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Kivonat

A mesterséges intelligencia korában, amikor naponta olvashatjuk a híreket annak fej-
lődéséről, természetesnek vehető, hogy az ipari adathalmazok hibadetektálására is számos
módszer áll rendelkezésre, melyek mesterséges intelligenciát, azon belül is mélytanulást
alkalmaznak. Erre a feladatra jelenthet egy új megközelítést a zajtalanító diffúziós hálóza-
tok (DDPM) alkalmazása, ezen hálózatok ugyanis képesek a tanult mintákat visszaállítani
kis minőségveszteség mellett, illetve eltérő, hibás adatminta esetén, azt egy tanulttal meg-
egyező kinézetű mintává alakítják át, így egy teljesen új képet generálva a bemenetiből. A
modellek ezen tulajdonságát kihasználhatjuk, ha csak jó minőségű mintákkal tanítjuk őket
és ezután a bemenetükre hibás adatokat adunk, amelyeket a hálózat átalakít jó minőségű
képekké a tanultak alapján, eltüntetve az eredeti deformitásokat. Ennek köszönhetően a
bemeneti és kimeneti képek különbségét vizsgálva szétválasztható, hogy mely minták vol-
tak megfelelő minőségűek és melyek tartalmaztak hibákat, amely módszert már például
agyi felvételek elemzésénél sikeresen alkalmaztak [1]. A megközelítésből kiindulva a dol-
gozatban a diffúziós neurális hálózatok felügyelet nélküli hibadetektációs képessége kerül
bemutatására valós ipari adatokon keresztül, nagy hangsúlyt fektetve a nehezen osztályoz-
ható minták feldolgozására. A kapott eredmények ezen felül összehasonlításra kerülnek egy
autoenkóder modell különbség eloszlásaival is, amely hálózat esetében a hibadetektálási
folyamat lényegében ugyanaz, azonban a a visszaállítás minősége gyengébb, a kapott képek
elmosódottak, így zajt jelentve a kimenetre nézve, elnyomva a hibák eltüntetéséből eredő
különbségeket. Emiatt a diffúziós modell jobb kimeneti képminőségéből adódóan alkalma-
sabb lehet a kisméretű és kis kontrasztú hibák észlelésére, míg az autoenkóder esetében,
a nagyobb kimeneti jel-zaj viszony miatt, ezek nehezen detektálhatóak.
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Abstract

We truly live in the era of Artificial Intelligence, reading about its achievements on a
day-to-day basis, so it is natural that there are several solutions available for detecting
anomalies in industrial datasets that are based on AI, more precisely deep learning models.
A new approach to this task can be the application of Denoising Diffusion Probabilistic
Models (DDPMs), as these networks are able to reconstruct the training samples with
minimal loss in image quality, while also transforming different, faulty samples to ones
similar to the training data, which only consists of samples without any anomalies, thus
generating an entirely new image from the input. By exploiting this transformation and
generative feature of the networks, we can train them with only good samples and after
training, faulty samples can be provided to the network for partial inference (when the
model has to denoise a sample) and the model, in theory, generates a good sample from
the faulty one based on its training, thus eliminating the original’s anomalies. Thanks
to this behaviour, by evaluating the difference between the input and output images, we
can separate which samples were good and which had some deformities in the dataset,
which ability has been already proven in the case of brain scans [1]. Originating from this
approach, in this thesis, the anomaly detection ability of the Diffusion Networks is detailed
using actual industrial production data with a big emphasis on detecting the more difficult
samples. The obtained results are also compared to the reconstruction loss distributions
of an Autoencoder model, where the overall process is the same, but the reconstruction
quality is lower, the images are blurred, resulting in additional noise regarding the output.
Based on this fact, thanks to its better reconstruction quality, the general expectation is
that the diffusion model is better suited for detecting smaller and less prominent anomalies,
which are hard to identify in the case of the Autoencoder due to the its higher output
signal-to-noise ratio.
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Chapter 1

Introduction

As the constant research and development of artificial intelligence is currently a huge
driving force in the world, it is natural that AI and Deep Learning based methods in
particular are being applied more and more at different areas. This is the case with the
task of Anomaly Detection in a production environment, where it is crucial to provide a
reliable method that can separate the incoming samples with high precision and stability.
One of the existing approaches is the use of the Autoencoder architecture, which can learn
an encoding of the original pictures and reconstruct them using it. The problem with it is
that the reconstruction quality is bad because the output images are blurred, which makes
the detection of the differences coming from correcting the smaller anomalies much more
harder. However, with the emergence of Diffusion Networks, a new, generative approach
could be given, as it has much better output image quality, possibly solving this problem
and improving the performance of the detection process. Based on this expectation, in
this thesis, I present a Diffusion based Anomaly Detection approach that can be applied in
a production setting. This presented method is evaluated on an industrial dataset and it
is compared to the performance of the Autoencoder architecture. To make the comparison
more thorough and informative, both models are trained on various numbers of training
samples to help visualize a trend in their performances.

The main structure of the thesis itself can be separated into two parts: the first serves
as an introduction to the Anomaly Detection problem, details the measurement setup,
contains information about the dataset and the network architectures used throughout
the thesis, while the second part showcases the results, their analysis and the obtained
conclusions.

After this introduction, the first chapter introduces the basis of the Anomaly Detection
problem and lists some of the already used approaches. The second chapter presents
the workflow of the Anomaly Detection process used in this thesis, with details on every
step, input and output. Moreover, the measurement setup is also introduced and the
different metrics used in the evaluation of the obtained results are also discussed. In the
third chapter, the Autoencoder and the DDPM network architectures are introduced and
analysed with some brief explanations about their core aspects. To help understand these
networks, some of their main parameters are also analysed more thoroughly, as they will
play a crucial role in optimizing the performance of the detection process. After these,
the next chapter details the dataset used for evaluation, with a high emphasis on the
appearance and features of each class, as they will be important later in the process. In
the last chapter, the results for the different methods on each error class of the dataset
are listed and analysed, with an emphasis on the harder to detect anomalies: for these,
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outside of the basic analysis, a more in depth evaluation is carried out involving the
confusion matrices of the two approaches. Using these results, each approach is compared
across different parameters to rank them and establish whether the DDPM based method
can outperform the already existing solutions.
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Chapter 2

A brief look on Anomaly
Detection Techniques

Detecting faulty samples in a given dataset has been a key aspect of the industrialized
world for centuries, as by increasing the detection ratio of anomalies, the production
performance and stability can also be improved and kept at a much higher level. For low
dimensional data, there are several statistical approaches that can be used to select the
outlier samples from a given dataset: they range from simple observations to more complex
algorithms that cluster the Data into groups (see [2] and [3] for a detailed summary, where
the anomaly detection methods are grouped based on their core features and compared
to each other in great detail). However, in the case of high dimensional data, like images,
many of the traditional approaches cannot be applied due to the larger size of the individual
data samples. Here come the Machine Learning and Deep Learning techniques into the
highlight, as they have proved to be efficient in several image processing tasks due to their
ability to efficiently analyze the spatial information of even large pictures. Moreover, they
can also be quite easily integrated into the already developed methods: for example, the
neural network training can be paired with Active Learning, which was already a reliable
solution on its own in several use-cases [4]. As the neural networks became even more
efficient and deeper, having several different type of layers that further optimized their
performance, new architectures were developed for detecting outlier samples. One of these
was the Autoencoder neural architecture (see it detailed in Section 5.1), which learns
a representation of the original image and tries to reconstruct it from this embedding.
This architecture can be used effectively in Anomaly Detection, as it is able to learn
the main features of the samples and both its embedding and output images can be
used for separating the good samples from the bad ones [5]. With the introduction of
generative adversarial networks (GANs) [6], the possibilities for outlier detection increased,
as now, the networks could generate high quality samples and could also decide which
data contained anomalies according to their own knowledge: for example they achieved
great results in the case of capturing imaging markers relevant for disease progression and
treatment monitoring [7]. Recently, this ability increased with the advent of Denoising
Diffusion Probabilistic Models (DDPMs) [8] as the generated image quality is even higher
than their previous counterparts: a good example for the high reconstruction quality is the
popular DALL-E text-conditional image generator [9], with which the user can generate
high quality images based on instructions given in text input without limits. The core
feature of the DDPM model is that it gradually applies noise to the input image and
then tries to reverse it, learning the distribution of the dataset during the process (this is
detailed in Section 5.2). Originally these networks were not used for Anomaly Detection
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tasks, but nowadays, they are being used in more and more fields, for example in medical
use-cases [1] and surface evaluations [10] with great success. However, there has not been a
comprehensive analysis of this process in the case of industrial production datasets, which
is the main reason behind this thesis. Moreover, usually the detected anomalies have a
trend or a typical appearance, so it is also exciting to see how does the DDPM network
deal with very small and hard-to-detect production anomalies which can differ for each
and every sample.
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Chapter 3

The Measurement Setup

After presenting the existing detection methods, in this section, the Anomaly Detection
process is detailed which is the basis of evaluating the performance of the DDPM network.
Moreover, the used metrics and measurement setup are also introduced which are used to
test the methods and compare their performances to each other.

3.1 The Anomaly Detection Process

In this section, the Anomaly Detection process itself is discussed, as it is important to
understand each of its steps in detail, in order to determine its parameters and be able
to evaluate the obtained results more effectively. To visualize each step, Figure 3.1 is
provided, where the flowchart of the whole process is pictured: each step is symbolized by
a rectangle with a solid line, while every input is shown with a dotted border.

Figure 3.1: Flowchart of the Anomaly Detection Process

Before the first step, the dataset needs to be divided into two groups, where one only
contains the good quality samples and the other has the bad quality ones. This division is
needed, as the next step is the network training, which should only involve the good sam-
ples. It might sound difficult or even counter intuitive to categorize the dataset before the
Anomaly Detection begins, but usually in the case of Industrial datasets, the production
line outputs good samples in over 99% of the cases. So in case of larger sample sizes, it
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does not really affect the training of the neural network, if some bad samples are kept in
the training dataset, as their contribution to the overall loss will be minimal, making the
network not learn their features.

After the network training is finished, the next step is the selection process, where it is
determined for every sample in the dataset whether it is considered a good or bad image.
This is done by calculating the reconstruction loss of each sample, which is simply the
difference between the input and the output image, summarized into one number (see
Subsection 3.2.1 for more details). Based on this loss value, a distribution of the samples
can be derived, where the general expectation is that data that are similar to each other in
appearance will have similar loss values in the distribution as well. Based on this, since the
good production samples should be very alike and also the network was trained on them
–meaning their reconstruction loss value should be smaller in general– should be situated
at the lower end of this distribution with a small deviation. The samples with errors,
on the other hand, can vary in appearance based on the type of anomaly they have (for
example the extent of excess soldering paste on the board) and they overall differ from the
good samples, so they should be located at the higher end of the distribution –due to their
larger reconstruction loss values–, also having a larger deviation due to their uniqueness.
If these expectations turn out to be true, then the good and bad samples can be easily
separated by a threshold between the two distributions. Unfortunately, this only happens
in ideal circumstances, so the two distributions will overlap each other in the majority of
cases, due to the problems with the quality of the reconstructions: for example, in the case
of the Autoencoder, the blurred nature of the output images causes the two distributions
to shift and overlap heavily, as every sample has a constant loss value added because of
this noisiness. Due to the overlap, the threshold value cannot be set so easily, since there
is no empty space between the good and bad samples.

To provide a better evaluation technique besides analysing the distributions visually, as
the last step of the Anomaly Detection process, another metric, the AUC value (see
Subsection 3.2.2 for a detailed description) is calculated, which will summarize the extent
of this overlap into one single value. Based on this value, the ability to separate the
two distributions is rated and the extent of the aforementioned overlap can be evaluated
without having to analyze the distributions visually. Moreover, using this metric, the
performances of different methods regarding the quality classes can be simply compared
to each other, resulting in a definitive ranking.

Finally, to add another dimension to this comparison, the performance of each model
should be tested with several different setups regarding the parameters of the detection
process, so that we can get a more complete picture of the difference in performance
between the two approaches. One way to accomplish this is to run each Anomaly Detection
method with a set of different training dataset sizes ranging from small to large and have
them evaluated on the same validation dataset. Based on the acquired results, it will be
possible to establish a better understanding of each model’s main characteristics when it
comes to the reconstruction quality of the outputs, as they will learn on an increasingly
more diverse training dataset, as the sample size is gradually increased.

3.2 Metrics

After discussing the overall measurement workflow, in this section, the metrics used for
evaluating the results are detailed, as they provide the basis for evaluating each model’s
anomaly detection performance. In this thesis, two metrics are used to evaluate the

6



Anomaly Detection performance of the different networks: the MSE loss value and AUC
metric. The first one is a stable, well-used metric in the images processing field, as it is
very straightforward, easy-to-obtain, although, due to its simple nature, it has some flaws
as well. The AUC metric is usually used in classification tasks, however, it can also be
used in the case of Anomaly Detection, as it can summarize the performance of a method
with just one number instead of relying on visual distributions.

3.2.1 Mean Squared Error

Although the Mean Squared Error (MSE) is a very simple metric, it still needs to be
discussed, as it serves as the basis of the Anomaly Detection workflow. Since it is such a
well known metric in the field of image processing, in this section, only a brief description
is provided.

To begin with, we need to take a look at the formula of this metric, as most of its
characteristics can be derived directly from it. Based on solely its name, the exact formula
can be written very easily, as it is just the average squared difference between two groups
of data, in our case two images with the same size:

f(x, y) = 1
N · M

N∑
i=1

M∑
j=1

(xij − yij)2 (3.1)

where y is the output and x is the input image with both having N×M size. The advantage
of this calculation is that it is easy to evaluate, since it only requires basic operations and
producing the difference can be done in parallel across the pixels, making it even quicker
to execute. It is also beneficial that the more lower an MSE value gets, it means a more
smaller difference in pixels, due to squaring the differences of the normalized pixel values
which are less then 1. However, this can also cause some difficulties, as it makes comparing
two samples just based on their MSE values harder.

To sum up, the MSE value is a very straightforward and easy-to-use metric in the case of
calculating the difference between two images, however its drawbacks or hindrances (due
to its simple nature) also need to be kept in mind and it should be used with some other
techniques to complement it and to provide a more complete analysis.

3.2.2 Area under curve

The second metric used in this thesis, is the Area Under Curve (AUC) value, which is also
a widely used metric in evaluating classification performances. However, it can also be
intuitively used in the case of Anomaly Detection, so in this section, it will be explained,
why it is suitable for this task as well.

The basis of this metric is the Receiver Operating Characteristic (ROC) space which can
visually show how good one method is with respect to another one based on its True
Positive Rate (TPR) and False Positive Rate (FPR) (see [11] for a detailed description).
This plane is separated by a diagonal line representing the performance of the random
choice, which serves as the baseline when evaluating the performance of a classification
method: the higher a given method is above this diagonal, the better it is at classifying
the samples of the given dataset. In the case of continuous probabilistic variables, ROC
curves can also be displayed, where each point is treated as a different setup or state for
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the analysed model. To plot these curves, the TPR and FPR values need to be defined
the following way:

TPR(T ) =
∫ ∞

T
f1(x) dx (3.2)

FPR(T ) =
∫ ∞

T
f0(x) dx (3.3)

where T is a changeable threshold variable determining whether the continuous probabilis-
tic variable (X) is considered positive (X > T ) or negative (X < T ) while f1(x) and f0(x)
are the density functions of the positive and negative X’s, respectively. By plotting this
curve, the model’s performance can be evaluated in a dynamic way: the goal is to reach
the (0, 1) point, which serves as the perfect classification, as soon as possible, while the
FPR still stays low during the process of changing the threshold variable. To describe this
progression with just one number, the Area Under Curve (AUC) value can be calculated,
which is simply the overall area below the plotted ROC curve and the closer it gets to 1,
the better the process is at classifying the samples from the dataset.

To utilize this metric, during the Anomaly Detection process, first we need to label the
samples and transform the task into a classification problem, which can be done easily by
first normalizing the loss values between 0 and 1: giving the good samples the label 0 and
annotating the faulty ones with 1. This approach is effective since the good samples are
expected to have a lower loss value, so they should be closer to 0, while the faulty images
cannot be reconstructed perfectly, giving them a higher MSE value and placing them closer
to 1. Plotting the ROC curve this way will represent for each T threshold variable how
correctly the two distributions can be separated. If the good and faulty samples form two
distinct distributions in the range between 0 and 1, then the ROC curve will achieve high
TPR values at most threshold values, while keeping the FPR low, resulting in an overall
higher AUC value. This way a higher AUC value means that the given method produces
a more structured sample distribution based on reconstruction and it is easier to detect
and label the samples that have anomalies. To provide an example of how this evaluation
works in practice, Figure 3.2 shows the ability of an Autoencoder detecting the paste low
solderings among the correct samples.
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ROC curve of the good and paste low solder samples (AUC = 0.95)

Figure 3.2: Example ROC curve of an Autoencoder on the good
and paste low samples from the solder images dataset

At the beginning, the ROC curve is very close to 0 FPR, as there are mainly good samples
near the smaller loss values. However, as the threshold value gets larger, the TPR values
spike up really fast while the FPR metric only creeps up very slowly. This behaviour
results in an ROC curve that always sticks to the top-left corner, near the ideal (0, 1)
point, meaning that based on the reconstruction loss of the Autoencoder, the good and
paste low samples can be detected with large success. The AUC value also signals a great
performance, as with 0.95, it is close to the perfect value.

All in all, based on the above explanation, the AUC metric can be efficiently used in the
evaluation of the Anomaly Detection problem. It can also summarize the performance
of each model in one single value, instead of having to compare the class distributions
visually.
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3.3 The baseline method

To provide a baseline approach which can then be used to rank the other methods, in this
section, a very simple method is introduced to detect the Anomalies in the Solder Images
Dataset. The approach is the simplest autoencoder, as it always produces the average
of all training samples as its output. To demonstrate how this output image will look,
Figure 3.3 is provided where the average of the good solder samples is shown.

Figure 3.3: Output of the Average Autoencoder on the good sol-
der samples

Based on the output image, it is easy to tell, that the reconstruction quality of the approach
is very poor, however, due to the well conditioned samples (same overall position, colors
and shapes for all samples), the output still resembles a soldering. After producing the
mean image, it is used to calculate its difference from every other sample, which values
then will be used to determine which sample is correct and which has some production
anomalies.

This approach serves as a great baseline, because it is very simple, needs no training time
and still uses some strategy to detect the faulty samples from the rest. The results of the
Average Autoencoder will be used as comparison to the other introduced methods, as it
will help understand the difference in performance between them better.
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Chapter 4

The Dataset

In this chapter, one of the key aspects of the Anomaly Detection process is discussed: the
dataset that will be labeled. The features of different datasets are very crucial when it
comes to understanding the approach they need in order to obtain the highest performance
possible.

The most basic feature of any dataset is the data samples’ size, pixel color (color channel
size) and class distribution, as these directly affect the parameters of the detection pipeline
(for example, the size and capacity of the neural network). Another aspect is the variance
of the samples: how much one data point differs from another one, if the pair is from the
same class. This usually depends on the method which the data is obtained or if there were
some preparations regarding the samples before the initial annotation. Furthermore, the
most important feature to consider is the appearance and characteristics of each dataset
class: this will rank each category based on their difficulty when it comes to detecting
their deformities and defects.

Over this chapter, the dataset used in this thesis will be introduced with emphases on the
aspects detailed above. For each class, there will be also some example samples shown to
help the Reader better understand their core features and overall appearance.

4.1 The Solder Images Dataset

In this section, the Solder Images Dataset, which is used throughout the thesis, is in-
troduced and analysed in order to provide useful information for the following chapters.
This dataset is based on a real industrial application and it is important to delve into the
details of the samples, so that when it comes to Anomaly Detection, the process can be
efficiently parameterized and will achieve overall better performance.

To begin with, the dataset consists of images of electrical solderings that are on a circuit
board. The circuit board has several soldering locations and the camera system takes a
picture of the whole board. To better analyze each location, first, it is needed to crop out
the important picture regions and then transform them in a way so that all samples (crops)
have the same general characteristics: the soldering location is always in the middle, it
is rotated, so that it lays horizontally and each image has the same size (192 × 96 RGB
pixels).

After the necessary preparations, it is important to look at each different class individually
and analyze their describing features and characteristics. The soldering itself can be broken
down into 4 parts that play a role in defining the class aspects: the hole, the pin, the
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soldering paste and the board. The outline of the hole should not be seen in the case of
a good soldering as the paste covers it entirely. The pin is usually located in the middle
of the hole and it should be surrounded with soldering paste to hold it in place properly.
The board is the background for each sample and the soldering paste can overlap it when
it flows from the pin location.

Figure 4.1: Examples for the good soldering class

The good samples are the first to be examined since all images have the same basic layout
and based on them the other classes can be differentiated much more easily. Starting
with the pin, it is covered in soldering paste to the point that its peak its still visible,
while the entire hole is filled with paste, so that it provides good mechanical stability. The
paste itself flows to the designated pad on to the board thus accommodating the necessary
amount of soldering paste. Figure 4.1 shows some examples for good cases of soldering
where the aforementioned characteristics can be observed.

Figure 4.2: Examples for the “blob” soldering class

The next class is called “blob” because the excess soldering paste builds up like a sphere
around the pin. These samples can be discovered by looking at the pin location, as usually
with too much paste, the pin itself is not visible anymore. Moreover, the paste can flow
around the hole and create a much more widespread shape around it, which is also easy
to detect in comparison to the good samples. Examples for the blob class can be seen on
Figure 4.2, where the main features of the class are presented.
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Figure 4.3: Examples for the low paste soldering class

The third class in the dataset is the exact opposite of the “blob” class: there are samples
where there was not enough solder paste rationed to the board during production. Due
to this, these samples usually lack the necessary bonding between the hole and the pin
and with the board itself. However, it is easy to detect them visually, as the hole is partly
or in some cases entirely visible, so around the pin there is a darker color present. The
level of soldering paste deficit can vary vastly, but usually based on the color difference
mentioned before, it is easy to distinguish these samples from the correct ones. Different
examples where there is not enough soldering paste can be seen on Figure 4.3.

Figure 4.4: Examples for the burnt soldering class

Finally, the last class contains the burnt samples, where during the soldering process,
excess heat was applied to parts of the board, thus unintentionally damaging it. In these
cases, although the soldering can have enough paste and a good shape over the hole and
around the pin, the board itself has burn marks around or directly on the pin location.
Comparing this class to the other ones, it can be safely said, that detecting the burnt
samples is the hardest task, as they usually do not have a major difference to the good
samples (like for example the lack of soldering paste). The difficulty of detection also
increases in reverse with the extent of the burnt area on the board: if the damage overlaps
the soldering then it can be detected more easily, however, if it only covers a small part
of the board, it can become several magnitudes harder to detect the anomaly correctly.
Another source of difficulty is the visual appearance of the burnt area, since in some cases,
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it can be very subtle due to its small size or lighter level of burn damage, making it seem
similar to other lightning phenomenon, not to mention, that it can also appear almost in
every location in the examined area. Furthermore, this class is highly underrepresented
among the samples, so it is that much harder to collect a dataset which covers every
feature described here. Based on these features, the burnt samples are the hardest to
identify correctly in this dataset, so this class will be the most emphasized during the
Anomaly Detection process with a more in-depth analysis provided during evaluation of
the obtained results. To help understand the above mentioned difficulties, some examples
of this class are shown on Figure 4.4, where the burnt areas can be seen with a darker
contrast around the solder location.

To sum up the Solder Images Dataset, it is a very diverse dataset regarding its samples: it
has some easy to identify defections (for example the lack of soldering paste) while some
deformations or anomalies are very hard to detect (mostly the burn marks). During the
detection process, the emphasis will be put on the harder to detect deformities as those are
the samples which the Autoencoder network has trouble identifying, due to them being
smaller size or having less contrast. This is because the output images of the Autoencoder
are blurred, thus overshadowing the smaller differences that come from correcting the burn
damages. As the DDPM network produces images with much higher quality, it is expected,
that it solves this problem by eliminating the noise coming from the reconstruction.
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Chapter 5

Networks

After the introduction of the dataset, the next important component of the Anomaly
Detection process is the Neural Network architecture that will produce the output images,
which then can be compared to the original samples. In this way, this step is also crucial,
as it sets the basis for the success of the later performed comparisons that will be based
on the reconstruction quality of the trained network. For this purpose, in this chapter,
the two architectures used in thesis are presented and analysed: one is a true and tested
approach, the Autoencoder, while the other one is a relatively new structure, the Denoising
Diffusion Probabilistic Model (DDPM). For each one, the center point of interest will be
the reconstruction quality, as that will determine the ability to detect the more difficult
anomalies: in the case of the Autoencoder, the output images are blurred, making it more
difficult the detect the differences coming from correcting the anomalies, while in the case
of the DDPM model, the output image quality is much higher which should solve this
issue.

5.1 Autoencoder

The first Neural Network architecture is one of the most common choices in Deep Learning
when it comes to outlier detection: the Autoencoder model. It consists of 2 components
which work together in a pipeline producing an embedding of the original sample into
a latent space where the data size is smaller, while also guaranteeing that no important
feature is lost during the conversion process. A visual representation of the model can be
seen on Figure 5.1, where the exact layer structure can also be observed. In this thesis, I
have used the modified U-Net Model [12], which was originally used for performing image
segmentation tasks.
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Figure 5.1: Architecture of the Autoencoder model

The input is first given to an encoder module that transforms the original image size to a
much smaller matrix with higher channel number with the help of Convolutional Layers.
Then the resulting tensor is flattened into a vector that will represent the original image
in the latent space. This vector’s length, which is also the code length, can be adjusted
with the help of a Dense Layer, where the neuron number sets the size of the output. In
this way, much of the unnecessary information is thrown away from the original sample
until we are only left with the key components that help identify the data.

The next part of the model is the decoder, where the produced code is first converted back
to a tensor identical to the output of the encoder’s last Convolutional Layer. Then it is
up-sampled through several Convolutional Blocks which consists of the same layers as in
the encoder part, but with reversed order and the goal of enlarging the tensor’s size (while
also decreasing the channel number) until we get an exact match with the original image.
Using this output, we can measure the quality of the encoding and decoding process by
comparison with the original sample, for example with a mean-squared loss across the
pixels of the two images. Thanks to this method, during training, the Autoencoder will
learn a representation that only encodes the necessary features from which the original
image can be decoded with as small error in quality as possible.

After the brief introduction, we should focus on some of the parameters that can affect the
quality of the output images: these are the size of the code vector and the overall depth
of the network. The code size basically affects the structure of the whole embedding, as
it creates a bottleneck that only allows information deemed crucial to the reconstruction
process. To visualize the impact the code length has on the output images, Figure 5.2
shows the output of models with different code size compared to the original samples.
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(a) Original Samples

(b) N = 4, MSE = 0.004682

(c) N = 32, MSE = 0.003639

(d) N = 64, MSE = 0.003493

(e) N = 128, MSE = 0.003295

(f) N = 256, MSE = 0.003557

Figure 5.2: Output images of different Autoencoders with N code
size and the average MSE loss shown

From the presented samples and MSE values, it is clear that by increasing the code size of
the Autoencoder, the reconstruction quality gets better, however, not by a large margin.
The main change can be seen from code size 4 (see Figure 5.2b) to 32 (see Figure 5.2c)
as both the MSE values and the quality of the output images show a great improvement.
After this however, the difference in reconstruction quality is hardly noticeable and even
the MSE values change much more slowly between code size 64 and 128 (Figures 5.2d
and 5.2e respectively) than in the first case. At size 256 (Figure 5.2f), the performance
even becomes worse, as the MSE value starts to become larger, ending up around the
same threshold as the previous, smaller code sizes. From this experiment, it is clear that
–except at extremely small code lengths–, the code size of the Autoencoder does not affect
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heavily the reconstruction quality of the output images. It is important to keep in mind,
however, that the code size should not be larger than the overall size of the vector before
flattening, as in that case, the vector size will be the main bottleneck of the network, not
the code length.

The second component which can affect the reconstruction quality is the network’s layer
and parameter count, as they define its overall capacity to learn the features of the samples
in the dataset. In the case of the U-Net architecture, the network capacity can be modified
in two ways: by adding more blocks to the encoder and decoder module (increasing depth)
or by expanding each Convolutional Block to have more layers inside (increasing block
size). To demonstrate the effects of them, Figure 5.3 is provided, where the outputs of
several Autoencoder networks with different depths are shown.
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(a) Original Samples

(b) D = 1, MSE = 0.012891

(c) D = 2, MSE = 0.003298

(d) D = 3, MSE = 0.002547

(e) D = 4, MSE = 0.002430

(f) D = 5, MSE = 0.003519

Figure 5.3: Output images of different Autoencoders with D
depth, 128 code size and the average MSE loss shown

Compared to the code size pictures above, the Autoencoder with depth size 1 produced
much worse quality output images both in visual appearance and MSE values (see Fig-
ure 5.3b). Increasing the size of the network improved the performance by a large margin,
as the MSE values became 1 magnitude smaller (see Figure 5.3c), which is noticeable on
the reconstruction quality as well. After this, adding more blocks to the Autoencoder still
improved the performance, however the progress slowed down: between depth 3 and 4
(Figures 5.3d and 5.3e respectively) the MSE values only got a little bit smaller. Looking
at the results for depth 5 (Figure 5.3f), the MSE values got larger, producing similar or
even worse outputs than that of depth 2. This behaviour is very similar to what we have
seen at the code size figures, as by continuously increasing the size of the network, it is
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becoming much harder to train the model effectively with the same setup resulting in the
same performance, as if we had a network which has fewer blocks. This occurrence can be
explained by looking at the model structure: when we are adding more and more blocks,
the parameter count of the network also increases exponentially, due to always increasing
the number of filters (last channel) of the tensors, making the network learn slower. How-
ever decreasing the filters too much can also lead to another problem: the size of the last
vector before flattening will be smaller than the actual code size, making it the bottleneck
of the network, similarly to the case with the code size analysis above. Based on these
findings, the conclusion is, when choosing the size of the network, the ideal value should
be not too small and also not too large in order to achieve the best possible result with
the available resources.

To sum up, the main parameter that directly impact the reconstruction quality of the
Autoencoder is the overall network depth, since not enough model parameters can lead
to crucial information loss and a network with too few layers and parameters does not
have the capacity to learn the detailed features of the dataset. It is important to find the
optimal value for each parameter in order to achieve a reconstruction quality as flawless
as possible, but is important to keep in mind that in every case it should be a different
value, as each dataset has its own number of important characteristics that are needed to
be learned during training. For example, the code and network size for the Solder Images
dataset needs to be larger than for a dataset with smaller images or having less detailed
features that define their classes.

5.2 Denoising Diffusion Probabilistic Model

The main network architecture of this thesis is the Denoising Diffusion Probabilistic Model
(DDPM) [8] which is a quite recently emerged model in the field of Deep Learning. It
is being used for solving more and more tasks, but in order to understand its structure
and how can it be applied efficiently in the case of Anomaly Detection, it is important to
detail its basic features.

As the “denoising“ name suggests, the main essence of the DDPM network is the ability
to produce images from pure noise that resemble the training data, which the model
learned. To achieve this, the model is performing two processes during training: the first
one transforms the original image to noise, while the second one reverts this and tries to
produce an output as similar to the input sample as possible. The key for success with the
“noising“ process is the gradual nature of it, as the input picture is not transformed right
away to pure noise, but rather has noise added to it in several steps, creating a transition.
This is also done during the reverse process, so starting from the pure noise, in each step,
more and more of the original image is reverted until, in the end, the output looks just
like the input sample. Adding noise to the images this way makes the learning process
possible, as the added noise can be described with a probabilistic distribution function
and also the results can be evaluated after every step. Moreover, this is also true for the
reverse process, so the distribution of the images generated from noise can be compared
to those of the forward process at every step, making the learning process much faster
and efficient. To visualize these two processes, Figure 5.4 illustrates the main steps of the
noising and denoising workflows.
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Figure 5.4: Noising and denoising processes of the DDPM network

After introducing the general purpose of the two processes of the DDPM architecture,
they should be detailed, in order to understand the relevant parameters of the model for
the task of Anomaly Detection. Starting with the forward process, it modifies the input
image (x0) through several steps adding Gaussian noise to it gradually. Since the nature
of the Gaussian noise can be described with a probability distribution, a function can be
assigned to this process with the following expressions:

q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI) (5.1)

where t is the indicator of the current step and N is a normal distribution with a given
mean and covariance matrix. Based on this formula, one of the influential parameters of
the network is the diffusion step size (T ), since it affects how much noise is added to the
original image. Exploiting the fact that the distribution of each step is independent from
the others, the entire forward process can be formulated with a single expression:

q(x1:T |x0) :=
T∏

t=1
q(xt|xt−1) (5.2)

As for the reverse process, the same principles can be used: we can define a probability
distribution that describes the nature of each generated image throughout the process.
The exact formulas of this function can be seen here:

pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)) (5.3)

pθ(x0:T |x0) := p(xT )
T∏

t=1
pθ(xt−1|xt) (5.4)
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where µθ (mean values) and Σθ (covariance matrix) are the distribution parameters for
each t step that the network needs to learn in order to be able to generate images whose
distribution and appearance is similar to the training samples.

Defining the processes this way makes it easier to learn the parameters of these distri-
butions, as we can compare the results for each reverse step (x̂t is the estimated image)
with the original distributions using a loss function based on the KL divergence formula.
After the training is finished, the network is capable of producing a brand new image from
seemingly pure noise, since it learned the parameters of each distribution in the reverse
process. To further enhance the anomaly detection performance, it was found effective to
use Simplex noise [13] instead of the Gaussian, as the corruption is more structured and
the denoising process will be able to “repair” those structured anomalies more effectively.
Figure 5.5 provides an example soldering sample with added simplex noise to showcase
how it affects the original image.

(a) Original Sample (b) Sample with simplex noise added

Figure 5.5: Example Soldering Sample with Simplex noise

Looking at the example image, we can still see the main silhouette of the original soldering,
which is ideal for Anomaly Detection, as we want to erase only the anomalies from the
picture and keep the overall appearance of the sample unchanged. It is important to
mention here, that using an unfiltered simplex noise will contain some colour values that
the original sample simply lacked, making the training process a bit skewed as the network
can detect these more easily. To combat this, the range of the values that we sample from
when constructing the simplex noise needs to be adjusted to the channel histograms of
the input samples, thus limiting the available colors. In this thesis, due to simplicity, I
have only used a generic simplex noise, but filtering its values can be certainly explored
in further research.

As with the Autoencoder network, we also need to mention the most important parameter
of this approach when it comes to reconstruction quality: the diffusion step count. This is
the variable that determines how many times noise is applied to the input in the forward
process and how many times it is reversed during generation. In general, it is better
to train with a larger diffusion step count, as this way the network can learn the more
subtle features of the samples, as well as be able to generate samples more similar to the
originals. However, during inference, we need to pay attention to the diffusion step count,
as it highly affects the nature of the output picture: if we choose a too small value, the
output may just be the same image as the input, while in case of a value too large, the
network can loose the appearance of the original sample during the reverse process and
generate a brand new image, resulting in a high difference. To illustrate the impact of the
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diffusion step count on the quality of the output images, Figure 5.6 shows some examples
for different diffusion step counts.

(a) Original Sample (b) Step count 50

(c) Step count 200 (d) Step count 800

Figure 5.6: Example Good Soldering Sample and its reconstruc-
tions with varying diffusion step counts

From these examples, the aforementioned phenomena can be clearly seen: at step count
50 (see Figure 5.6b), the output image is almost identical to the original one, while at
step count 800 (Figure 5.6d), the reconstructed image is very distorted with the green
marking line on the right entirely missing. In between these two extreme cases, at 200
steps (Figure 5.6c), the main features of the original sample are still present with a little
bit of “flaking“ around the border of the soldering. Based on this, the ideal diffusion step
count is between 50 and 200, but we need to keep in mind, that for smaller anomalies
(like the burn marks) the smaller difference can be enough due to their area and position
around the soldering. However, for the other, more glaring error classes, where often the
soldering itself is more damaged or distorted, a higher step count is needed, as the network
has to mold the original input into a correct soldering which requires more steps overall.
Based on these findings, it is advised to choose a suitable value for the diffusion step count
with which both the output image quality and similarity with the original sample is high
on average for all classes to achieve an overall good performance.
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Chapter 6

Analysing the Results

After presenting the different Anomaly Detection methods and detailing the measurement
setup, in this section, the results obtained for each sample size is listed and analysed.
Each experiment is evaluated on the same validation dataset and the network parameters
also stay the same to provide an unskewed basis for comparison. First, for each different
error class, a joint diagram shows the AUC values of each method regarding the different
sample sizes, so that it is easy to compare the different approaches and how they evolve
when increasing the size of the training dataset. This way a more in depth analysis can
be performed on each class to be able to really determine the nature of each approach.
Moreover, as the most difficult class of the Solder Images Dataset is the burnt soldering
class, the results on it are discussed in greater detail at the end of this chapter, as the main
goal of this thesis is to provide a suitable approach for the harder to detect anomalies.

6.1 Results on the Blob Soldering Samples

In this section, the results of the different Anomaly Detection approaches on the Blob
samples are detailed using a training dataset consisting of 5, 50 and 500 good soldering
samples. The comparison diagram showcasing the AUC values of each method for the
different sample sizes can be seen on Figure 6.1.
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Figure 6.1: AUC values of each approach for the different sample
sizes on the Blob Soldering class

In the case of the Blob classes, the Average Autoencoder class performs the worst which
is expected due to the appearance of this error class: in most cases there is not a large
amount of excess soldering paste present, meaning it does not cover much of the board
itself, so these samples are very similar to the good samples in the case of the averaged
image. The Autoencoder performs worse at smaller samples, however, at larger sample
sizes and especially at 500 samples, it outshines the other methods. This can be due to the
fact, that as it trains on more and more samples, the output becomes very close to that
of the Average Autoencoder, mashing the features of the training inputs together thus
basically executing a more complex averaging function. The DDPM approach achieves
overall great results at 5 and 50 samples, where it is the best approach out of the three
methods. To provide a more in depth analysis and understand the reasons behind these
AUC values, Figure 6.2 is provided, where one Good and two Blob Soldering samples (one
subtle and one extreme) are shown with their reconstructed images, ordered by training
sample sizes, for each method. The MSE values for these examples are also provided in
Table 6.1 for easier comparison.
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(a) Average Autoencoder

(b) Autoencoder

(c) DDPM

Figure 6.2: Example Good and Blob Soldering samples and their
reconstructions made by the different methods or-
dered in increasing training sample size
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Training Dataset Size
Methods 5 50 500

Average AE
Good Sample 0.01291 0.01374 0.01123
Subtle Sample 0.01591 0.01766 0.01546

Extreme Sample 0.06798 0.06735 0.06434

Autoencoder
Good Sample 0.01788 0.01473 0.00919
Subtle Sample 0.02234 0.02368 0.01914

Extreme Sample 0.07750 0.07941 0.06576

DDPM
Good Sample 0.01103 0.01273 0.01068
Subtle Sample 0.02007 0.01728 0.01678

Extreme Sample 0.04366 0.05721 0.05065

Table 6.1: MSE Values of each method trained with different sample sizes and evaluated
on the example good and blob images

Looking at these reconstructed images, it is easy to see that the output of the Average
Autoencoder (Figure 6.2a) gets more blurry as more and more training samples are added,
but this does not affect the detection process, as the MSE values only change a little
between increasing the sample size. It is important to note however, that the subtle
sample is in closer range of the good sample at 5 sample size, making it harder to detect
until 50 samples, where there is a bit larger gap between them, which attributes to the
slight increase in AUC values.

In the case of the Autoencoder (see Figure 6.2b), first at 5 and 50 samples, the output
images are relatively clear, which is because it reconstructs the training images it was
trained on, as it can learn their finer details due to the small data size, resulting in
overall higher MSE values for the error samples. However, by increasing the sample size,
the output becomes similar to that of the Average Autoencoder, as it is only able to
reconstruct the overall appearance of the training samples with the same code size and
model depth, essentially blurring their features together at inference. As for the difference
in MSE values, as the training sample size becomes larger, the gap between the 3 samples
also widens, which is why the Autoencoder can reach higher and higher AUC values as
the sample size increases.

For the DDPM, the output images (Figure 6.2c) at the smaller sample sizes are very close
to a good sample except the extreme blob image, where part of the paste overflow is kept,
thus resulting in a lower MSE value than in the case of the other methods. As for the
extreme sample, although the output image still looks somewhat like a blob sample, the
MSE value compared to the good sample is increasingly larger, which means that the
method can still detect these extreme cases well. Increasing the diffusion step size might
appear as a solution to correcting these deformities, but it has to be kept in mind, that
by running a deeper diffusion at inference, even the good samples will change much more
(see Figure 5.6 for reference), which will attribute to higher MSE values for all samples
across the dataset, keeping the performance about the same or even making it worse.

6.2 Results on the Paste Low Samples

After analysing the Blob images, we can take a look at the Paste Low Samples: Figure 6.3
shows the AUC values for each method and each different training sample size. For this
class, the AUC values are overall higher due to the nature of the Paste low images: the lack
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of soldering paste compared to the good pictures causes a higher average pixel difference,
meaning the two distributions can be separated more precisely with less effort overall.
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Figure 6.3: AUC values of each approach for the different sample
sizes on the Paste Low Soldering class

As expected, all of the methods performs overall much better, with the DDPM network
being the best across all sample sizes, outshining the Autoencoder and the Average Au-
toencoder based methods. To visualize these values, Figure 6.4 provides one Good and
two Paste Low example samples with their respective reconstructed images produced by
the methods. The first Paste Low example is a more subtle sample, with some soldering
paste present around the pin, while the second one is an extreme case, where there is
almost no paste present on the image. To provide a better comparison Table 6.2 is also
provided, where the MSE values of each reconstructed example image for every method
can be seen.
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(a) Average Autoencoder

(b) Autoencoder

(c) DDPM

Figure 6.4: Example Good and Paste Low Soldering samples and
their reconstructions made by the different methods
ordered in increasing training sample size
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Training Dataset Size
Methods 5 50 500

Average AE
Good Sample 0.01291 0.01374 0.01123
Subtle Sample 0.03407 0.03717 0.03204

Extreme Sample 0.07228 0.0715 0.06475

Autoencoder
Good Sample 0.04642 0.01432 0.00810
Subtle Sample 0.02262 0.03120 0.01408

Extreme Sample 0.09050 0.07199 0.03062

DDPM
Good Sample 0.01103 0.01273 0.01068
Subtle Sample 0.02922 0.04484 0.03616

Extreme Sample 0.06084 0.06133 0.05084

Table 6.2: MSE Values of each method trained with different sample sizes and evaluated
on the example good and paste low images

Looking at the reconstructed images, the above discussed results can be explained for
every training sample size. Starting with the Average Autoencoder’s images (Figure 6.4a),
they are almost the same across the larger sample sizes, meaning that its performance
should not change drastically which is reflected in the results. As mentioned before, since
most of the Paste Low samples are much darker in color in contrast to the good samples,
the average image of the training sample will achieve a high difference in most cases, which
is backed up by the MSE values, as there is a constant gap between the good and paste
low example images.

In the case of the Autoencoder (see Figure 6.4b), the sample quality at 5 training samples
is very high, as it can confidently reconstruct one of the training samples, which is great
for the extreme paste low sample, however, due to the output image having a lighter color
even than the good sample, the Autoencoder fails to detect the subtle error sample. At 50
samples, the quality of the reconstruction for the paste low samples drops quite drastically,
but it manages to get a large MSE distance for them, making the performance slightly
better. This sudden drop in quality can be caused by a few new training samples at 50
sample size, which make the Autoencoder unstable in the case of the paste low samples
due to their unique appearance. For 500 samples, the quality of the reconstruction is much
better, although the gap between the MSE values shrinks, making the AUC value a bit less
than before. Also at this sample size, the Autoencoder provides a closer reconstruction
of the subtle paste low sample, which is, similar to the blob class, can be attributed to
training samples whose soldering has a slightly darker color making it possible for the
network to learn it.

Finally, in the case of the DDPM (Figure 6.4c), the reconstructed samples look like genuine
good samples generated from the originals with small modifications across all sample
sizes. This is also signalled with a constant gap between the good and subtle samples
and also between the extreme and the subtle paste low samples, making the DDPM the
best performing approach out of the three methods. It is also interesting to see, that the
DDPM preserves the ring around the pin in the case of the extreme sample, although it
does not influence the performance negatively due to its small weight compared to the
color change of the entire soldering. This can be explained by the variety found in the
training dataset which increases as the sample size gets larger, broadening the array of
features the DDPM can reconstruct.
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6.3 Results on the Burnt Samples

In the previous two sections, the results on the Blob and Paste low classes were showcased
and analysed, leaving only the Burnt class to be discussed. Since this class means the most
difficulty when it comes to detecting its anomalies, besides making similar observations
already seen with the other classes, a more detailed and focused evaluation is needed in
order to truly establish the performance of the DDPM approach. To begin with, the
overall results can be analysed with the help of Figure 6.5, where the AUC values for each
method and training sample size are shown.
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Figure 6.5: AUC values of each approach for the different sample
sizes on the Burnt Soldering class

The most immediate conclusion of these results is that the DDPM approach, after per-
forming good at smaller sample sizes, becomes the worst of the three methods, in contrast
to the other classes seen before. As for the Autoencoder, it struggles to peak, highlighting
the difficulty of detecting the burn anomalies, while the Average Autoencoder stays at the
same level throughout the different sample sizes, proving better than the Autoencoder.
To understand the causes of these results, Figure 6.6 is provided where, as with the other
classes, one good and two burnt samples are shown with their respective reconstructions
made by the different methods. Similarly to the previous examples, the first Burnt Sample
is more subtle as the damage is small in area and has a lighter contour, while the other
example is more extreme: the burn damage here is more excessive, covering even part of
the soldering itself and it has an overall darker tone, making it more prominent. To aide
with the comparisons, Table 6.3 is also provided, where the MSE values for each output
image made by the methods are listed.

31



(a) Average Autoencoder

(b) Autoencoder

(c) DDPM

Figure 6.6: Example Good and Burnt Soldering samples and their
reconstructions made by the different methods or-
dered in increasing training sample size
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Training Dataset Size
Methods 5 50 500

Average AE
Good Sample 0.01291 0.01374 0.01123
Subtle Sample 0.02080 0.02637 0.02400

Extreme Sample 0.02804 0.02733 0.02385

Autoencoder
Good Sample 0.01788 0.01473 0.00919
Subtle Sample 0.01777 0.01844 0.01201

Extreme Sample 0.02853 0.02083 0.00953

DDPM
Good Sample 0.01103 0.01273 0.01068
Subtle Sample 0.00999 0.00724 0.00512

Extreme Sample 0.02304 0.02674 0.01491

Table 6.3: MSE Values of each method trained with different sample sizes and evaluated
on the example good and burnt images

Starting with the outputs of the Average Autoencoder (Figure 6.6a), as with the other
classes, the average image also holds up quite well in this case, as the subtle sample has a
darker soldering color on the right, making it easier to detect due to the color difference,
which is also reflected in a steady gap in the MSE values across the sample sizes, making
the performance constant.

In the case of the Autoencoder (see Figure 6.6b), at 5 samples the reconstructed images
have good quality and resemble the training samples which makes the detection easier.
The color difference in the soldering of the subtle sample also plays a part here, as the MSE
value for it is even higher than that of the extreme sample. By increasing the training
sample size, this color difference still stays relevant, despite the Autoencoder trying to keep
the right side of the soldering darker for both burnt samples, bringing the MSE values
closer together, as the output images for the subtle sample are still too bright on the right
side. It is also interesting to note here, that the Autoencoder also keeps the right side
of the reconstructed extreme sample darker, which is likely due to the fact that the burn
damage overlaps the soldering, affecting the output image generation.

Lastly, looking at the DDPM’s output images (Figure 6.6c), we can see that at 5 and 50
samples the reconstructed images pass as good solderings with little modification to the
original samples. This is also reflected in the MSE values, keeping the gap between the
good and bad samples for the smaller sample sizes. As for the larger sample sizes, as the
network was trained on a more diverse dataset, it keeps as much of the original images as
possible (for example the board markings) with only making the burn damage disappear.
Unfortunately, this affects the good sample negatively, as its MSE value becomes the
highest of the three samples due to an overall brighter soldering color in the reconstruction,
causing a drop in AUC values as well. This is again caused by the features that the DDPM
model was trained on: the color of the example sample is probably different than that of the
training samples, making the reconstruction lean to that more. Decreasing the diffusion
step size might solve this issue, as it will make the model do less changes to the original
image, however, in the case of the extreme samples, it will probably worsen the detection
performance, as it will keep much of the larger burnt area intact, making the differences
smaller. Another solution can be the supervised selection of the training samples to ensure
that it will contain samples that have a lighter colored soldering.

After the general analysis of the results, it seems that the DDPM approach performs
slightly better than the Autoencoder at 5 and 50 samples. To provide a more in depth
evaluation and to evaluate the performance of the DDPM approach for the Burnt samples
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at these sample sizes in great detail, we need to compare the labeling of these two methods.
To do this, first, the best classification is selected for each method, whose labeling can than
be analysed together. This selection can be done using the values of the ROC curves (see
Subsection 3.2.2) calculated for these methods: the best threshold value is located where
the TPR value is the highest with the FPR being the lowest. In practice, by plotting
the 1 − FPR values on the same plane as the original ROC curve, the intersection of
these two curves will yield the best threshold value. After getting the best classifications
for each method, their performance can be best visualized by a confusion matrix, which
presents the number of true positive, false positive and true negative, false negative labels
in an intuitive table format. Figure 6.7 and 6.9 show the confusion matrices for the best
classification of the two approaches next to each other for easy comparison at 5 and 50
training sample sizes, respectively. Although, the difference between every field could be
investigated more thoroughly, the most important, in the case of Anomaly Detection, are
the false positive samples. Looking at the bad samples that were labeled incorrectly by
the Autoencoder and the DDPM approach “corrected“ them, we can analyze what kind of
samples does the DDPM based method perform better on. Based on this, Figure 6.8 and
6.10 showcases some example samples from this group with both their reconstructions and
MSE difference images below them. Moreover, Table 6.4 and Table 6.5 are also provided
where the MSE values for these burnt samples are listed.
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Figure 6.7: Confusion matrices of the Autoencoder and DDPM
methods for 5 training sample size on the Good vs.
Burnt Soldering Samples
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Example Sample 1 Example Sample 2 Example Sample 3 Example Sample 4 Example Sample 5

(a) Original Samples
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Figure 6.8: Autoencoder false negative examples that are cor-
rectly detected by the DDPM model for 5 training
samples

Example Samples
Methods Thresholds 1 2 3 4 5

Autoencoder 0.02633 0.02477 0.02613 0.02382 0.02600 0.02506
DDPM 0.01678 0.03356 0.03303 0.03297 0.02326 0.02883

Table 6.4: MSE Values of the Autoencoder and DDPM based methods trained with 5
samples for the 5 burnt example samples

Looking at the example images’ reconstructions and difference heatmaps, we can see that
the Autoencoder’s main alterations (see Figure 6.8b) come from the overall shape of the
soldering and only in part from the different colour on the right side compared to the
original soldering. Moreover, the MSE values are all very near to the threshold, meaning
that these samples are barely getting mislabeled. In the case of the last sample, where
there is burn damage over the soldering, the network actually kept some of the darker
color, which can be seen highlighted on the MSE difference image.

As for the DDPM approach, although the MSE values are much higher than the classifica-
tion threshold, looking at the heatmaps, this difference mainly comes from the difference

35



in color compared to the original sample and not from correcting the burnt areas. How-
ever, in the case of the last sample, the DDPM also generated a soldering slightly darker
coloured in the right side, whose major contribution to the overall MSE value can be
justified here, as there was burn damage covering the soldering.
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Figure 6.9: Confusion matrices of the Autoencoder and DDPM
methods for 50 training sample size on the Good vs.
Burnt Soldering Samples
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Example Sample 1 Example Sample 2 Example Sample 3 Example Sample 4 Example Sample 5
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Figure 6.10: Autoencoder false negative examples that are cor-
rectly detected by the DDPM model for 50 training
samples

Example Samples
Methods Thresholds 1 2 3 4 5

Autoencoder 0.02178 0.02148 0.01349 0.01725 0.02102 0.01764
DDPM 0.01362 0.01415 0.01629 0.01464 0.03053 0.02902

Table 6.5: MSE Values of the Autoencoder and DDPM based methods trained with 50
samples for the 5 burnt example samples

Based on the examples provided on Figure 6.10b, the Autoencoder’s reconstruction is very
similar to what was seen at 5 samples above: the main difference comes from the alteration
of the shape of the soldering itself and not particularly from removing the burn marks.
Looking at the MSE values, it is also the same situation as before, since all of them are
close to the threshold value with two even being on the edge of it.

In the case of the DDPM, the main differences in the output images compared to the
originals again come from the color change of the soldering, which outweigh the fact that
it corrected the burn damages when it comes to calculating the MSE values. As for these
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values, the two samples (Number 1 and 2) that have smaller burn marks are even very
close to the threshold, making them barely detected correctly by the network.

Based on these findings, it can be said that although the DDPM approach slightly out-
performs the Autoencoder at the smaller sample sizes of 5 and 50, when it comes to the
ability of detecting the smaller burn damage anomalies, it simply just manages to label
them correctly due to the impact of altering the color of the soldering. When looking
at the larger sample size of 500, the situation changes, as the reconstructions become
better and stick more to the original image, but this counters the detection of samples
with smaller anomalies, as their difference will be too close to the MSE values of the good
samples, making the separation of the two distributions very difficult (see Table 6.3). All
in all, while the DDPM accomplishes its original task by creating output pictures with
great fidelity to the originals, it cannot be used for the task of Anomaly Detection easily.
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Chapter 7

Conclusions

To sum up the discussed results, Figure 7.1 is provided here, where the AUC values of
each method for every training sample size are shown on the whole validation dataset.
This means that these values are the joint performances of these different approaches and
they signal how well each method can separate the good samples from the bad ones in
general.
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Figure 7.1: Joint AUC values across every class of the different
methods for every training sample size

Looking at these values, they truly summarize the findings of the individual classes: the
Average Autoencoder provides the same reliable performance across all sample sizes, the
Autoencoder starts as second best, then barely peaks at 500 samples and the DDPM based
approach is better at smaller sample sizes while dropping slightly at the larger ones. The
main conclusion of these results is that while the DDPM provides a truly novel way of
generating images with high quality and great likeliness to the training samples, it still only
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performs slightly better than the Autoencoder at smaller sample sizes and when looking at
the smaller to detect anomalies, it does not deliver the expected outputs. The slight edge
in performance over the Autoencoder at fewer samples comes from the fact that it does
alter the appearance of the samples by a large margin and not from only correcting the
anomalies. Meanwhile, at the large sample sizes, it struggles to separate the distributions
of the good and bad images due to its keeping true to the original sample too much thus
resulting in small differences for both groups. All in all, employing the DDPM approach
can certainly improve the performance of an Anomaly Detection process, however it does
not overcome the Autoencoder based approach reliably at all sample sizes and especially
not convincingly in the case of the smaller to detect deformities.

Despite not providing great results, it is important to note, that the DDPM network
can be further optimized and improved, as these measurements were done on only a
baseline model, to test out the general capabilities of the architecture. Moreover, there
are also several ways that these detection performances can be improved: one of these
is the selection of training data, as we have seen that what features the model learns
during training can seriously affect the generation process, so leaving out the more unique
training data can help the reconstruction process. Another idea for improvement can be
the augmentation of the training samples, as by seeing them in different form every training
iteration, the model can only learn the features always present on them, thus filtering
the information from which it generates its outputs, making the output images more
consistent. Finally, choosing a more complex metric to calculate the image differences that
is truly able to highlight the smaller inequalities can also certainly improve the detection
performance.
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