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Összefoglaló 

A megerősítéses tanulás a gépi tanulás egy ága. Célja szekvenciális döntési problémák            

megoldása potenciálisan ismeretlen dinamikájú környezetekben. A feladat olyan stratégia         

meghatározása, amelyet felhasználva egy ágens maximalizálni tud egy valamilyen módon          

kumulált jutalmat az ismeretlen környezetben. A probléma az általánossága miatt sok egyéb            

tudományágban, például a közgazdaságtanban, pszichológiában és az idegtudományban is         

kutatott. 

Idáig a megerősítéses tanulás alkalmazása számítási-és memóriakorlátok miatt kis         

állapot-és cselekvésterű környezetekre korlátozódott. A közelmúltban a hardver technológia         

és a mélytanulás (deep learning) fejlődése miatt lehetővé vált ezen módszerek komplex            

környezetekben való alkalmazása. A mély megerősítéses tanulás lehetővé tette a világ legjobb            

játékosainak legyőzését a Go játékban, a vizuális megfigyelésekből való tanulást és a komplex             

háromdimenziós   helyzetváltoztatási   feladatok   megoldását. 

Az eddigi kutatómunka a területen elsősorban a tanítási módszerek és az algoritmusok            

fejlesztésével foglalkozott. Bár a mélytanulás egyik legeredményesebb alkalmazási területe a          

képfelismerés, és számos vizuális megfigyeléseket használó megoldás létezik, kevés az olyan           

eredmény, amely az ágensmodellek képfeldolgozó komponenseivel foglalkozik. A        

képfelismerésben használt mély architektúrák és a regularizációs módszerek az eddigi          

próbálkozások szerint rosszul teljesítenek a megerősítéses tanulási feladatokban, így a          

teljesítmény   javítására   irányuló   strukturális   módosítások   kutatása   háttérbe   szorult. 

Ebben a dolgozatban a mély neurális háló ágens modellek strukturális változtatásának           

az ágens teljesítményére gyakorolt hatását vizsgálom a megerősítéses tanulás témakörben. A           

szükséges irodalmi háttér bemutatása után megmutatom, hogy hogyan teljesít az advantage           

actor critic módszer különféle környezetekben az egyik legelterjedtebb ágens modellt          

használva. Ez után elemzem, hogy a modellen alkalmazott különböző változtatások milyen           

hatást   gyakorolnak   az   ágens   teljesítményére. 
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Abstract 

Reinforcement learning is a branch of machine learning. It is a general framework             

devoted to solving sequential decision problems in potentially unknown environments by           

finding the optimal way to make decisions. It is concerned with how software agents ought to                

take actions in an environment so as to maximize some notion of cumulative reward. The               

problem, due to its generality, is studied in many other disciplines, such as economics,              

psychology   and   neuroscience. 

Historically, applications of reinforcement learning have been confined to         

environments with a small number of well-defined states and actions due to memory and              

computational constraints. Recent advances in hardware technology and deep learning have           

made it possible to apply these methods to highly complex environments as well. Deep              

reinforcement learning has been used to beat the best players in the world in the game of Go,                  

to   learn   from   visual   input,   and   to   solve   three-dimensional   locomotion   tasks. 

Research in the field has mainly focused on improving the training and optimization             

methods. Although one of the most significant applications of deep learning is image             

recognition, there has been little research published that analyzes the image processing part of              

the agent models that operate on visual input. Deep architectures and regularization methods             

used in the computer vision literature tend to perform poorly in the reinforcement learning              

setting, and structural modifications as a way of improving performance have been mostly             

sidelined. 

In this paper, I study how altering the model structure of a deep neural network agent                

that observes its environment visually affects its performance in the reinforcement learning            

setting. After introducing the background literature, I show how the advantage actor critic             

reinforcement learning method performs in multiple visually observable environments using          

one of the most commonly used agent models. I then analyze how changes made to this model                 

alter   the   agent’s   performance. 
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1.     Introduction 

Reinforcement learning has been gaining traction in recent years by the advancement            

of deep learning technologies. By combining reinforcement learning algorithms with deep           

neural networks, it has become possible to train software agents to learn to perform complex               

tasks   from   high-dimensional   raw   sensory   feedback. 

This possibility has enabled new applications of artificial intelligence technology,          

since being able to learn useful behaviours from rich, raw sensory data enables artificial              

intelligence agents to operate without a dependence on features extracted from the            

environment using algorithms implemented by humans. In essence, current state of the art             

deep reinforcement learning methods are the closest we have to general artificial intelligence.             

Other areas of deep learning are also flourishing: new state-of-the-art results are published             

every few weeks in computer vision, machine translation, speech recognition and other            

disciplines. Because of this, an unprecedented amount of research and investments are being             

applied   to   reinforcement   learning   and   deep   learning   in   general. 

In the reinforcement learning literature, the main focus of the research done so far has               

been finding algorithms that that can optimize the agent models well for various types of               

environments. However, it is well known from the application of deep learning to computer              

vision that the performance of a neural network depends a lot on the internal structure of the                 

network. Although deep reinforcement learning methods use neural networks to model the            

reinforcement learning agents, published research is scarcely available that addresses how the            

internal   structure   of   an   agent   network   affects   performance. 

In this work, I introduce two novel agent model architectures and I show through              

experiments that these can significantly outperform an architecture widely used by other            

researchers in the Atari [1] domain, showing the importance of developing efficient neural             

network   architectures   for   deep   reinforcement   learning.  
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2.   Related   Work 

Combining neural network-based methods with reinforcement learning has opened         

new possibilities in machine learning. Mnih et al. (2013) [2] created an algorithm that can               

learn to play atari games from raw video data output by the Atari 2600 console. They later                 

published an improved version of this algorithm in Nature (Mnih et al., 2015) [3]. Both of                

these works used simple convolutional neural networks to process the observed video stream.             

Most researchers since then have used the network architecture presented in the latter work,              

focusing   on   improving   the   training   algorithm. 

Most of the architectural variation in the deep reinforcement learning literature           

addressing the Arcade Learning Environment (ALE) [1] appears in the network outputs,            

resulting   from   the   algorithms   used. 

The deep Q-network (DQN) method [3] approximates the action-value function, and           

uses this approximation to follow an 𝜺-greedy policy. Dueling network architectures [4] split             

the DQN action-value approximation into a state value approximation and an action            

advantage approximation, enabling these models to learn state values without having to learn             

the effect of each action for each state. The distributional DQN [5] represents the action-value               

function as a discrete probability distribution, providing a rich set of auxiliary predictions and              

a more stable learning target in the face of stochastic environment dynamics or perceived              

stochasticity. 

The asynchronous advantage actor-critic (A3C) method [6] approximates the         

state-value function and outputs a probability distribution over the available functions. The            

state-value approximation is used to identify when an action performed from a particular state              

is more useful than expected, and update the agent’s policy accordingly. Jaderberg et al. [7]               

augments the A3C method with auxiliary tasks, adding extra outputs to the neural network.              

These extra tasks help the formation of useful features, improving learning speed and final              

performance. 

Kulkarni et al. [8] approximates the successor representation (SR) [9] with a neural             

network,   increasing   the   sensitivity   of   their   model   to   distal   changes   in   the   reward   function. 

These important contributions aim at improving performance by modifying the          
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underlying algorithms and making models produce efficient representations, while using the           

same basic network architecture. Fixing the model architecture is important while testing            

algorithms, since this makes comparison possible. It is also worthwhile to know which             

network architectures work well (or poorly) in the domain however, since there might be              

much   room   for   improvement   in   this   area. 

There have been no studies published that examine how changes to the agent model              

affect agent performance in the ALE, however, and this is the focus of the present work. I fix                  

the algorithm responsible for optimizing the agent model and study how changing the model              

architecture impacts performance. I show that altering the image processing part of the agent              

model   can   have   significant   effects   on   learning   speed   and   final   performance. 
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3.   Deep   Learning   Background 

Artificial neural networks are computational models for function approximation         

inspired by biological neural networks found in nature. The idea has been re-popularized in              

recent years, going by the name “deep learning”, thanks to achieving new state of the art                

results in computer vision, image segmentation, speech recognition, translation and other           

disciplines. This chapter contains a basic overview of the deep learning concepts relevant to              

this   work. 

3.1.   Deep   Neural   Networks 

Neural networks are computational graphs which operate on tensors, i.e.          

n-dimensional arrays of numerical values. They are parameterized functions that map tensors            

to tensors through mainly differentiable operations. The successive tensor operations are           

usually referred to as layers. Through these layers of computation, the neural network extracts              

information from the input data that is relevant to producing the desired outputs. We call the                

extracted   information   features. 

In the simplest case, neural networks consist of so-called fully connected linear layers             

and element-vise nonlinear functions, also called activation functions, following one another.           

The composition of a linear and a nonlinear layer is also often referred to as a layer, since it is                    

a basic building block of neural networks. The function implemented by such a layer is as                

follows: 

  y (Wx ) = φ + b   

where is the weight matrix that defines the coefficients for linear combinations ∊ℝ  W M×N           M    

of the input vector, is the input vector to the layer, is a bias vector for    ∊ℝ  x N         ∊ℝ  b N  
     

offsetting the sum and denotes an element-wise nonlinear transformation. is the    (·)φ       ∊ℝ  y M    

output vector of the layer. The above equation without the application of a nonlinearity              

defines a linear layer output. Therefore, a linear layer computes linear functions of the              

elements of its input vector. The activation breaks linearity. Without this, a succession of              

linear   layers   could   be   reduced   to   just   a   single   one   implementing   the   same   linear   function. 

The process of iteratively modifying the network parameter values to produce the            
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desired outputs is referred to as training the neural network. We can also say that the network                 

“learns” the desired function. The goal during training is to find an input-output mapping that               

minimizes or maximizes a particular function of the network output. This function is called              

the objective function. A maximization task can be reformulated as the minimization of the              

negation of the objective, so I will only consider the minimization case. The objective              

function   is   also   often   referred   to   as   the   loss   or   error   function. 

Training the network is usually done by  gradient descent : The loss is measured on the               

training data, and the gradient is calculated on the loss by taking the partial derivative of the                 

loss with respect to each parameter. Then, the model parameters are moved in the opposite               

direction: 

 ,θ ∇ L(θ)   ← θ − α θ   

where represents the model parameters, is the learning rate coefficient and θ      ∊ℝ  α +        

is   the   loss   of   the   model   with   parameters   .(θ)L θ   

On big datasets, the gradient is usually computed from a subset of the training data to                

save computational resources. We call this method  stochastic gradient descent (SGD), since it             

estimates the gradient on the loss with a subset of the training data. Since deep neural                

networks are most often trained by SGD, They should consist of differentiable operations             

when   possible. 

 

Figure 1: A simple neural network. The lines between the nodes represent linear layer              
weights. The data is supplied to the network through the input layer. The nodes in the hidden                 
and   output   layers   sum   their   weighted   inputs   and   apply   nonlinear   functions   on   these   sums. 
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We refer to the number of outputs a layer produces as the  width or size of the layer,                  

and we call the function that produces zero loss on the training dataset the  target function . The                 

universal approximation theorem states that a neural network consisting of a linear layer, a              

nonlinear activation function and another linear layer in this order is able to approximate the               

target function with an arbitrarily small loss under mild assumptions on the activation             

function, given the layer is wide enough [10]. However, it has been discovered that models               

that have many relatively narrow layers in succession instead of a few wide ones generalize               

better   to   data   points   not   present   in   the   training   dataset. 

By using multiple layers, networks are able to learn representations of data with             

multiple levels of abstraction [11]. Having multiple layers layers enables neural networks to             

reuse information extracted by a layer in subsequent layers. This enables these models to learn               

hierarchical representations, where simple features extracted by layers close to the input layer             

are used to construct more complicated or abstract features. Models that have a lot of               

successive layers are called deep neural networks. This is where the term deep learning              

originates   from   in   machine   learning. 

 

Figure   2:   A   deep   neural   network 

The universal approximation theorem holds for bounded nonlinearities only, so          

historically, saturating functions have been used such as the sigmoid or the hyperbolic          φs     

tangent   function   :φh  
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Figure   3:   Sigmoid   in   blue,   hyperbolic   tangent   in   red 

In practice, however, saturated functions don’t work well in deep neural networks due             

to their bounded nature. The parts of the functions where the derivatives are close to zero slow                 

down gradient descent optimization. In addition to this, the above functions output a value              

with an absolute value smaller than one. Because of this, the error gradient is reduced in                

absolute value exponentially as it is backpropagated through neural network layers, making            

parameters far from the output layer hard to train. This is an issue for deep neural networks,                 

since they have a lot of layers. In the literature, this phenomenon is called the vanishing                

gradient   problem. 

To remedy this, deep neural networks usually use a different, unbounded nonlinearity            

called   the   rectified   linear   unit   (ReLU)   :φr  

11 



 
Figure   4:   ReLU   and   its   derivative 

The ReLU returns its input if it is greater than zero, or zero otherwise. Since positive                

inputs are not downscaled, the ReLU activation facilitates easier gradient propagation, making            

learning faster. The function is not differentiable at , but in practice, the gradient at this        x = 0         

point   can   be   defined   as   .(x )  ∇ φx r = 0 ≡ 0  

3.2.   Convolutional   Neural   Networks 

Some of the most important challenges in artificial intelligence are visual tasks, since             

the visual processing ability of the humans is sophisticated. The most important achievements             

due to the deep networks’ applications are connected to this field. In computer vision tasks,               

the goal is to extract information from image or video data. These are special data in the sense                  

that the same local patterns can occupy different image positions. For example, a human face               

can appear anywhere in a photo depending on the relative position of the camera and the                

human, and the direction they face. We can take advantage of this characteristic of images to                

build better models for image recognition. The standard approach is to use convolutional             

neural   networks   (CNNs)   [12]. 

Convolutional layers are basic building blocks of a CNN. They were invented to             

analyze two-dimensional data represented by uniformly sized  feature maps . A feature map            

can be thought of as a view of the underlying data: it defines the value of the feature it                   

represents for every coordinate of the data. For example, the red color channel of an RGB                

image describes how red the image is at any particular pixel position. Multiple feature maps               
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can be used to describe different characteristics of the same data position. The three color               

channels of an RGB image work like this. Binary masks and heat maps are also feature maps,                 

since they describe the presence or absence, or the degree of presence of a particular feature at                 

every   position   of   a   two-dimensional   geometry   respectively. 

A feature map is a two-dimensional tensor, or matrix of data that has width and height.                

If we stack input feature maps of width and height along a third dimension, depth, we   d       w    h        

get a three-dimensional tensor of size . This how convolutional layer inputs are      w, , )( h d        

arranged, although the ordering of the dimensions can vary. The individual feature      , ,w h d        

maps   are   also   called    channels . 

Convolutional layers use  kernels to process their inputs. A kernel is also a             

three-dimensional tensor. It has a width and a height that are less than or equal to and                w   h  

and a depth that is equal . The kernel is moved along the input data using some step size for      d               

every dimension, creating a linear combination of the values covered at every position using              

the kernel tensor values as coefficients. We also call these coefficients weights. The resulting              

values are stacked into a two-dimensional tensor according to the position of their source              

values, creating a new feature map. A convolutional layer uses multiple kernels with different              

coefficients   to   produce   multiple   feature   maps   of   the   input   data. 

The outputs of a convolutional layer are typically passed through an element-wise            

nonlinearity, usually ReLU. As data propagates through the CNN, the feature map resolution             

is incrementally reduced while the number of kernels is increased. The reduction is done by               

using a stride greater than one or by applying a pooling operation after the nonlinearity,               

typically  max-pooling . Max-pooling works by dividing each feature map up into uniform            

non-overlapping rectangular areas (usually squares). Then, a new feature map is    2 × 2         

generated   from   each   input   map   by   taking   the   maximum   value   from   each   area. 

Blocks consisting of the operations described above are stacked to produce the CNN.             

After the spatial resolution of the data is sufficiently reduced, it is usually converted into a                

vector of length and fed into a fully connected layer, from which point the network   w × h × d              

operates in the way described in  section 3.1 . This is not necessarily true in use-cases such as                 

generative modeling and image segmentation, but these applications are out of the scope of              

this   work. 
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Figure   5:   The   convolution   operation 

Kernels use the same set of weights in different parts of the input image, which is a                 

form of weight sharing. Because of this, once a pattern is learnt by a kernel, it can be                  

recognized at multiple positions in the input image. This is also referred to as translational               

invariance. This construction exploits regularities found in images to use network parameters            

more   efficiently,   making   learning   faster   and   resulting   in   better   final   performance. 

3.3.   Recurrent   Neural   Networks 

When dealing with sequential data, we need to keep track of temporal dependencies.             

This necessitates the introduction of an internal state into the network. Neural networks with              

an   internal   state   are   called   recurrent   neural   networks   (RNNs). 

A recurrent layer, in addition to its input weights and its nonlinear activation function,              

also has a set of recurrent weights, which are used to feed back into the layer its output                  

produced   at   the   previous   timestep. 

The most widely used RNN variant is the long short-term memory (LSTM) [13]. A              

single   LSTM   layer   is   governed   by   the   following   equations: 

 

 i  φ t =  s (W x h )i t + U i t−1 + bi   

 (W x h )f t = φs f t + U f t−1 + bf   

 (W x h )gt = φh g t + U g t−1 + bg   
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 (W x h )ot = φh o t + U o t−1 + bo   

 ct = f t ° ct−1 + it ° gt   

 (c )ht = φs ° φh t   

Variables 

● :   input   vectorxt  

● :   output   vectorht  

● :   cell   state   vectorct  

● :   parameter   matrices   and   vector, U , bW    

● :   gate   vectors, ,f t it ot  

○ :   Forget   gate   vector.   Weight   of   remembering   old   information.f t  

○ :   Input   gate   vector.   Weight   of   acquiring   new   information.it  

○ :   Output   gate   vector.   Output   candidate.ot  

Activation   functions 

● :   sigmoid   functionσs  

● :   hyperbolic   tangentσh  

 

Figure   6:   the   internals   of   an   LSTM 
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LSTM networks are adept at “remembering” long term dependencies in sequential           

data. This is thanks to their gating mechanisms, which are able to protect data from               

modification or to overwrite it when needed. Because of this protection, the networks can              

memorize data for many timesteps. In turn, this helps gradient information backpropagate            

through   a   large   number   of   steps,   enabling   the   network   to   learn   long   term   dependencies. 

During gradient backpropagation, LSTMs can be treated as deep neural networks with            

shared   inter-layer   connections: 

 

Figure   7:   LSTM   unrolled   in   time 

The gradients can then be computed for the LSTM in the same manner as for a                

feedforward network. This method is commonly referred to as backpropagation through time            

(BPTT). In practice, the internal state is treated as just another input tensor to the network                

[14].   This   makes   modeling   easier. 

  

16 



4.   Reinforcement   Learning   Background 

Reinforcement learning is a tool for solving the problem of learning from interaction             

with an environment to achieve some task in it. The learner is called the agent. This agent                 

observes its environment and responds to these observations by selecting from available            

actions. These actions affect the observed environment, resulting in an interactive process.            

The environment also provides the agent with rewards (or punishments: negative rewards).            

Rewards are distinguished numerical values, the sum of which the agent tries to maximize              

over   time. 

In this chapter, I will introduce the reinforcement learning framework, describe some            

RL methods and then extend these to the deep learning setting. I have used Sutton and Barto’s                 

book    Reinforcement   Learning:   An   Introduction    [15]   as   a   source   for   most   of   this   chapter. 

4.1.   Markov   Decision   Processes 

A   markov   decision   process,   or   MDP   is   a   6-tuple   ,   where(S, , , , , )A s0 P R γ  

●    is   a   set   of   states,S  

●    is   a   set   of   actions,A  

●    is   the   probability   that      is   the   starting   state,p0 (s) s  

● is the probability that performing action in state will lead to state(s |s, )p ′ a        a    s      

   at   the   next   time   step   (transition   probability),s′  

● is the (expected) value of the immediate reward received for(s, , )r a s′            

transitioning   from   state      to   state      through   action   ,s s′ a  

● is the discount factor, which represents the difference in importance∊  γ 0,[ 1]            

between   present   and   future   rewards. 

The above properties fully define an interactive dynamic environment. The MDP can            

be stochastic or deterministic. In case the reward function is stochastic, would map to a           r      

probability   distribution   over   the   possible   reward   values. 

The state represents whatever information is available to the agent. It contains, but             

does not necessarily solely consist of sensory inputs from the last timestep. It can be a                

preprocessed version of, or even a structure built up over time from the sequence of the                

agent’s   observations.   MDPs   satisfy   the    Markov   property : 

17 



 r rP {R , |S , , , .., , }t+1 St+1 0 A0 R1 . St At = P {R , |S , }t+1 St+1 t At   

where is the state observed at time , is the action taken upon observing this state and St        t  At           

   is   the   immediate   reward   for   the   transition   .Rt+1 (S , , )t At St+1  

This means that given the last state and the action taken from that state, all preceding                

states   are   irrelevant   as   far   as   the   system   dynamics   are   concerned. 

4.2.   Value   Functions 

A  trajectory is a particular sequence of states, actions and rewards           

sampled from the environment the agent operates in. The  return of{s , , , , , , , ..}0 a0 r1 s1 a1 r2 s2 .             

a trajectory is a function of the reward sequence along that trajectory. In the simplest case, it is                  

the   sum   of   the   rewards   experienced: 

 ,  G t = ∑
∞

k=1
Rt+k     

This approach suffices for  finite-horizon settings, where every game ends after a finite             

number of steps. In this case, we treat the terminating state as a trapping state that returns a                  

reward   of   zero   indefinitely. 

When dealing with  infinite-horizon settings, i.e. settings where not every trajectory has            

an endpoint, the definition above could produce infinite returns, which would make            

comparing such trajectories difficult. There is a straightforward solution to this problem. We             

introduce   a    discount   factor       that   determines   the   present   value   of   future   rewards:γ  

 RGt = ∑
∞

k=1
γk−1

t+k   

With the above definition, a bounded reward function ensures a bounded return function:             

for all trajectories. A low leads to a myopics, ,∀ a s′ ( r )| (s, , )a s′ | ≤ Rmax ⇒
|
|
|
lim
t→∞

Gt
|
|
|
≤ 1−γ

Rmax       γ      

return function, prioritizing short-term rewards. A high makes the function indifferent to       γ       

the reward’s delay. Assuming that the rewards are bounded, the above definition provides             

finite   returns   for   even   infinite   trajectories. 

Discounting can be viewed as a way of prioritizing rewards that are closer in time               
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under an imperfect model of the environment, since such rewards should be easier to predict               

in general. Also, the higher is, the further back in time expected rewards affect     γ           

decisionmaking   for   an   agent   that   is   optimized   to   maximize   the   expected   return. 

The state-value function describes how good it is for the agent to be in a particular                

state. Specifically, this function is a mapping from each state to the expected return from that                

state, following some policy , where is the probability that an agent following policy    π   π (a|s)          

   takes   action      from   state   .   The   state-value   function   takes   the   following   form:π a s  

  vπ (s) = Eπ G |S[ t t = s] = Eπ R |S[∑
∞

k=1
γk−1

t+k
 

t = s]   

The action-value function defines the expected return given that action is performed          a    

from   state      and   policy      is   followed   afterwards:s π  

 qπ (s, )a = Eπ G |S ,[ t t = s At = a] = Eπ R |S ,[∑
∞

k=1
γk−1

t+k
 

t = s At = a]  

and can be rewritten into recursive forms. These are referred to as the Bellmanvπ   qπ              

equality   equations: 

  vπ (s) = Eπ G |S[ t t = s]  

 = Eπ R |S[∑
∞

k=1
γk−1

t+k
 

t = s]  

 = Eπ R |S[ t+1 + γ ∑
∞

k=1
γ Rk−1

t+k+1
 

t = s]  

 = ∑
 

a
π (a|s) ∑

 

s′
p (s |s, )′ a r( (s, , )a s′ + γEπ |S[∑

∞

k=1
γ Rk−1

t+k+1
 

t+1 = s′])  

= ∑
 

a
π (a|s) ∑

 

s′
p (s |s, )′ a (r )(s, , )a s′ + γvπ (s )′  

 
 
 
 
 
 
 
 
 

  qπ (s, )a = Eπ G |S ,[ t t = s At = a]  

 = Eπ R |S ,[∑
∞

k=1
γk−1

t+k
 

t = s At = a]  

 = Eπ R |S ,[ t+1 + γ ∑
∞

k=1
γ Rk−1

t+k+1
 

t = s At = a]  

 = ∑
 

s′
p (s |s, )′ a r( (s, , )a s′ + γEπ |S[∑

∞

k=1
γ Rk−1

t+k+1
 

t+1 = s′])  

 = ∑
 

s′
p (s |s, )′ a r( (s, , )a s′ + γ ∑

 

a′
π (a |s )′ ′ Eπ |S ,[∑

∞

k=1
γ Rk−1

t+k+1
 

t+1 = s′ At+1 = a′])  
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 = ∑
 

s′
p (s |s, )′ a r( (s, , )a s′ + γ ∑

 

a′
π (a |s )′ ′ qπ (s , )′ a′ )  

   and      can   also   be   defined   in   terms   of   each   other:vπ qπ  

  vπ (s) = Eπ G |S[ t t = s]  

 = Eπ R |S[∑
∞

k=1
γk−1

t+k
 

t = s]  

 = ∑
 

a
π (a|s)Eπ R |S ,[∑

∞

k=1
γk−1

t+k
 

t = s At = a]  

= ∑
 

a
π (a|s) qπ (s, )a  

 

  qπ (s, )a = Eπ G |S ,[ t t = s At = a]  

 = Eπ R |S ,[∑
∞

k=1
γk−1

t+k
 

t = s At = a]  

 = Eπ R |S ,[ t+1 + γ ∑
∞

k=1
γ Rk−1

t+k+1
 

t = s At = a]  

 = ∑
 

s′
p (s |s, )′ a r( (s, , )a s′ + γEπ |S[∑

∞

k=1
γ Rk−1

t+k+1
 

t+1 = s′])  

= ∑
 

s′
p (s |s, )′ a (r )(s, , )a s′ + γvπ (s )′  

 

An  optimal policy is a policy under which the expected return is maximal. The  optimal               

state-value function and the  optimal action-value function define utilities under the           

assumption   that   the   agent   follows   an   optimal   policy: 

 v (s) v (s) * = maxπ π   

 (s, ) q (s, )q* a = maxπ π a   

For the action-value function, gives the expected return for taking action    (s, )q* a         a  

from state and following the optimal policy afterwards. Therefore, can be written in  s         q*      

terms   of   :v *  

  q* (s, )a = E R v S ,[ t+1 + γ * (S )t+1 | t = s At = a]   

Using this formulation, we can derive the recursive form of the  Bellman optimality             

equation for the state-value function. This equation expresses the fact that the value of a state                

under   an   optimal   policy   must   equal   the   expected   return   for   the   best   action   from   that   state: 
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 ax qv* (s) = m a * (s, )a  

ax E  = m a R v S ,[ t+1 + γ * (S )t+1 | t = s At = a]  

= maxa ∑
 

s′
p (s |s, )′ a (r v )(s, , )a s′ + γ * (s )′  

 

 The Bellman optimality equation for can be recovered from by     q* (s, )a      v* (s)   

conditioning on instead of maximizing over the action set. By expressing in terms of  a           v* (s )′     

,   we   can   also   make   the   definition   recursive:q* (s, )a  

  q* (s, )a = E R v S ,[ t+1 + γ * (S )t+1 | t = s At = a]  

= ∑
 

s′
p (s |s, )′ a (r v )(s, , )a s′ + γ * (S )t+1  

= ∑
 

s′
p (s |s, )′ a (r max q )(s, , )a s′ + γ a′ * (s , )′ a′  

 

 

The value functions can be determined for specific policies. This process is called             

policy evaluation . The simplest method is to sample trajectories from the environment and             

define the state-value function for each state as the average of the returns encountered    v (s)     s         

from . This approximates the value . The state-action value function s       vπ (s) = Eπ G |S[ t t = s]      

is defined for each state-action pair as the average of the returns encountered fromq (s, )a                

state , performing action . This is an approximation for . s    a       qπ (s, )a = Eπ G |S ,[ t t = s At = a]  

This approximation approach is referred to as  Monte Carlo policy evaluation . Since the value              

of   every   state   is   learned   independently,   this   method   is   very   sample-inefficient. 

Sample efficiency can be improved by taking a  dynamic programming (DP) approach,            

utilizing the recursive nature of the Bellman equations. We start with some value function              

estimate.   Then,   learning   is   done   iteratively: 

  vπ k+1
(s) = Eπ R v S[ t+1 + γ πk (S )t+1 | t = s]  

                                          =   ∑
 

a
π (a|s) ∑

 

s′
p (s |s, )′ a r v( (s, , )a s′ + γ πk (s )′ )  

 

  qπk+1
(s, )a = Eπ R q S ,[ t+1 + γ πk (S , )t+1 At+1 | t = s At = a]   
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                                                   =    ∑
 

s′
p (s |s, )′ a r( (s, , )a s′ + γ ∑

 

a′
π (a |s )′ ′ qπk (s , )′ a′ )  

We call the above procedure  value iteration . This method of updating state value             

estimates based on the value estimates of successor states is called  bootstrapping . Since             

estimates are updated using other estimates, value updates can propagate between states,            

improving sample and update efficiency. As approaches infinity, and converge to      k   vπk  qπk   vπ

and respectively in the  tabular case [15]. The function representation is considered tabular qπ             

if the current estimates of the value function values are stored for every input combination               

separately. In practice, the value iteration is stopped when the difference between the old and               

the   new   estimates   falls   below   a   threshold   value. 

We can also improve upon an existing policy with the use of value functions. We can                

do this by first evaluating the policy and then updating it to maximize the expected return                

with   respect   to   our   current   estimate   of   the   value   function: 

 
rgmaxπk+1 (s) = a a ∑

 

s′
p (s, , )a s′ r v( (s, , )a s′ + γ πk (s )′ )  

 

 rgmax qπk+1 (s) = a a πk (s, )a   

Alternating the policy evaluation and policy improvement steps makes the policy           

converge to the optimal policy as the number of iterations approaches infinity [15]. This     π*           

method is called policy iteration. The policy evaluation step is usually not performed until              

convergence, since that would be computationally expensive. Instead, a small number of            

iterations   are   performed   (e.g.   1).   This   does   not   break   the   algorithm,      still   converges   to   .πk π*  

The above methods assume that a model of the system dynamics is available.           p, r)(     

Since the real dynamics are usually not available, so they can instead be approximated from               

the statistics of sampled trajectories of the environment. We call this method  adaptive             

dynamic programming (ADP). The state transition probability can be approximated       p (s |s, )′ a     

the   following   way: 

 ,(s |s, )p︿ ′ a = N s,a

N s,a,s′
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where is the number of actions taken from state and is the number of N s,a      a     s   N s,a,s′      

observed transitions from to after taking action . The reward function can   s   s′     a     r︿(s, , )a s′  

simply be approximated with the average value of the encountered rewards for each             (s, , )a s′  

transition. 

When learning a policy using the methods described above, the algorithm can get             

trapped in local minima due to biases resulting from parameter initialization and the             

stochastic nature of the environment. To counteract this, it is necessary to introduce an              

exploration scheme. The simplest solution is to use an 𝜺-greedy policy. Such a policy takes the                

best available action with a probability of , and it takes an action sampled uniformly at       1 − ε          

random from the set of available actions with probability , where . In the tabular         ε   0 ≤ ε ≤ 1      

case, another method for exploration is to keep count of the number of times action was               a   

taken from state (usually denoted as ) for each state-action pair. The value function can   s     N s,a          

then be augmented with an exploration bonus that decreases as increases, as described          N s,a     

by   Strehl   and   Littman   (2008)   [16].         The   higher   this   variable,   the   lower   the   utilities   should   be. 

4.3.   Temporal   Difference   Learning 

Temporal difference (TD) learning is a method that combines the Monte Carlo and DP              

methods introduced in  section 4.2 . It requires less samples than the Monte Carlo method, but               

it   does   not   need   a   model   of   the   environment. 

4.3.1.   TD 

Both the Monte Carlo method and the DP method use an estimate of the target to                

update the value function. The Monte Carlo method uses sample returns as value estimates,              

while the DP method uses its estimation of to guide the value updates. TD learning        vπ (s )′         

applies both of these methods. It can be used to update the value function estimate while                

following   a   sample   trajectory   using   the   following   update   rule: 

 ,V (S )t ← V (S )t + α (R V )t+1 + γ (S )t+1 − V (S )t   

where is the learning rate. The term is called the  TD-target , and it is used α        VRt+1 + γ (S )t+1          

to approximate the true value function under the current policy. The expression            

is called the  TD-error . It is the difference of the TD-target and theVRt+1 + γ (S )t+1 − V (S )t               
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current value estimate of . After sampling a single reward from the return, the value    St            

estimate for state bootstraps from the value estimate of state . In statistical terms,   St         St+1     

bootstrapping introduces bias from the estimate , but it reduces the variance      V (S )t+1       

introduced by full returns. The -scaled TD-error is added to the value approximation of ,     α          St  

moving   it   closer   to   the   TD-target. 

4.3.2.   n-step   TD 

More   generally,   returns   can   bootstrap   after   n   steps.   We   call   these    n-step   returns : 

 R VGt
(n) = ∑

n

k=1
γk−1

t+k + γn (S )t+n   

  V (S )t ← V (S )t + α G( t
(n) − V (S )t )   

With n-step TD, manipulating the bias-variance tradeoff of the TD update is possible.             

Returns are bias free, high variance samples of state values, while the state-value function              

estimate is a stable, but biased estimate. Thus, a small value results in low variance, high V          n        

bias value function estimates, while a high value results in low bias, high variance       n         

estimates.   When   ,   the   Monte   Carlo   method   is   recovered.n = ∞  

 

Figure   8:   n-step   TD   [15] 

4.3.3.   TD(𝜆) 

TD(𝜆) is a further generalization of n-step returns. This method averages over n-step             
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returns   to   produce   a   value   function   estimate   called   the    𝜆-return : 

 ,GGt
λ = (1 )− λ ∑

∞

n=1
λn−1

t
(n)   

where . This is a weighted average, since . gives ∊  λ 0,[ 1]        , ∊(1 )− λ ∑
∞

n=1
λn−1 = 1 λ (0, )1  λ = 0   

us   the   one-step   TD   introduced   in    section   4.3.1 ,   also   known   as   TD(0): 

  Gt
0 = (1 )− 0 G ..( t

(1) + 0 · Gt
(2) + 02 · Gt

(3) + . )   

When a terminating state is reached, all subsequent n-step returns are equal to . If             Gt   

we   separate   the   post-termination   terms   from   the   main   sum,   we   get: 

 
,G GGt

λ = (1 )− λ ∑
T−t−1

n=1
λn−1

t
(n) + λT−t−1

t  
 

where T is the timestep the terminal state is reached. In this formulation, the intermediate               

n-step returns are weighted with their usual coefficients. The terminating state, however, is             

treated as a trap state, producing a reward of zero indefinitely from time onwards. Thus,             T    

we weight this value with the remaining amount from , which is precisely         (1 )− λ ∑
∞

n=1
λn−1     

:λT−t−1  

 
, λ∊(1 )− λ ∑

∞

n=1
λn−1 − (1 )− λ ∑

T−t−1

n=1
λn−1 = (1 )− λ ∑

∞

n=T−t
λn−1 = λT−t−1  0,[ 1]  

 

 

Figure   9.   TD(𝜆)   [15] 
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Setting , . In other words, the Monte Carlo λ = 1  Gt
1 = 0 · ∑

T−t−1

n=1
1 · Gt

(n) + 1 · Gt = Gt        

method   is   recovered,   also   called   TD(1). 

TD(𝜆) can smoothly interpolate between one-step TD and the Monte Carlo method.            

This is the approach used by TD-Gammon [17], a program created in 1995 by Gerald Tesauro                

that   played   backgammon   on   expert   human   level. 

4.3.4.   TTD(𝜆) 

Since a whole trajectory is required to calculate 𝜆-returns, the TD(𝜆) method            

introduced in  section 4.3.3 is inapplicable in cases where we can not afford to wait until the                 

end of a trajectory is reached. Instead, we can use  truncated 𝜆-returns . For time , given data              t    

only   up   to   a   horizon   ,   the      truncated   𝜆-return   is:h  

 
,   ,G GGλ

t:h = (1 )− λ ∑
h−t−1

n=1
λn−1

t:t+n + λh−t−1
t:h  0 ≤ t < h ≤ T  

 

where and T is the timestep the terminal state is reached. TTD(𝜆) uses these Gt:t+k = Gt
(k)               

𝜆-return estimates to update the value function. can be rewritten in the following form       Gλ
t:h         

[15]: 

 
,δGλ

t:t+k = V (S )t + ∑
t+k−1

i=t
(γλ)i−t t  

 

where is the TD-error between timesteps and . This Vδt = Rt+1 + γ (S )t+1 − V (S )t       t   t + 1   

formula can be used for efficient implementation. No updates are made on the first              k − 1  

timesteps, and then ,..., can be updated such that the computational cost of   V (S )t V (S )t+k−1           

does not scale with : start by updating and work backwards, cachingGλ
t:t+k      k     V (S )t+k−1      

   between   updates.δ∑
t+k−1

i=t
(γλ)i−t t  

4.3.5.   Off-policy   TD 

Q-learning is an  off-policy TD  control algorithm. Off-policy algorithms evaluate a           

different policy than the one being followed, while control algorithms define a policy to be               
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followed. In Q-learning, the learned action-value function directly approximates the optimal           

action-value function , independently of the policy being followed. The policy determines  q*           

which state-action pairs are visited and updated, but all that is required for convergence in the                

tabular case is that all pairs continue to be updated [15]. The Q-learning action-value update               

rule   is   as   follows: 

 ,Q (S , )t At ← Q (S , )t At + α (R max Q )t+1 + γ a (S , )t+1 a − Q (S , )t At   

where      is   the   learning   rate.α  

The agent policy is typically derived from the learned action-value function. In the             

simplest case, the  𝜀-greedy policy is used: The action is chosen with         Qmaxa θ (S , )t a     

probability and a random action is sampled uniformly from with probability , 1 − ε          A    ε  

where . is usually annealed during training. This ensures that the convergence 0 ≤ ε ≤ 1  ε            

condition   mentioned   above   is   satisfied. 

4.4.   Function   Approximation 

Many problems have too big state and action spaces to be tackled with tabular              

methods. To overcome the limitations of this approach, we can employ function            

approximation. The best known function approximators today are neural networks:          

computational   graphs   that   operate   on   tensors. 

4.4.1.   Deep   Q   Networks 

A deep Q network (DQN) [3] is a neural network that approximates the optimal Q               

function of its environment through Q-learning. It then uses this approximation to behave             

optimally: from state it selects action such that the action-value approximate of the   s     a         (s, )a  

tuple   is   maximal.   DQNs   are   typically   used   in   environments   with   discrete   action   spaces. 

The temporal dynamics of the system are presented to the network in one of two ways.                

Either the last few observations are provided as an input, or the network contains RNN               

components. Typically, instead of receiving the action to be evaluated as an input, the network               

has an output for each available action. This way, all action-values can be computed for a state                 

in   a   single    forward-pass    (feeding   data   through   the   network   a   single   time). 

During learning, the agent samples trajectories from the environment. The experienced           
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state-action-reward triplets are stored in a replay memory, which is then used for  offline              

learning , meaning that these stored experiences are reused later for learning in a             

non-interactive manner. The memory is sampled randomly for training samples, either           

uniformly   or   in   some   prioritized   manner.  

 

Figure   10.   A   DQN   for   playing   ATARI   2600   games 

A frequently used Q learning variation is the n-step Q learning, which uses n-step TD               

targets. For stability reasons, a snapshot is created from the network parameters every      θ′        θ   k  

timesteps.   These   parameters   are   then   used   for   calculating   the   n-step   returns: 

 R max QGt
(n) = ∑

n

k=1
γk−1

t+k + γ a θ′ (S , )t+n a   

This makes the TD targets constant in expectation, stabilizing learning. This is            

necessary because the network would otherwise overestimate the state-action values under           

certain conditions [18]. The agent performs Q-learning. The loss function is defined as             

follows: 

  Eπ G Q[( t
(n) − maxa θ (S , )t a )2]   

The   update   rule   is   thus   the   following: 
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 ,∇ G Q  θ ← θ + α θ( t
(n) − maxa θ′ (S , )t a )2

  

Exploration has to be integrated into the agent behaviour to avoid local maxima in the               

policy.   The   𝜀-greedy   policy   is   a   usual   choice   for   DQNs. 

4.4.2.   Deep   Successor   Reinforcement   Learning 

In  model-based planning , the agent uses a model of the environment to simulate the              

consequences of future actions. Model-free methods usually store value functions for later            

use. In the tabular case, values are maintained separately for every input combination. Neural              

networks learn input-output mappings, which can also be thought of as storing function             

values, although they can also interpolate between known mappings. Storing values makes            

computing the value functions quicker, but it makes the agent inflexible to perceived changes              

of the MDP. With the successor representation (SR) [9], we can represent value functions in a                

more   flexible   way,   while   also   keeping   the   required   computation   to   a   minimum. 

The   SR   is   defined   as   the   expected   discounted   future   state   occupancy: 

 , M (s, , )a s′ = E I S ,[∑
∞

k=1
γk−1 S[ t+k = s′] | t = s At = a]   

where when its argument is true and zero otherwise. As with the action-value I ·[ ] = 1              

function,   we   can   express   the   SR   in   a   recursive   form: 

  M (s, , )a s′ = E I M S ,[ S[ t+1 = s′] + γ (S , , )t+1 At+1 s′ | t = s At = a]   

Using   the   SR,   we   can   recover   the   action-value   function   the   following   way: 

 
,Qπ (s, )a = ∑

 

s εS′
M (s, , )a s′ R (s )′  

 

where      is   the   expected   reward   for   transitioning   into   state   . R (s )′ = Eπ r S[ (S , , )t−1 At St | t = s′] s  

For large state spaces, learning the SR is intractable. Instead, we can represent each              

state by a D-dimensional feature vector that is the output of a neural network. This s       ∊ℝ  ϕs
D           

way, we can define a feature-based SR that is the expected future occupancy of the features                

and   denote   it   by   :ms,a  
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 , ms,a = E Θ |S ,[∑
∞

k=1
γk−1

t+k t = s At = a]   

where is a random variable representing at time . We can approximate Θt+k        ϕs    t + k     ms,a  

using another neural network, let this be . We also approximate the reward function       m︿s,a        R (s)  

as   a   linear   combination   of   the   features   : ϕ  

 ,w  R (s) ≈ ϕs   

where is a weight vector that is learned using the squared error of the reward function ∊ℝ  w D                 

approximation.   Using      and   ,   we   can   approximate   the   value   function:m︿s,a w  

 wQπ (s, )a ≈ m︿s,a   

When there is a change in , gets modified. Since this is just a weight vector,      R (s)  w           

this correction is expected to happen quickly. The reward approximation error gradients do             

not affect the feature representation, so is not affected. Thus, in case changes, there      ms,a        R (s)    

is no need to relearn the SR, given a fixed policy. In principle, this means that whenever there                  

is a change in , we recover a good approximation of after the quick adjustment of    R (s)        Qπ       w

. This results in an agent that can quickly adapt to changes of the reward function, while still                  

being slow at adapting to changes of the state transition probabilities. These need not be real                

changes to the MDP: they can be perceived changes to the environment dynamics caused by               

changes   in   the   agent’s   behavior. 

The agent policy can be derived from the action-value approximations the same way             

as   with   the   DQN   ( section   4.4.1 ). 

Although this representation is more flexible, it does not entail significant           

computational overhead compared to the DQN method, making it an interesting approach.            

Learning a good feature representation can prove difficult, however. Tejas D. Kulkarni et al.              

[8] fed into a generative model that reconstructs the original input of the feature network,   ϕ               

also using as an input to the network approximating . They use the error gradients   ϕ         ms,a       

from   these   two   sources   to   learn   useful   features. 

4.4.3.   Policy   Gradient   Methods 

The techniques introduced in  section 4.4.1 and  section 4.4.2 used a value function             
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estimate to pick actions. The policy can also be represented explicitly, as described below. I               

have   used   lecture   7   of    David   Silver’s   RL   course    [19]   as   the   main   source   for   this   section. 

Policy gradient methods represent the policy explicitly by outputting an      πθ (a|s)      

action distribution for every input. This distribution is then sampled to decide on the action to                

take. In discrete action spaces, the action distribution can be generated from some features of               

by applying a linear layer with outputs followed by the softmax function. In thes        A| |          

continuous case, the action distribution can be modeled by a Gaussian where the mean and               

standard   deviation   should   be   linear   combinations   of   some   features   of   .s  

The softmax function is also called the normalized exponential function, and it has the              

following   form: 

 ,   for   ,pj (x) = exj

∑
K

k=1
exk

, ..,j = 1 . K   

where   is   the   input   vector   and      is   the   number   of   elements   in   .x K x  

During learning, the policy is modified to make it better. To improve upon a policy, we                

first have to define how to measure the quality of it. With function approximation, there are                

two useful ways to formulate the agent’s objective [20]. The first one describes the long-term               

average   reward   achieved   by   the   agent: 

 ,E  ρ (π) = lim
n→∞ n

1 |π[∑
∞

t=1
Rt ]   

where is the stationary distribution over under policy . The second formulation dπ       S    π     

describes   the   expected   long-term   reward   from   a   designated   start   state   :s0  

  ρ (π) = E R |s ,[∑
∞

t=1
γt−1

t 0 π]   

We can then improve the policy by following the gradient upwards,          ρ  ∇θ (π)   

modifying the model parameters in this direction. is called the  policy gradient , and       ρ  ∇θ (π)        

following the gradient upwards is referred to as gradient ascent. According to the policy              

gradient   theorem   [20],   both   of   the   above   formulations   lead   to   the   following   gradient: 
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,ρ π∇θ (π )θ = ∑

 

s
dπθ (s) ∑

 

a
∇θ θ (a|s)Qπθ (s, )a  

 

(1) 

where      is   the   stationary   distribution   over   S   under   .   In   addition,dπθ (s|π) πθ  

 π logπ∇θ θ (a|s) = πθ (a|s) π (a|s)θ

∇ π (a|s)θ θ = πθ (a|s)∇θ θ (a|s)   

(2) 

This is an expectation of , which we call the score function. From  equation 1     logπ  ∇θ θ (a|s)           

and    equation   2 ,   the   policy   gradient   is 

 
ρ π∇θ (π )θ = ∑

 

s
dπθ (s) ∑

 

a
∇θ θ (a|s)Qπθ (s, )a  

                                       logπ= ∑
 

s
dπθ (s) ∑

 

a
πθ (a|s)∇θ θ (a|s)Qπθ (s, )a  

                                        = Eπθ ∇ logπ[ θ θ (a|s)Qπθ (s, )a ]  

 

We can approximate using trajectories from the environment. Using   Qπθ (s, )a        

samples of the expected return to estimate the policy gradient, we get a stochastic     Qπθ (s, )a           

gradient method. Updating the model parameters using as an unbiased sample of       Gt       

   is   referred   to   as   the    Monte   Carlo   policy   gradient    method:Qπθ (s, )a  

function    MCPG 
      Initialize   θ  
      for    each   episode       do {s , , , .., , , , }0 a0 r1 . sT−1 aT−1 rT sT ~ πθ  
            G ← 0  
            θ  Δ ← 0  
            for    t   =   T-1   to   1    do 
                  GG ← rt + γ  
                  θ θ logπ  Δ ← Δ + ∇θ θ (a |s )t t G  
             end   for 
            Δθ  θ ← θ + α  
       end   for 
       return    θ  
end   function 

Since this method uses Monte Carlo approximations of , it produces very        Qπθ (s, )a     

high variance stochastic gradients. We can reduce this variance using a value function             

approximator,   as   explained   below. 
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Actor-critic methods consist of two components. The actor outputs an action           

distribution and the critic outputs a value function approximation , using πθ (· s)|          Qθv
πθ (s, )a   

another set of parameters . The critic can be updated using a policy evaluation method, and    θv             

we can use the approximations in the actor policy gradient update under     Qθv
πθ (s, )a ≈ Qπθ (s, )a         

some   reasonable   assumptions   [20].   The   action-value   actor-critic   method   is   as   follows: 

function    QAC 
      Initialize   ,θ θv  
       for    each   episode    do 
            Sample    s ~ p0 (·)  
            Sample    a ~ πθ (· s)|  
             for    each   step    do 
                  Sample   transition   ,   sample   reward   , s′ ~ p (· s, )| a  r ~ Rs,a,s′   
                  Sample   action    a′ ~ πθ (· s )| ′  

                  top_grad  R ← s r( + Qθv
πθ (s , )′ a′ )  

                  θ ∇ logπ  Δ ← α θ θ (a|s)Qθv
πθ (s, )a  

                  θ ∇ R  Δ v ← β θv( − Qθv
πθ (s, )a )2

 

                  ,θ  θ ← θ + Δ θ  θv ← θv + Δ v  
                  ,s ← s′ a ← a′ 
                   end   for 
             end   for 
       end   for 
      return   ,θ θv  
end   function 

 In the above function, R is the TD target, so we do not let gradients propagate through                 
it. 

 

Figure   10.   The   actor-critic   architecture 
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Approximating the policy gradient introduces bias into the updates. This bias can be             

reduced without changing the gradient’s expected value by using a baseline function            B (s)  

that   only   depends   on   the   state   :s  

 
πEπθ

∇ logπ[ θ θ (A |S )t t B (S )t ] = ∑
 

s
dπθ (s) ∑

 

a
∇θ θ (a|s)B (s)  

                                        = ∑
 

s
dπθ (s)B (s)∇θ ∑

 

a
πθ (a|s)  

                                       1 = ∑
 

s
dπθ (s)B (s)∇θ  

                                        = 0  

 

 

 

 

 

 

A good choice for the baseline is the state-value function. Subtracting the state-value             

function from the action-value function, we get the advantage function. This tells us how              

much   more   reward   than   usual   we   can   get   if   we   take   a   particular   action      from   state   :a s  

 Aπ (s, )a = Qπ (s, )a − V π (s)   

The policy gradient can be expressed using this function, producing lower variance            

gradient   estimates:  

 ρ  ∇θ (π) = Eπθ ∇ logπ[ θ θ (A |S )t t Q
πθ (S , )t At ]  

 = Eπθ ∇ logπ[ θ θ (A |S )t t Q
πθ (S , )t At ] − Eπθ ∇ logπ[ θ θ (A |S )t t V

πθ (S )t ]
 = Eπθ ∇ logπ[ θ θ (A |S )t t (Q )πθ (S , )t At − V πθ (S )t ]  

 = Eπθ ∇ logπ[ θ θ (A |S )t t A
πθ (S , )t At ]  

 

It is therefore beneficial for the agent to work with the advantage function instead of               

the Q function. One possible way to do this is to estimate both and .             V πθ (s)   Qπθ (s, )a  

Alternatively, we can make the following observation about the TD error of the true              

state-value   function: 

                                           Vδπ = Rt+1 + γ π (S )t+1 − V π (S )t   

  Eπ δ |s,[ π a] = Eπ R V S ,[ t+1 + γ π (S )t+1 | t = s At = a] − V π (s)  

                                                      = Qπ (s, )a − V π (s)  
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                                                      = Aπ (s, )a  

Since and are equal in expectation, we can use the TD error to compute δπ   Aπ (s, )a              

the   advantage   policy   gradient,   without   a   need   for      :Qπ (s, )a  

 ρ  ∇θ (π )θ = Eπθ ∇ logπ[ θ θ (A |S )t t δπθ]  (3) 

The real value function is generally not available, so we use an approximate TD error               

instead: 

                   ,Vδθv
πθ = Rt+1 + γ θv

πθ (S )t+1 − V θv
πθ (S )t  (4) 

where is a value function approximation, output by the critic. Replacing the V πθ (s)             

action-value policy gradient in the QAC algorithm with the advantage policy gradient from             

equation 3 using the approximate TD error from  equation 4 results in the advantage actor               

critic   (A2C)   algorithm. 

The advantage function can also be estimated by averaging over n-step advantage            

estimates, analogously to how the TD(𝜆) value function estimator works. This is called             

generalized   advantage   estimation   [21].   The   estimate   can   be   written   in   the   following   form: 

 ,δ  A
︿

t
GAE(γ,λ)

= ∑
∞

l=0
(γλ)l( θv

πθ)
t+l

  

where is the discount factor, controls the weighting of the n-step advantage terms and γ      λ           

   is   the   approximate   TD   error   at   time   . δ( θv
πθ)t+l t + l  

To encourage exploration, we can modify the policy gradient to include the gradient of              

the entropy of the action distribution. This will discourage the agent from prematurely             

converging   to   suboptimal   deterministic   policies   [6].   The   new   gradient   becomes 

          , Eπθ
∇ logπ ∇ H[ θ θ (a|s)A

︿GAE(γ,λ)
+ η θ (π )θ (· s)| ]   

where      is   a   hyperparameter   that   controls   the   strength   of   the   entropy   regularization.η   
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5.   Test   Environment 

For testing, I use Atari environments from the OpenAI Gym open-source library [22].             

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms,            

while the Atari environments are a variety of Atari 2600 video games ran with the Arcade                

Learning Environment framework [1], which is in turn built on top of the Stella Atari 2600                

emulator [23]. I set up the environment the same way as Schulman et al. (2017) [24] to make                  

comparing   the   test   results   possible.   I   detail   the   setup   in    section   5.2    and    section   5.3 . 

5.1.   Interface 

Environments in the OpenAI Gym toolkit provide a uniform interface. Every timestep,            

the environment expects one of the available agent actions as an input, and supplies a reward                

value, the next observation and a “done” boolean value as outputs, signaling whether the              

game or simulation episode is over. Interface-wise, the Atari environments differ only in the              

number of actions available, and every environment has a discrete action space. Every             

observation is an RGB image of the console screen. Observations are therefore   10 602 × 1           

tensors of the shape . Alternatively, there exists a version for every Atari    (210, 60, )1 3          

environment which provides the environment’s RAM states as observations. These are out of             

the   scope   of   this   work. 

5.2.   Preprocessing 

To encode an observation I take the maximum value for each pixel colour value over               

the corresponding frame and the previous frame. This is necessary to remove flickering that is               

present in games where some objects appear only in even frames while other objects appear               

only in odd frames, an artefact caused by the limited number of sprites the Atari 2600 can                 

display   at   once   [3]. 

To make training faster, virtually all solutions apply frame-skipping in some manner.            

This means that we only consider a subset of the observations, we choose an action after                

processing every such observation and we repeat the chosen action until the next observation              

to be considered. Most authors use a constant frame-skip of , meaning that          nf rame−skip = 4    

every fourth observation is considered, starting with the first one , and the chosen          (1, , , ..)5 9 .     

actions are repeated for the timesteps in-between, ignoring feedback from the skipped frames.             
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For every OpenAI Gym Atari environment, there is a version with built-in frame-skipping             

where is uniformly sampled from , and another version with no nf rame−skip      {2, , }3 4       

frame-skipping. In this work, I follow most authors by using a frame-skip of . I             nf rame−skip = 4   

implement this using the environment versions with no frame-skip by considering feedback            

only   from   timesteps   with   indices   of   the   form   .n , εℕ  1 + i f rame−skip i  

The observations are also usually converted to grayscale and downscaled to make            

computation faster. I apply grayscale conversion and downscale the images to a            4 48 × 8  

resolution. The preprocessed observations are therefore tensors of the shape (84, 84, 1), which              

is   the   input   format   used   by   Schulman   et   al.   (2017)   [24]. 

5.3.   Stochasticity 

In almost all games, the dynamics of the Stella emulator are deterministic. This means              

that a particular game always starts from the same position, and following a particular              

sequence of actions always results in the same outcome [25]. Such environments can be              

exploited by agents that rely on this determinism for successful performance by learning the              

exact outcomes of action sequences. These kinds of algorithms can be sensitive to small              

perturbations, and may not generalize well to stochastic environments. For this reason, many             

researchers have augmented the ALE environments to introduce stochasticity, using various           

methods. OpenAI [26] created a well-tuned implementation of the A2C algorithm that was             

benchmarked in Schulman et al. (2017) [24]. I also use an A2C-based agent, so I will use the                  

same method the did: 0 to no-op actions will be performed at the beginning of every game,      k             

selected uniformly at random. I will use , which is the value Schulman et al. (2017)       0k = 3          

[24] used [27]. The no-op action corresponds to the case where the console receives no input,                

so   it   is   available   in   every   game.   This   method   is   usually   referred   to   as    no-ops   starts .  
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6.   Algorithm 

I use a synchronous version of the A3C algorithm [6] for all experiments. A3C is a                

policy gradient-based algorithm that runs multiple agents in different instances of the training             

environment in parallel processes. The agents are controlled by a shared agent model, which              

is   updated   by   the   processes   asynchronously. 

In  section 6.1 , I outline the functions of different parts of the agent model and I explain                 

how   the   algorithm   works.   In    section   6.2 ,   I   present   the   pseudocode   of   the   training   algorithm. 

6.1.   Outline 

Each tested model has an image processing part implemented by convolutional layers,            

followed by a recurrent part implemented by an LSTM ( section 3.3 ). The LSTM outputs a               

latent representation of the environment state. This is passed through a linear layer, followed              

by a softmax layer ( section 4.4.3 ) to produce the action distribution over the set of           πθ (s)      

actions , where represents the policy model parameters. The LSTM outputs are also A   θ            

passed through another linear layer to produce the state-value estimate for the current          V θv
πθ (s)     

environment state under policy , where represents the state-value model parameters.    πθ   θv       

Therefore, most of the parameters from and are shared. This saves computation time,      θ   θv        

since the shared representations are only computed once during the forward pass, and the              

sharing of parameters encourages learning mutually beneficial representations. Since the          

network receives feedback from two error sources, learning such representations can become            

quicker, resulting in more  sample-efficient learning, meaning that the network needs to see             

fewer   examples   to   learn   the   target   function. 

Computation is distributed between a master process and worker processes.        nworkers    

The master is responsible for feeding observations into the neural network, providing actions             

to the workers, and periodically updating the agent model based on the acquired data. Each               

worker is responsible for executing the received actions in their own instance of the test               

environment and providing the resulting observations to the master. The network           

computations   are   delegated   to   the   graphics   processing   unit   (GPU)   for   faster   computation   time. 

The master keeps track of an agent state for each worker process. Each agent instance               

plays in a different instance of the same environment, ran by the workers in parallel. This                
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makes learning more stable, since the IID assumption that does not hold in the RL setting is                 

recovered   to   some   extent. 

IID is an assumption on the training sample distribution and it stands for             

Independently and Identically Distributed . If this assumption does not hold, neural networks            

have a hard time learning the target task. If there are multiple stochastic agents running in                

different instances of the same environment, they can explore different parts of the state space               

at   the   same   time,   making   the   observations   more   independently   distributed. 

Running multiple environment instances in parallel, we can also acquire more samples            

in a given time period (assuming we have enough processing cores), resulting in less              

wall-clock   training   time. 

The model is updated every timesteps. Between updates, the agents interact with     P         

their environments and data is collected for the next update. Let be the number of steps           p       

elapsed since the last model update. I use n-step returns ( section 4.3.2 ) as targets for the                

state-value   approximation   of   the   model   and   I   use   the   squared   error   to   compute   the   value   loss: 

                   , Lv (θ )v = E G[( t
(P−p) − V θv

πθ (s )t )
2]   

I use a truncated version of generalized advantage estimation ( section 4.4.3 ) to            

calculate   the   policy   loss,   also   using   entropy   regularization   (see    section   4.4.3 ): 

 
                  δA

︿

t
GAE(γ,λ),P−p

= ∑
P−p

l=0
(γλ)l( θv

πθ)t+l   
 

  Lπ (θ) = Eπθ
logπ H[ θ (a|s)A

︿GAE(γ,λ),P−p
+ η (π )θ (s) ]   

Notice the similarity between and the truncated 𝜆-return from  section    A
︿

t
GAE(γ,λ),P−p

       

4.3.4 . gives a state-value estimate, while gives a state-advantage estimate, Gλ
t:t+k       A

︿

t
GAE(γ,λ),P−p

     

and their difference is is the state value (although the state values are estimated in generalized                

advantage   estimation). 

For learning representations that are mutually beneficial for the policy and value            

networks, it is important that the relative magnitudes of and are correct. For this         Lπ   Lv      

39 



reason, I multiply by the constant in the combined loss, which is the value that is used   Lv      β             

to   compute   the   gradients: 

                   L  L (θ, )θv = Lπ (θ) + β v (θ )v   

Each training session lasts for game frames in total including the skipped     nf rames−max         

frames and summed over the worker processes. The learning rate is linearly annealed over          α      

the   course   of   learning.   I   use   Adam   [28]   as   the   optimization   method. 

OpenAI [26] has created an implementation of A2C for comparison purposes as part             

of their baseline implementations repository [27]. There are a few differences between their             

implementation and mine. For advantage estimation, I use generalized advantage estimation,           

while they use the difference between n-step returns and the state-value function estimates.             

Also, I use the Adam optimization algorithm instead of RMSProp [29]. I use no gradient               

clipping (downscale gradients so that their L2-norm is of a threshold value in case their               

current L2-norm is greater than this value) and I also use a different set of hyperparameters                

(see    section   7.2 ). 
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6.2.   Pseudocode 

//   Assume   model   parameter   vectors   ,   θ θv  
Start   workers   ,   let      refer   to   all   the   workers   ordered   by   their   indicesεwk : k {1, , .., }2 . nworkers w  
Get   observations   ,   let   refer   to   all   the   observations   ordered   by   their   indicesε  ok ~ wk : k {1, , .., }2 . nworkers o  
Define   batch   of   episode   over   flags   εℤf 2

K ← 1  
Create   agent   states   ,   let      be   an   ordered   batch   of   the   agent   states, εsk k {1, , .., }2 . nworkers s  
nf rames ← 0  
do 
            p ← 0  
            Create   lists   , , , ,T l T v T h T r T f  
             do 
                        for       do    if   ,   initialize   agent   state       end   forεk {1, , .., }2 . nworkers f k = 1 sk  
                         Feed      into   the   model   to   get   new   batches{s, }o  s,{ πθ (· s)| ,V

θv
πθ (s)}  

                        Sample   batch   of   actions      and   send   them   to    a ~ πθ (· s)| w  
                        Get   feedback   from   workers    (o, , )r f ~ w  //      is   the   ordered   batch   of   rewardsr  
                        Append      to   ogπl θ (a|s) T l  
                        Append      to   V

θv
πθ (s) T v  

                        Append      to   H (π )θ (· s)| T h  //      is   the   information   entropyH (·)  
                        Append      to   r T r  
                        Append      to   f T f  
                        p ← p + 1  
             while     p < P   
            Feed      into   the   model   to   get   new      batches{s, }o  ·,·,{ V

θv
πθ (s)}  

            Append      to   V
θv
πθ (s) T v  

            ,   detach      from   computation   graphR ← V
θv
πθ (s) R  

            , ,A
︿

← 0 Lπ (θ) ← 0 Lv (θ )v ← 0  
             for        doi ∈ {K, , .., }K − 1 . 1  
                        1 )γRR ← T r i[ ] + ( − T f i[ ]  
                        1 )γTδ ← T r i[ ] + ( − T f i[ ] v i[ + 1] − T v i[ ]  
                        ,   detach      from   computation   graphλAA

︿
← δ + γ

︿
A
︿

 
                         Lπ (θ) ← Lπ (θ) − T T( l i[ ]A

︿

+ η h i[ ])  

                         Lv (θ )v ← Lv (θ )v + (R )− T v i[ ] 2   
             end   for 
            Update      and      with   the   gradients   from   the   loss   θ θv L  Lπ (θ) + β v (θ )v  
            Detach      from   the   computation   graphs  
            n Pnf rames ← nf rames + nworkers frame−skip  
while    nf rames < nf rames−max  
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7.   Experiments 

 In this section, I present my test results. I introduce the games used for the               

experiments in  section 7.1 . In  section 7.2 , I define the hyperparameters I used for all tested                

models in all games. In  section 7.2 , I introduce the examined models. I present and analyze                

the   test   results   in    section   7.3 . 

7.1.   Environments 

Most authors publish results for dozens of games ([6], [24]). Because of limited time              

and computational resources, I run tests on three visually and gameplay-wise quite different             

games: Breakout, Qbert, and MsPacman. I optimize all hyperparameters on Breakout. I use             

the other two games to see if the difference in performance between the tested model               

architectures   is   consistent   across   games.   I   use   the   same   set   of   hyperparameters   for   all   games. 

 
Breakout Qbert MsPacman 

Figure   12.   Screenshots   of   the   tested   games 

7.2.   Hyperparameters 

 Every experiment is started with a learning rate , annealed linearly over        .5 0α = 1 × 1 −4     

the course of training. I use a discount factor of and a of for general          .99γ = 0    λ   .90    

advantage estimation. Entropy regularization is applied with a weight of . The value          .01η = 0    

approximation loss is given a weight of in the combined loss. I update the agent       .5  β = 0          

model every timesteps and workers run in parallel. Each training session  0P = 2    nworkers = 4         

lasts   for      frames.   For   Adam,   I   use   ,   ,   .0nf rames−max = 4 × 1 7 .9  β1 = 0 .999  β2 = 0 0ε = 1 −8  

42 



Hyperparameter Value 

α  .5 01 × 1 −4  

γ  .990  

λ  .90  

η  .010  

 β  .50  

P  02  

nworkers  4  

nf rames−max  04 × 1 7  

Table   1.   Hyperparameter   values   used   in   all   tests 

7.3.   Model   Architectures 

Because of computational constraints, I limit the number of architectures to test to             

three. One of these is based on the architecture from Mnih et al. (2015) [3] mentioned in                 

section 2 . I use the version from Mnih et al. (2016) that appends an LSTM with 256 outputs                  

after the fully connected layer, since it works better [6]. This is the  baseline architecture I                

compare   my   variations   against. 

The baseline architecture receives input tensors of size . The first        (84, 4, )8 1    

convolutional layer has 32 kernels with stride 4, followed by a layer of 64    8 × 8            4 × 4  

kernels with stride 2, followed by a layer of 64 kernels with stride 1. ReLU          3 × 3       

nonlinearities are applied after all convolutions to produce the layer outputs. The output of the               

last convolutional layer is fed into a linear layer with 512 outputs, followed by a ReLU,                

followed by the LSTM. A linear layer is applied to the outputs of the LSTM, followed by a                  

softmax layer to produce the action distribution . Another linear layer is applied to the       πθ (· s)|         

LSTM   outputs   to   produce   the   value   function   approximation   .V θv
πθ (s)  

I did a series of short preliminary tests on the game Breakout to narrow down the                

architectures that might perform better than the baseline. I then chose two architectures with              

promising properties to compare against the baseline. I call these  architecture A and             

architecture   B . 
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Architecture A is a modification of the baseline: the fully connected layer is removed,              

and the kernel count of the first convolutional layer is increased from 32 to 64. In preliminary                 

testing,   this   setup   trained   faster   than   the   baseline. 

Architecture B results from adding two extra convolutional layers with a kernel size of              

, a stride of and kernel count of before the first layer of architecture A. In5 × 5     1      46          

preliminary testing, I observed that by adding convolutional layers before the first layer of the               

baseline architecture that do not change the feature map resolutions but increase the channel              

count, agents learn faster. Architecture B had considerably better training speed and final             

performance   than   the   baseline. 

Layer baseline A B 

Layer   depth 
baseline/A/B 

Convolutional   +   ReLU Output   channels 

Kernel   size Stride Padding 

-/-/1 5,[ 5]  1 2 - - 64 

-/-/2 5,[ 5]  1 2 - - 64 

1/1/3 8,[ 8]  4 3 32 64 64 

2/2/4 4,[ 4]  2 1 64 64 64 

3/3/5 3,[ 3]  1 1 64 64 64 

Layer   depth Fully   connected Outputs 

4/4/- Linear   +   ReLU 512 - - 

5/5/6 LSTM 256 256 256 

6/6/7 Linear   +   softmax   (π )θ  A| |  A| |  A| |  

7/7/8 Linear    V( θv
πθ)  1 1 1 

Table   2:   Model   architectures 

7.4.   Test   Results 

I run all training sessions with the algorithm presented in  section 6 , using the              

hyperparameters defined in  section 7.2 . I run three experiments for every game-architecture            
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pair. 

During training, I log the scores one of the workers receives. These values tend to be                

high in variance, so I smooth them by averaging over the last 100 scores acquired. This is a                  

common smoothing technique in the literature [24] [25]. Other frequent methods are to stop              

training and evaluate the agent performance every (e.g. one million) frames, or to evaluate       N         

the agent only at the end of training. The approach I use lets me visualize the scores received                  

over time and compare against the A2C implementation of Schulman et al. (2017) [24], since               

they use the same smoothing method. By plotting the smoothed scores received against the              

number of frames elapsed, the learning progress of the agent can be visualized, so these plots                

are referred to as  learning curves in RL. The effects of the smoothing can be seen in  figure 13 .                   

Raw   scores   are   displayed   for   every   game-architecture   pair   in    figure   18    in   the    Appendix . 

For every test run, I calculate the final performance of the agent by averaging over the                

scores of the last 100 games played, as Schulman et al. (2017) [PPOA] did. I present the mean                  

and standard deviation of these values in  table 3 , grouped by game and architecture, also               

including   the   results   from   Schulman   et   al.   (2017). 

Figure 13. Raw and smoothed learning curves on the game Breakout. From left to right, the                
result   of   the   first   test   run   is   displayed   for   the   baseline,   A,   and   B   respectively. 

The task being learned can have a substantial effect on the learning curve in RL. In                

Breakout, the agent has to clear the playing field of blocks by hitting them with a ball, getting                  

some points for each block, 448 in total. However, the fewer blocks there are, the more                

difficult it is to hit one. If all the blocks are cleared, another batch of blocks appear, making                  

scoring points easy again. We can see the effects this has on the raw scores in  figure 13 .                  

Agents have difficulty scoring above the 448 point threshold, but when they do, they are often                

able   to   score   a   lot   more   points   than   on   average. 

45 



 
Figure 14. The learning curves of all test runs on Breakout for the the baseline, A, and B.                  
Note   the   effects   different   architectures   have   on   learning   speed   and   final   performance. 

The results of the test runs on Breakout are plotted together in  figure 14 . There are a                 

few different things to note in this figure. First, the rate of improvement with respect to the                 

number of frames observed differs between architectures. The baseline model is the slowest             

learner, followed by A, and B is the most sample-efficient in this game. Second, although A                

learns faster, it falls off in the long run, suggesting that there is a tradeoff between the two                  

architectures between learning speed and maximum performance, for this particular game at            

least. Third, one of the test runs of the baseline exhibits instability in the learning process.                

This is a common occurrence in RL when the hyperparameters are not ideal, but it can happen                 

anyways. After the drop in performance, the agent quickly recovers. It might even seem like               

this agent is improving faster than the others during the catch-up phase, but the steepening of                

its learning curve that lasts for roughly a million frames is only a consequence of the score                 

smoothing. This becomes apparent in  figure 15 , where I have visualized the learning curve              

with the raw score values. A sudden drop in performance can be observed around the 2                

million frame mark that gets corrected in a few game episodes. It has a long-term effect on the                  

smoothed   score   values,   however. 
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Figure   15.   Instability   in   the   learning   process   on   the   third   test   run   of   the   baseline   in   Breakout. 

My version of the A2C algorithm outperforms the well-tuned implementation of           

Schulman et al. (2017) [24] on Breakout significantly: their solution achieves an average             

score of 303 over the last 100 games of a 40 million frame training session, while my solution                  

achieves an average score of 372.78, using the same model architecture (the baseline             

architecture). There are two possible explanations for this. One possible reason is that I tuned               

my hyperparameters for Breakout specifically while the OpenAI implementation is fine-tuned           

to play dozens of games as well as possible with a single set of hyperparameters. This could                 

cause my model to play very well on Breakout but perform poorly on other games. Another                

possible cause for the difference is that I used general advantage estimation to estimate the               

advantage function for the policy gradient update (see  section 4.4.3 ), and this method might              

be   better   suited   for   the   game   Breakout. 

Test results for the game Qbert are shown in  figure 16 . My results on Qbert are worse                 

than the results of Schulman et al. (2017) [24], but a similar pattern is observed as in                 

Breakout: the baseline architecture results in slower-learning agents than A and B, and agents              

based on architecture B are the fastest learners. Training is less stable on Qbert than on                

Breakout,   which   is   probably   the   result   of   tuning   the   hyperparameters   on   Breakout   only. 
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Figure 16. The learning curves of all test runs on Qbert for the the baseline, A, and B.                  
Learning   is   less   stable   than   in   Breakout,   since   the   hyperparameters   were   not   tuned   for   Qbert. 

The results for MsPacman are displayed in  figure 17 . In this game, B fails to learn,                

while architecture A still displays an increased learning ability. The only difference between             

A and B is the first two convolutional layers of B that A is missing, so while giving B                   

considerable advantages in the other two games, these are the cause of the low performance in                

this   case. 

Both my baseline and architecture A-based models outperform the A2C          

implementation of Schulman et al. (2017) in the majority of tests. Architecture A has              

displayed a better learning speed than the baseline in all three games, suggesting that this A is                 

more sample efficient in general. A has twice as many channels in its first convolutional layer                

as B, and the fully connected layer present in the baseline architecture before the LSTM is                

also omitted in A. Further testing is needed to determine to what extent these two changes                

contribute to the sample efficiency advantage, but it is safe to say that the fully connected                

layer   found   in   the   baseline   before   the   LSTM   layer   is   not   crucial   for   good   performance. 

The extra first two convolutional layers in architecture B provide a learning advantage             

that dwarfs the difference between the baseline and B, but my tests show that this setup                

hinders learning in some environments. It is important to note that such cases can also be                

observed in other works. For example, in Schulman et al. (2017), the PPO algorithm generally               
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outperforms A2C, but in the game Beamrider, A2C achieves double the performance. A             

possible goal for future research is to modify the extra convolutional layers of architecture B               

in   a   way   that   facilitates   a   more   well-rounded   performance   across   games. 

 
Figure 17. The learning curves of all test runs on MsPacman for the the baseline, A, and B. B                   
fails   to   learn,   while   A   outperforms   the   baseline. 
 

 Breakout Qbert MsPacman 

Schulman   et   al.   (2017)   -   A2C 303.00 
- 

10065.70 
- 

1626.90 
- 

Schulman   et   al.   (2017)   -   ACER 456.40 
- 

15316.60 
- 

2718.5 
- 

Schulman   et   al.   (2017)   -   PPO 274.80 
- 

14293.30 
- 

2096.5 
- 

baseline 372.78 
(7.60) 

3184.33 
(744.28) 

1916.73 
(137.65) 

A 360.49 
(0.64) 

4238.58 
(236.82) 

2049.23 
(224.89) 

B 455.55 
(11.72) 

6124.67 
(1548.10) 

605.97 
(46.49) 

Table 3. The mean and standard deviation (in parentheses) of the final performance of the               
baseline,   A,   and   B   and   Schulman   et   al.   (2017)   [24]   on   the   tested   games. 
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I provide the wall-clock test run times times for each game-architecture pair in  Table 4 ,               

as measured on my testing system. The purpose of this work is to study how model                

architecture affects learning speed in terms of sample efficiency. Wall-clock run times are             

irrelevant in this context, but I still provide them for the sake of completeness. Architecture A                

runs slightly faster than the baseline, while architecture B is significantly slower due to its               

extra convolutional layers processing a high number of channels of relatively high resolution             

feature   maps   (compared   to   the   input   feature   map   resolutions   of   succeeding   layers). 

 Breakout Qbert MsPacman 

baseline 4.54h 4.60h 4.53h 

A 4.56h 4.52h 4.14h 

B 7.47h 7.58h 7.46h 
Table 4. The mean wall clock test run times in hours of the three architectures on the tested                  
games. Architecture B requires significantly more computing time due to its first two             
convolutional   layers.   Game   choice   has   a   negligible   effect   on   performance. 
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8.   Conclusion 

I study the effects different model architectures have on the performance of deep             

reinforcement learning agents in the Atari domain. My aim is to show that in addition to                

algorithmic advancements, improving model architectures can also lead to considerably better           

performing agents. After giving an overview of deep learning basics and reinforcement            

learning, I introduce and test two novel model architectures, comparing them to the commonly              

used setup of Mnih et al. (2015) [3], which I treat as a baseline. These new architectures                 

outperform the baseline in the Atari domain in the majority of the conducted experiments. In               

the analysis of my test results, I describe the possible architectural reasons for the differences               

in   performance,   also   outlining   future   directions   for   research.  
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Appendix 

 
Figure 18. Raw and smoothed learning curves of the first test run for every game-architecture               
pair. 
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