscribe semantics[20]. A node
sends out a message by publishing it to a given topic. The topic is a name that is used
to identify the content of the message. A node that is interested in a certain kind of data
will subscribe to the appropriate topic. There may be multiple concurrent publishers and
subscribers for a single topic, and a single node may publish and/or subscribe to multiple
topics. In general, publishers and subscribers are not aware of each others’ existence. The
idea is to decouple the production of information from its consumption. Logically, one can
think of a topic as a strongly typed message bus. Each bus has a name, and anyone can
connect to the bus to send or receive messages as long as they are the right type.

ROS currently supports TCP/IP-based and UDP-based message transport. The
TCP/IP-based transport is known as TCPROS and streams message data over persistent
TCP/IP connections. TCPROS is the default transport used in ROS and is the only
transport that client libraries are required to support. The UDP-based transport, which
is known as UDPROS and is currently only supported in roscpp, separates messages into
UDP packets. UDPROS is a low-latency, lossy transport, so is best suited for tasks like
teleoperation.

For example, the sequence by which two nodes begin exchanging messages is:[15]

1. Publisher node registers with the Master by sending its name, XMLRPC host:port,
topic to publish to and topic type. [XMLRPC]

2. Subscriber node registers with the Master by sending its name, XMLRPC host:port,
topic to subscribe to and topic type. [XMLRPC]

3. Master notices that there is a node that is interested in a topic that has a publisher,
so it sends the XMLRPC address of the publisher to the subscriber. [XMLRPC]

4. The Subscriber sends a connection request to the XMLRPC address of the Publisher,
sending its name, the topic name and a list of supported protocols. [XMLRPC]

5. The Publisher responds with a selected protocol and the address which uses the
negotiated protocol. [XMLRPC]

11

6. The Subscriber connects to the address using the negotiated protocol.

7. The connection is established, data is sent from the publisher to the subscriber.

Figure 1.2: The sequence of connection [15]

The Master keeps track of the publishers and subscribers of all topics, so when there
is a new publisher to a topic, it can notify the subscribers of that topic to connect to that
publisher. Also, when there is a new subscriber, it will send all publishers address to it so
it can connect to them all.

Consequently, the order in which the nodes are registered does not matter, simplifying
the startup processes of complicated computation graphs.

1.3.8 Services
The publish / subscribe model of topics is a very flexible communication paradigm, but
its many-to-many, one-way transport is not appropriate for request / reply interactions,
which are often required in a distributed system. Request / reply is done via services[21] ,
which are defined by a pair of message structures: one for the request and one for the reply.
A providing node offers a service under a name and a client uses the service by sending
the request message and awaiting the reply. ROS client libraries generally present this
interaction to the programmer as if it were a remote procedure call. Services are defined
using .srv files, which like .msg files are compiled into source code by a ROS client library.

1.3.9 Actions
In any large ROS based system, there are cases when someone would like to send a request
to a node to perform some task, and also receive a reply to the request. This can currently
be achieved via ROS services. In some cases, however, if the service takes a long time

12

to execute, the user might want the ability to cancel the request during execution or
get periodic feedback about how the request is progressing. The actionlib package[22]
provides tools to create servers that execute long-running goals that can be preempted. It
also provides a client interface in order to send requests to the server.

1.3.10 Coordinate frames
In a robotic system there are multiple coordinate frames that change in time. Converting
vectors between them correctly is not simple.

tf[23] (and its successor tf2[23]) is a package that lets the user keep track of multiple
coordinate frames over time. tf maintains the relationship between coordinate frames in
a tree structure buffered in time, and lets the user transform points, vectors, etc between
any two coordinate frames at any desired point in time.

1.3.11 Unified Robot Description Format
The Unified Robot Description Format (URDF)[24] is an XML specification to describe
a robot. It is designed to be as general as possible, but obviously the specification cannot
describe all robot. Only tree structures can be represented, ruling out all parallel robots.

The specification assumes the robot consists of rigid links connected by joints; flexible
elements are not supported. The format can be used to specify the kinematic and dynamic
description of the robot, the visual representation of the robot and the collision model of
the robot.

1.3.12 Plugins
The pluginlib[25] package provides tools for writing and dynamically loading plugins using
the ROS build infrastructure. To work, these tools require plugin providers to register their
plugins in the package.xml of their package.

It is a C++ library for loading and unloading plugins from within a ROS package.
Plugins are dynamically loadable classes that are loaded from a runtime library (i.e. shared
object, dynamically linked library).

With pluginlib, one does not have to explicitly link their application against the library
containing the classes – instead pluginlib can open a library containing exported classes at
any point without the application having any prior awareness of the library or the header
file containing the class definition. Plugins are useful for extending/modifying application
behavior without needing the application source code.

13

1.4 Used ROS packages
To avoid reinventing the wheel, multiple ready made packages were used to create the
measurement setup.

1.4.1 universal_robot package
The universal_robot metapackage[26] contains packages that provide nodes written in
Python for communication with Universal’s industrial robot controllers and URDF models
for various robot arms (UR3, UR5, UR10).

1.4.1.1 ur_description

This package contains the model of the robot, the urdf and the mesh files describing the
robot links.

1.4.1.2 ur_gazebo

This package contains files that aid in starting a robot simulation

1.4.2 ros_control package
Ros_control[27] is a set of packages defining a set of interfaces, which are designed to
abstract away differences between robot hardware.

There are controllers, which provide standard ROS interfaces (topic or service) in order
to allow communication between the robot and other ROS nodes using not robot-specific
topics, and messages. The controllers are not robot specific, but are using interfaces that
are C++ classes to read from and write to. These interfaces represent hardware elements
(e.g: VelocityJointInterface can represent a joint that can be controlled using velocity
commands). The interfaces basically shared memory where command can be written and
state can be read.

The controllers for example can use PID controllers to control the interfaces, that
way they can for example receive position commands from a topic, and through a PID
controller it can control a VelocityJointInterface.

The controller can also read from the interface, so it can publish information about
the hardware represented by the interface (e.g.: joint state, torque information).

The interfaces are implemented in a hardware specific driver extending hard-
ware_interface::RobotHW, that takes care of communicating with the robot using its
hardware specific communication method (serial, Modbus, Ethernet, USB).

The controllers and drivers are implemented using the pluginlib package to make them
dynamically loaded.

14

Figure 1.3: Overview of ros_control[27]

1.4.2.1 joint_state_controller/JointStateController

This is a controller that reads state data (joint angles, velocities, efforts) from JointStateIn-
terfaces, and publishes them in sensor_msgs/JointState messages to the /joint_state
topic.

1.4.2.2 velocity_controllers/JointTrajectoryController

It is a controller for executing joint-space trajectories on a group of joints. Trajectories are
specified as a set of waypoints to be reached at specific time instants, which the controller
attempts to execute as well as the mechanism allows. Waypoints consist of positions, and
optionally velocities and accelerations.

1.4.3 moveit package
MoveIt![28] is state of the art software that runs on top of ROS for mobile manipula-
tion, incorporating the latest advances in motion planning, manipulation, 3D perception,
kinematics, control and navigation. It provides an easy-to-use platform for developing ad-

15

vanced robotics applications, evaluating new robot designs and building integrated robotics
products for industrial, commercial, R&D and other domains.

MoveIt! is designed to work with many different types of planners, which is ideal for
benchmarking improved planners against previous methods.

The figure 1.4. shows the high-level system architecture for the primary ROS node
provided by MoveIt! called move_group. This node serves as an integrator: pulling all the
individual components together to provide a set of ROS actions and services for users to
use.

Figure 1.4: Moveit architecture

1.4.4 lemniscatepublisher package
This package originally written by me during my summer internship to publish an elab-
orate trajectory to the UR5 robot. First, it creates list of waypoints, then using MoveIt
it plans a precise trajectory — that can be used by the robot — with time parametrized
position and velocity data. Then, also using MoveIt, it sends this trajectory to the Joint-
TrajectoryController for execution. I modified this package, to publish — instead of an
elaborate trajectory — a simple trajectory between 3 points.

16

1.4.5 gazebo_ros_pkgs package
gazebo_ros_pkgs[29] is a set of ROS packages that provide the necessary interfaces to
simulate a robot in the Gazebo 3D rigid body simulator for robots. It integrates with ROS
using ROS messages, services and dynamic reconfigure.

It contains a converter that converts URDF into SDF which is the world description
language that Gazebo uses. This way there is no need to maintain two sets of models.

1.4.5.1 gazebo_ros_pkgs package

gazebo_ros_pkgs also contains the gazebo_ros_control package which is a ROS package
for integrating the ros_control controller architecture with the Gazebo simulator.

It provides a Gazebo plugin which instantiates a ros_control controller manager and
connects it to a Gazebo model. The Gazebo plugin also loads in the DefaultRobotH-
WSim plugin through pluginlib which creates the hardware_interfaces (position, velocity
or effort) for each joint as defined in the loaded URDF.

1.4.6 xacro package
The xacro package[30] is most useful when working with large XML documents such as
URDFs. Xacro is an XML macro language. With xacro, you can construct shorter and
more readable XML files by using macros that expand to larger XML expressions.

1.4.7 roslaunch package
roslaunch[31] is a tool for easily launching multiple ROS nodes locally and remotely via
SSH, as well as setting parameters on the Parameter Server. It includes options to auto-
matically respawn processes that have already died. roslaunch takes in one or more XML
configuration files (with the .launch extension) that specify the parameters to set and
nodes to launch, it is also possible to upload configurations to the Parameter Server from
YAML files.

1.4.8 hector_trajectory_server package
This package provides a node that saves tf based trajectory data given a target and and
source frame. The trajectory is saved internally as a nav_msgs/Path and can be obtained
using a service or topic.

17

Chapter 2

Motivation and related work

In this chapter I describe the motivations behind this paper, and present related works.
Parts of this chapter is from my previous Students’ Conference Paper[6].

2.1 Cyber Physical System (CPS)
One of the most significant directions in the development of computer science and infor-
mation and communication technologies is represented by Cyber-Physical Systems (CPSs)
which are systems of collaborating computational entities which are in intensive connec-
tion with the surrounding physical world and its on-going processes, providing and using,
at the same time, data-accessing and data-processing services available on the internet.
[32]

Unlike more traditional embedded systems, a full-fledged CPS is typically designed as
a network of interacting elements with physical input and output instead of as standalone
devices. For tasks that require more resources than are locally available, one common
mechanism is that nodes utilize the network connectivity to link the sensor or actuator
part of the CPS with either a server or a cloud environment, enabling complex processing
tasks that are impossible under local resource constraints. Currently, one of the main focus
of cloud based robotics is to speed up the processing of input data collected from many
sensors with big data computation. Another approach is to collect various knowledge bases
in centralized locations e.g., possible grasping poses of various 3D objects.

Another aspect of cloud robotics is the way in which the robot control related func-
tionality is moved into the cloud. The simplest way is to run the original robot specific
task in a cloud without significant changes in it. For example, in a Virtual Machine (VM),
in a container, or in a virtualized Programmable Logic Controller (PLC). Another way
is to update, modify or rewrite the code of robot related tasks to utilize existing services
or APIs of the cloud. The third way is to extend the cloud platform itself with new fea-

18

tures that make robot control more efficient. These new robot-aware cloud features can
be explicitly used by robot related tasks (i.e. new robot-aware services or APIs offered by
cloud) or can be transparent solutions (e.g., improving the service provided by the cloud
to meet the requirement of the robot control).

The requirements of a widely applicable CPS are the following:

• Should be modular in terms of interfacing with the CPS,

• Should be modular in terms of interfacing with network simulator, realization envi-
ronment,

• Should be able to cooperate with widely applied environments,

2.2 Cyber-Physical Production Systems CPPS
The scoping of general CPS into the industry domain introduces the concept of Cyber-
Physical Production Systems (CPPSs). Author of [33] defines CPPS as system where
mechatronic components are coupled to a smart logical entity that enables these factory
units to interact in an adaptive way. Both [33] and [32] collect various research challenges.
According to [32], one of the research challenges of CPPS is the fusion of real and virtual
systems. The development of new structures and methods are required which support
the fusion of the virtual and real sub-systems in order to reach an intelligent production
system which is robust in a changing, uncertain environment. Novel reference architectures
and models of integrated virtual and real production subsystems; the synchronization of
the virtual and real modules of production systems and their role-specific interaction; and
context-adaptive, resource efficient shop floor control algorithms are needed.

2.3 Traditional characteristics of robots
The work [34] describes that an industrial robot has many metrics and measurable char-
acteristics, which will have a direct impact on the effectiveness of the robot during the
execution of its tasks. The main measurable characteristics are repeatability and accu-
racy. In a nutshell, the repeatability of a robot might be defined as its ability to achieve
repetition of the same task. While, accuracy is the difference (i.e. the error) between the
requested task and the realized task (i.e. the task actually achieved by the robot). Prac-
tically, repeatability is doing the same task over and over again, while accuracy is hitting
your target each time. For more details about the calculation of accuracy and repeatabil-
ity, see [35]. The ultimate objective is to have both; a robot that can repeat its actions
while hitting the target every time. When the current mass production assembly lines are
designed, robots are deployed to repeat a limited set of tasks as accurately and the fastest

19

possible way to maximize the productivity and minimize the number of faulty parts. The
reprogramming of the robots rarely occurs (per week, per month basis) and it takes a long
time (even days) and it is a difficult task requiring lot of expertise.

2.4 Network aspects
The article [36] compares the network protocols used nowadays in industry applications for
example, Modbus, Profinet, Ethercat. All investigated Industrial Ethernet (IE) systems
show similar basic principles, which are solely implemented in different ways. Several
solutions apply a shared memory and most systems require a master or a comparable
management system, which controls the communication or have to be configured manually.
Shared memory is implemented via data distribution mechanisms that are based on a
high frequency packet sending patterns. These packets have to be transmitted with strict
delivery time with minimum jitter. IE protocols rely so heavily on the transport network
that protocol mechanisms common in broadband usage like reliable transmission, error
detection, etc., are not among the basic features of industrial protocols.

Authors of [37] summarize the fundamental trade-offs in 5G: finite vs. large blocklength,
spectral efficiency vs. latency, device energy consumption vs. latency, energy expenditures
vs. reliability, reliability vs. latency and rate, SNR vs. diversity, short/long TTI vs. control
overhead, open vs. closed loop, user density vs. dimensions (antennas, bandwidth, block
length). There are numerous aspects that have to be solved during an industry automation
task even when the robot stands still. A remote robot control application induces the
frequent transmission of velocity or effort commands throughout the whole production
time e.g., in a 125 Hz frequency [38] in the case of UR5.

2.5 Robot cell optimization
The work [39] is a survey of the numerous papers and approaches in the industry aiming
to optimize the operation of a robot cell. The purpose of such optimization is to minimize
or maximize at least one of the following objective functions: 1) minimizing the execution
time, respectively maximizing the robot productivity, considering that the relative speeds
of the actuator’s elements are limited constructively; 2) minimizing the energy consump-
tion or mechanical work necessary for execution, leading to a reduction of the mechanical
stresses in actuators and on the robot structure and obtaining smooth trajectories, easy to
follow; 3) minimizing the maximum power required for operating the robot; 4) minimiz-
ing the maximum actuation forces and moments. The most common optimization criteria
used in the literature are: minimum time trajectory planning; minimum energy trajectory
planning or minimum actuation effort and minimum jerk trajectory planning.

20

The remote control of a robotic cell via wireless is a new type of challenge that the
above optimization strategies miss yet.

2.6 Competitions
A frontier method to push research groups to their limits is to organize competitions.
DARPA, a research group in the U.S. Department of Defense, announced the DARPA
Robotics Challenge with a US $2 million dollar prize for the team that could produce a
first responder robot performing a set of tasks required in an emergency situation.

During the DARPA Trials of December 2013, a restrictive device was inserted into the
control computers of each competing team and the computer that formed the ’brain’ of
the robot.

The intent of the network degradation was to roughly simulate the kind of less than
perfect communications that might exist during those kinds of emergency or disaster
situations in which these robots would be deployed.

The restrictive device –, a Mini Maxwell network emulator from InterWorking Labs –
alternated between a ’good’ mode and a ’bad’ mode of network communication, every sixty
seconds. ’Good’ minutes permitted communications at a rate of 1 Mbps (in either direction)
and a base delay of 50 ms (in each direction.) ’Bad’ minutes permitted communications
at a rate of 100 Kbps (in either direction) and a base delay of 500 ms (in each direction.)

At the end of each minute, a transition occurred from bad-to-good or good-to-bad. A
side effect of these transitions was packet-reordering.

The impact of network degradation on the teams was larger than expected. Informal
feedback suggested that several teams did not realize that rate limitation induces network
congestion or the ramifications of that congestion. Network congestion means the growth
of queues of packets awaiting their turn to pass through the congestion. And that queue
growth, in turn, means increases, often very substantial increases, in the time for a packet
to move from the sender to the receiver.

Nor did all teams appreciate the degree to which rate limitation induced congestion
would persist and gradually diminish over a period of time after the constraint has been
removed.

Several teams made use of the TCP transport protocol without understanding how
TCP tries to be a good network citizen by detecting congestion and reacting to that
congestion by reducing its transmission rate to avoid adding to the congestion and mak-
ing things worse. Other teams used the UDP transport protocol: these teams seemed to
sometimes be surprised by the reordering of packets.

However, several of those teams quickly made changes to their software to handle out
of sequence packets. At least one team switched from a TCP based transport to a UDP

21

based transport mid-way through the trials.
Some teams appeared to have been surprised by the behavior of the network protocol

stacks, particularly TCP stacks, in the operating systems underneath their code. [40] The
above experiences would have been probably less striking to the teams if they were able
to test the network characteristics changes in a simulation environment.

A recent competition Agile Robotics for Industrial Automation Competition
(ARIAC)[2] targets industrial related applications. ARIAC is a simulation-based
competition is designed to promote agility in industrial robot systems by utilizing
the latest advances in artificial intelligence and robot planning. There is no tricky
network environment in the ARIAC competition. The industry relies on robust low-delay
protocols. That is why it is an interesting aspect to see what happens when those
links and protocols are exchanged. For instance, what are the possible performance
improvements or degradation when the control or sensors data processing in an industrial
scenario are moved further away from the actuators and how different protocols would
fare under various network characteristics?

2.7 Choosing simulators
In both of the above competitions, Gazebo provided the simulation infrastructure. In a
more structured study about the level of how wide-spread the various simulator tools were
done in [41]. It showed that Gazebo emerges as the best choice among the open-source
projects.

Authors of [42] describes some early experiments in linking the OMNET++ simulation
framework with the ROS middleware for interacting with robot simulators. The motivation
is to use well-tested and realistic robot simulators for handling all the robot navigation
tasks (obstacle avoidance, navigation towards goals, velocity, etc.) and to only get the
robot’s position in OMNET++ for interacting with the deployed sensors. My goal is
the other way around, to introduce the effects of the network simulator into the robot
simulator.

22

Chapter 3

Proposed method

In this chapter I present the CPS that I address to measure, and the Gazebo plugin that I
wrote extending the capabilities of the current Gazebo robotic simulator and turn it into
a CPS system. This chapter is from my previous Students’ Conference Paper[6]

3.1 Overview
The CPS that I address to measure is a robotic arm (UR5 [8]) controlled remotely with
velocity commands. The main goal is to measure Quality of Control (QoC) e.g., cumulated
PID error during trajectory execution, cumulated difference in joint space between the
executed and calculated trajectories, etc. related KPIs during various network conditions
in this setup.

Figure 3.1. shows the use case with real hardware that I target to simulate in
Gazebo. The left side of the figure (Hardware) shows the same data elements described
in ros_control (1.4.2), whereas the right side of the picture (Realization) uses the same
colors for the boxes to describe a specific realization. In the specific case, the UR5 can be
accessed via TCP/IP ports 50001 to send command messages and port 50003 to read the
robot status messages. The lemniscatepublisher (described in 1.4.4) generates a sparse
trajectory consisting of a few waypoints in Cartesian space, then it uses the C++ interface
of MoveIt to plan the joint space trajectories. Then using MoveIt it sends trajectories to
a type of ros_control controller: joint_trajectory_controller (1.4.2.2)(shown in yellow)
which at the start of simulation was started by the controller manager.

The ur_modern_driver [38] implements the hardware resource interface layer by sim-
ply copying the velocity control packets to the proper TCP sockets. A middle node can
be deployed between the robot driver and the robot (green) that can alter the network
characteristics.

A trivia approach to setup the above architecture in a simulation environment is pro-

23

ublisher

and run trajectory

g C++ interface

Figure 3.1: Target architecture to be realized with simulator

vided by Universal Robots. Universal Robots simulator software [43] is a java software
package that makes it possible to create and run programs on a simulated robot, with
some limitations. The limitation of this solution is that it is capable to simulate only one
robot. There is no chance to integrate the robot in complex environments as you can
configure with Gazebo e.g., interacting with other mechanical elements in the workspace,
check collisions with the environment, etc.

Another approach is that the system can be simulated using Gazebo. The
gazebo_ros_control package (1.4.5.1) can be used instead of the ur_modern_driver to
implement the interfaces of the hardware resource layer, alternative to sending robot
control messages using TCP, the DefaultRobotHWSim (part of gazebo_ros_control)
simply sets the simulated velocities directly, using the Gazebo plugin API. This approach
unfortunately can not simulate the network, because DefaultRobotHWSim lacks the

24

ability to do so.
In the next chapter I propose a method using a custom RobotHWSim plugin that

replaces DefaultRobotHWSim which can simulate changing network characteristics.

3.2 Introducing methods to simulate the effects
of network characteristics

One practical way to introduce latency in current ROS deployment is via defining network
namespaces among nodes. For a certain namespace, custom delay, jitter, drop characteris-
tics can be defined with tc like in [44]. The main issue is that there is a MoveIt node as an
individual process, but the whole joint controller-actuator control loop is realized within
Gazebo as one other process, because gazebo_ros_control and the whole ros_control in-
frastructure uses pluginlib (described in 1.3.12) to load each other. The only topic based
communication happens between the MoveIt and the monolith Gazebo process. So this
kind of solution cannot be applied to the problem.

We have to dig deeper in the architecture of Gazebo and realize the CPS system
within. To keep the architecture modular, I decided to implement the proposed method
as a Gazebo plugin. While the setup most of these plugins fits well in the current Gazebo
architecture and can be done via configuration files, there are still patches needed to be
applied on core functional elements of the Gazebo code.

Figure 3.2. shows the architecture of the proposed method. The coloring of the figure
follows the way in 1.4.2. Green represents new added plugins, modules, functionalities.
The system works the following way.

As a first step, a launch file (1.4.7) that triggers the whole simulation to run uploads
a parameter on the ROS parameter server (1.3.3). This parameter defines the specific
latency plugin that will be loaded.

The launch file initiates the Gazebo simulation. Gazebo loads the gazebo_ros_control
plugin (left most blue box) whose main purpose is to interface with the ROS controller
manager. The RobotHWSim interface defined by this module needed a small tweak. In its
readsim() function, instead of passing the time as value, I modified it to pass by reference
allowing modification by plugins.

Gazebo loads configuration files from the common.gazebo.xacro file in which it is
specified that mycustom RobotHWSimLatency plugin should be loaded instead of the
DefaultRobotHWSim plugin. My RobotHWSimLatency plugin is the extension of the
DefaultRobotHWSim plugin with modified read and write functions and with the task
to load a custom latency plugin. The latency plugin to be loaded is the one that was
uploaded the parameter server. My RobotHWSimLatency plugin also had to modify
the way it handled communicated with hardware_interfaces. The original code of

25

DefaultRobotHWSim passed the address of the variables that stored the state of joints to
the hardware_interface layer during startup, there was no modification of these variables
during the working of the plugin that changed the addres, so the hardware_interface
layer could always access them. In my system, the variables are written in a way that the
pointers that used to point to them are now invalid, so the hardware_interface layer can
not access them anymore. I modified the code to pass addresses of separate variables to
hardware_interface — that are separate from the variables I modify — and copy these
modifications to them in a way that does not invalidate their addresses.

The current latency plugin options include a) the default latency plugin that practically
returns the messages with no introduced latency and b) the simple queue latency plugin.
This latter has a configurable size of the queue to store the messages in them. In each
simulation tick (100Hz), the messages are shifted one position forward in the queue and
when they reach the end of the queue they are provided to Gazebo as the currently
valid message. In the same way, an interface plugin to cooperate with external network
simulators like ns3 [45] can be also implemented here.

The detailed working mechanism and call sequence of the plugin system is the following:

1. The gazebo_ros_control update function fires.

2. It calls the readSim function; the call is executed in the RobotHWSimLatency plugin
which implements the readSim function.

3. The states are read from the gazebo internals.

4. The delayStates function is called in the Simple queue latency plugin that saves the
state messages in a buffer.

5. The previously stored and now delayed states are returned from the Simple queue
latency plugin to the RobotHWSimLatency plugin.

6. readSim writes the joint_states to the JointStateInterface of the Harware Resource
Interface Layer.

7. gazebo_ros_control calls the update function of the controler_manager.

8. The joint_trajectory_controller in the controller manager executes the calculation
of the PID-controllers.

9. The joint_trajectory_controller writes the calculated velocity commands to the Ve-
locityInterface of the Hardware Resource Interface Layer.

10. The gazebo_ros_control calls the writeSim function which is implemented in the
RobotHWSimLatency plugin.

26

11. The writeSim function reads the joint commands from the VelocityInterface of the
Hardware Resource Interface Layer.

12. The writeSim function calls the delayCommands function of the Simple queue la-
tency plugin.

13. The previously stored and now delayed commands are returned from the Simple
queue latency plugin to the RobotHWSimLatency plugin.

14. The writeSim function writes the joint commands to the gazebo internals.

15. Gazebo calculates the internal states of the simulation loop.

16. A new simulation loop is started by calling the update function of the
gazebo_ros_control plugin.

The source code of my plugin is available on Github [46].

27

Gazebo
Simulator

hardware_interface::RobotHWSim
Provides Position, Velocity, and Effort Interfaces between Gazebo and ros_control

DefaultRobotHWSim

Robot description

Gazebo Plugin
gazebo_ros_control

Loads RobotHW interfaces via pluginlib

1. Gazebo plugin update()

Hardware Resource

Interface Layer

RobotHWSimLatency plugin

(extends defaultRobotHWSim)
Capable to load latency plugins

Default latency plugin
Returns the msgs with 0 latency

Simple queue latency plugin
Stores the msg for configured period in a buffer then

returns

4. call

Init system with setup.launch:
<rosparam param="/robot_hw_sim_latency/

latency_plugin">latency_plugin_simple_que

ue/SimpleQueueLatencyPlugin</rosparam>

Controller Manager
Loads, unloads, and calls updates to controllers

Joint State Interface

JointStateInterface

Joint Command Interface

VelocityInterface

Process #1

Controller:

joint_state_publisher

Publishes /joint_states topic for robot_publisher

Controller:

joint_trajectory_controller

Send a trajectory from MoveIT

8. PID Loops

7. controller_manager::update()

ROS Interface

joint_trajectory

ROS Interface

joint_states

7.
9. write velocity

ns3 plugin

Parameter server

Is latency plugin set?

No

Yes
Load latency plugin

delayStates()

delayCommands()
Msg buffer

implement readSim(&)

implement writeSim()

12. call

2. call readSim(&)

Load /urdf/common.gazebo.xacro:
<robotSimType>robot_hw_sim_latency/

RobotHWSimLatency</robotSimType>

load plugin

1. Gazebo

plugin

update()

10. call writeSim()

7.

Gazebo

internals

10. call

3. read states

15. Calculate

internal states

load

16.

robot_hw_sim interface.h

redefine readSim(&)

define writeSim()

include

include

Simulation
Data flow

Processing step

2. call

5. return delayed_states

6. write joint states

11. read joint commands

7. call controller_manager->update()

1.

13. return delayed_commands

14. write joint commands

Figure 3.2: Gazebo architecture

28

Chapter 4

Measurements

In this chapter I evaluate the effects of the simulated network latency — added to the
CPS by my plugin — on various KPIs and on a solution to ARIAC. The first part is from
my previous Students’ Conference Paper[6].

4.1 Evaluation with standard robot KPIs
I evaluated my proposed method on various Key Performance Indicators (KPIs).
The most straightforward evaluation is the visual inspection of the robotic arm
movement. For this purpose, I loaded the robot model into rviz and used a ros package
(hector_trajectory_server 1.4.8) to visualize the path the end of the arm took.

Figure 4.1. is a screenshot from rviz which shows the visualized trajectories. The bot-
tom left corner of the picture is the starting point of the robotic arm. It passes through the
waypoints one-by-one from number 1 to 5. The black lines are the trajectories, while the
lines with various colors show the effect of introducing latency into the system. The cyan
color shows the reference scenario with 0 latency. In all other cases, I introduced latency
in the system in both the command writing and status reading direction and rerun the
trajectory planning and execution scenario. The upper right corner of the picture shows a
magnified part around the trajectories.

The trajectories were planned with the RRTConnectkConfigDefault planner
MoveIt plugin [47] which utilizes Rapidly-exploring Random Trees therefore — being
non-deterministic because of its random nature —, it sometimes created wildly differing
trajectories making it difficult to compare them.

The visualized trajectories show the expected behavior of the system. Increasing the
latency increases the deviance from the original trajectories. It should be noted that the
planned trajectories are straight in Cartesian-space. To move along these trajectories the
robotic arm needs complex movements in the joint-space, thus even the movement in a

29

Figure 4.1: The visualized trajectories

straight line causes deviation from the reference trajectory. In the other way around, if the
planned trajectories were straight in the joint-space, I would see a movement in circles by
the robotic arm, but the effect of the latency would be more negligible.

Figure 4.2. shows the velocity commands sent to the robot in the function of time. Ana-
lyzing the velocity commands in such details reveals that comparing the different scenarios
are not straightforward for several reasons. One is that the planning is non-deterministic,
and a slight difference during the initialization of the gazebo environment ends up with
some different planned trajectories. The execution of the trajectories depends on the en-
vironment status as well, and it is never the same. Joint 4 shows the expected effect on
the velocity commands levels as well, thus the induced latency causes increased velocity
command deviation compared to the reference scenario. It is also a clear observation that
around 10 ms latency, the system starts to get unstable. This is likely due to the various
updating frequency parameters that Gazebo employs to run the simulation. It needs defi-
nitely further work to make it clear how the introduced latency affects other characteristics
or behaviors, such as the robot commanding frequency, whole physical simulation steps,
internal message timings.

Figure 4.3. shows the cumulated difference of the velocity commands comparing to
the reference scenario. The 2 ms latency scenario is the closest to the reference as it is
expected. In the first 3 sec of the trajectory execution the 5 ms scenario is closer to the

30

 1.5

 1

 0.5

0

0.5

1

1.5

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 2 !! elbow

0!ms

2!ms

5!ms

7!ms

10!ms

 1

 0.8

 0.6

 0.4

 0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 0 !! shoulder pan

0!ms

2!ms

5!ms

7!ms

10!ms

 0.001

 0.0005

0

0.0005

0.001

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 1 !! shoulder lift

0!ms

2!ms

5!ms

7!ms

10!ms

 2

 1.5

 1

 0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 3 !! wrist 1

0!ms

2!ms

5!ms

7!ms

10!ms

 2

 1.5

 1

 0.5

0

0.5

1

1.5

2

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 4 !! wrist 2

0!ms

2!ms

5!ms

7!ms

10!ms

 1.5

 1

 0.5

0

0.5

1

1.5

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 5 !! wrist 3

0!ms

2!ms

5!ms

7!ms

10!ms

Figure 4.2: The velocity commands sent to the robot

reference than the 7 ms scenario, but around 6 sec, the 5 ms scenario collects so much
error that shows bigger deviation than the 7 ms scenario. The 10 ms scenario has another
magnitude of error, and thus cut off the diagram after the first second.

This shows that my proposed plugin can be used to measure the effect of network
latency on several different KPIs. It also shows that between around 10 ms of delay, the
control scheme I used (or its parameters) can not be used to accurately control the arm.

4.2 Evaluation using ARIAC
The ARIAC competition involved a simulation of the infrastructure where teams would
have to complete a set of tasks. The simulation infrastructure was built on top of Gazebo [1]

31

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8

cu
m
u
la
te
d

 v
e
lo
ci
ty

 d
if
fe
re
n
ce

 t
o

 0
 m

s

la
te
n
cy

 c
a
se

 [
ra
d
/s
]

time [s]

2 ms

5 ms

7 ms

10 ms

Figure 4.3: The cumulated difference of the velocity commands comparing to
the reference scenario

and ROS [10]. The tasks were made to comprehend four specific areas: failure identification
and recovery, automated planning, fixtureless environment, and plug and play robots. The
tasks or challenges were explored with different simulation trials, which represent the
configuration of the simulated environment as well as its goals. ARIAC tasks revolve
around collecting a set of part pieces and placing them on a tray to be sent for assembling.
A task during execution can be seen in Figure 4.4.. It shows the robot arm picking up a
part from a conveyor belt.

The assessment during the competition and final round was performed with respect to
cost and performance metrics. The cost metrics take into account the cost of the system,
which was based on the types of sensors used, and the average system costs of all the teams.
The performance metrics were based on completeness and efficiency. The completeness
metric checked if all the requirements of the competition were completed perfectly i.e., all
part pieces from all kits and orders were sent to assembling in the correct position and
orientation. The efficiency metric was calculated by using time factors.

The solution [48] I used for solving the ARIAC 2017 competition is available together
with the ARIAC evaluation scripts.

To fulfill the ARIAC tasks, this control system is designed to have three major actuator
components:

• Order scheduler: orchestrate the execution of orders and its kits. Essentially, it de-
cides on a set of actions based on the status of the working environment

32

Figure 4.4: ARIAC environment during the execution of a task

• Arm and gripper actions: provides a set of abstract robot actions (e.g., move tooltip
up, go next to AGV) and access to gripper control (activate and deactivate)

• Inverse kinematics solutions: receives the desired position and compute the set of
joint values to achieve the required configuration.

I evaluated my proposed method on various Key Performance Indicators (KPIs). The
KPIs are partially the ones defined in the ARIAC scoring and some basic KPIs usually
applied for evaluating CPS systems.

The KPI metrics of the ARIAC are shown at the end of each trial run and can be
summarized as follows:

• Total Score (TS) - number of parts correctly delivered;

• Total Process Time (TPT) - period between the time the first order is issued

33

and the end of the trial;

• Part Travel Time (PTT) - amount of time that part pieces travel attached to the
robot’s gripper;

The Total Score is a compound of presence of required parts, correct position and
orientation, and bonus points when all parts are present. In other words, the competition
gives: one point for each required part piece placed on the tray; another point for each
part piece with correct position and orientation; and finally additional n points when all
required parts are present, where n is the number of expected part pieces. As an example,
if a kit requires two piston rods and three gaskets, considering that all parts are placed
on the tray but one was slightly wrongly positioned, it would receive 14 out of the 15
maximum possible.

Interestingly, there are some scenarios designed to be harder or even impossible to
complete. For instance, scenarios that heavily rely on a low number of spare belt parts
require faster execution, otherwise one would miss them. Moreover, there are scenarios
designed with required part pieces that are just not available in the correct number. In
the latter case, while the theoretical maximum score would be three times the number of
parts, in practice the best score will be a bit lower.

The CPS-related KPI applied here is the cumulated difference of the velocity com-
mands.

4.2.1 ARIAC, no latency scenario
Table 4.1. presents the results of the ARIAC performance metrics when running the solver
with the 15 final trial configuration files.

It can be seen that not all the scores reached the maximum values. The highest priority
of the used solution was to complete all tasks successfully, still scenarios F6, F7 purposely
were designed to be impossible to complete. These configurations did not provide all
pieces required to complete the trials. The idea was to test the planning robustness in
such unexpected situation.

I consider the values here as a baseline for the evaluation of other scenarios. The
solution finished second in the ARIAC competition, with the highest Total Score and
Processing Time (but using a few more sensors than the winner to accomplish that),
which means that it is a best-in-class state-of-the-art solution.

4.2.2 ARIAC with fixed bidirectional network delay (15 ms)
I introduced latency in the system in both the command writing and status reading direc-
tion and rerun the competition solver on the final configurations. Increasing the latency

34

Trial

N
o
 l
a
te

n
cy

1
5
 m

s

N
o
 l
a
te

n
cy

1
5
 m

s

N
o
 l
a
te

n
cy

1
5
 m

s

N
o
 l
a
te

n
cy

1
5
 m

s

F 1 6 6 6 9.1 9.9 20.9 22.8 1751 1618
F 2 9 9 8 20.3 25.3 54.8 61.8 3034 5681
F 3 18 18 14 26.3 26.9 79.7 62.8 4807 3672
F 4 24 24 22 36.2 37.4 113.7 115.8 5980 7205
F 5 24 24 15 53.8 34.0 166.8 114.8 7963 10190
F 6 30 21 16 46.9 52.9 131.8 144.5 12324 8707
F 7 30 23 17 49.4 49.1 135.8 123.8 8882 7215
F 8 18 18 7 33.7 120.2 93.8 210.8 5888 12896
F 9 6 6 6 9.4 9.4 27.8 26.8 4528 2078

F 10 15 15 12 22.4 24.6 60.8 65.7 5044 4095
F 11 24 24 20 43.0 42.9 116.8 103.8 6572 6533
F 12 15 15 15 20.9 21.6 111.8 113.8 5593 7428
F 13 18 18 17 27.4 30.3 62.8 66.8 4619 3969
F 14 24 24 8 34.8 110.4 124.8 171.9 6893 6196
F 15 24 24 23 36.3 39.9 152.8 113.8 7798 7280

Sum 285 269 206 469.9 634.7 1454.4 1519.6 91678 94764
Ratio [%] 77 135 104 103

Max
score

Total
Score

Part Travel
Time [sec]

Total Proc. Time
[sec]

Cumulated
velocity error

[rad/s]

Table 4.1: Evaluation results for the ARIAC final trials in various network environments

increases the deviance from the original trajectories as seen in section 4.1.
The introduced latency (15 ms in both directions) is high enough to start to deteriorate

the total scores, but still makes the solver to execute the whole task without goal reach
error. A lower value in the processing time compared to the baseline is usually due to the
early return with unsuccessful execution of the whole task. We can see that the cumulated
velocity error increases with 3% (to 103%) on average if the delay is increased. An increase
in the velocity error translates into additional time required to reach the goal trajectory,
which can be observed in the 4% (to 104%) increase in total proc. time and 35% (to 135%)
increase in the part travel time. Note that the goal tolerances are increased and the PID
values are also tuned to make the solver achieve as high total score as possible. In this way
the velocity errors cannot be directly compared with the baseline scenario. The average
of the total scores decreases to 77% of the baseline score, which is a sign that the final
positioning of the parts becomes more and more inaccurate.

35

4.2.3 Cumulated ARIAC KPIs in the function of network
latency

Figure 4.5 shows the ARIAC KPIs of simulated scenarios (i.e., control of the simulated
robot over multiple simulated network latency). I cumulated the TS, TPT and PTT for the
15 final trial runs for the default local controller setup(i.e., no extra delay in the control
loop). These cumulated values are considered as baseline (0 delay, 100% TS/TPT/PTT
simulation) for the evaluation of other scenarios. The first observation that I can make is
that the PTT values (see Figure 4.5c) are in the same magnitude in both the DT and the
fully simulated case.

Analyzing the TS values (see Figure 4.5a) I can deduce that the simulated robot is
robust to the simulated latency, because the score does not get reduced until after 20 ms
of delay. The slight decrease of scores in function of increasing delay is the cumulated error
of the gripper trying to pick up objects and place them to the AGVs. The accuracy of
positioning begins to be sensitive to delay after 20 ms of latency. When TS drops to 0,
it means that the robot arm could not position itself accurately enough within the goal
tolerance to proceed further and the execution time outs after a while. This drop happens
at 36 ms delay with the simulated scenario.

Considering the TPT and PTT values (see Figure 4.5b,4.5c) I can see similar deterio-
ration of the KPIs as the TS after 20 ms of delay. The TPT grows to 170% of the baseline
at 35 ms of latency. The PTT does not show that much increase in the values, because it
only counts the time the gripper is engaged and when the delay is high, the worse accuracy
of the arm causes it to fail grabbing parts.

36

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

delay [ms]

sc
o

re
 r

a
tio

co

m
p

a
re

d
 to

 s
im

 n
o

 d
e

la
y

ca
se

(a) score ratio

0 5 10 15 20 25 30 35 40
90

100

110

120

130

140

150

160

170

180

delay [ms]

to
ta

l p
ro

ce
ss

in
g

 ti
m

e
 r

a
tio

co

m
p

a
re

d
 to

 s
im

 n
o

 d
e

la
y

ca
se

(b) total processing time ratio

0 5 10 15 20 25 30 35 40
90

95

100

105

110

115

delay [ms]

p
a

rt
 tr

a
ve

l t
im

e
 r

a
tio

co

m
p

a
re

d
 to

 s
im

 n
o

 d
e

la
y

ca
se

(c) part travel time ratio

Figure 4.5: ARIAC KPIs in the function of network latency
(no delay is the baseline)

37

Chapter 5

Remote control of a complex
platform

5.1 Overview
In the past few years, there has been an increasing demand from customers towards the
manufacturing industry to provide more and more customized products [49]. Personal-
ized production is one of the key motivations for manufacturers to start leveraging new
technologies that enable to increase, for instance, the flexibility of production lines. High
flexibility in general is needed to realize cost effective and customized production by sup-
porting fast reconfiguration of production lines, as well as, easy application development.
In typical industry applications, data packets are time-sensitive and require high reliability
end-to-end. In the paradigm of Industry 4.0, the introduction of wireless technologies that
ensure high reliability and low latency can help to address the flexibility needs. Ultra-
reliable and low-latency communications (URLLC) is a new service category that will
be supported in the 5G New Radio (NR). Application of such a wireless technology in
manufacturing enables, for instance, to reduce cabling in a factory. In case the industrial
applications are connected over wireless, there is a need to analyze the effect of network
delay which is not an issue with cable-based connectivity. One of the most challenging
applications in which the importance and capabilities of URLLC can be demonstrated is
the low-level remote control of servos.

When introducing higher collaboration and adaptation capabilities into industrial ap-
plications such as robot arms and robot cell control, collaboration of a massive amount of
servos may be required, making the use case even more challenging. In this demonstration
a wide spectrum of the challenges that arise in a Industry 4.0 robot cell (e.g., servo control,
collaboration, etc.) are demonstrated in a visually engaging way.

A hexapod can be considered as six 3 degree of freedom (DOF) robotic arms connected

38

Figure 5.1: Hexapod in the Gazebo simulator

via a base link (see Figure 5.1.). In this demo, all servos at the 18 joints are controlled
separately from a computer residing a wireless network hop away from the hexapod. This
way the hexapod proves to be a good choice for visualizing the effect of synchronized
collaboration that results in stable center position, while any glitch in the system results
in jiggling of the platform.

5.2 Demonstrated features

5.2.1 Introducing network effects into hexapod control
The Robot Operating System (ROS) package of a hexapod robot [50] provided a regular
position controller for the 18 joints (6 legs, 3 joints per leg). The control of the actuators are
deployed locally on the robot i.e., there is no sensor or actuator delay at all. To introduce
the possibility of analyzing the effect of networking into the system, the first task is to
lift the deployment into a cyber-physical system (CPS). I used my plugin to introduce the
network effects into this system.

To properly control the robot it needs to exchange information, such as velocity com-
mands and encoder state information, between the controller and the arm in high fre-
quency. The baseline system is completely steady after initialization of the simulation.
Unless very small, the introduced network delay in both sensing and actuating processes
results in jiggling of the whole robotic platform even at stationary status. The jiggling

39

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rotation difference [degrees]

C
D

F

1 ms

5 ms

Figure 5.2: CDF of the orientation differences for various scenarios

results in small jumps of the robot resulting in deterring from the original orientation.
When the hexapod starts to walk, the jiggling occurs during the movement as well and
the robot ends up at different position compared to the baseline.

5.3 Effects of latency
The benefit of a low latency control loop provided by URLLC is clearly demonstrated
even with visual inspection at the steady state of the robot. The robot jiggles in case
of any higher than 1 ms control loop latency. In case of moving the clear indication
of the benefit of low latency control loop can be seen on the trajectory of the robot
(e.g., during a simple forward movement command). In case of low latency control loops,
the trajectory is straight, while introducing latency in the control loop causes drifting away
from the straight line. I quantified this drift by extracting the robot base link position and
orientation around z axis from the simulation in every 0.1 sec. I calculated the differences
of the orientation time series and applied a 1 sec moving average smoothing on the time
series as the hexapod has a natural periodic waving in the base link. Bottom of Figure 5.2.
shows the CDFs of the above time series for the 2 scenarios. I can see that in case of low
latency control loop, the robot has a normal distribution with a mean around 0. In the
5 ms case, the distribution is shifted into the positive direction causing an drift of the
robot.

40

Chapter 6

Conclusion and further work

In this paper, I proposed a plugin [46] to extend the capabilities of the current Gazebo
robotic simulator and turn it into a CPS system. The realization of the proposed method is
a plugin to Gazebo. The plugin fits into the modular design of Gazebo. As of the interface
is available, it eases to test various network effects on the robot control. Based on my
preliminary evaluations it does affect the QoC KPIs of the robot control.

I also utilized my proposed plugin in the ARIAC environment to examine the effect of
latency on a more complex behaviour.

And in order to further test my plugin I also used it in a different scenario in which I
added latency to a hexapod robot platform and evaluated its performance.

Further work
There are multiple avenues for further research:

• Evaluate the working mechanism of the system with the help of the ROS, gazebo
and research communities.

• Interface the tool with various radio network simulators and see the effects of the
radio on the QoC KPIs.

• Investigate how the system behaves, when taking into account not only the network
link characteristics but also the protocols for message exchanging.

• Comparing the level of similarity of the simulation to real robot HW controlled in a
real radio network.

41

Bibliography

[1] Gazebo Robot Simulator. http://gazebosim.org.

[2] Agile Robotics for Industrial Automation Competition (ARIAC). http://

gazebosim.org/ariac, 2017.

[3] G. Szabó, S. Rácz, J. Petö, and R. R. Aschoff. On the effects of the variations in
network characteristics in cyber physical systems. In Proc., 31st European Simulation
and Modelling Conference, Oct. 2017.

[4] Geza Szabo, Sándor Rácz, Norbert Reider, Jozsef Peto, and Rafael Roque Aschoff.
Quality of control-aware resource allocation in 5g wireless access networks. In 19th
IEEE International Symposium on "A World of Wireless, Mobile and Multimedia
Networks", WoWMoM 2018, Chania, Greece, June 12-15, 2018, pages 1–6, 2018.

[5] Geza Szabo, Sándor Rácz, Norbert Reider, and József Pető. Qoc-aware remote con-
trol of a hexapod platform. In ACM SIGCOMM Conference Industry Demo Track,
SIGCOMM ’18, 2018.

[6] József Pető. Analysing The Effects of Network Characteristics in Cyber Physical
Systems, Students’ Conference BME VIK. https://tdk.bme.hu/VIK/ViewPaper/

Halozati-karakterisztikak-valtozasainak.

[7] Gazebo Tutorial. http://gazebosim.org/tutorials?tut=guided_b1.

[8] UR5 Robot Arm. https://www.universal-robots.com/products/ur5-robot/.

[9] URScript. https://www.universal-robots.com/how-tos-and-faqs/how-to/

ur-how-tos/ethernet-socket-communication-via-urscript-15678, 2017.

[10] Main website of Robot Operating System. http://www.ros.org/.

[11] Introduction to ROS, ROS Wiki. http://wiki.ros.org/ROS/Introduction.

[12] Is ROS for me? http://www.ros.org/is-ros-for-me/.

[13] ROS Packages, ROS Wiki. http://wiki.ros.org/Packages.

42

http://gazebosim.org
http://gazebosim.org/ariac
http://gazebosim.org/ariac
https://tdk.bme.hu/VIK/ViewPaper/Halozati-karakterisztikak-valtozasainak
https://tdk.bme.hu/VIK/ViewPaper/Halozati-karakterisztikak-valtozasainak
http://gazebosim.org/tutorials?tut=guided_b1
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/ethernet-socket-communication-via-urscript-15678
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/ethernet-socket-communication-via-urscript-15678
http://www.ros.org/
http://wiki.ros.org/ROS/Introduction
http://www.ros.org/is-ros-for-me/
http://wiki.ros.org/Packages

[14] ROS Master, ROS Wiki. http://wiki.ros.org/Master.

[15] ROS Technical Overview, ROS Wiki. http://wiki.ros.org/ROS/

TechnicalOverview.

[16] ROS Parameter Server, ROS Wiki. http://wiki.ros.org/Master.

[17] ROS Nodes, ROS Wiki. http://wiki.ros.org/Nodes.

[18] ROS Messages, ROS Wiki. http://wiki.ros.org/Messages.

[19] ROS Standard messages, ROS Wiki. http://wiki.ros.org/std_msgs.

[20] ROS Common Messages, ROS Wiki. http://wiki.ros.org/common_msgs.

[21] ROS Services, ROS Wiki. http://wiki.ros.org/Services.

[22] ROS actionlib package, ROS Wiki. http://wiki.ros.org/actionlib.

[23] ROS Coordinate Frames, ROS Wiki. http://wiki.ros.org/tf.

[24] ROS URDF, ROS Wiki. http://wiki.ros.org/urdf.

[25] ROS Plugins, ROS Wiki. http://wiki.ros.org/pluginlib.

[26] ROS universal_robot package, ROS Wiki. http://wiki.ros.org/universal_

robot.

[27] ROS ros_control packages, ROS Wiki. http://wiki.ros.org/ros_control.

[28] MoveIt. http://moveit.ros.org/.

[29] ROS gazebo_ros_pkgs package, ROS Wiki. http://wiki.ros.org/gazebo_ros_

pkgs.

[30] ROS xacro package, ROS Wiki. http://wiki.ros.org/xacro.

[31] ROS roslaunch package, ROS Wiki. http://wiki.ros.org/roslaunch.

[32] L. Monostori. Cyber-physical production systems: Roots, expectations and r&d chal-
lenges. PROCEDIA CIRP, 17:9–13, 2014.

[33] L. Ribeiro. Cyber-physical production systems’ design challenges. In 2017 IEEE 26th
International Symposium on Industrial Electronics (ISIE), pages 1189–1194, June
2017.

[34] Ahmed Joubair. What are Accuracy and Repeatability in
Industrial Robots? https://blog.robotiq.com/bid/72766/

What-are-Accuracy-and-Repeatability-in-Industrial-Robots.

43

http://wiki.ros.org/Master
http://wiki.ros.org/ROS/Technical Overview
http://wiki.ros.org/ROS/Technical Overview
http://wiki.ros.org/Master
http://wiki.ros.org/Nodes
http://wiki.ros.org/Messages
http://wiki.ros.org/std_msgs
http://wiki.ros.org/common_msgs
http://wiki.ros.org/Services
http://wiki.ros.org/actionlib
http://wiki.ros.org/tf
http://wiki.ros.org/urdf
http://wiki.ros.org/pluginlib
http://wiki.ros.org/universal_robot
http://wiki.ros.org/universal_robot
http://wiki.ros.org/ros_control
http://moveit.ros.org/
http://wiki.ros.org/gazebo_ros_pkgs
http://wiki.ros.org/gazebo_ros_pkgs
http://wiki.ros.org/xacro
http://wiki.ros.org/roslaunch
https://blog.robotiq.com/bid/72766/What-are-Accuracy-and-Repeatability-in-Industrial-Robots
https://blog.robotiq.com/bid/72766/What-are-Accuracy-and-Repeatability-in-Industrial-Robots

[35] ISO: International Organization for Standardization. 1998. Manipulating industrial
robots – Performance criteria and related test methods, NF EN ISO9283 , 1998.

[36] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth, F. Golatowski, D. Timmer-
mann, and J. Schacht. Survey on real-time communication via ethernet in industrial
automation environments. In Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA), pages 1–8, Sept 2014.

[37] Mehdi Bennis, Mérouane Debbah, and H. Vincent Poor. Ultra-reliable and low-
latency wireless communication: Tail, risk and scale. CoRR, abs/1801.01270, 2018.

[38] Thomas Timm Andersen. Optimizing the universal robots ros driver. Technical
report, Technical University of Denmark, Department of Electrical Engineering, 2015.

[39] M. Ratiu and M. A. Prichici. Industrial robot trajectory optimization- a review.
MATEC Web Conf., 126:02005, 2017.

[40] Network Emulation at the DARPA Robotics Challenge. https://iwl.com/

white-papers/network-emulation-at-the-darpa-robotics-challenge/, 2017.

[41] S. Ivaldi, J. Peters, V. Padois, and F. Nori. Tools for simulating humanoid robot
dynamics: A survey based on user feedback. In 2014 IEEE-RAS International Con-
ference on Humanoid Robots, pages 842–849, Nov 2014.

[42] How to link OMNET++/Castalia with ROS. http://cpham.perso.univ-pau.fr/

WSN-MODEL/castalia-ros.html, 2017.

[43] URSim. https://www.universal-robots.com/download/?option=28545#

section16632, 2017.

[44] Network Namespaces and Traffic Control. http://gigawhitlocks.com/2014/08/

18/network-namespaces.html, 2014.

[45] ns-3. https://www.nsnam.org/, 2017.

[46] Gazebo latency plugin. https://github.com/Ericsson/robot_hw_sim_latency,
2017.

[47] J. J. Kuffner Jr. and S. M. Lavalle. Rrt-connect: An efficient approach to single-
query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages
995–1001, 2000.

[48] FIGMENT’s team solution for the ARIAC competition. https://github.com/

Figment-Gprt/ariac-competition, 2017.

44

https://iwl.com/white-papers/network-emulation-at-the-darpa-robotics-challenge/
https://iwl.com/white-papers/network-emulation-at-the-darpa-robotics-challenge/
http://cpham.perso.univ-pau.fr/WSN-MODEL/castalia-ros.html
http://cpham.perso.univ-pau.fr/WSN-MODEL/castalia-ros.html
https://www.universal-robots.com/download/?option=28545#section16632
https://www.universal-robots.com/download/?option=28545#section16632
http://gigawhitlocks.com/2014/08/18/network-namespaces.html
http://gigawhitlocks.com/2014/08/18/network-namespaces.html
https://www.nsnam.org/
https://github.com/Ericsson/robot_hw_sim_latency
https://github.com/Figment-Gprt/ariac-competition
https://github.com/Figment-Gprt/ariac-competition

[49] Yoram Koren, The Global Manufacturing Revolution: Product-Process-Business In-
tegration and Reconfigurable Systems, John Wiley & Sons, Inc., 2010.

[50] ROS package providing Gazebo simulation of the Phantom X Hexapod robot. https:

//github.com/HumaRobotics/phantomx_gazebo, 2018.

45

https://github.com/HumaRobotics/phantomx_gazebo
https://github.com/HumaRobotics/phantomx_gazebo

	Összefoglaló
	Abstract
	Introduction
	Background
	Gazebo
	UR5 Robot arm
	Robot Operating System
	Packages
	Master
	Parameter Server
	Nodes
	Messages
	Standard and common messages
	Topics
	Services
	Actions
	Coordinate frames
	Unified Robot Description Format
	Plugins

	Used ROS packages
	universal_robot package
	ros_control package
	moveit package
	lemniscatepublisher package
	gazebo_ros_pkgs package
	xacro package
	roslaunch package
	hector_trajectory_server package

	Motivation and related work
	Cyber Physical System (CPS)
	Cyber-Physical Production Systems CPPS
	Traditional characteristics of robots
	Network aspects
	Robot cell optimization
	Competitions
	Choosing simulators

	Proposed method
	Overview
	Introducing methods to simulate the effects of network characteristics

	Measurements
	Evaluation with standard robot KPIs
	Evaluation using ARIAC
	ARIAC, no latency scenario
	ARIAC with fixed bidirectional network delay (15 ms)
	Cumulated ARIAC KPIs in the function of network latency

	Remote control of a complex platform
	Overview
	Demonstrated features
	Introducing network effects into hexapod control

	Effects of latency

	Conclusion and further work
	Bibliography

