
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Introducing The Effects of The Variations
of Network Characteristics Into Cyber

Physical Systems

Students’ Scientific Conference paper

Author Department Supervisor Industrial Supervisor
József Pető Dr. Sándor Molnár Dr. Géza Szabó

Associate Professor Ericsson Ltd.

October 27, 2017

Contents

Összefoglaló 3

Abstract 4

Introduction 5

1 Background 7
1.1 Cyber physical systems . 7
1.2 Gazebo . 8
1.3 UR5 Robot arm . 9
1.4 Robot Operating System . 9
1.5 ROS Concepts . 10

1.5.1 ROS Filesystem Structure . 10
1.5.2 ROS Computation Graph . 13
1.5.3 Other important ROS concepts . 17
1.5.4 ROS Community . 19
1.5.5 ROS Names . 19
1.5.6 Package Resource Names . 20

1.6 Used ROS packages . 20
1.6.1 universal_robot package . 20
1.6.2 ros_control package . 21
1.6.3 moveit package . 22
1.6.4 lemniscatepublisher package . 22
1.6.5 gazebo_ros_pkgs package . 23
1.6.6 xacro package . 24
1.6.7 roslaunch package . 24
1.6.8 hector_trajectory_server package 24

2 Motivation and related work 25
2.1 Competitions . 25

1

2.2 Choosing simulators . 26

3 Proposed method 28
3.1 Overview . 28
3.2 Introducing methods to simulate the effects of network characteristics . . . 30

4 Measurements 34
4.1 Evaluation . 34

5 Conclusion and further work 38

Bibliography 39

2

Összefoglaló

A robotszimuláció egy nélkülözhetetlen eszköz minden robotikával foglalkozó esz-
köztárában. Egy jól megtervezett szimulátor segítségével gyorsan tudunk algoritmusokat
tesztelni, robotokat tervezni, regressziós teszteket végezni, és MI rendszereket tanítani
valósághoz hasonló környezetekben.

Egy népszerű robotszimulátorral, a Gazeboval képesek vagyunk pontosan és
hatékonyan szimulálni robotokat komplex beltéri és kültéri környezetben. Felhasználóinak
erős fizikai motort, kiváló minőségű grafikát és kényelmesen használható programozói
és felhasználói interfészeket nyújt. Ezenkívül nyílt forráskódú és ingyenes, a körülötte
létrejött közösség aktívan fejleszti.

A Gazebo-ból azonban hiányzik a vezérlési késleletetés modellezése, ami egy teljes
értékű kiberfizikai szimulátorrá tenné.

A dolgozatomban bemutatok egy általam írt Gazebo plugint (https://github.

com/Ericsson/robot_hw_sim_latency), amivel képessé teszem a Gazebo-t arra, hogy
késleltesse a belső vezérlő- és állapotüzeneteit, így lehetővé teszi a következő mérést.

A mérendő kiberfizikai rendszer egy 6 szabadságfokú robotkar (UR5), amit távolról
vezérelnek a Robot Operációs Rendszer (ROS) használatával.

A cél a robotkarvezérlés minőségének mérése egy szimulált környezetben különböző
hálózati feltételek mellett.

Mérési eredményeim azt mutatják, hogy a szimulált robotkar viselkedésére a hálózati
késletetésnek olyan hatása van, amit előzetesen feltételezni lehetett, de további vizsgálatok
szükségesek.

3

https://github.com/Ericsson/robot_hw_sim_latency
https://github.com/Ericsson/robot_hw_sim_latency

Abstract

Robot simulation is an essential tool in every roboticist’s toolbox. A well-designed simula-
tor makes it possible to rapidly test algorithms, design robots, perform regression testing,
and train AI system using realistic scenarios.

A popular robotic simulator, Gazebo, offers the ability to accurately and efficiently
simulate populations of robots in complex indoor and outdoor environments. It provides a
robust physics engine, high-quality graphics, and convenient programmatic and graphical
interfaces. Gazebo is open source and free with support from the community.

However, Gazebo lacks the feature of simulating the effects of control latency that
would make it a fully-fledged cyber-physical system (CPS) simulator.

The CPS that I address to measure is a 6-DOF robotic arm (UR5) controlled remotely
with velocity commands using Robot Operating System (ROS).

The main goal is to measure Quality of Control (QoC) related KPIs during various
network conditions in a simulated environment.

I propose a Gazebo plugin (https://github.com/Ericsson/robot_hw_sim_latency)
to make the above measurement feasible by making Gazebo capable to delay internal
control and status messages.

My preliminary evaluation shows that there is certainly an effect on the behavior of
the robotic arm with the introduced network latency in line with our expectations, but a
more detailed further study is needed.

4

https://github.com/Ericsson/robot_hw_sim_latency

Introduction

Designing cyber-physical systems (CPS) is challenging because of a) the vast network and
information technology environment connected with physical elements involves multiple
domains such as controls, communication, analog and digital physics, and logic and b) the
interaction with the physical world varies widely based on time and situation.

To ease the design of CPS, robot simulators have been used by robotics experts. A
well-designed simulator makes it possible to rapidly test algorithms, design robots, perform
regression testing, and train AI system using realistic scenarios.

There are various alternatives, sets of tools that make it possible to put together a
CPS simulation environment, but it is very difficult, needs a lot of interfacing with various
tools and impractical.

Gazebo was chosen as the target robot simulation environment that I intend to extend
with new functionalities to make it capable of being applied as a CPS.

The main challenge with the design principle of Gazebo is that the control of actuators
is deployed and run practically locally to the actuators. In this case, there is no need to
consider the effects of a non-ideal link between the actuator and the controller. Considering
the CPS context, as controllers are moved away from actuators, it becomes natural and
even necessary to analyze the effects of the network link between them.

Gazebo has a plugin system that can be used to provide an interface to my modular
network simulation environment.

The goal of this paper is to show the design principles of the network plugin and
provide a tool for further research in CPS.

Structure of the paper
The paper consist of 5 chapters.

Chapter 1 Background In this chapter I describe the basics of cyber-physical systems,
the Gazebo robot simulation environment, Robot Operating System, its various concepts,
and the UR5 robot.

5

Chapter 2 Motivation and related work I describe the motivations behind this
paper, and present related works.

Chapter 3 Proposed method I present the CPS that I address to measure, and
the Gazebo plugin that I wrote extending the capabilities of the current Gazebo robotic
simulator and turn it into a CPS system.

Chapter 3 Measurements I evaluate the effects of the simulated network latency —
added to the CPS by my plugin — on various KPIs.

Chapter 4 Conclusion and further work Finally, I conclude this paper and describe
avenues for further research.

6

Chapter 1

Background

In this chapter I describe the basics of cyber-physical systems, the Gazebo robot simulation
environment, Robot Operating System, its various concepts, and the UR5 robot.

1.1 Cyber physical systems
A cyber-physical system (CPS) is a mechanism controlled or monitored by computer-based
algorithms, tightly integrated with the internet and its users. Unlike more traditional em-
bedded systems, a full-fledged CPS is typically designed as a network of interacting el-
ements with physical input and output instead of as standalone devices. For tasks that
require more resources than are locally available, one common mechanism is that nodes
utilize the network connectivity to link the sensor or actuator part of the CPS with either
a server or a cloud environment, enabling complex processing tasks that are impossible
under local resource constraints. Currently, one of the main focus of cloud based robotics
is to speed up the processing of input data collected from many sensors with big data com-
putation. Another approach is to collect various knowledge bases in centralized locations
e.g., possible grasping poses of various 3D objects.

Another aspect of cloud robotics is the way in which the robot control related func-
tionality is moved into the cloud. The simplest way is to run the original robot specific
task in a cloud without significant changes in it. For example, in a Virtual Machine (VM),
in a container, or in a virtualized Programmable Logic Controller (PLC). Another way
is to update, modify or rewrite the code of robot related tasks to utilize existing services
or APIs of the cloud. The third way is to extend the cloud platform itself with new fea-
tures that make robot control more efficient. These new robot-aware cloud features can
be explicitly used by robot related tasks (i.e. new robot-aware services or APIs offered by
cloud) or can be transparent solutions (e.g., improving the service provided by the cloud
to meet the requirement of the robot control).

7

The requirements of a widely applicable CPS are the following:

• Should be modular in terms of interfacing with the CPS

• Should be modular in terms of interfacing with network simulator, realization envi-
ronment

• Should be able to cooperate with widely applied environments

1.2 Gazebo
Gazebo[1] was chosen as the target robot simulation environment that I intend to ex-
tend with new functionalities to make it capable of being applied as a CPS. Gazebo is a
3D dynamic simulator with the ability to accurately and efficiently simulate populations
of robots in complex indoor and outdoor environments. While similar to game engines,
Gazebo offers physics simulation at a much higher degree of fidelity, a rich library of robot
models and environments, a suite of sensors, and interfaces for both users and programs.
Gazebo is free and widely used among robotic experts.

Typical uses of Gazebo include: testing robotics algorithms, designing robots, perform-
ing regression testing with realistic scenarios.

Figure 1.1: Gazebo simulation of the UR5 robot arm

8

1.3 UR5 Robot arm
The UR5[2] robot arm designed by Universal Robots has 6 degrees of freedom with its 6
rotating joints. Its payload can be up to 5 kg. It has a reach of 850 mm. It is controlled by
sending text commands to it using a TCP/IP connection. The commands are in a special
script language called URScript[3]. By sending commands you can control the robot’s
Cartesian position, velocity, joint angle and velocity.

1.4 Robot Operating System
Robot Operating System (ROS)[4] is used to control the movement of the robot arm.
ROS is an open-source, meta-operating system for robot software development. It pro-
vides standard services that would be expected from an operating system, including hard-
ware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple computers.

ROS is not a realtime framework, though it is possible to integrate ROS with realtime
code.

ROS was designed to be as distributed and modular as possible, so that users can use
as much or as little of ROS as they desire. The distributed nature of ROS also fosters a
large community of user-contributed packages that add a lot of value on top of the core
ROS system. At last count there were over 3,000 packages in the ROS ecosystem, and that
is only the ROS packages that people have taken the time to announce to the public. These
packages range in fidelity, covering everything from proof-of-concept implementations of
new algorithms to industrial-quality drivers and capabilities. The ROS user community
builds on top of a common infrastructure to provide an integration point that offers access
to hardware drivers, generic robot capabilities, development tools, useful external libraries,
and more.

The ROS framework is easy to implement in any modern programming language. It is
already implemented it in Python, C++, and Lisp, and there are experimental libraries
in Java and Lua.

ROS currently only runs on Unix-based platforms. Software for ROS is primarily tested
on Ubuntu and Mac OS X systems, though the ROS community has been contributing
support for Fedora, Gentoo, Arch Linux and other Linux platforms. [5, 6]

9

1.5 ROS Concepts
ROS has three levels of concepts: the Filesystem level, the Computation Graph level, and
the Community level. [7]

1.5.1 ROS Filesystem Structure
1.5.1.1 Packages

Packages[8] are the main unit for organizing software in ROS. In the file system they are
represented by folders which contain a package manifest.

A package may contain ROS runtime processes (nodes), a ROS-dependent library,
datasets, configuration files, or anything else that is usefully organized together. Packages
are the most atomic build item and release item in ROS. Meaning that the most granular
thing you can build and release is a package.

ROS packages tend to follow a common structure.

• include/package_name: C++ include headers

• msg/: Folder containing Message (msg) types

• src/package_name/: Source files, especially Python source that are exported to other
packages.

• srv/: Folder containing Service (srv) types

• scripts/: executable scripts

• CMakeLists.txt: CMake build file

• package.xml: Package manifest

• CHANGELOG.rst: Many packages will define a changelog which can be automati-
cally injected into binary packaging and into the wiki page for the package

1.5.1.2 Metapackages

Multiple packages can be organised in a special package, called metapackage to make
updating and handling multiple packages easier.[9]

A metapackage is used in a similar fashion as virtual packages are used in the debian
packaging world. A metapackage simply references one or more related packages which
are loosely grouped together.

The metapackage just contains a package manifest, which lists all its packages as
dependencies.

10

1.5.1.3 Package Manifests

The package manifest[10] is an XML file that must be included with any package’s root
folder.

Manifests provide metadata about a package, including its name, version, description,
license information, build and runtime dependencies, and other meta information like
exported packages.

Each package.xml file has the <package> tag as the root tag in the document.
There are a minimal set of tags that need to be nested within the <package> tag to

make the package manifest complete.

• <name> - The name of the package

• <version> - The version number of the package (required to be 3 dot-separated
integers)

• <description> - A description of the package contents

• <maintainer> - The name of the person(s) that is/are maintaining the package

• <license> - The software license(s) (e.g. GPL, BSD, ASL) under which the code is
released.

1.5.1.4 Message types

Message descriptions, stored in .msg files, define the data structures for messages sent in
ROS.[11]

This description makes it easy for ROS tools to automatically generate source code for
the message type in several target languages. Message descriptions are stored in .msg files
in the msg/ subdirectory of a ROS package.

There are two parts to a .msg file: fields and constants. Fields are the data that is sent
inside of the message. Constants define useful values that can be used to interpret those
fields (e.g. enum-like constants for an integer value). Each field consists of a type and a
name, separated by a space:

fieldtype1 fieldname1
fieldtype2 fieldname2
fieldtype3 fieldname3

For example:

int32 x
int32 y

11

The field name determines how a data value is referenced in the target language. For
example, a field called ’pan’ would be referenced as ’obj.pan’ in Python, assuming that
’obj’ is the variable storing the message.

Field types can be:

• a built-in type, such as "float32 pan" or "string name"

• names of Message descriptions defined on their own, such as "geome-
try_msgs/PoseStamped"

• fixed- or variable-length arrays (lists) of the above, such as "float32[] ranges" or
"Point32[10] points"

• the special Header type, which maps to std_msgs/Header

Table 1.1: Built-in types

Primitive Type Serialization C++ Python
bool unsigned 8-bit int uint8_t bool
int8 signed 8-bit int int8_t int
uint8 unsigned 8-bit int uint8_t int
int16 signed 16-bit int int16_t int
uint16 unsigned 16-bit int uint16_t int
int32 signed 32-bit int int32_t int
uint32 unsigned 32-bit int uint32_t int
int64 signed 64-bit int int64_t long
uint64 unsigned 64-bit int uint64_t long
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string (4) std::string str
time secs/nsecs unsigned 32-bit ints ros::Time rospy.Time
duration secs/nsecs signed 32-bit ints ros::Duration rospy.Duration

ROS provides the special Header type to provide a general mechanism for setting
frame IDs for libraries like tf. While Header is not a built-in type (it’s defined in
std_msgs/msg/Header.msg), it is commonly used and has special semantics. If the first
field of your .msg is "Header header", it will be resolved as std_msgs/Header.

Table 1.2: Array handling

Array Type Serialization C++ Python
fixed-length no extra serialization boost::array tuple (1)
variable-length uint32 length prefix std::vector tuple (1)
uint8[] see above as above bytes (2)
bool[] see above std::vector<uint8_t > list of bool

12

Header .msg:
\# Standard metadata for higher - level flow data types
\# sequence ID: consecutively increasing ID
uint32 seq
\#Two - integer timestamp that is expressed as:
\# * stamp .secs: seconds (stamp \ _secs) since epoch
\# * stamp . nsecs : nanoseconds since stamp \ _secs
\# time - handling sugar is provided by the client library
time stamp
\# Frame this data is associated with
string frame _id

1.5.1.5 Service types

Service descriptions, stored in a.srv files[12] , define the request and response data struc-
tures for services in ROS. A service description file consists of a request and a response
msg type, separated by ’—’. Any two .msg files concatenated together with a ’—’ are a
legal service description.

string str

string str

1.5.2 ROS Computation Graph
The ROS Computation Graph is a peer-to-peer network of processes (potentially dis-
tributed across machines) that are loosely coupled using the ROS communication infras-
tructure. The basic Computation Graph concepts of ROS are Master, nodes, Parameter
Server, messages, services, topics, and bags, all of which provide data to the Graph in
different ways.

1.5.2.1 Master

The ROS Master[13] acts as a nameservice in the ROS Computation Graph. It stores
topics and services registration information for ROS nodes. Nodes communicate with the
Master to report their registration information. As these nodes communicate with the
Master, they can receive information about other registered nodes and make connections
as appropriate. The Master will also make callbacks to these nodes when this registration
information changes, which allows nodes to dynamically create connections as new nodes
are run.

The Master is implemented via XMLRPC[14], which is a stateless, HTTP-based pro-
tocol. XMLRPC was chosen primarily because it is relatively lightweight, does not require
a stateful connection, and has wide availability in a variety of programming languages.

13

1.5.2.2 Parameter Server

The parameter server[15] is a shared, multi-variate dictionary that is accessible via net-
work APIs. It runs inside of the ROS Master. Nodes use this server to store and retrieve
parameters at runtime. As it is not designed for high-performance, it is best used for static,
non-binary data such as configuration parameters. It is meant to be globally viewable so
that tools can easily inspect the configuration state of the system and modify if necessary.

The Parameter Server API is also implemented via XMLRPC[14]. The use of XML-
RPC enables easy integration with the ROS client libraries and also provides greater
type flexibility when storing and retrieving data. The Parameter Server can store ba-
sic XML-RPC scalars (32-bit integers, booleans, strings, doubles, iso8601 dates), lists,
and base64-encoded binary data. The Parameter Server can also store dictionaries (i.e.
structs).

1.5.2.3 Nodes

Nodes[16] are processes that perform computation. ROS is designed to be modular at a
fine-grained scale; a robot control system usually comprises many nodes. Nodes are com-
bined together into a graph and communicate with one another using streaming topics,
RPC services, and the Parameter Server. The use of nodes in ROS provides several ben-
efits to the overall system. There is additional fault tolerance as crashes are isolated to
individual nodes. Code complexity is reduced in comparison to monolithic systems. Im-
plementation details are also well hidden as the nodes expose a minimal API to the rest
of the graph and alternate implementations, even in other programming languages, can
easily be substituted.

Every node has a URI, which corresponds to the host:port of the XMLRPC server it is
running[14]. The XMLRPC server is not used to transport topic or service data: instead, it
is used to negotiate connections with other nodes and also communicate with the Master.
This server is created and managed within the ROS client library, but is generally not
visible to the client library user. The XMLRPC server may be bound to any port on the
host where the node is running.

A ROS node is written with the use of a ROS client library, such as roscpp or rospy.

1.5.2.4 Messages

Nodes communicate with each other by publishing messages to topics[17]. A message is a
simple data structure, comprising typed fields. Standard primitive types (integer, floating
point, boolean, etc.) are supported, as are arrays of primitive types. Messages can include
arbitrarily nested structures and arrays.

They are defined by .msg files that are simple text files specifying the data structure of

14

a message. The ROS Client Libraries implement message generators that translate .msg
files into source code, so the messages are programming language independent.

1.5.2.5 Standard and common messages

The std_msgs package[18] contains wrappers for ROS primitive types, which are docu-
mented in the msg specification. It also contains the Empty type, which is useful for sending
an empty signal. However, these types do not convey semantic meaning about their con-
tents: every message simply has a field called "data". Therefore, while the messages in this
package can be useful for quick prototyping, they are not intended for "long-term" usage.

There is a special message type in std_msgs, the Header type which contains a sequence
number, a timestamp and a frame_id string that describes in which coordinate frame this
message is relative to. Message types ending in Stamped contain this type.

The common_msgs[19] package contains messages that are widely used by other
ROS packages. These includes messages for actions (actionlib_msgs), diagnostics (diag-
nostic_msgs), geometric primitives (geometry_msgs), robot navigation (nav_msgs), and
common sensors (sensor_msgs), such as laser range finders, cameras, point clouds.

1.5.2.6 Topics

Messages are routed via a transport system with publish / subscribe semantics[19]. A node
sends out a message by publishing it to a given topic. The topic is a name that is used
to identify the content of the message. A node that is interested in a certain kind of data
will subscribe to the appropriate topic. There may be multiple concurrent publishers and
subscribers for a single topic, and a single node may publish and/or subscribe to multiple
topics. In general, publishers and subscribers are not aware of each others’ existence. The
idea is to decouple the production of information from its consumption. Logically, one can
think of a topic as a strongly typed message bus. Each bus has a name, and anyone can
connect to the bus to send or receive messages as long as they are the right type.

ROS currently supports TCP/IP-based and UDP-based message transport. The
TCP/IP-based transport is known as TCPROS and streams message data over persistent
TCP/IP connections. TCPROS is the default transport used in ROS and is the only
transport that client libraries are required to support. The UDP-based transport, which
is known as UDPROS and is currently only supported in roscpp, separates messages into
UDP packets. UDPROS is a low-latency, lossy transport, so is best suited for tasks like
teleoperation.

For example, the sequence by which two nodes begin exchanging messages is:[14]

1. Publisher node registers with the Master by sending its name, XMLRPC host:port,
topic to publish to and topic type. [XMLRPC]

15

2. Subscriber node registers with the Master by sending its name, XMLRPC host:port,
topic to subscribe to and topic type. [XMLRPC]

3. Master notices that there is a node that is interested in a topic that has a publisher,
so it sends the XMLRPC address of the publisher to the subscriber. [XMLRPC]

4. The Subscriber sends a connection request to the XMLRPC address of the Publisher,
sending its name, the topic name and a list of supported protocols. [XMLRPC]

5. The Publisher responds with a selected protocol and the address which uses the
negotiated protocol. [XMLRPC]

6. The Subscriber connects to the address using the negotiated protocol.

7. The connection is established, data is sent from the publisher to the subscriber.

Figure 1.2: The sequence of connection

The Master keeps track of the publishers and subscribers of all topics, so when there
is a new publisher to a topic, it can notify the subscribers of that topic to connect to that
publisher. Also, when there is a new subscriber, it will send all publishers address to it so
it can connect to them all.

16

Consequently, the order in which the nodes are registered does not matter, simplifying
the startup processes of complicated computation graphs.

1.5.2.7 Services

The publish / subscribe model of topics is a very flexible communication paradigm, but
its many-to-many, one-way transport is not appropriate for request / reply interactions,
which are often required in a distributed system. Request / reply is done via services[20] ,
which are defined by a pair of message structures: one for the request and one for the reply.
A providing node offers a service under a name and a client uses the service by sending
the request message and awaiting the reply. ROS client libraries generally present this
interaction to the programmer as if it were a remote procedure call. Services are defined
using .srv files, which like .msg files are compiled into source code by a ROS client library.

1.5.2.8 Actions

In any large ROS based system, there are cases when someone would like to send a request
to a node to perform some task, and also receive a reply to the request. This can currently
be achieved via ROS services. In some cases, however, if the service takes a long time
to execute, the user might want the ability to cancel the request during execution or
get periodic feedback about how the request is progressing. The actionlib package[21]
provides tools to create servers that execute long-running goals that can be preempted. It
also provides a client interface in order to send requests to the server.

1.5.2.9 Bags

Bags[22] are a format for saving and playing back ROS message data. Bags are an im-
portant mechanism for storing data, such as sensor data, that can be difficult to collect
but is necessary for developing and testing algorithms. Bags are usually created using the
rosbag command-line tool.

1.5.3 Other important ROS concepts
1.5.3.1 Client Library

A ROS client library[23] is a collection of code that eases the job of the ROS programmer.
It takes many of the ROS concepts and makes them accessible via code. In general, these
libraries let you write ROS nodes, publish and subscribe to topics, write and call services,
and use the Parameter Server. Such a library can be implemented in any programming
language, though the current focus is on providing robust C++ and Python support. Main
client libraries are roscpp, rospy and roslisp.

17

1.5.3.2 Coordinate frames

In a robotic system there are multiple coordinate frames that change in time. Converting
vectors between them correctly is not simple.

tf[24] (and its successor tf2[24]) is a package that lets the user keep track of multiple
coordinate frames over time. tf maintains the relationship between coordinate frames in
a tree structure buffered in time, and lets the user transform points, vectors, etc between
any two coordinate frames at any desired point in time.

1.5.3.3 Unified Robot Description Format

The Unified Robot Description Format (URDF)[25] is an XML specification to describe
a robot. It is designed to be as general as possible, but obviously the specification cannot
describe all robot. Only tree structures can be represented, ruling out all parallel robots.

The specification assumes the robot consists of rigid links connected by joints; flexible
elements are not supported. The format can be used to specify the kinematic and dynamic
description of the robot, the visual representation of the robot and the collision model of
the robot.

1.5.3.4 Plugins

The pluginlib[26] package provides tools for writing and dynamically loading plugins using
the ROS build infrastructure. To work, these tools require plugin providers to register their
plugins in the package.xml of their package.

It is a C++ library for loading and unloading plugins from within a ROS package.
Plugins are dynamically loadable classes that are loaded from a runtime library (i.e. shared
object, dynamically linked library).

With pluginlib, one does not have to explicitly link their application against the library
containing the classes – instead pluginlib can open a library containing exported classes at
any point without the application having any prior awareness of the library or the header
file containing the class definition. Plugins are useful for extending/modifying application
behavior without needing the application source code.

1.5.3.5 catkin

ROS utilizes a custom build system, catkin[27], that extends CMake to manage depen-
dencies between packages.

The build system is needed, because ROS is a very large collection of loosely federated
packages. That means lots of independent packages which depend on each other, utilize
various programming languages, tools, and code organization conventions.

Because of this, the build process for a target in some package may be completely

18

Table 1.3: Recent distributions

Distribution Release Date End of Life Date
ROS Kinetic Kame May 23rd, 2016 May, 2021
ROS Jade Turtle May 23rd, 2015 May, 2017
ROS Indigo Igloo July 22nd, 2014 April, 2019

different from the way another target is built. catkin specifically tries to improve devel-
opment on large sets of related packages in a consistent and conventional way. In other
words, both rosbuild and now catkin aim to make building and running ROS code easier
by using tools and conventions to simplify the process. Efficiently sharing ROS-based code
would be more difficult without it.

1.5.4 ROS Community
There are ROS resources that enable separate communities to exchange software and
knowledge.

1.5.4.1 Distributions

ROS Distributions[28] are collections of versioned stacks that you can install. Distributions
play a similar role to Linux distributions: they make it easier to install a collection of
software, and they also maintain consistent versions across a set of software. There are 3
distributions that are maintained at the time of writing.

Indigo Igloo and Kinetic Kame are LTS (Long Term Support) distributions, meaning
they receive updates for 5 years. Jade Turtle, not being a LTS release, is only updated for
2 years.

1.5.4.2 ROS Wiki

The ROS community Wiki[29] is the main forum for documenting information about ROS.
Anyone can sign up for an account and contribute their own documentation, provide
corrections or updates, write tutorials, and more.

1.5.5 ROS Names
1.5.5.1 Graph Resource Names

Graph Resource Names[30] provide a hierarchical naming structure that is used for all
resources in a ROS Computation Graph, such as Nodes, Parameters, Topics, and Services.

They are an important mechanism in ROS for providing encapsulation. Each resource
is defined within a namespace, which it may share with many other resources. In gen-

19

eral, resources can create resources within their namespace and they can access resources
within or above their own namespace. Connections can be made between resources in dis-
tinct namespaces, but this is generally done by integration code above both namespaces.
This encapsulation isolates different portions of the system from accidentally grabbing the
wrong named resource or globally hijacking names.

Names are resolved relatively, so resources do not need to be aware of which namespace
they are in. This simplifies programming as nodes that work together can be written as if
they are all in the top-level namespace.

Any name within a ROS Node can be remapped when the node is launched at the
command-line.

1.5.6 Package Resource Names
Package Resource Names[30] are used in ROS with Filesystem-Level concepts to simplify
the process of referring to files and data types on disk. Package Resource Names are very
simple: they are just the name of the Package that the resource is in plus the name of the
resource. For example, the name "std_msgs/String" refers to the "String" message type in
the "std_msgs" Package.

1.6 Used ROS packages
To avoid reinventing the wheel, multiple ready made packages were used to create the
measurement setup.

1.6.1 universal_robot package
The universal_robot metapackage[31] contains packages that provide nodes written in
Python for communication with Universal’s industrial robot controllers and URDF models
for various robot arms (UR3, UR5, UR10).

1.6.1.1 ur_description

This package contains the model of the robot, the urdf and the mesh files describing the
robot links.

1.6.1.2 ur_gazebo

This package contains files that aid in starting a robot simulation

20

1.6.2 ros_control package
Ros_control[32] is a set of packages defining a set of interfaces, which are designed to
abstract away differences between robot hardware.

Figure 1.3: Overview of ros_control

There are controllers, which provide standard ROS interfaces (topic or service) in order
to allow communication between the robot and other ROS nodes using not robot-specific
topics, and messages. The controllers are not robot specific, but are using interfaces that
are C++ classes to read from and write to. These interfaces represent hardware elements
(e.g: VelocityJointInterface can represent a joint that can be controlled using velocity
commands). The interfaces basically shared memory where command can be written and
state can be read.

The controllers for example can use PID controllers to control the interfaces, that
way they can for example receive position commands from a topic, and through a PID
controller it can control a VelocityJointInterface.

The controller can also read from the interface, so it can publish information about
the hardware represented by the interface (e.g.: joint state, torque information).

21

The interfaces are implemented in a hardware specific driver extending hard-
ware_interface::RobotHW, that takes care of communicating with the robot using its
hardware specific communication method (serial, Modbus, Ethernet, USB).

The controllers and drivers are implemented using the pluginlib package to make them
dynamically loaded.

1.6.2.1 joint_state_controller/JointStateController

This is a controller that reads state data (joint angles, velocities, efforts) from JointStateIn-
terfaces, and publishes them in sensor_msgs/JointState messages to the /joint_state
topic.

1.6.2.2 velocity_controllers/JointTrajectoryController

It is a controller for executing joint-space trajectories on a group of joints. Trajectories are
specified as a set of waypoints to be reached at specific time instants, which the controller
attempts to execute as well as the mechanism allows. Waypoints consist of positions, and
optionally velocities and accelerations.

1.6.3 moveit package
MoveIt![33] is state of the art software that runs on top of ROS for mobile manipula-
tion, incorporating the latest advances in motion planning, manipulation, 3D perception,
kinematics, control and navigation. It provides an easy-to-use platform for developing ad-
vanced robotics applications, evaluating new robot designs and building integrated robotics
products for industrial, commercial, R&D and other domains.

MoveIt! is designed to work with many different types of planners, which is ideal for
benchmarking improved planners against previous methods.

The figure 1.4. shows the high-level system architecture for the primary ROS node
provided by MoveIt! called move_group. This node serves as an integrator: pulling all the
individual components together to provide a set of ROS actions and services for users to
use.

1.6.4 lemniscatepublisher package
This package originally written by me during my summer internship to publish an elab-
orate trajectory to the UR5 robot. First, it creates list of waypoints, then using MoveIt
it plans a precise trajectory — that can be used by the robot — with time parametrized
position and velocity data. Then, also using MoveIt, it sends this trajectory to the Joint-
TrajectoryController for execution. I modified this package, to publish — instead of an

22

Figure 1.4: Moveit architecture

elaborate trajectory — a simple trajectory between 3 points.

1.6.5 gazebo_ros_pkgs package
gazebo_ros_pkgs[34] is a set of ROS packages that provide the necessary interfaces to
simulate a robot in the Gazebo 3D rigid body simulator for robots. It integrates with ROS
using ROS messages, services and dynamic reconfigure.

It contains a converter that converts URDF into SDF which is the world description
language that Gazebo uses. This way there is no need to maintain two sets of models.

1.6.5.1 gazebo_ros_pkgs package

gazebo_ros_pkgs also contains the gazebo_ros_control package which is a ROS package
for integrating the ros_control controller architecture with the Gazebo simulator.

It provides a Gazebo plugin which instantiates a ros_control controller manager and
connects it to a Gazebo model. The Gazebo plugin also loads in the DefaultRobotH-
WSim plugin through pluginlib which creates the hardware_interfaces (position, velocity
or effort) for each joint as defined in the loaded URDF.

23

1.6.6 xacro package
The xacro package[35] is most useful when working with large XML documents such as
URDFs. Xacro is an XML macro language. With xacro, you can construct shorter and
more readable XML files by using macros that expand to larger XML expressions.

1.6.7 roslaunch package
roslaunch[36] is a tool for easily launching multiple ROS nodes locally and remotely via
SSH, as well as setting parameters on the Parameter Server. It includes options to auto-
matically respawn processes that have already died. roslaunch takes in one or more XML
configuration files (with the .launch extension) that specify the parameters to set and
nodes to launch, it is also possible to upload configurations to the Parameter Server from
YAML files.

1.6.8 hector_trajectory_server package
This package provides a node that saves tf based trajectory data given a target and and
source frame. The trajectory is saved internally as a nav_msgs/Path and can be obtained
using a service or topic.

24

Chapter 2

Motivation and related work

2.1 Competitions
A frontier method to push research groups to their limits is to organize competitions.
DARPA, a research group in the U.S. Department of Defense, announced the DARPA
Robotics Challenge with a US $2 million dollar prize for the team that could produce a
first responder robot performing a set of tasks required in an emergency situation.

During the DARPA Trials of December 2013, a restrictive device was inserted into the
control computers of each competing team and the computer that formed the ’brain’ of
the robot.

The intent of the network degradation was to roughly simulate the kind of less than
perfect communications that might exist during those kinds of emergency or disaster
situations in which these robots would be deployed.

The restrictive device –, a Mini Maxwell network emulator from InterWorking Labs –
alternated between a ’good’ mode and a ’bad’ mode of network communication, every sixty
seconds. ’Good’ minutes permitted communications at a rate of 1 Mbps (in either direction)
and a base delay of 50 ms (in each direction.) ’Bad’ minutes permitted communications
at a rate of 100 Kbps (in either direction) and a base delay of 500 ms (in each direction.)

At the end of each minute, a transition occurred from bad-to-good or good-to-bad. A
side effect of these transitions was packet-reordering.

The impact of network degradation on the teams was larger than expected. Informal
feedback suggested that several teams did not realize that rate limitation induces network
congestion or the ramifications of that congestion. Network congestion means the growth
of queues of packets awaiting their turn to pass through the congestion. And that queue
growth, in turn, means increases, often very substantial increases, in the time for a packet
to move from the sender to the receiver.

Nor did all teams appreciate the degree to which rate limitation induced congestion

25

would persist and gradually diminish over a period of time after the constraint has been
removed.

Several teams made use of the TCP transport protocol without understanding how
TCP tries to be a good network citizen by detecting congestion and reacting to that
congestion by reducing its transmission rate to avoid adding to the congestion and mak-
ing things worse. Other teams used the UDP transport protocol: these teams seemed to
sometimes be surprised by the reordering of packets.

However, several of those teams quickly made changes to their software to handle out
of sequence packets. At least one team switched from a TCP based transport to a UDP
based transport mid-way through the trials.

Some teams appeared to have been surprised by the behavior of the network protocol
stacks, particularly TCP stacks, in the operating systems underneath their code. [37] The
above experiences would have been probably less striking to the teams if they were able
to test the network characteristics changes in a simulation environment.

A recent competition Agile Robotics for Industrial Automation Competition
(ARIAC)[38] targets industrial related applications. ARIAC is a simulation-based
competition is designed to promote agility in industrial robot systems by utilizing
the latest advances in artificial intelligence and robot planning. There is no tricky
network environment in the ARIAC competition. The industry relies on robust low-delay
protocols. That is why it is an interesting aspect to see what happens when those
links and protocols are exchanged. For instance, what are the possible performance
improvements or degradation when the control or sensors data processing in an industrial
scenario are moved further away from the actuators and how different protocols would
fare under various network characteristics?

2.2 Choosing simulators
In both of the above competitions, Gazebo provided the simulation infrastructure. In a
more structured study about the level of how wide-spread the various simulator tools were
done in [39]. It showed that Gazebo emerges as the best choice among the open-source
projects.

Authors of [40] describes some early experiments in linking the OMNET++ simula-
tion framework with the ROS middleware for interacting with robot simulators in order
to get within the OMNET++ simulation a robot’s position which is accurately simulated
by an external simulator based on ROS. The motivation is to use well-tested and realistic
robot simulators for handling all the robot navigation tasks (obstacle avoidance, naviga-
tion towards goals, velocity, etc.) and to only get the robot’s position in OMNET++ for
interacting with the deployed sensors. My goal is the other way around, thus to introduce

26

the effects of the network simulator into the robot simulator.
The roadmap of Gazebo development shows that version 9.0 arriving at 2018-01-25

will have support to integrate network simulation (ns-3 or EMANE). Further information
regarding if this feature will be like [40] or the one I propose in this paper is not available
yet.

27

Chapter 3

Proposed method

In this chapter I present the CPS that I address to measure, and the Gazebo plugin that I
wrote extending the capabilities of the current Gazebo robotic simulator and turn it into
a CPS system.

3.1 Overview
The CPS that I address to measure is a robotic arm (UR5 [2]) controlled remotely with
velocity commands. The main goal is to measure Quality of Control (QoC) e.g., cumulated
PID error during trajectory execution, cumulated difference in joint space between the
executed and calculated trajectories, etc. related KPIs during various network conditions
in this setup.

Figure 3.1. shows the use case with real hardware that I target to simulate in
Gazebo. The left side of the figure (Hardware) shows the same data elements described
in ros_control (1.6.2), whereas the right side of the picture (Realization) uses the same
colors for the boxes to describe a specific realization. In the specific case, the UR5 can be
accessed via TCP/IP ports 50001 to send command messages and port 50003 to read the
robot status messages. The lemniscatepublisher (described in 1.6.4) generates a sparse
trajectory consisting of a few waypoints in Cartesian space, then it uses the C++ interface
of MoveIt to plan the joint space trajectories. Then using MoveIt it sends trajectories to
a type of ros_control controller: joint_trajectory_controller (1.6.2.2)(shown in yellow)
which at the start of simulation was started by the controller manager.

The ur_modern_driver [41] implements the hardware resource interface layer by sim-
ply copying the velocity control packets to the proper TCP sockets. A middle node can
be deployed between the robot driver and the robot (green) that can alter the network
characteristics.

A trivia approach to setup the above architecture in a simulation environment is pro-

28

ublisher

and run trajectory

g C++ interface

Figure 3.1: Target architecture to be realized with simulator

vided by Universal Robots. Universal Robots simulator software [42] is a java software
package that makes it possible to create and run programs on a simulated robot, with
some limitations. The limitation of this solution is that it is capable to simulate only one
robot. There is no chance to integrate the robot in complex environments as you can
configure with Gazebo e.g., interacting with other mechanical elements in the workspace,
check collisions with the environment, etc.

Another approach is that the system can be simulated using Gazebo. The
gazebo_ros_control package (1.6.5.1) can be used instead of the ur_modern_driver to
implement the interfaces of the hardware resource layer, alternative to sending robot
control messages using TCP, the DefaultRobotHWSim (part of gazebo_ros_control)
simply sets the simulated velocities directly, using the Gazebo plugin API. This approach
unfortunately can not simulate the network, because DefaultRobotHWSim lacks the

29

ability to do so.
In the next chapter I propose a method using a custom RobotHWSim plugin that

replaces DefaultRobotHWSim which can simulate changing network characteristics.

3.2 Introducing methods to simulate the effects
of network characteristics

In ROS, topics are named buses over which nodes exchange messages. ROS currently
supports TCP/IP-based and UDP-based message transport. ROS nodes are standalone
executables running with individual process IDs in the operating system. One practical
way to introduce latency in current ROS deployment is via defining network namespaces
among nodes. For a certain namespace, custom delay, jitter, drop characteristics can be
defined with tc like in [43]. The main issue is that there is a MoveIt node as an individual
process, but the whole joint controller-actuator control loop is realized within Gazebo as
one other process, because gazebo_ros_control and the whole ros_control infrastructure
uses pluginlib (described in 1.5.3.4 to load each other. The only topic based communication
happens between the MoveIt and the monolith Gazebo process. So this kind of solution
cannot be applied to the problem.

We have to dig deeper in the architecture of Gazebo and realize the CPS system
within. To keep the architecture modular, I decided to implement the proposed method
as a Gazebo plugin. While the setup most of these plugins fits well in the current Gazebo
architecture and can be done via configuration files, there are still patches needed to be
applied on core functional elements of the Gazebo code.

Figure 3.2. shows the architecture of the proposed method. The coloring of the figure
follows the way in 1.6.2. Green represents new added plugins, modules, functionalities.
The system works the following way.

As a first step, a launch file (1.6.7) that triggers the whole simulation to run setups
a parameter on the ROS parameter server (1.5.2.2). This parameter defines the specific
latency plugin that will be loaded.

The launch file initiates the Gazebo simulation. Gazebo loads the gazebo_ros_control
plugin (left most blue box) that main purpose is to interface with the ROS controller
manager. The RobotHWSim interface defined by this module needed a small tweak. In its
readsim() function, instead of passing the time as value, I modified it to pass by reference
allowing modification by plugins.

Gazebo loads configuration files from the common.gazebo.xacro file in which it is
specified that mycustom RobotHWSimLatency plugin should be loaded instead of the
DefaultRobotHWSim plugin. My RobotHWSimLatency plugin is the extension of the
DefaultRobotHWSim plugin with modified read and write functions and with the task

30

to load a custom latency plugin. The latency plugin to be loaded is the one that was
setup by the parameter server. My RobotHWSimLatency plugin also had to modify
the way it handled communicated with hardware_interfaces. The original code of
DefaultRobotHWSim passed the address of the variables that stored the state of joints to
the hardware_interface layer during startup, there was no modification of these variables
during the working of the plugin that changed the addres, so the hardware_interface
layer could always access them. In my system, the variables are written in a way that the
pointers that used to point to them are now invalid, so the hardware_interface layer can
not access them anymore. I modified the code to pass addresses of separate variables to
hardware_interface — that are separate from the variables I modify — and copy these
modifications to them in a way that does not invalidate their addresses.

The current latency plugin options include a) the default latency plugin that practically
returns the messages with no introduced latency and b) the simple queue latency plugin.
This later has a configurable size of the queue to store the messages in them. In each
simulation tick (100Hz), the messages are shifted one position forward in the queue and
when they reach the end of the queue they are provided to Gazebo as the currently
valid message. In the same way, an interface plugin to cooperate with external network
simulators like ns3 [44] can be also implemented here.

The detailed working mechanism and call sequence of the plugin system is the following:

1. The gazebo_ros_control update function fires

2. It calls the readSim function; the call is executed in the RobotHWSimLatency plugin
which implements the readSim function

3. The states are read from the gazebo internals

4. The delayStates function is called in the Simple queue latency plugin that saves the
state messages in a buffer

5. The previously stored and now delayed states are returned from the Simple queue
latency plugin to the RobotHWSimLatency plugin

6. readSim writes the joint_states to the JointStateInterface of the Harware Resource
Interface Layer

7. gazebo_ros_control calls the update function of the controler_manager

8. The joint_trajectory_controller in the controller manager executes the calculation
of the PID-controllers

9. The joint_trajectory_controller writes the calculated velocity commands to the Ve-
locityInterface of the Hardware Resource Interface Layer

31

10. The gazebo_ros_control calls the writeSim function which is implemented in the
RobotHWSimLatency plugin

11. The writeSim function reads the joint commands from the VelocityInterface of the
Hardware Resource Interface Layer

12. The writeSim function calls the delayCommands function of the Simple queue la-
tency plugin

13. The previously stored and now delayed commands are returned from the Simple
queue latency plugin to the RobotHWSimLatency plugin

14. The writeSim function writes the joint commands to the gazebo internals

15. Gazebo calculates the internal states of the simulation loop

16. A new simulation loop is started by calling the update function of the
gazebo_ros_control plugin

The source code of my plugin is available on Github [45].

32

Gazebo
Simulator

hardware_interface::RobotHWSim
Provides Position, Velocity, and Effort Interfaces between Gazebo and ros_control

DefaultRobotHWSim

Robot description

Gazebo Plugin
gazebo_ros_control

Loads RobotHW interfaces via pluginlib

1. Gazebo plugin update()

Hardware Resource

Interface Layer

RobotHWSimLatency plugin

(extends defaultRobotHWSim)
Capable to load latency plugins

Default latency plugin
Returns the msgs with 0 latency

Simple queue latency plugin
Stores the msg for configured period in a buffer then

returns

4. call

Init system with setup.launch:
<rosparam param="/robot_hw_sim_latency/

latency_plugin">latency_plugin_simple_que

ue/SimpleQueueLatencyPlugin</rosparam>

Controller Manager
Loads, unloads, and calls updates to controllers

Joint State Interface

JointStateInterface

Joint Command Interface

VelocityInterface

Process #1

Controller:

joint_state_publisher

Publishes /joint_states topic for robot_publisher

Controller:

joint_trajectory_controller

Send a trajectory from MoveIT

8. PID Loops

7. controller_manager::update()

ROS Interface

joint_trajectory

ROS Interface

joint_states

7.
9. write velocity

ns3 plugin

Parameter server

Is latency plugin set?

No

Yes
Load latency plugin

delayStates()

delayCommands()
Msg buffer

implement readSim(&)

implement writeSim()

12. call

2. call readSim(&)

Load /urdf/common.gazebo.xacro:
<robotSimType>robot_hw_sim_latency/

RobotHWSimLatency</robotSimType>

load plugin

1. Gazebo

plugin

update()

10. call writeSim()

7.

Gazebo

internals

10. call

3. read states

15. Calculate

internal states

load

16.

robot_hw_sim interface.h

redefine readSim(&)

define writeSim()

include

include

Simulation
Data flow

Processing step

2. call

5. return delayed_states

6. write joint states

11. read joint commands

7. call controller_manager->update()

1.

13. return delayed_commands

14. write joint commands

Figure 3.2: Gazebo architecture

33

Chapter 4

Measurements

In this chapter I evaluate the effects of the simulated network latency — added to the
CPS by my plugin — on various KPIs.

4.1 Evaluation
I evaluated my proposed method on various Key Performance Indicators (KPIs).
The most straightforward evaluation is the visual inspection of the robotic arm
movement. For this purpose, I loaded the robot model into rviz and used a ros package
(hector_trajectory_server 1.6.8) to visualize the path the end of the arm took.

Figure 4.1. is a screenshot from rviz which shows the visualized trajectories. The bot-
tom left corner of the picture is the starting point of the robotic arm. It passes through the
waypoints one-by-one from number 1 to 5. The black lines are the trajectories, while the
lines with various colors show the effect of introducing latency into the system. The cyan
color shows the reference scenario with 0 latency. In all other cases, I introduced latency
in the system in both the command writing and status reading direction and rerun the
trajectory planning and execution scenario. The upper right corner of the picture shows a
magnified part around the trajectories.

The trajectories were planned with the RRTConnectkConfigDefault planner
MoveIt plugin [46] which utilizes Rapidly-exploring Random Trees therefore — being
non-deterministic because of its random nature —, it sometimes created wildly differing
trajectories making it difficult to compare them.

The visualized trajectories show the expected behavior of the system. Increasing the
latency increases the deviance from the original trajectories. It should be noted that the
planned trajectories are straight in Cartesian-space. To move along these trajectories the
robotic arm needs complex movements in the joint-space, thus even the movement in a
straight line causes deviation from the reference trajectory. In the other way around, if the

34

Figure 4.1: The visualized trajectories

planned trajectories were straight in the joint-space, I would see a movement in circles by
the robotic arm, but the effect of the latency was more negligible.

Figure 4.2. shows the velocity commands sent to the robot in the function of time. Ana-
lyzing the velocity commands in such details reveals that comparing the different scenarios
are not straightforward for several reasons. One is that the planning is non-deterministic,
and a slight difference during the initialization of the gazebo environment ends up with
some different planned trajectory. The execution of the trajectories depends on the en-
vironment status as well, and it is never the same. Joint 4 shows the expected effect on
the velocity commands levels as well, thus the induced latency causes increased velocity
command deviation compared to the reference scenario. It is also a clear observation that
around 10 ms latency, the system starts to get unstable. This is likely due to the various
updating frequency parameters that Gazebo employs to run the simulation. It needs defi-
nitely further work to make it clear how the introduced latency affects other characteristics
or behaviors, such as the robot commanding frequency, whole physical simulation steps,
internal message timings.

Figure 4.3. shows the cumulated difference of the velocity commands comparing to
the reference scenario. The 2 ms latency scenario is the closest to the reference as it is
expected. In the first 3 sec of the trajectory execution the 5 ms scenario is closer to the
reference than the 7 ms scenario, but around 6 sec, the 5 ms scenario collects so much

35

 1.5

 1

 0.5

0

0.5

1

1.5

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 2 !! elbow

0!ms

2!ms

5!ms

7!ms

10!ms

 1

 0.8

 0.6

 0.4

 0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 0 !! shoulder pan

0!ms

2!ms

5!ms

7!ms

10!ms

 0.001

 0.0005

0

0.0005

0.001

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 1 !! shoulder lift

0!ms

2!ms

5!ms

7!ms

10!ms

 2

 1.5

 1

 0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 3 !! wrist 1

0!ms

2!ms

5!ms

7!ms

10!ms

 2

 1.5

 1

 0.5

0

0.5

1

1.5

2

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 4 !! wrist 2

0!ms

2!ms

5!ms

7!ms

10!ms

 1.5

 1

 0.5

0

0.5

1

1.5

0 2 4 6 8

v
e
lo
ci
ty

 [
ra
d
/s
]

time [s]

Joint 5 !! wrist 3

0!ms

2!ms

5!ms

7!ms

10!ms

Figure 4.2: The velocity commands sent to the robot

error that shows bigger deviation than the 7 sec scenario. The 10 sec scenario has another
magnitude of error, and thus cut off the diagram after the first second.

36

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8

cu
m
u
la
te
d

 v
e
lo
ci
ty

 d
if
fe
re
n
ce

 t
o

 0
 m

s

la
te
n
cy

 c
a
se

 [
ra
d
/s
]

time [s]

2 ms

5 ms

7 ms

10 ms

Figure 4.3: The cumulated difference of the velocity commands comparing to
the reference scenario

37

Chapter 5

Conclusion and further work

In this paper, I proposed a plugin [45] to extend the capabilities of the current Gazebo
robotic simulator and turn it into a CPS system. The realization of the proposed method is
a plugin to Gazebo. The plugin fits into the modular design of Gazebo. As of the interface
is available, it eases to test various network effects on the robot control. Based on my
preliminary evaluations it does affect the QoC KPIs of the robot control.

Further work
The evaluation showed behavior which is expected and reasonable, but also cases which
show that the whole system needs fine-tuning.

There are multiple avenues for further research:

• Evaluate the working mechanism of the system with the help of the ROS, gazebo
and research communities.

• More extensive measurements with the tool.

• Interface the tool with various radio network simulators and see the effects of the
radio on the QoC KPIs.

• Investigate how the system behaves, when taking into account not only the network
link characteristics but also the protocols for message exchanging.

• Comparing the level of similarity of the simulation to real robot HW controlled in a
real radio network.

• Taking part in the ARIAC competition to evaluate if the tool can provide any ad-
vantage in any of the use cases of the competition.

38

Bibliography

[1] Gazebo Robot Simulator. http://gazebosim.org.

[2] UR5 Robot Arm. https://www.universal-robots.com/products/ur5-robot/.

[3] URScript. https://www.universal-robots.com/how-tos-and-faqs/how-to/

ur-how-tos/ethernet-socket-communication-via-urscript-15678/â??, 2017.

[4] Main website of Robot Operating System. http://www.ros.org/.

[5] Introduction to ROS, ROS Wiki. http://wiki.ros.org/ROS/Introduction.

[6] Is ROS for me? http://www.ros.org/is-ros-for-me/.

[7] ROS Concepts, ROS Wiki. http://wiki.ros.org/ROS/Concepts.

[8] ROS Packages, ROS Wiki. http://wiki.ros.org/Packages.

[9] ROS Metapackages, ROS Wiki. http://wiki.ros.org/Metapackages.

[10] ROS Package Manifest, ROS Wiki. http://wiki.ros.org/Manifest.

[11] ROS Msg Files, ROS Wiki. http://wiki.ros.org/msg.

[12] ROS Msg Files, ROS Wiki. http://wiki.ros.org/srv.

[13] ROS Master, ROS Wiki. http://wiki.ros.org/Master.

[14] ROS Technical Overview, ROS Wiki. http://wiki.ros.org/ROS/

TechnicalOverview.

[15] ROS Parameter Server, ROS Wiki. http://wiki.ros.org/Master.

[16] ROS Nodes, ROS Wiki. http://wiki.ros.org/Nodes.

[17] ROS Messages, ROS Wiki. http://wiki.ros.org/Messages.

[18] ROS Standard messages, ROS Wiki. http://wiki.ros.org/std_msgs.

39

http://gazebosim.org
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/ethernet-socket-communication-via-urscript-15678/�??
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/ethernet-socket-communication-via-urscript-15678/�??
http://www.ros.org/
http://wiki.ros.org/ROS/Introduction
http://www.ros.org/is-ros-for-me/
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Packages
http://wiki.ros.org/Metapackages
http://wiki.ros.org/Manifest
http://wiki.ros.org/msg
http://wiki.ros.org/srv
http://wiki.ros.org/Master
http://wiki.ros.org/ROS/Technical Overview
http://wiki.ros.org/ROS/Technical Overview
http://wiki.ros.org/Master
http://wiki.ros.org/Nodes
http://wiki.ros.org/Messages
http://wiki.ros.org/std_msgs

[19] ROS Common Messages, ROS Wiki. http://wiki.ros.org/common_msgs.

[20] ROS Services, ROS Wiki. http://wiki.ros.org/Services.

[21] ROS actionlib package, ROS Wiki. http://wiki.ros.org/actionlib.

[22] ROS Bags, ROS Wiki. http://wiki.ros.org/Bags.

[23] ROS Client Libraries, ROS Wiki. http://wiki.ros.org/ClientLibraries.

[24] ROS Coordinate Frames, ROS Wiki. http://wiki.ros.org/tf.

[25] ROS URDF, ROS Wiki. http://wiki.ros.org/urdf.

[26] ROS Plugins, ROS Wiki. http://wiki.ros.org/pluginlib.

[27] ROS catkin Build system, ROS Wiki. http://wiki.ros.org/catkin.

[28] ROS Distributions, ROS Wiki. http://wiki.ros.org/Distributions.

[29] ROS Wiki, ROS Wiki. http://wiki.ros.org/.

[30] ROS Names, ROS Wiki. http://wiki.ros.org/Names.

[31] ROS universal_robot package, ROS Wiki. http://wiki.ros.org/universal_

robot.

[32] ROS ros_control packages, ROS Wiki. http://wiki.ros.org/ros_control.

[33] MoveIt. http://moveit.ros.org/.

[34] ROS gazebo_ros_pkgs package, ROS Wiki. http://wiki.ros.org/gazebo_ros_

pkgs.

[35] ROS xacro package, ROS Wiki. http://wiki.ros.org/xacro.

[36] ROS roslaunch package, ROS Wiki. http://wiki.ros.org/roslaunch.

[37] Network Emulation at the DARPA Robotics Challenge. https://iwl.com/

white-papers/network-emulation-at-the-darpa-robotics-challenge/, 2017.

[38] Agile Robotics for Industrial Automation Competition (ARIAC). http://

gazebosim.org/ariac, 2017.

[39] S. Ivaldi, J. Peters, V. Padois, and F. Nori. Tools for simulating humanoid robot
dynamics: A survey based on user feedback. In 2014 IEEE-RAS International Con-
ference on Humanoid Robots, pages 842–849, Nov 2014.

40

http://wiki.ros.org/common_msgs
http://wiki.ros.org/Services
http://wiki.ros.org/actionlib
http://wiki.ros.org/Bags
http://wiki.ros.org/Client Libraries
http://wiki.ros.org/tf
http://wiki.ros.org/urdf
http://wiki.ros.org/pluginlib
http://wiki.ros.org/catkin
http://wiki.ros.org/Distributions
http://wiki.ros.org/
http://wiki.ros.org/Names
http://wiki.ros.org/universal_robot
http://wiki.ros.org/universal_robot
http://wiki.ros.org/ros_control
http://moveit.ros.org/
http://wiki.ros.org/gazebo_ros_pkgs
http://wiki.ros.org/gazebo_ros_pkgs
http://wiki.ros.org/xacro
http://wiki.ros.org/roslaunch
https://iwl.com/white-papers/network-emulation-at-the-darpa-robotics-challenge/
https://iwl.com/white-papers/network-emulation-at-the-darpa-robotics-challenge/
http://gazebosim.org/ariac
http://gazebosim.org/ariac

[40] How to link OMNET++/Castalia with ROS. http://cpham.perso.univ-pau.fr/

WSN-MODEL/castalia-ros.html, 2017.

[41] Thomas Timm Andersen. Optimizing the universal robots ros driver. Technical
report, Technical University of Denmark, Department of Electrical Engineering, 2015.

[42] URSim. https://www.universal-robots.com/download/?option=28545#

section16632, 2017.

[43] Network Namespaces and Traffic Control. http://gigawhitlocks.com/2014/08/

18/network-namespaces.html, 2014.

[44] ns-3. https://www.nsnam.org/, 2017.

[45] Gazebo latency plugin. https://github.com/Ericsson/robot_hw_sim_latency,
2017.

[46] J. J. Kuffner Jr. and S. M. Lavalle. Rrt-connect: An efficient approach to single-query
path planning. In Proc. IEEE Intâ??l Conf. on Robotics and Automation, pages 995–
1001, 2000.

41

http://cpham.perso.univ-pau.fr/WSN-MODEL/castalia-ros.html
http://cpham.perso.univ-pau.fr/WSN-MODEL/castalia-ros.html
https://www.universal-robots.com/download/?option=28545#section16632
https://www.universal-robots.com/download/?option=28545#section16632
http://gigawhitlocks.com/2014/08/18/network-namespaces.html
http://gigawhitlocks.com/2014/08/18/network-namespaces.html
https://www.nsnam.org/
https://github.com/Ericsson/robot_hw_sim_latency

	Összefoglaló
	Abstract
	Introduction
	Background
	Cyber physical systems
	Gazebo
	UR5 Robot arm
	Robot Operating System
	ROS Concepts
	ROS Filesystem Structure
	ROS Computation Graph
	Other important ROS concepts
	ROS Community
	ROS Names
	Package Resource Names

	Used ROS packages
	universal_robot package
	ros_control package
	moveit package
	lemniscatepublisher package
	gazebo_ros_pkgs package
	xacro package
	roslaunch package
	hector_trajectory_server package

	Motivation and related work
	Competitions
	Choosing simulators

	Proposed method
	Overview
	Introducing methods to simulate the effects of network characteristics

	Measurements
	Evaluation

	Conclusion and further work
	Bibliography

