
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

System Architecture Evaluation and Synthesis for
Performability with Graph Queries

Scientific Students’ Association Report

Author:

Máté Földiák

Advisor:

Kristóf Marussy

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1
1.1 System architecture design . 1
1.2 Aims of this work . 2

2 Background 3
2.1 Requirements and meta-model . 3

2.1.1 Functional requirements and well formedness constraints 3
2.1.2 Extra-functional requirements . 3
2.1.3 Meta-model . 4

2.2 Modeling and partial modeling . 5
2.2.1 Concrete models . 5
2.2.2 Partial models . 6
2.2.3 Refinements of partial models . 7

2.3 Graph queries on concrete and partial models 8
2.4 Reliability analysis and fault trees . 9

2.4.1 Fault trees . 9
2.5 Decision diagrams . 10

2.5.1 Efficient handling of Reduced Ordered Binary Decision Diagrams . 12

3 Overview 13
3.1 Architecture of the stochastic graph query evaluation 13
3.2 Architecture synthesis for performability . 14

3.2.1 Soundness and completeness . 14
3.2.2 Architecture synthesis options for logic solvers 14

4 Performability analysis with graph queries 16

4.1 Probabilistic predicates . 16
4.2 Efficient representation of probabilistic predicates 18

4.2.1 Binary decision trees . 19
4.2.2 Decision diagrams and reduced ordered decision diagrams 20
4.2.3 Probabilistic predicate evaluation with ROBDD 20

4.3 Traversing ROBDD for event probability . 22

5 Syntesis 23
5.1 Partial models for performability analysis . 23

5.1.1 Approximations over partial models 23
5.2 Approximating concretization of partial models 24
5.3 State-space exploration by refinements . 26
5.4 Optimizing synthesis by logic solvers . 27

6 Evaluation 28
6.1 Measurements setup . 28

6.1.1 Case studies . 28
6.1.2 Compared approaches for concrete models 29
6.1.3 Measurements for applicability in a logic solver 29
6.1.4 Execution environment . 29

6.2 RQ1: Performance of concrete model evaluation 30
6.3 RQ2: Performance of incremental evaluation 30
6.4 RQ3: Performance of logic solver . 31
6.5 RQ4: Runtime analysis . 32
6.6 Threats to validity . 33

7 Related works 34
7.1 Model Transformation . 34
7.2 Stochastic analysis methods . 34
7.3 Design Space Exploration . 35
7.4 Application of Decision Diagrams . 35

8 Conclusion and future works 36

Acknowledgements 37

Bibliography 38

Kivonat

A kritikus rendszerek, például a vasúti infrastruktúra, autonóm járművek, vagy okos vá-
rosok, hibás működése súlyos anyagi károkon túl akár emberi életet is veszélyeztethet. Így
ezen rendszerek tervezése során matematika precizitással kell igazolni nem csak funkcio-
nális követelmények, hanem olyan, extra-funkcionális követelményeket teljesítését is, mint
a szolgáltatásbiztonság vagy teljesítmény. Ezeket a sok esetben egymásnak ellentmondó
jellemzőket jelentős mértékben a megvalósított rendszer architektúra befolyásolja, így a
megfelelő architektúra kiválasztása kulcsfontosságú.

A modellvezérelt rendszertervezésben a az extra-funkcionális jellemzők közötti meg-
felelő kompromisszumok megkeresésére elterjedtek a tervezésitér-bejáró (Design-Space
Exploration, DSE) algoritmusok, melyekkel architektúra javaslatok igen nagy, akár vég-
telen méretű halmaza is automatikusan bejárható. Ehhez azonban szükséges az extra-
funkcionális követelmények automatizált kiértékelése teljes vagy félkész architektúra-
javaslatokon. A komplex, szolgáltatásbiztonsággal kapcsolatos extra-funkcionális követel-
ményeket általában valamilyen alacsony szintű, sztochasztikus matematikai formalizmusra
történő transzformációval kell megfogalmazni. Így a DSE használata a sztochasztikus mo-
dellezéssel kapcsolatos specializált szaktudást igényelhet, valamint kapott analízis model-
lek sztochasztikus megoldóval való kiértékelése sok esetben skálázhatósági problémákhoz
vezet.

A dolgozat célja a magas szintű leíráson alapuló, skálázható architektúra szintézis tá-
mogatása. Ennek eléréséhez a dolgozat javasol egy módszert, mellyel a szolgáltatásbizton-
sági követelmények közvetlenül a teljes vagy félkész architektúra modelleken, gráfmodell
lekérdezésekkel írhatók le. Ezen követelmények kiértékeléséhez a dolgozat a gráfminta-
illesztő algoritmusokat a döntési diagrammokon alapuló hibafa-analízis technikákkal kom-
binálja. Ezen felül a dolgozat kiterjeszt egy logikai megoldón alapuló DSE eszközt a lekér-
dezésekkel specifikált követelmények szerinti hatékony architektúra-szintézishez.

Az eredményekkel egyrészt lehetővé válik a mérnökök számára a kövelemények meg-
fogalmazása egy magas szintű nyelven, másrészt a szintézis során kihasználhatóak a ská-
lázható modell lekérdező eszközök olyan jellemzői, mint a lekérdezés-optimalizálás és az
inkrementális kiértékelés. A javasolt módszert és prototípus implementációját a NASA JPL
által bemutatott interferometriai konstelláció szintézis esettanulmányon keresztül vizsgá-
lom és összehasonlítom egy modell transzformáción és sztochasztikus kiértékelőn alapuló
módszerrel.

i

Abstract

Unsafe behavior of critical systems, such as railway infrastructure, autonomous vehicles,
or smart cities can lead to severe economic damage or even loss of life. Standards and
regulations mandate mathematically precise proof of the satisfaction of not only functional,
but also extra-functional requirements, such as dependability and performance. The extra-
functional properties can often be conflicting and are profoundly affected by the system
architecture. Thus, selection of a suitable architecture during design is essential.
In model-driven systems engineering, Design-Space Exploration (DSE) techniques are
available to explore the tradeoffs between various extra-functional requirements. They can
automatically enumerate very large, even infinite spaces of design candidates. However,
this necessitates the automatic evaluation of extra-functional requirements on complete or
partial candidate architectures. Complex dependability requirements are often expressed
as model transformations to low-level stochastic mathematical formalisms for automatic
evaluation. Therefore, engineers need specialized stochastic modeling expertise to employ
DSE, and the analysis of the obtained mathematical models with a stochastic solver can
lead to scalability issues.
The aim of this work is to support scalable architecture synthesis with a high-level de-
scription of dependability and performability requirements. We present an approach to
describe these requirements on complete or partial architecture models using graph queries.
We integrate decision diagram based reasoning techniques from fault tree analysis with
graph pattern matching to efficiently evaluate dependability requirements graph queries.
In addition, we extend a logic solver base DSE tool to synthesize candidate architectures
according to extra-functional objectives and constraints specified in this manner.
As a result, engineers are able to express a practically relevant class of extra-functional
requirements using a high-level language. Moreover, architecture synthesis can take ad-
vantage of the features of efficient graph query engines, such as query optimization and
incremental evaluation, to improve scalability. We evaluate the proposed approach and
its prototype implementation on an interferometry mission synthesis case study from the
NASA JPL, and compare it to architecture synthesis based on model transformations and
an external stochastic solver.

ii

Chapter 1

Introduction

1.1 System architecture design

Modern systems show increasing complexity which is managed through model-based
system engineering approaches and modeling languages such as SysML, Palladio [51],
Æmilia [9]. This increasing complexity makes handling the negative effects of functional
and extra-functional requirements more complicated. In many areas standards are de-
fined to ensure safety and correct operation. The AUTOSAR [11, 10] standard in the
automotive industry define thousands of requirements and constraints. Similarly in avia-
tion, ARINC 653 [5] prescribe strict design rules in addition to the functional requirements.
These functional and extra-functional requirements usually have a negative effect on other.
For example, a negative effect is when increasing reliability through redundancy also in-
crease the costs and potentially reduce performance. As a result, during system design
engineers have to make compromises and choose from the available alternatives. However,
the number of satisfactory architectures is usually out of the manually manageable scope
thus selecting a good one is a complicated task. These candidate architectures also have
highly diverse extra-functional metrics and so selecting the most preferable is not a trivial
task.
Analyzing the extra-functional requirements in systems usually necessitate stochastic
methods to accurately describe processes, like component level failures or changes in the
physical environment. There are many formalism to manage analysis models such as
process algebra [36], Markov chains and Stochastic Petri nets [56, 54]. During evalua-
tion, analysis models are derived from the architecture by complex model transformations
[38, 67, 35, 34, 24] and an analysis is carried out by sophisticated external solvers like
PEPA [36] or PRISM [1]. Based on this result the satisfaction of extra-functional re-
quirements, like availability and expected performance can be verified. Furthermore, it
may allow engineers to isolate the root causes of unsatisfied requirements thus increasing
productivity.
To manage the large number of candidate architectures, functional and extra-functional re-
quirements design space exploration (DSE) tools were introduced. These tools are broadly
classified into two groups:
(Meta-)heuristic techniques, such as genetic algorithms or multi-objective optimiza-
tion [51, 3, 33, 18, 9, 31], can support the analysis of extra-functional metrics directly
inside the DSE process thus allowing architecture optimization. However, they do not
guarantee that all possible models were considered (completeness) and the optimality of
the generated model. Moreover, encoding hard constraints must be through either cus-

1

tom soft constraints (constraints that may be violated), objective functions (optimizing
the model to not violate constraints) and mutation operators (disallow some mutations
to enforce constraints) and it could significantly degrade the performance or scalability of
the exploration process [64].
The other group is Logic solver based DSE techniques like [40, 42]. These techniques have
guaranteed soundness (hard constraints are satisfied) and completeness. They usually
allow encoding complex logical hard constraints with logical formulas or graph patterns [21,
46, 69, 61]. If the synthesis task is unsatisfiable to an extent these tools may even provide an
explanation for its cause. However, purely logical constraints cannot capture most extra-
functional due to stochastic nature of the requirement and the necessity of an external
numerical solver to analyze them. Thus, solvers have to be specifically extended for
optimization tasks, such as in [47, 14] to handle both functional (through logic constraint)
and extra-functional requirements. Unfortunately, in many cases such optimizing solvers
are unavailable. Alternatively in these cases, a post-filtering based DSE approach can
be used [30] where the logic solver synthetize many sound architecture models. After
synthesis the analysis models are created for each of them and evaluated separately. After
the analysis is complete the models are evaluated and one of them is selected without
optimality guarantees.
Logic solvers based on partial modeling offers a well-scaling solution for graph con-
straints [61], attribute constraints [63] and scope constraints [52] by abstract graph reason-
ing [59, 58] along refinement. These solvers can efficiently handle constraints of functional
requirements but managing and reasoning over extra-functional requirements during syn-
thesis is still an open challenge.

1.2 Aims of this work

The aim of this work is to support scalable architecture synthesis with a high-level de-
scription of dependability and performability requirements. To do so we propose a method
which allows formalization of extra-functional metrics with graph patterns that requires
stochastic models to evaluate. We present this approach to facilitate analysis of extra-
functional requirements on complete and partial architecture models. We integrate deci-
sion diagram [17] based reasoning techniques from fault tree analysis with graph pattern
matching to efficiently evaluate dependability requirements graph queries. With this in-
tegration we aim to keep the experienced efficiency of decision diagrams [57] and the
scalability of graph pattern matching [69]. In addition, we extend a logic solver base DSE
tool [62] to synthesize candidate architectures according to extra-functional objectives and
constraints specified in this manner.
As a result, engineers are able to express a practically relevant class of extra-functional
requirements using a high-level language. This high-level language mask the underly-
ing formalism of stochastic models thus reducing the need for specialized knowledge and
thus increasing productivity. Moreover, architecture synthesis can take advantage of the
features of efficient graph query engines, such as query optimization and incremental eval-
uation, to improve scalability. We evaluate the proposed approach and its prototype
implementation on an interferometry mission synthesis case study from the NASA JPL
[39], and compare it to architecture synthesis based on model transformations and an
external stochastic solver.

2

Chapter 2

Background

2.1 Requirements and meta-model

2.1.1 Functional requirements and well formedness constraints

Functional requirements describe the tasks that the system must be capable to perform. In
case of communication networks, it can be that data from one part of the system bust be
able to reach another part of the system. High level requirements often can be refined to
multiple smaller requirements to be more manageable. These requirements are generally
well defined and formalizable. In system development it is expected from the requirements
to be consistent, which means that each and every one can be met simultaneously. If the
requirements contain conflicting ones is an issue because automated tools may detect the
unsatisfiability of the formalized requirements but cannot resolve them.

Definition 1 (Well-formedness constraints [63]). Hard well-formedness constraints
can be formalized as error patterns. These patterns are first order logic predicates that if
satisfied means that the well-formedness constraint is violated.
A theory T is a set of first order logic predicates T = {φ1, . . . , φk} where φi is an error
pattern. A candidate considered valid in none of the patterns in T is satisfied.

Example 1 (Well-formedness constraint). In our domain an example for a well-
formedness constraint is that a CommSubsystem should only communicate with Comm-
Subsystems of the same type. As a well formedness constraint it is satisfied if a target
or fallback link exists between two CommSubsystem then those should have the same type.
Formally the requirement is that

φr = (target(x, y) ∨ fallback(x, y))⇒(KaComm(x) ∧KaComm(y))∨
(UHFComm(x) ∧UHFComm(y))∨
(XComm(x) ∧XComm(y))

(2.1)

and so the error pattern is φe = ¬φr.

2.1.2 Extra-functional requirements

Extra-functional requirements are used to capture properties that are not strictly functions
of the system. Such requirements are usually related to the system’s operation param-
eters. Many of them are characteristically not satisfied by a single component but the

3

whole system. Extra-functional requirements can be categorized into groups like reliabil-
ity, performance, cost and some other[15].
Reliability related requirements define the expected operational parameters of the system
in case of some error. Characteristic metrics in this group are availability (probability of
being operational at a given time), mean downtime (average time from failure to opera-
tion), mean uptime (average time between failures) or mean time to first failure (expected
time of first system failure).
Performance related requirements define what type of stress the system needs to be able
to handle. Such metrics for example in a server environment are the long-term throughput
(like requests served per hour) or maximal short-term load. This category may also include
requirements like maximal power consumption.
We will often use the term performability [68] for the combination of reliability and per-
formance. In our case a performability metric is the expected performance of a system
with respect to the effects of faults and potential redundancies.
Cost requirements specifies what the system or components should cost to build and
operate. Furthermore, this may also include non-monetary cost like personnel required to
operate or maintain the system.

Example 2 (Extra-functional requirements for the cases study). In our case
study a reliability related requirement is that a CommSubsystem must have two outgoing
links to different Commsubsystems unless the receiver is on the ground station. This
introduces redundancy to the system in case one of the receiving CommSubsystem
malfunctions.
A performance related extra functional requirement is that the system architecture should
maximize the scientific coverage of the mission according to the original coverage metric
of

ct(n) = (1 − 2
n
)1+

9
t + 0.05 t3 (2.2)

for t mission time and n equipped interferometry payload [39]. The performability metric
is the expected scientific coverage where the ideal coverage for the given number of Payloads
is weighted with the probability of that many Payload being available.

E[Ct(n)] =
n

∑
i=2

P{i payloads have working
downlink at time t } ⋅ ct(i) (2.3)

Cost related requirements may include that a constellation must not be larger than a speci-
fied number of satellites or must be under a specific total cost that is derived from different
component costs. For example the cost of one CommSubsystem is $100K or the cost of a
satellite is ranging from $150K to $2.9M [39] depending on the type.

2.1.3 Meta-model

A potential way to formalize such requirements is to use meta-modeling techniques. In
this technique a meta-model is defined to capture the underlying structure of a concrete
system on an abstract level. A domain specific meta-model contains the vocabulary of
the domain, such as components and relations that a system architecture may contain.
This meta-model is the first thing that regulate a system model. Trivially system model
cannot contain elements that are not defined in the meta-model and some relations can

4

Comm-
Subsys GroundStation

KaComm

Spacecraft

UHFCommXComm

[0..1]
target

[0..1]
fallback [1..2] subsys [1..1] station

[0..1]
payload

CommElement InterferometryMission

Cube3U SmallSatCube6U

[2..*]
spacecraft

Payload

Figure 2.1: Meta-model and concrete model for the satellite constellation mission domain

Figure 2.2: Example of refinement and error pattern matching

only be between specific types of components. The latter one is important because in itself
it enforces a topology schema that cannot be violated.

Definition 2 (Meta-model). Formally a meta-model is a first order logic signature
⟨Σ, α⟩, where the set of symbols Σ includes unary class Ci and existence ε and binary ref-
erence Rj and equivalence ∼ symbols, and α∶Σ→ N is the arity function α(Ci) = α(ε) = 1,
α(Rj) = α(∼) = 2.

Example 3 (Meta-model). In our satellite constellation mission domain the meta-
model is defined as a class diagram in UML syntax on Figure 2.1. In it the classes
represent system component types and the containment edges and references are the po-
tential relations between them. Such component types are (not exclusively) the Cube3U
and Cube6U cube satellites or the CommSubsystem. All of these types are included in Σ
as class symbols of the meta-model.
The meta-model also defines relations such as subsystem or the target and fallback links.
These relations are the reference symbols of the formal meta-model. In case of the subsys-
tem relation it specifies specifies which Spacecraft is equipped with which CommSubsystem.
The target or fallback relations symbolize which CommSubsystem forwards data to which
CommSubsystem.

Using this definition the predicate symbols in equation 2.1 can be resolved to meta-model
symbols from Σ.

2.2 Modeling and partial modeling

2.2.1 Concrete models

Concrete models are fully completed abstract representation of a system architecture. In
such model, every physical or software component of the implemented system are bidirec-
tionally mapped to a model element. This model lists all system components and defines
which relations are or should be implemented between which components.

5

Definition 3 (Concrete model [63]). A concrete is a first order logic structure
M = ⟨OM ,IM ⟩ over signature ⟨Σ, α⟩, where OM is a finite set of objects, and IM is an
interpretation function with IM(ς)∶Oα(ς)M → {1,0} for all symbols ς ∈ Σ.

In the definition OM is the set of the components the model contain. This set only treats
these components as nodes in the graph representation of the model so by itself it does
not distinguish CommElements from CommSubsystems. The IM provides the meanings for
the components. The interpretation of a class symbol on a component tells whether the
component is an instance of that class or not. The same goes for the relation symbols in
the metamodel, these unambiguously tell if the relation exists between two elements of
OM or not.

Example 4 (Concrete model). On the right of figure 2.1 a concrete model is shown. It
establishes that the constellation consists of three SmallSat each equipped with an X band
CommSubsystem and a Payload. The constellation also includes a GroundStation and its
XComm communication subsystem.
The model also tells that for example C2 sends data on target to C1 and to C3 on fallback.

2.2.2 Partial models

We can see that concrete models are useful to describe one architecture but one cannot
describe multiple ones thus partial models were introduced in [32]. This is done through
introducing uncertainty to the model. Formally the interpretation function of the concrete
model is now allowed to return 1/2 values which means that the interpretation of the symbol
may hold for the arguments or it may not.

Definition 4 (Partial model [61]). A partial model is a first order structure
P = ⟨OP ,IP ⟩ over signature ⟨Σ, α⟩, where OP is a finite set of objects, and IP is an
interpretation function with IP (ς)∶Oα(ς)P → {1,0, 1/2} for all symbols ς ∈ Σ.

We also define regular partial models where components are omitted from OP if Ip(ε)(x) =
0 or IP (∼)(x,x) = 0. The former means that the partial model does not contain elements
which will not be present in the represented system. The latter means that the patrial
model does not contain elements that cannot later be concretized to one component. The
extended interpretation of the existence and equality symbols allow one component to
represent multiple component in a partial model [52]. For regular partial models these are
the following[52]:

• Ip(ε)(x) = 1 and IP (∼)(x,x) = 1: x represents exactly one component.

• Ip(ε)(x) = 1 and IP (∼)(x,x) = 1/2: x represents at least one component.

• Ip(ε)(x) = 1/2 and IP (∼)(x,x) = 1: x represents at most one component.

• Ip(ε)(x) = 1/2 and IP (∼)(x,x) = 1/2: x represents any number of components.

With this in some cases many model components can be represented as one node in the
patrial model thus allowing a more compact form. From these four cases the first and last
carries extra significance. Elements in OP that is in the first category represents the surely
known components of the architecture just as in concrete models. While elements in the
last are called multiobjects. These multiobjects can be used to represent what components
may be later added to the system which is important to keep the model size low.

6

Example 5 (Partial model). On figure 2.2 three regular partial models are shown. El-
ements with continuous border indicated that its existence and self-equivalence is 1such are
S1 and S2 satellites. Each of these nodes nodes also indicates its most concrete type, so
in case if Cg it shows that it is a XComm but it also implies that it is a CommSubsystem
too. Dashed border and an arrow with ∼ mean that the node is a multiobject of a type. For
example, newL represents the potential payloads that can be added to the architecture.
Continuous arrows mean relation with 1values. Such relations are the target from C1
towards Cg. Dashed lines mean relations with 1/2values. For example the payload relation
from S1 to newL means that S1 may be equipped with a payload instance split from the
Payload multiobject.
Finally, according to the definition of regular partial models, elements with 0values are
omitted. In this case it implies that no Cube3U is in or can be added to the architecture.
Furthermore, in case of an omitted relation it means that it does not stand like C1 is not
and never will be a subsystem of S2.

2.2.3 Refinements of partial models

Partial models were introduced to handle uncertainty but it is also important define re-
lations between partial models based on the contained certain and uncertain parts. It
can be seen that some partial models may contain less uncertainty than another while
being highly similar to it. To capture this a refinement relation is defined between partial
models.

Definition 5 (Information ordering of logic values [63]). X ≽ Y ⇔ (X = 1/2) ∨
(X = Y) which means Y is a refinement of X if X is 1/2 meaning that it can be set
to either 1 or 0, or X and Y is equal which means other logic values must not change.

An important consequence of this definition is that if a value has been refined to 1 or 0,
then it is locked and cannot be changed to anything by refinement. Using this definition
between logic values a refinement function can also be defined on partial models.

Definition 6 (Refinement of partial models [52, 63]). Partial model Q is a refine-
ment of partial model P denoted as P ≽ Q (read P refined to Q) if three is a refinement
function ref ∶OP → 2OQ that meets the following conditions:

• OQ = ⋃x∈OP
ref(x) meaning that every element of OQ is a refinement of an element

in OP .

• ˙∀x ∈ OP ∶IP (ε)(x) = 1 ⇒ ref(x) ≠ ∅ meaning that if an element surely exists inP
then it also must exists in Q.

• All s ∈ Σ, p1, . . . pα(s) ∈ OP , and q1 ∈ ref(p1), . . . , qα(s) ∈ ref(pα(s)) implies that
IP (s)(p1, . . . , pα(s)) ≽ IQ(s)(q1, . . . , qα(s)). Meaning that every interpretation in
Q must be a refinement of an interpretation in P with respect to the refinement
function.

Informally these conditions ensures that a refinement cannot remove a surely existing
element or relation from a partial model, every new element introduced in Q must have a
source from which it is refined in P . The last is that any relations that were present in P
must also be present in Q with all its refinements. In practice means that if a new object
is split from a multiobject then it also inherits all the multiobjects relation.

7

We can also see that each refinement step increases the precision of the partial model. It is
also true that every unknown part can be refined and thus eliminated from a partial model
resulting in a partial model that does not contains any 1/2 values which is by definition a
concrete model.
These refinement steps can be categorized into two groups. Decision type refinements
where both 1 and 0 values are possible and propagation type refinements where only one
value can be correct. This is important because some decisions may imply that other
currently 1/2 values must either 1 or 0.

Example 6 (Refinement of partial model). Figure 2.2 also shows a series of refine-
ments. On P1 a decision can be made to add a new payload to S2 and the resulting partial
model is P2. This means that I(ε)(L1) = I(∼)(L1, L1) = I(payload)(S2, L1) = 1. From the
metamodel it is known that a payload can only be assigned to one satellite thus the follow-
ing propagation type refinements can be made I(payload)(S1, L1) = I(payload)(newS , L1) =
I(payload)(newC6, L1) = 0.

2.3 Graph queries on concrete and partial models

Furthermore on partial models logic predicates can also be evaluated to {1,0, 1/2} on both
concrete and partial models. To define the semantic first a variable binding must be
introduced as Z ∶ {v1, . . . , vn} ↦ O. This binds the parameters of φ predicate to elements
of the object set. With these the following semantics can be defined [63, 61, 52]:

• [[1]]PZ ∶= 1 which means that the logic true is true with any parameter binding.

• [[0]]PZ ∶= 0 which means that the logic false is false with any parameter binding.

• [[1/2]]PZ ∶= 1/2 which means that the logic unknown is unknown with any parameter
binding.

• [[C(v)]]PZ ∶= IP (C)(Z(v)) checks if v is an instance of class C in P partial model
with Z variable binding.

• [[R(v1, v2)]]PZ ∶= IP (R)(Z(v1), Z(v2)) checks if v1 and v2 is in relation of R in P
partial model and Z variable binding.

• [[v1 = v2]]PZ ∶= IP (∼)(Z(v1), Z(v2)) checks if v1 and v2 are equals in P partial model
and with Z variable binding.

• [[ε(v)]]PZ ∶= IP (ε)(Z(v)) checks if v exists in P partial model and with Z variable
binding.

• [[¬φ]]PZ ∶= 1 − [[φ]]PZ is the semantic for negation.

• [[φ1 ∧ φ2]]PZ ∶=min{[[φ1]]PZ , [[φ2]]PZ} is the semantic for and of predicates.

• [[φ1 ∨ φ2]]PZ ∶=max{[[φ1]]PZ , [[φ2]]PZ} is the semantic for or of predicates.

• [[∃v∶φ]]PZ ∶=max{[[ε(v)∧φ]]PZ,v↦o∶ o ∈ OP } It is important to note that is not enough
to satisfy only the predicate but the existence of v also required.

• [[∀v∶φ]]PZ ∶= min{[[¬ε(v) ∨ φ]]PZ,v↦o∶ o ∈ OP } It is important to note that if variable
v not exist the predicate does not need to be satisfied.

8

• [[R+(v1, v2)]]PZ ∶= max∣OP ∣

k=0 {[[R(v1, u1) ∧R(u1, u2) ∧ . . . ∧R(uk, v2)]]PZ} which means
that transitive relations can be defined alongside a relation which length is at most
the size of the model. (Meaning that all nodes are in the path.)

This means that any error predicate defined for concrete models can also be evaluated on
partial models and the most significant difference is that it may be evaluated to 1/2. It also
implies that on partial model if it is evaluated to 0 then it cannot be violated regardless of
the unknown parts. Similarly if it is evaluated to 1 then it is violated. If the error pattern
is evaluated to 1/2 that means the partial model not necessarily violates the constraint but
there may be a more refined version where it is surely violated. Informally it means that
if an error is introduced through a refinement, then it cannot be resolved by any more
refinement.

Example 7 (Query evaluation on partial model). A well-formedness constraint in
our case study it that no communication loops should exits. A simplified formalization of
this requirement with an error constrain can be the following: link(a1, a2) = target(a1, a2)∨
fallback(a1, a2) and φ(v1, v2) = link(v1, v2) ∧ link(v2, v1)
We can see on figure 2.2 that link(v1, v2)P2

v1↦C1,v2↦C2
= 1 and link(v1, v2)P2

v1↦C2,v2↦C1
= 1/2

meaning that there is surely a transmittion link from C1 to C2 but not necessarily in reverse
thus as expected φ(v1, v2)P2

v1↦C2,v2↦C1
= 1/2.

If the connection from C2 to C1 is refined to 1 we can also evaluate the error predicate
and we can see that φ(v1, v2)P3

v1↦C2,v2↦C1
= 1 which means that an error were introduced

into the partial model.

2.4 Reliability analysis and fault trees

Up until this point we did not talk about fault and failures in the system. According to
Murphy’s first law, "Anything that can go wrong will go wrong." In this context it is wise
to analyze how this failure impacts the whole system. When analyzing reliability one of
the first thing needed is the reliability characteristics of the included components. This
can come in many forms such as probability of failure on demand, probability of failure
over time or expected lifetime.
The other necessary input for reliability calculations is the system architecture. This
introduces the concrete components that are present and can malfunction, furthermore it
also describes the dependencies between components. From these different analysis models
can be constructed such as Petri-nets [56], Markov models [23] or fault trees [71].

2.4.1 Fault trees

Fault trees are widely used to model the propagation of component failures and to check
which failure combination result in a system level failure and with what probability [71].
Generally, a fault tree can contain basic events and logic gates (and, or and sometimes
not) but there are many variations that extends this formalism for higher applicability in
modeling dynamic systems.
The basic event is considered to be the bottom of the fault tree. These events represent
independent components or actions that may malfunction and each of them has a proba-
bility of failure. Static fault trees are not concerned about the underlying reasons for the
failure nor the order of their occurrence. The top of the fault tree is the top-level event.

9

This is the event that is considered to be a system level failure. The goal of a reliability
analysis using fault trees is to quantify the probability of the top-level event or to identify
certain system states in which it occurs.
Between the top-level event and the basic events logic gates can be defined. Regularly
a fault tree is a tree graph where the basic events are leaves and the logic gates are
the other nodes. This simple structure allows simple evaluation but it can also severely
reduce the expressiveness of this method. To extend the expressiveness, in some cases this
restriction can be waived at the cost of computational complexity. For example, the strict
tree structure can be replaced with an acyclic graph. Static fault trees can contain the
following gates [71]:

• AND gate: true if all the inputs are.

• OR gate: true it at least one of the inputs are true.

• Voting gate: true if at least k of the n inputs are true.

Although fault trees are generally used to model failures there are inverse fault trees that
models operation with the same components. Other variations of fault trees also include
negation and exclusive or gates along with a wide variety of other gates to take fault
occurrence order into account [71].

Example 8 (Fault and performability modeling). In our case study we assume that
only CommSubsystems and Spacecrafts can fail and each of the different types have differ-
ent probability of failure. In [32] we introduced failure rates for these components. Based
on that we can calculate that the probability of failure or operation at a given time. For ex-
ample the probability of operation at one hour in operation is 98.4% for a Cube3U satellite
or 92% for a UHFComm communication subsystem.
The next is to decide what to model. In our case the performance of the architecture is
dependent on the number of payloads available in the system thus it is logical to assume
that what we need is the probabilities of receiving the data from that payload.
Our reliability model says that CommSubsystems on the GroundStation are always opera-
tional and ready to receive data. A Spacecraft is online if the Spacecraft and its transmit-
ting CommSubsystem are operational, furthermore any of the receiving CommSubsystem
is ready to receive data. A CommSubsystem on a Spacecraft is considered ready if the
Spacecraft it is equipped on is online and the CommSubsystem component is operational.
A fault tree modeling this would contain the hardware level operational status as basic
events and the online and ready properties would be intermediate events. Modeling the
communication between Spacecrafts are formalized with connecting an input to the output
of another intermediate event.
From this we can calculate the probability of at least i payload equipped satellite being
online with a voting gate and weight its probability with the matching scientific coverage
according to equation 2.3.

2.5 Decision diagrams

We can see that modeling reliability with fault trees has similarities with Boolean functions.
In fault trees the top-level event’s occurrence is a Boolean function of the basic events. As
such the satisfying combinations can be treated as solutions for its Boolean function.

10

terminals

var A

var B

var C

var D

true false true false truefalse

Figure 2.3: Example of a reduced binary decision diagram and logic operations

Unfortunately SAT problems are known to be NP-complete thus in worst case scenarios
finding the solutions are exponentially hard. There have been various normal forms in-
troduced to make this task efficient but if the function is not given in that normal form,
then transformation is required which makes it exponentially hard again.
Fortunately, with a practical graph representation in many cases it can be relatively ef-
ficiently handled [17]. The core concept of this is to fix the variable order and build the
satisfaction as a graph
For a Boolean problem there are two bottom level (terminal) nodes one of which represents
that the function is satisfied the other is that it is not. Next, we take all the variables
and assign each of them to a single level above the terminal nodes. To each layer decision
nodes can be added that has two outgoing edges, one that represents that the current
layer’s variable is true and one if not. Every edge lead to either a lower level node or to
a terminal node. When a terminal node is reached then the output of the function is the
value of the terminal.

Example 9 (Decision diagram). On figure 2.3 three decision diagram is shown with
the same variable order. On this diagram continuous lines represent that the variable is
true and dashed if it is false at the starting node.
To illustrate such decision diagram we will use the ones on figure 2.3. We have four
variables from A to D. On the left side there are four simple Boolean functions denoted
with brown circles. Each of it refers to a single variable. For example, the functions
represented by the bottom three nodes are true id their respective variables are true, thus
continuous lines go to the terminal true and dashed to the terminal false. D is the opposite
of it so continuous lines to the terminal false and dashed to the terminal true.
You can also perform operations on the root nodes of the formulas. This is done by
manipulating the edges of the decision diagram. For example, in the very simple case
of performing the logic or operation between ¬D and C. These operations are done by
applying the logic operator on the branches with same values on the same path. We must
mention the in this diagram nodes that has the same node on both outgoing edges are
hidden, such hidden node in on the D layer with both output to C. Here from the D
level we can take the true output of the ¬D and the hidden node and perform the logic or

11

operation. One edge lead to C and the other to terminal false with means that the new
edge goes to C. Similarly, with the false edges, one of the outputs is the terminal true
thus it is also the output. When both outputs are nodes then a new node is created and
the output is determined by the lower layers.
The negation that is shown on the right is the simplest one. Here only the terminal nodes
have to be reversed to get the output.

It also should be mentioned that in case of Reduced Ordered Binary Decision Diagrams
the graph forms of a Boolean function is always the same with the same variable order.

2.5.1 Efficient handling of Reduced Ordered Binary Decision Diagrams

[8] summarize how ROBDDs can be effectively crated and manipulated. This starts by
defining the variable order as x1 < x2 < x3 < ⋅ ⋅ ⋅ < xn meaning that x1 is the variable on
the lowest level and xn is the variable at the highest level. Nodes in the ROBDD are
represented by numbers from 0,1,2, Using this a node in the ROBDD is identified
by the assigned variable and the nodes on the true and false edges. The 0 and 1 node is
reserved for the terminal nodes.
The ROBDD is stored using tables T and H where H ∶ ⟨i, t, f⟩ ↦ u and T ∶ u ↦ ⟨i, t, f⟩.
Here i is the index of the variable, t is the umber of the node at the true edge and f is
the node at the false edge. Trivially T is the inverse of H.
For us the important consequence of this is that whenever a seemingly new node ⟨i, t, f⟩
is required it can be looked up and reused as presented in [8]. The member checks if the
arguments are present in the table, add and insert is to create a new node and to add
an existing node respectively to a table. The lookup is the get the get the node with the
matching arguments.
Make[T,H](i,t,f)

if t = f then return t //edges lead to the same node
else if member(H,i,t,f) then //the node is already in the graph

return lookup(H,i,t,f)
else u ↤ add(T,i,t,f) //create a new node and maintain the global model

insert(H,i,t,f)
return u

Build[T,H](φ)
function Build’[T,H](φ,i) =

if i > n then //all variables are locked
if φ is false then

return 0
else

return 1
else

v0 ↤ Build’[T,H](φ[0/xi], i+1) //lock xi to false and expand the rest
v1 ↤ Build’[T,H](φ[1/xi], i+1) //lock xi to true and expand the rest
return Make(i,v1,v0) //create or look up the appropriate node

end Build’
return Build’[T,H](φ,1)

This means that whenever an already existing node is encountered the recursive call the
call chain is cut short and the already existing node is returned. This practically caches
the result of previous calls thus provide an efficient way to manage future operations.
Similar caching algorithm also exists for logic operations on ROBDD nodes [8] thus it is
not required to perform the operation of the Boolean function and build the graph from
the result.

12

Chapter 3

Overview

Our aim in this work is to support scalable architecture synthesis with logic solvers. We
acknowledge that incremental approaches and graph solves proven effective in such tasks
[52, 61]. To complement these solutions with the capability of efficient extra-functional
reasoning we introduce stochastic graph patterns. These graph patterns will be used to
formalize performability related requirements and behavior such as expected system level
performance or availability of complex subcomponents. Later on we also intend to use
this to approximate the performability metric of partial models and through this support
architecture optimization in system architecture synthesis.

3.1 Architecture of the stochastic graph query evaluation

To evaluate graph queries, we propose the following high level system architecture. The
query evaluator tool can be utilized for both (A) concrete and partial models (B). Each of
these contains a model on which formalize the current system state and query specifications
based on the model.

• (M) Meta-model is the base of the model and the queries. It contains all the
potential component types, relations and basic event types.

• In cases of a concrete model (A) the input consist of the (A2) Concrete model
which is the abstract representation of the system architecture and the (A1) Query
specification for concrete models which contains the graph queries required for
evaluation.

• In case of a partial model (B) the input consists of (B2) Partial model which
unlike a concrete model can contain uncertainty and also a (B1) Query specifica-
tion for partial models which contains the required stochastic query definitions.
A preemptive note here is that while a partial model can contain uncertainty, the
queries shall concretize it in some way in order to estimate the reliability.

The evaluator tool contains an (C1) Internal representation of the input model which
is the stochastic view of the model. It contains all the basic events that may occur in the
system. This is to keep the representation enumerable, meaning that the queries can only
create events that are explicitly derived from other events. This also necessitate that the
basic events must be introduced and maintained separately from the queries. This is done
in (1) Representation synchronization where unnecessary basic events are removed

13

(B) Inputs for partial models

(C1) Internal
representation

(A1) Query
specification
for concrete models

(B1) Query
specification
for partial models

(A2) Concrete model

(B2) Partial model

(1) Representation
synchronizetion (2) Query evaluation (D) Performability

metric

Reliability query evaluator

(A) Inputs for concrete models

(M) Meta-model

Figure 3.1: Overview of stochastic query evaluation

and the required ones are introduced. When the basic events are synchronized with the
model then the graph queries are evaluated in (2) Query evaluation and producing the
value of the (D) Performability metric.

3.2 Architecture synthesis for performability

We introduced a model transformation-based architecture synthesis method in [32]. This
is based on a branch-and-bound approach where the decision type refinements from a
partial model create new branches that lead to the newly created partial models. In
there, whenever a new partial model is created then an under-approximation and an over-
approximation is calculated for the partial model. The under-approximation can be used
as a guideline to compare partial models to each other and select which partial model is
to be refined next. The over-approximation is the more important one. This is used to
cut branches where the performability metric will never satisfy any of the refinable models
from that partial model.

3.2.1 Soundness and completeness

When talking about logic solvers there are two key guaranties that these type of solvers
can provide and it is important to uphold these. The first is soundness which is that the
candidate architecture satisfies all the well-formedness and cost constraints. Formally as
defined earlier none of the φi error predicates in T = {φ1, . . . , φk} holds. Furthermore, the
extra-functional characteristics of that model also reaches the required thresholds.
The other key aspect of a logic solver is the completeness. It means that all concrete
models that are valid with the given well-formedness constraints in a finite model scope
can be enumerated. This is so that every potential model can either be synthesized with
respect to the constraints or the incorrectness can formally be proven.

3.2.2 Architecture synthesis options for logic solvers

There are two potential approaches to synthesize architectures for performability with
logic solvers. The first approach is the post-filtering approach where the solver randomly
generates a large number of candidate architectures and the extra-functional requirements
evaluated later. Such approach benefit from the soundness of the generator tool by only
having to evaluate functionally correct architectures. Another benefit is that in this ap-
proach the analysis model for the extra-functional requirements can be generated using

14

ctmc
module model

S1 : bool init true; S2 : bool init true; S3 : bool
init true;

C1 : bool init true; C2 : bool init true; C3 : bool
init true; Cg : bool init true;

[] S1 -> (1/70):(S1’=false); [] S2 -> (1/70):(S2’=
false); [] S3 -> (1/70):(S3’=false);

[] C1 -> (1/13):(C1’=false); [] C2 -> (1/13):(C2’=
false); [] C3 -> (1/13):(C3’=false);

endmodule
formula On1 = S1 & C1 & (Cg | Cg); formula Rc1 = On1 & C1;
formula On3 = S3 & C3 & (Cg | Cg); formula Rc3 = On3 & C3;
formula On2 = S2 & C2 & (Rc1 | Rc3);
formula online = (On1?1:0) + (On2?1:0) + (On3?1:0);
rewards "utility"

online=2 : 0.016666; online>=3 : 0.035;
endrewards

Figure 3.2: Fault tree and corresponding PRISM analysis model

model transformations. The downside of this is that in this case the completeness is
lost unless all consistent models are synthesized and evaluated which can be practically
impossible.
The second approach is to include a reasoning over extra-functional requirements inside the
logic solver. This approach can keep both the soundness and completeness of the generator
tool while also eliminating the need for post evaluation. However, this approach raises
a handful new complications. One of them that it such approach the extra-functional
analysis has to be performed on the internal representation of the logic solver. This
representation can be very different from for example a domain specific SysML or UML
model. The second concern is that in such tool intermediate results may be evaluated at
many points however a slow analysis method can diminish the performance of the synthesis
tool.

Example 10 (Reliability model). To demonstrate performability analysis we use the
concrete model from figure 2.1. In this constellation S1 and S3 Spacecrafts are directly
connected to ground while S2 can only relay data to ground via either S1 or S3.
From this model we van construct an inverse fault tree (i.e., the occurrence of the top-level
event is desired) like model. In this model we can see that the Tri intermediate events
occur when any of the outgoing links can be used. The Oni event occur when for a given
satellite both the necessary hardware components are operational and the links are up. The
Rci event represent if a Commsubsystem can receive and forward data thus it requires the
associated satellite to be available and also the CommSubsystem.
At the top level event we count how many of the Spacecrafts are available and calculate
the probability of it.

Example 11 (Model transformation). A model transformation example is when the
concrete model from figure 2.1 is mapped to a textual PRISM model equivalent to the fault
tree on figure 3.2.
In this model the blue and brown basic events are mapped to variables representing the
components status and transitions that represent component failures. Using these formulas
are defined according to the fault tree and a reward is introduced the weight the possible
system states according to the extra-functional metric.

15

Chapter 4

Performability analysis with graph
queries

4.1 Probabilistic predicates

To evaluate complex performability related properties we introduce a formalism that is
defined over a model and stochastic properties. To do this we extend the definition of the
meta-model and concrete model so that stochastic properties can be represented inside of
it. Furthermore, we define probabilistic predicates and provide a semantic for it so that
the stochastic behavior can be expressed through these predicates.

Definition 7 (Probabilistic meta-model). The probabilistic meta-model is an exten-
sion of the regular meta-model M = ⟨Σ, α⟩ where Σ = {C1, . . . ,Cn,R1, . . . ,Rm,B1, . . . ,Bl}
is the set of symbols. Ci and Ri symbols are from the meta-model denoting the classes
and relations. Bi is the newly introduced probabilistic symbols that denotes event classes.
And at last α is the arity function α ∶ Σ→ N where α(Ci) = 1, α(Ri) = 2 and α(Bi) ∈ N.

Example 12 (Probabilistic symbol). In our case study a probabilistic symbol is the
component that represent whether the model element (Spacecraft or CommSubsystem) is
considered operational.

Using this we can extend the definition of model to also capture the stochastic properties.
To do this we add σ-algebra to the model and an event function that assigns measurable
events to probabilistic symbols and model elements.

Definition 8 (Probabilistic model). Formally, we define probabilistic model as an ex-
tension of concrete models over a probabilistic meta-model. M = ⟨OM ,IM ,EM ,Ω,F ,P⟩
over the probabilistic ⟨Σ, α⟩. Where the OM and IM is the object set and interpretation
function as in concrete models. Ω is the sample space, F is a σ-algebra over Ω and P ∶ F →
[0,1] is the probability measure. The newly introduced EM(Bn

i) ∶ O
α(Bi)

P × {1, . . . , n}→ F
is the event function that assigns an event to the arguments of a probabilistic symbol and
a multiplicity marker. (Shorter form in case of n = 1 is EM(Bi) ∶= EM(B1

i))

In our case a Ω = {0,1}n where n is the number of basic events and F is the power set of
Ω thus these are indeed a σ-algebra.

Example 13 (Probabilistic model for satellite domain). The samples in Ω is the
states that the system can be in. In this domain only Spacecrafts and CommSubsystems

16

can malfunction on component level and each of them can be either in a state of op-
erational (1) or non-operational (0). Thus Ω is the Cartesian product of the states of
the components. If we have a model with one Spacecraft and one CommSubsystem then
Ω = {⟨0,0⟩, ⟨0,1⟩, ⟨1,0⟩, ⟨1,1⟩} where the tuples are the ⟨operation of S1,operation of C1⟩.
The P is the probability measure which is P(ω) = ∏

ωi∈ω
pωi
i (1− pi)1−ωi where pi is the proba-

bility of finding that component operational for the basic events.
F is the set of measurable events, such as {⟨0,1⟩, ⟨1,1⟩} ∈ F which is for finding Ci in an
operational state. By definition F contains all measurable event but to being the power set
of Ω.
The event function is to get the event that satisfy the probabilistic symbol over the argu-
ments like EM(component)(C1) = {⟨0,1⟩, ⟨1,1⟩}

With this we can define probabilistic predicates that can be used to formalize stochastic
properties.

Definition 9 (Probabilistic predicate). Formally the probabilistic predicate ψMZ ∶
Oα(ψ)M → F .

Informally, a probabilistic predicate evaluates to an event that satisfies it. Before we
continue it is important to emphasize that φ denotes deterministic predicates that is
evaluated to 1 or 0 and ψ denotes probabilistic queries that is evaluated to an event.
To complete all the requirements to evaluate probabilistic predicates we provide the fol-
lowing semantics:

1. LΩMMZ ∶= Ω which means that the sure event is a sure event regardless of the model.

2. L∅MMZ ∶= ∅ which means that the impossible event is the impossible event regardless
of the model.

3. LφMMZ =
⎧⎪⎪⎨⎪⎪⎩

Ω, if JφKMZ = 1
∅, otherwise

which is to cast deterministic predicates to probabilistic

ones so that deterministic predicates can be used in probabilistic ones.

4. LB(v1, . . . , vα(B), n)MMZ = EM(Bn)(Z(v1), . . . , Z(vα(B))) is to introduce events to a
predicate that may or may not be satisfied and so no longer only sure and impossible
events can occur in a predicate. LB(v1, . . . , vα(B))MMZ ∶= LB(v1, . . . , vα(B),1)MMZ is a
shorter form in case of n = 1.

5. L¬ψMMZ ∶= Ω ∖ LψMMZ meaning that a negated probabilistic predicate is equivalent to
the complement set of the predicate over all samples.

6. Lψ1 ∧ ψ2MMZ ∶= Lψ1MMZ ∩ Lψ2MMZ meaning that the logic and relation of probabilistic
predicates are satisfied if both predicates are.

7. Lψ1 ∨ ψ2MMZ ∶= Lψ1MMZ ∪ Lψ2MMZ meaning that a logic or of probabilistic predicates are
satisfied if any of the predicates are.

8. L∃v∶ (φ ∧ ψ)MMZ ∶= ⋃
o∈OM

{LψMMZ,v↦o∣JφKMZ,v↦o = 1} is a guarded existential quantifica-

tion and its purpose to general existential quantification is to suppress irrelevant
probabilistic predicates.

17

9. L∀v∶ (φ⇒ ψ)MMZ ∶= ⋂
o∈OM

{LψMMZ,v↦o∣JφKMZ,v↦o = 1} is a guarded universal quantification.

Similarly, to the previous this is to exclude predicates that are irrelevant.

10. Lψ+(v1, v2)MMZ ∶=
∣OM ∣

⋃
k=0
{Lψ(v1, v2) ∨ (∃m∶ψ(v1,m) ∧ ψ+(m,v2))MMZ }

Naturally, this can be used to create more complex predicates like k-gates. Terminal cases
are when nothing is needed to be satisfied and then it is surely satisfied or it is impossible
to satisfy because there are not enough predicates. It can also be satisfied if we split the
first element and there is k out of the rest or ψ1 is satisfied and k − 1 is satisfied from the
rest.

Lk of {ψ1, ψ2 . . . , ψn}M ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ω, if k = 0
∅, if k > ∣{ψ1, . . . , ψn}∣
L(k of {ψ2, . . . , ψn})∨
(ψ1 ∧ (k − 1) of {ψ2, . . . , ψn})M, otherwise

(4.1)

groundcomm(v1) ∶= ∃gsn ∶ GroundStation(gsn) ∧ subsystem(gsn, v1) (4.2)

ready(v1) ∶=groundcomm(v1) ∨ ∃sat ∶ (¬groundcomm(v1)∧
subsystem(sat, v1) ∧ online(sat) ∧ component(v1))

(4.3)

Example 14. An example for a probabilistic predicate in our domain is whether a Comm-
Subsystem can receive and forward data to ground. In this domain we assume that a
CommSubsystem on the ground is always operational.
To do this we have a deterministic predicate (equation 4.2) that can evaluate if the Comm-
Subsystem is on the ground. The ready (equation 4.3) is the predicate for receiving. The
left argument of the ∨ is a deterministic predicate and if satisfied, casted to a probabilistic
one and evaluates to Ω which is what we expect from a ground communication subsys-
tem. The right argument is for non-ground ones. There the first two is a deterministic
query that indirectly acts as the guard of the existential quantifier while the rest is the
probabilistic predicate.
The online is a user defined probabilistic predicate to show an inclusion of a probabilistic
predicate. The component is a probabilistic symbol from the meta-model and evaluated
accordingly to the EM . As a result, the ready predicate evaluates to a sample set where the
satellite is online (i.e. can forward data to ground) and the CommSubsystem is operational
so the receiving and forwarding functionality is available.

With this we can manage predicates and such predicate evaluates to a sample set. However,
at some point a probability is needed for the performability analysis thus we need to
quantify it. This is formally done with P to probability measure as PMZ (ψ) ∈ [0,1].

4.2 Efficient representation of probabilistic predicates

We can see that the formal definitions while work require huge amount of storage and
computation to manage all predicates thus implementing it as is is impractical. However
Reduced Ordered Binary Decision Diagrams [57, 8] (ROBDD) can do just that.

18

terminals

var C3

var S3

var C1

var S2

var C2

var S1

falsefalsetrue falsetruetrue falsetrue falsefalsetrue falsetrue true false false false false falsefalse

terminals

var C3

var S3

var C1

var S2

var C2

var S1

true false terminals

var C3

var S3

var C1

var S2

var C2

var S1

true false

Figure 4.1: Availability of S2 Spacecraft from the architecture (bottom left) with Decision
Tree (top), Binary Decision Diagram (bottom center) and Reduced Ordered
Binary Decision Diagram (bottom right)

4.2.1 Binary decision trees

To illustrate why reduced ordered binary decision diagrams are so practical we take a few
step back to decision diagrams.
Decision diagrams consists of nodes and terminals that are connected with edges annotated
with true or false in a tree structure. The nodes are in layers where every node in the
layer is assigned to the same variable. The inputs of every node come from the layer on
top and the outputs are going to the layer on bottom. Every node has two children, one
for each value of the decision and a single parent. The bottom level nodes are connected
to terminals which represents the output of the predicate. Traveling from the root node to
a terminal expresses the values of each variable and at the end the value of the predicate.
The downside of this representation is that the size of the diagram is exponential in the
number of variables with a factor of two.

Example 15 (Binary decision tree). On figure 4.1 there is the decision three of the
availability of S2 from the concrete model. There the continuous lines represent decisions
where the variable is true and dashed where false. We can see that for example the series
of decisions true, true, false, false, true and true lead to the true terminal meaning that
the satellite is available.
The other thing that we can notice that it is highly redundant, like 75% of the right side
is false regardless of the bottom four variable.

19

4.2.2 Decision diagrams and reduced ordered decision diagrams

Decision diagrams are a more refined version of decision trees where identical subtrees are
only included once. This is through allowing that the children of a node can be any node
or terminal from the lower layer and a node can have multiple parents from the higher
layer. Such diagrams eliminate the redundant parts of the decision tree while each variable
on any path toward a terminal are explicitly visited.
Reduced Ordered Decision Diagrams takes it two steps further with (A) requiring a vari-
able order and (B) eliminating nodes where both outgoing edges goes to the same node or
terminal. This form of the decision diagram has the advantage of always being isomorphic
for an equivalent Boolean function given a fix variable order. Furthermore, logic opera-
tions that can be performed on Boolean functions can also be performed on the ROBDDs
of the functions [8].

Example 16 (Reduced ordered binary decision diagrams). On figure 4.1 we can
see that this method proved a much more compact representation for the Boolean function
while retaining the same information of when it is satisfied.
For this example, the decision tree contains 63 nodes, 64 terminals and 126 edges. While
an equivalent decision diagram contains only 14 nodes, 2 terminals and 28 edges which
is a significant decrease from the decision tree. The ROBDD representation is even more
compact with just 6 nodes and 12 edges.

It must be noted that there is no guarantee for getting such compact representation for any
Boolean function and in a worst-case scenario such graph can still scale exponentially. But
in practice this usually provides a well-scaling solution for Boolean function representation.

4.2.3 Probabilistic predicate evaluation with ROBDD

Here we would like to show that the semantic operations defined earlier can be performed
using Reduced Ordered Binary Decision Trees as a more efficient representation of events.
Earlier we used that the sample space Ω is effectively the Cartesian product of the sample
space of the components.

• Ω is a ROBDD with the true terminal as the root node. This means that the function
is satisfied regardless of the variables just as expected from the sure event.

• ∅ is a ROBDD with the false terminal as the root node. This means that it is never
satisfied just as expected from the impossible event.

• The ∪ of events is informally when any of them occur and so it is equivalent to the
operation or on the ROBDD representation of the event sets [17].

• Similarly, the ∩ of event sets is equivalent to the operation and on the ROBDD
representations of the inputs [17].

• The ¬ or complement creation can also be done on a ROBDD by swapping the
terminal nodes [53].

• To get the ROBDD representation of the events in F can be done through ROBDDs
as well. Any ω = ⟨ω1, . . . , ωn⟩ ∈ Ω can be considered a sequence of variables where
ωi is the value of variable i. This implies that every sample can be represented as a

20

terminals

var C3

var S3

var C1

var S2

var C2

var S1

true falsetrue false true false

Component Hardware Communication

Figure 4.2: ROBDD operation example on satellite availability

predicate where ω⇐⇒ φω(v1, . . . , vn) =
n

⋀
k=1

ωk = vk and so as a ROBDD. As a result
every e ∈ F can be expressed as a ROBDD using that e⇐⇒ φe = ⋁

ω∈e
φω.

Example 17 (Availability through ROBDD). To illustrate how the introduced for-
malism interact with the ROBDD in practice we use the following example. The graphical
representation of the ROBDDs are on figure 4.2.
We use the already established three satellite constellation as an example. In the reliability
model we have the probabilistic symbol component for the event of a component’s operation.
The ROBDD representation of each is an ROBDD node on the appropriate level with the
true edge to the terminal true and the false edge to the terminal false. This is shown on
the left side of figure 4.2 where EM(component)(x) is shortened to E(x).
The next we need the complex hardware level operation which is

H(sat) = ∃css ∶Spacecraft(sat) ∧ CommSubsystem(css) ∧ subsystem(sat, css)∧
component(css) ∧ component(sat).

(4.4)

Here the deterministic predicates ensures that no inappropriate probabilistic predicates are
created and the probabilistic ones formalize the required operation of both component is
needed for correct operation. The result is shown on the center of figure 4.2.

21

Next, we need to formalize the communication topology. In this example the ready(C3) =
H(S3) and ready(C1) =H(S1) due to being directly connected to ground which is defined
in the example of a probabilistic predicate. For a spacecraft availability is

A(sat) =(∃css, trg ∶ Spacecraft(sat) ∧ CommSubsystem(css) ∧ subsystem(sat, css)∧
CommSubsystem(trg) ∧ target(css, trg) ∧H(sat) ∧ ready(trg))∨
(∃css, flb ∶ Spacecraft(sat) ∧ CommSubsystem(css) ∧ subsystem(sat, css)∧
CommSubsystem(flb) ∧ fallback(css, flb) ∧H(sat) ∧ ready(flb)).

(4.5)

Which is the formalization of the availability for S2 defining that H(S2) and either H(S1)
or H(S3) needs to be operational in order to S2 be available. The result is shown on the
right side of figure 4.2.

4.3 Traversing ROBDD for event probability

At this point we established the semantics for a probabilistic query and combined it with an
effective representation. With this we can create highly expressive probabilistic predicates
however we cannot quantify the results. To do this we need to traverse the ROBDD and
calculate the probability of the root node. This can be done easily with the following
pseudo-code.
P[T,H,V,C](n)

if n = 0 then return 0.0 // bottom of the ROBDD is reached with not satisfying value
if n = 1 then return 1.0 // bottom of the ROBDD is reached with satisfying value
if member(C,n) then return lookup(C,n) // check is the probability is cached
i,t,f ↤ lookup(H,n) // get node definition
p ↤ lookup(V,i) // get the probability of variable i
v ↤ p*P[T,H,V,C](t) + (1-p)*P[T,H,V,C](f) // calculate probability of n
insert(C,n,v) // update cache
return v

Here we augmented the global model with V ∶ i ↦ [0,1] which contains the probability
of variable i being true. Similarly C ∶ u ↦ [0,1] (cache) which is the probability of node
u being satisfied. We also note that in the calculation step we use that the variables are
independent and the rest of the ROBDD does not refer to the current variable.

22

Chapter 5

Syntesis

In this chapter we want to introduce the necessary formalism and methodology for optimiz-
ing architecture synthesis. We expect that such optimization to be theoretically capable
to enforce extra-functional constraints while keeping the soundness and completeness of
the logic solver. In addition to these requirements, we prefer if the synthesis process
maintains the scalability and performance of the solver. To do this we reintroduce the
necessary terminology in this section from [32].

5.1 Partial models for performability analysis

The first step is the extension of partial models to encapsulate extra-functional metrics.
Definition 10 (Partial model with performability objective [32]). A partial
model with performability metric is the P = ⟨Op,Ip, µP ⟩ triple where OP and IP is the
object set and interpretation function of the regular partial model (Definition 4). µP ⊆ R
is an interval that contains the extra-functional value of all consistent models refined
from P .

Definition 11 (Refinement of partial models with performability objective [32]).
Given P = ⟨OP ,IP , µP ⟩ and Q = ⟨OQ,IQ, µQ⟩ partial models, P ≽ Q with respect to the
interval iff ⟨OP ,Ip⟩ ≽ ⟨OQ,IQ⟩ and µQ ⊆ µP .

This interval represents the desired and potentially available value of the extra-functional
metric. The Such extended partial model P is consistent if the regular partial model is
consistent and µP ≠ ∅.
To calculate performability we introduce a view transformation denoted as V that cre-
ates an analysis modes A from a concrete model. Using this analysis model as an in-
put, an analysis tool A can calculate the associated performability metric. At the end
performability = A(V(M)) for M concrete model [32].

5.1.1 Approximations over partial models

The uncertainty in partial models implies that there may be many architectures with
different extra-functional properties thus the reasoning must adapt to this. Due to the
finite number of possible consistent concrete models refinable from the given partial model
(if any) there must be a worst and a best one. We capture this by under- and over-
approximations combined with the extra-functional interval from definition 10.

23

Definition 12 (Conservative approximations [32]). V is the view transformation for
over-approximation and V is for the under-approximation. Such view transformation is
conservative for P partial model if for all consistent concrete model M that is refined from
P the following holds:

A(Vu(P)) ≤ A(V(M)) ≤ A(Vo(P)) (5.1)

Also we expect that the approximations get more precise with refinements meaning that
if P ≽ Q then

A(Vu(P)) ≤ A(Vu(Q)) ≤ A(V(M)) ≤ A(Vo(Q)) ≤ A(Vo(P). (5.2)

We also expect form an approximation that for a concrete model, which is just a special
case for a partial model, the approximation should equal to the real value as

A(Vu(M)) = A(V(M)) = A(Vo(M)). (5.3)

Definition 13 (Extra-functional propagation[32]). In extra-functional propagation
the extra-functional interval µP is modified according to the partial model.

µ′P = µp ∩ [A(Vu(P)),A(Vo(P))] (5.4)

This can be used to incorporate extra-functional consistency. By setting the interval to
[thr,+∞) we can define a threshold that all consistent model must reach. As a result, all
concrete models with insufficient extra-functional metric are excluded from the interval
thus also from the consistent models. If during propagation µP = ∅ then the partial model
is inconsistent due to none of the refinement concrete models can satisfy the threshold.
As a result, such partial model can be pruned without compromising the completeness of
the logic solver.
In theory global optimization can also be done by setting an exclusive threshold to the
extra-functional value of the last consistent concrete model with the previous threshold.
When the state space is completely explored and no consistent model is found then the last
consistent model is a globally optimal one. Note that multiple globally optimal architecture
can exist but they must have the same extra-functional value.

Example 18 (Extra-functional propagation). On figure 2.2 we can see the effect of
extra-functional propagation between P1 and P2 where a new payload is introduced to the
system. As a result, the value of the over-approximation lowers the interval.

5.2 Approximating concretization of partial models

The defined probabilistic predicates are based on concrete models. This manifest in having
the deterministic queries evaluated only to 1 or 0. However, a pseudo-concretization can be
applied. This pseudo-concretization means that whenever a deterministic query is referred
in a probabilistic query it should be forced into 1 or 0. This is obviously context dependent
to which value is should be forced to but this is doable. These approximations will relax
the synthesis problem by ignoring some well-formedness constraints. An approximation
algorithm that can do it without relaxation is likely in possession of the optimal solution
in which case the whole synthesis problem does not make much sense.

24

subsys

payload

subsys

payload

target

fallback

fallback

subsys

target, fallback
target

 fallbacktarget, fallback

subsys

su
bs

ys

subsys

subsys

subsys

subsys

payload

target

fallback

subsys

target
fallback

payload

subsys

target fallback

subsys
payload

targetsu
bs

ys

Under-approximation Partial model Over-approximation

Figure 5.1: Approximating concretization of partial models

Viewing the architecture model as a dependency model some transformations are mono-
tonic in the value of the performability metric. Such over-approximating transformations
[32] are

• (1) adding a new component without dependencies;

• (2) replacing a component with a more reliable one;

• (3) replacing common causes of failure with independent failure causes.

Under-approximation is done on a simpler approach, if it is not certainly there then it is
not there at all. This is equivalent to assuming that it is not operational.

Example 19 (Conservative under-approximation). As stated before, the estimation
algorithm for under-approximation is simply forgetting everything that is not certainly
part of the model. On figure 5.1 there is a partial model at the center and its under-
approximation view on the left.
Here we can see that even though S2 must have a CommSubsystem in a valid model, in
the relaxed under-approximation it does not have thus its availability is severely under-
approximated. Similarly, with C1 the fallback edge is treated as non-existent thus C1 can
only rely on the target. This does not change the reliability of C1 because Cg is always
operational due to being on G.

Example 20 (Conservative over-approximation). Similarly the over-approximation
is shown on figure 5.1. Here the uncertain fallback link from C1 is estimated to go to the
ground which is indifferent in this case. Here the relaxation is that connecting a link to
ground is not always consistent with the well-formedness constraints.
The second approximation is that if a Spacecraft does not have a CommSubsystem with
outgoing link then a new CommSubsystem is introduced with the highest possible reliabil-
ity and direct links to the ground regardless of the current number of CommSubsystems
assigned to the Spacecraft. Such estimation is done with S2 and Ce1.
The third type is to increase the number of payloads in the system. The number of potential
new elements of a type is calculated by the generator based on the current partial model
and scope constraints. In this example we assume that it is one but the approximation
pattern is the same regardless. Here for each potential Payload we add a new Spacecraft
and CommSubsystem of the best available type with direct link to ground. Such architecture
components are Le1, Se1 and Ce2.

25

...

Backtrack Backtrack

(A) (B) (C)

* Continue?

Figure 5.2: Simplified illustration of state-space exploration

5.3 State-space exploration by refinements

In this approach the architecture synthesis is carried out by a series of refinements
[52, 63, 61, 32]. First, a consistent partial model is selected and a refinement step is
applied, meaning that a new node is added or a relation is refined to 1 or 0. After that,
the propagation step is applied where other relations are defined if only one potentially
consistent refinement is available. If during refinement or propagation the well-formedness
constrains are surely violated then the model is eliminated and a backtrack is performed.
Then the extra-functional propagation step is applied to narrow the interval. Similarly, if
the interval is inconsistent then a backtrack is performed. This new partial model is also
analyzed by a state coder to check if an equivalent partial model is already explored and
if so, then eliminates this new partial model due to redundancy.
During backtrack the generator randomly selects an already existing partial model that
has unexplored refinements and the refinements continue from there. If such partial model
does not exist then the state-space is exhaustively explored and the generation process
terminates. Termination is also possible when a consistent model is found, and neither
global optimality is not mandated nor more models are required, then the synthesis is
successful.

Example 21 (Architecture synthesis). On figure 5.2 we illustrate the synthesis pro-
cess. Here from a previous state the generator gets to the (A) state where there is four par-
tial models P1, P2, P3 and P4. From these P3 is selected for refinement and P5 is the newly
refined partial model. However, during refinement or propagation the well-formedness con-
straints are violated thus the partial model is inconsistent and a backtrack is performed from
P5.
This leads to the (B) state where the new partial model to refine is P4. Here we say that
two partial models are created. It turns out that P6 cannot satisfy the extra-functional
constraint and thus eliminated from further exploration. P7 can be further refined but let’s
say that at some point a backtrack is performed and the new selected partial model is P2.
From P2 the consistent concrete model M1 is refined. Here the generator can terminate if
sufficient number of consistent models are found or it can continue. If the generator con-

26

tinues and the goal is to find the globally optimal model then the extra-functional intervals
are updated to exclude models not better than the new one and a backtrack is performed.

5.4 Optimizing synthesis by logic solvers

There are two potential approaches when synthesizing architecture models with logic
solvers. Such approaches are post-filtering and optimizing searches [32]. In a post-filtering
approach, the extra-functional metric is evaluated when a consistent concrete architecture
model is synthesized. Based on this the model is either kept or discarded based on whether
is satisfied the extra-functional requirements. The main advantages include that

• (A) only a small amount of extra-functional requirement analysis is needed thus
complex, time consuming methods are acceptable;

• (B) the internal formalism of the generator is irrelevant and

• (C) only consistent models are analyzed.

The downside is that proving the global optimality of a candidate architecture is either
done manually afterward which can be time consuming or all architectures must be syn-
thesized which is even more time consuming.
The other approach, the optimizing searches, uses intermediate states to approximate the
value of extra-functional properties and reason over them. The potential advantages are

• (A) state-space reduction by cutting extra-functionally surely unsatisfiable branches;

• (B) providing formal proof for optimality when the synthesis is complete and

• (C) providing formal proof for unsatisfiability.

The downside is that likely many intermediate approximations are needed thus adding a
potentially huge extra time requirements and extra-functional formalization is needed in
the internal language.

27

Chapter 6

Evaluation

To evaluate the applicability of the presented graph query-based performability formal-
ization approach we carried out a series of measurements. The focus of our measurements
is the performance of the presented approach in various potential contexts. This also
serves as the next iteration of the earlier measurements in [32] where the logic solvers
(post-filtering and model transformation-based) were compared to genetic algorithms.

RQ1. How does the query-based evaluation compares to a model-transformation based
evaluation for concrete models?

RQ2. How does the query-based approach compares to a model-transformation based ap-
proach using incremental evaluation on concrete models?

RQ3. How does the query-based approach compares to a post-filtering and model-
transformation based approach?

RQ4. How do various exploration steps contribute to exploration time when generating
near-optimal system architecture candidates of increasing size?

6.1 Measurements setup

6.1.1 Case studies

The domain we use for the case studies were introduced in [39]. For evaluation we utilize
two case versions of the introduced case study. In the original case study (we refer to
it as SAT) the mission architecture does not include redundancy. Which manifests in
that a CommSubsystem can only have one outgoing link, namely the target. In the second
version (SATFB) we introduced redundancy with the fallback link thus allowing a more
complex system architecture. Using additional well-formedness constraints we enforce link
separation by forcing to go to different CommSubsystems on different Spacecrafts.
We also include the component costs to use a cost constraint in addition to the size
limitation. The cost of a SmallSat is $2,900K, a Cube6U costs $650K and a Cube3U costs
$150K. Furthermore, every CommSubsystem costs $100K and every Spacecraft must be
equipped with at least one. At last, a Payload included in the constellation costs an
additional $50K. We must not that the original case study in [39] uses a non-linear cost
constraint, meaning that each additional component of the same type costs less than the
previous, is linearized by using the maximal cost of a component.

28

We classify models into three groups by the number of components and mission architec-
ture cost. All category must contain at least 8 components as this is the minimal size of a
consistent solution. Small models are considered to contain less than 10 components with
the total cost up to $5M. Medium models contains up to 20 components with a total cost
of maximum $9M. Large models contains up to 30 components and costs at most $15M.
These cost limits are based on the architecture costs presented in [39].

6.1.2 Compared approaches for concrete models

In RQ1 and RQ2 we want to investigate the applicability of query-based evaluation as in
a manual system design process. As a baseline we utilize our earlier measurements using
model transformation, which is a well-established methodology [41], and an academic
analysis tool [1].
For this we run the VIATRA generator [70] 40 times for each scope and case study to
generate random inputs for the evaluation resulting in at least 28 models for each category.
During evaluation we run both methods and assert the extra-functional results to ensure
that equivalent verification algorithms were implemented.
In this setup, for RQ1 we compare the performance of the query-based approach with
the model-transformation based approach when evaluated on a concrete model. This
measurement emphasizes the scalability of the underlying verification method such as
Binary Decision Diagrams and Continuous Time Markov Chains.
For RQ2, we take an incremental approach were from an empty model the input model
is created by adding one component or relation in each step. The intention with this is to
simulate model building done by an architecture designer. After each step, the resulting
model is evaluated by both approaches. This measurement is to analyze the usability of
the methods in an incremental environment.

6.1.3 Measurements for applicability in a logic solver

As a baseline we use a post-filtering and a model transformation based approach using
PRISM-Nailgun from [32]. In the earlier measurements the post-filtering approach was
the most effective in all category. The PRISM based approach utilizes approximations
thus it serves as a valuable baseline for assisted architecture synthesis.
In the post-filtering approach whenever the generator finds a consistent model it evaluates
its extra-functional characteristics and logs. Then it continues the generation as if nothing
has happened. In the model transformation based approach the partial models are ap-
proximated with PRISM after each step. In the query based approach the performability
model is maintained through the query engine and the approximations are extracted from
the queries.
For all measurements using the logic solver we limited the available time to 20 minutes
similarly to [47, 60, 12, 61, 65] and repeated the measurements 30 times [72].

6.1.4 Execution environment

Each measurement was executed with 6 CPU cores and a 32 GiB memory limit. The graph
generator and the PRISM 4.6 analysis tool ran on openjdk 11.0.11. Between each run, in
the same measurement category, 30 seconds were allocated for the java garbage collector.

29

SAT
Small

SAT
Medium

SAT
Large

SATFB
Small

SATFB
Medium

SATFB
Large

0

250

500

750

1000

1250

1500

tim
e

[m
s]

Figure 6.1: Evaluation of concrete model is one step

6.2 RQ1: Performance of concrete model evaluation

The results of the associated measurements are shown on figure 6.1. The blue bars rep-
resent the required time to analyze the input model using graph queries and the orange
bars are the time required by the model-transformation based approach using PRISM.
For small models the Binary Decision Diagrams were significantly worse than the external
solver. A potential explanation for that is at this scale the models are very simple thus
the required analysis model is also simple and so the PRISM model is easy to solve. On
the other hand, the query-based implementation likely suffers from an extra overhead for
the first evaluation. We will address this phenomenon in RQ2.
For medium models the graph query based method show little increase in the required
time for both case studies which is indicative of good scaling both for size and complexity.
However the external solver explodes with the SATFB case study while in case of the
SAT version it increases moderately compared to the small cases. A potential reason is
that the analysis models are significantly more complex with the redundancy and thus the
analysis problem is much harder.
For large models the external solver require significantly more time than for small or
medium models. The difference between the complexity of the case studies is still highly
affect the runtime but the proportional difference decreases between the medium and large
sizes. The query-based evaluation also requires more time but the total increase in runtime
is much smaller.

RQ1: For small and simple models PRISM performs better but with increasing size and
complexity graph queries with Binary Decision Diagrams perform significantly better.

6.3 RQ2: Performance of incremental evaluation

The measurement results are depicted on figure 6.2. Each column shows a size category
from small (left) to large (right). The first row is the SAT and the bottom is the SATFB
case study. On this diagram the teal lines depict the individual analysis time for each step
for the PRISM analysis tool and the blue line it the total runtime of PRISM. Similarly,
the orange line if the time required by the query-based evaluation method and the red line
is the total time.

30

2 4 6 8 10
Step

0

100

200

300
tim

e
[m

s]

Small

0 5 10 15 20 25
Step

0

200

400

600

800

Medium

0 10 20 30
Step

0

5000

10000

15000

Large

2.5 5.0 7.5 10.0 12.5 15.0
Step

0

100

200

300

400

500

tim
e

[m
s]

0 5 10 15 20 25 30
Step

0

200

400

600

800

0 10 20 30 40
Step

0

5000

10000

15000

Figure 6.2: Runtime of graph query (ROBDD) and model transformation (PRISM)
based evaluation methods

There are two notable phenomena on the diagrams. The first is that the query-based
algorithm with Binary Decision Diagrams takes less time for every evaluation except the
first one. Such behavior is indicative of an initialization step either by the query engine
or the BDD library. However, this extra time is already taken back by the 10th step.
The second thing is that the PRISM analysis tool explodes around 25 to 30 steps in an
exponential manner. This can be interpreted as a severe warning to reevaluate whether
such tool is really necessary.

RQ2: The graph-query based approach significantly outperform the model-
transformation based one in an incremental use-case.

6.4 RQ3: Performance of logic solver

The performability of the models encountered during exploration are shown on figure 6.3.
The thin lines represent the best performability value encountered at the given time for a
single run. The markers highlight changes in the best performability. The thick lines and
markers are the median of the best encountered performability at the given time. The red
color is associated with the post-filtering approach, blue with the model transformation
based one and green is for the graph query-based approach.
For small models the new graph query based approach significantly under perform in case
of the SAT case study and moderately in case of the SATFB case.
For medium models the graph query based approach performs similarly to the model
transformation based approach but both is by some measure dominated by the post-
filtering approach.
For large models both assisted synthesis method mostly fail to produce a result while
the post-filtering approach performs well. However the query based approach reaches
many times more consistent models compared to the very occasional findings of the model
transformation based one.

31

0 5 10 15 20

0.01385

0.01386

0.01387

0.01388

pe
rfo

rm
ab

ilit
y

Small

0 5 10 15 20

0.014

0.016

0.018

0.020

Medium

0 5 10 15 200.01

0.02

0.03

0.04

0.05

Medium

0 5 10 15 20
time [min]

0.0135

0.0136

0.0137

0.0138

0.0139

pe
rfo

rm
ab

ilit
y

0 5 10 15 20
time [min]

0.014

0.016

0.018

0.020

0 5 10 15 20
time [min]

0.02

0.03

0.04

0.05

0.06

Figure 6.3: Comparison of performability metrics (on small, medium and large models)
for Post-filtering, Prism and model transformation and Graph queries with
BDD

Post
small

Post
medium

Post
large

Prism
small

Prism
medium

Prism
large

Graph
small

Graph
medium

Graph
large

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

tim
e

[m
in

]

SAT

Post
small

Post
medium

Post
large

Prism
small

Prism
medium

Prism
large

Graph
small

Graph
medium

Graph
large

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

tim
e

[m
in

]

SAT+FB

Figure 6.4: Runtime analysis of internal phases (for Post-filtering, Prism based
model transformation and Graph queries)

RQ3: With the current implementation the graph query-based approach is unable to
beat the post filtering but performs significantly better than the model transformation-
based approach.

6.5 RQ4: Runtime analysis

Figure 6.4 shows the mean runtime of various exploration steps. The left diagram contains
the data of the SAT case study and the right contains the data from the SATFB. In each
diagram the left 3 column shown the runtimes for the post-filtering approach, the center
3 column for the model transformation-based approach and the right 3 columns for the
graph query-based approach.
For small models the graph query based approach performs better than the PRISM solver.
Furthermore, it has little overhead compared to the post-filtering approach.
For medium models the query based approach requires more time but the increment is
insignificant compared to the external solver.

32

For large models the query based approach starts to struggle with complexity but does
not exclusively dominate whole design space exploration.

RQ4: The query-based approach shows significant improvements compared to the ear-
lier solver extension but for complex models still foreshadow scalability issues.

6.6 Threats to validity

Internal threats are that the query engine may reevaluate matching queries even when
it is not required due to the implementation. This can have a negative effect on the
overall performance of the synthesis tool. Furthermore we opted to not use caching when
calculating the event probability due to initial measurements of the cache algorithm which
likely improved the performance of the synthesis for small and medium models but may
have negative effects for large models.
External threats is that the approaches were evaluated on the same domain and use
only one baseline solution. This is mitigated by (1) using an external domain and case
study for our measurements; (2) using two variations of the original case study with high
conceptual difference and (3) an evolutionary approach already failed to provide results
with identical measurement configuration.

33

Chapter 7

Related works

7.1 Model Transformation

Model transformations methods are used to generate a new model from an existing model
in a different representation format. The main categories are model-to-model and model-
to-text transformation [25]. Model-to-model transformations can be used to transform
an input model to one or more output model [41]. These transformations can be either
declarative where the transformation is defined by relations between source and target
model elements but the exact way of transformation is not specified. Imperative model
transformation is when the focus is on when and how the input model should be trans-
formed and the element relations are not the source of the transformation rule. Graph
based transformations uses graph transformation rules that describe when a transforma-
tion can be applied and what should the output should be. In this case both the input and
the output model use some form of a graph representation. Hybrid approaches attempt
to mix the positive properties of the earlier types and mitigate some of the limitations. A
rule based model-to-mode transformation tool is the Henshin [66].
Model-to-text transformations are used for code generation or model serialization. Such
code generators are (not exclusively) the Xtend [2] and Acceleo [16]. This can be used to
generate analysis models from existing model like in [7].

7.2 Stochastic analysis methods

The use of stochastic methods in verification of availability, reliability, performance and
other metrics are widespread.
In Markov chains [45] states and transitions are used to model the behavior of the system.
Such Markov model consists of a finite or countably infinite set of states and transitions
between these states. There are Discrete and Continuous time variations where the tran-
sitions occur according to a probability or transition rate respectively.
Another well-established formalism is the Generalized Stochastic Petri Nets [50, 13, 49, 55,
24]. This method uses a bipartite graph as the underlying formalism where nodes in one
partition represents system states and the other partition contains the transitions. States
in the model contain tokens and transitions can add or remove tokens from states. In the
stochastic version such transitions fire with a specified probability.

34

Although our model transformation-based measurements use the Continuous Time Markov
Chains as the underlying formalism it is possible to use other formalism too.

7.3 Design Space Exploration

We have mentioned but barely explained the meta-heuristic design space exploration
approaches. These approaches rely on approaches like simulated annealing [26], tabu
search [37], or evolutionary algorithms like NSGA-II [27] and eMOEA [28]. These algo-
rithms usually support multi-objective optimizations meaning that many extra-functional
objectives can be considered but they lack completeness guarantees or proof for global
optimality [44, 43].
Some approaches use some form of a genotype vector to represent the architecture and
perform the mutations on this vector. This method introduces explicit points of variability.
Such point of variability is for example number of redundant components or function
allocations. These approaches however are limited by using a fixed length genotype thus
cannot handle varying number of components. A short list of example tools for such
approaches are ArcheOpteryx [6], PerOpteryx [20], EvoChecker [33] and Rodes [22].
Other approaches use graph representation and transformations [4]. Some approaches
like MOMoT [31] or MDEOptimiser [18] rely on the Henshin model transformation lan-
guage [66] to mutate the graph representation and thus explore the design space. A
limitation for these approaches is that the well-formedness constraints are hard to enforce.
Such constraints can be either relaxed to optimization parameters thus a solution may
violate them or encoded in the transformation rules to a limited degree [19].

7.4 Application of Decision Diagrams

Decision diagrams are widely used in architecture verification, logic synthesis and fault
simulation [7]. In such cases the main benefit of using this method generally provide a
manageable way to evaluate a variety of Boolean function related questions and operations
like equivalence test of two Boolean functions, satisfiability of a Boolean function, synthesis
from two existing function, universal and existential quantification [29].
In reliability evaluation one of the potential questions is under which conditions the system
will fail or what is the smallest number of concurrent failures that results in a system
failure. This is practically the enumeration of cut sets of a fault tree. In [48] Reduced
Ordered Binary Decision Diagrams were applied to benchmark networks calculated the
reliability within reasonable time.

35

Chapter 8

Conclusion and future works

In this work we addressed a severe scalability issue of logic solvers when optimizing ar-
chitectures by utilizing a more efficient method with support for incremental evaluation.
In the problem we included hard functional and extra-functional constraints alongside
an optimization objective. We presented a theory on how to formalize extra-functional
requirements combining stochastic methods with logic predicates. Then we introduced a
prototype implementation and systematically analyzed the applicability of our approach
from simple model evaluation to inclusion in an automated architecture synthesis tool.
We compared its performance to alternatives approaches for the same problem.
Our conclusion is that this approach shows promising applicability for inclusion in per-
formability reasoning. We conclude that stochastic predicates with Binary Decision Dia-
gram as internal representation is applicable for formalizing extra-functional requirements
on complex domains. Furthermore, such approach is practical in incremental environ-
ments.
Future works may include automated generation of the approximations from the prob-
lem specification. Additional optimization is also possible by introducing caching for
performability values and addressing limitations in the implementation to improve the
overall performance.

36

Acknowledgements

Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary, financed under
the 2019-1.3.1-KK funding scheme.

37

Bibliography

[1] Prism Model Checker. URL https://www.prismmodelchecker.org/.

[2] Xtend - Modernized Java. URL https://www.eclipse.org/xtend/.

[3] Hani Abdeen, Dániel Varró, Houari Sahraoui, András Szabolcs Nagy, Csaba De-
breceni, Ábel Hegedüs, and Ákos Horváth. Multi-objective optimization in rule-based
design space exploration. In ASE, pages 289–300. ACM, 2014.

[4] Aditya Agrawal, Tihamer Levendovszky, Jon Sprinkle, Feng Shi, and Gabor Karsai.
Generative programming via graph transformations in the model-driven architecture.
In Workshop on Generative Techniques in the Context of Model Driven Architecture,
OOPSLA, 2002.

[5] Airlines electronic engineering committee (AEEC). Avionics application software
standard interface - ARINC specification 653 - part 1 (supplement 2 - required ser-
vices), 2006.

[6] Aldeida Aleti, Stefan Björnander, Lars Grunske, and Indika Meedeniya. Archeopterix:
An extendable tool for architecture optimization of AADL models. In MOMPES,
pages 61–71. IEEE, 2009.

[7] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. Uml2alloy:
A challenging model transformation. In International Conference on Model Driven
Engineering Languages and Systems, pages 436–450. Springer, 2007.

[8] Henrik Reif Andersen. An introduction to binary decision diagrams. Lecture notes,
available online, IT University of Copenhagen, page 5, 1997.

[9] Davide Arcelli, Vittorio Cortellessa, Mattia D’Emidio, and Daniele Di Pompeo. EAS-
IER: An evolutionary approach for multi-objective software architecture refactoring.
In ISCA, pages 105–114. IEEE, 2018.

[10] AUTOSAR Consortium. Autosar model constraints. URL https://www.
autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TR_
AutosarModelConstraints.pdf.

[11] AUTOSAR Consortium. The AUTOSAR standard, 2013. URL https://www.
autosar.org/.

[12] Aren A. Babikian, Oszkár Semeráth, Chuning Li, Kristóf Marussy, and Dániel Varró.
Automated generation of consistent, diverse and structurally realistic graph models.
Softw. Syst. Model., 2021.

[13] Simona Bernardi, Susanna Donatelli, and Giovanna Dondossola. Towards a method-
ological approach to specification and analysis of dependable automation systems.
pages 36–51. Springer, 2004.

38

https://www.prismmodelchecker.org/
https://www.eclipse.org/xtend/
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TR_AutosarModelConstraints.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TR_AutosarModelConstraints.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TR_AutosarModelConstraints.pdf
https://www.autosar.org/
https://www.autosar.org/

[14] Nikolaj S. Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - an optimizing SMT
solver. In TACAS, volume 9035 of LNCS, pages 194–199. Springer, 2015.

[15] Marco Bozzano and Adolfo Villafiorita. Design and safety assessment of critical
systems. CRC press, 2010.

[16] Cédric Brun and Alfonso Pierantonio. Model differences in the eclipse modeling
framework. UPGRADE, The European Journal for the Informatics Professional, 9
(2):29–34, 2008.

[17] RE Bryant. ªgraph-based algorithms for boolean function manipulation. º IEEE
Trans. Computers, 35(8):677–691, 1986.

[18] Alexandru Burdusel, Steffen Zschaler, and Daniel Strüber. MDEoptimiser: A search
based model engineering tool. In MODELS, pages 12–16. ACM, 2018.

[19] Alexandru Burdusel, Steffen Zschaler, and Stefan John. Automatic generation of
atomic multiplicity-preserving search operators for search-based model engineering.
Softw. Syst. Model., 20(6):1857–1887, 2021.

[20] Axel Busch, Dominik Fuchss, and Anne Koziolek. PerOpteryx: Automated im-
provement of software architectures. In ICSA, pages 162–165. IEEE, 2019. DOI:
10.1109/ICSA-C.2019.00036.

[21] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: a tool for the formal
verification of UML/OCL models using constraint programming. In ASE, pages 547–
548. ACM, 2007.

[22] Radu Calinescu, Milan Ceska, Simos Gerasimou, Marta Kwiatkowska, and
Nicola Paoletti. RODES: A robust-design synthesis tool for probabilistic sys-
tems. In QEST, volume 10503 of LNCS, pages 304–308. Springer, 2017. DOI:
10.1007/978-3-319-66335-7_20.

[23] Milan Ceska, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen. Shepherd-
ing hordes of markov chains. In Tomás Vojnar and Lijun Zhang, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part II, volume 11428 of Lecture Notes in Computer Science,
pages 172–190. Springer, 2019. DOI: 10.1007/978-3-030-17465-1_10. URL
https://doi.org/10.1007/978-3-030-17465-1_10.

[24] Vittorio Cortellessa, Romina Eramo, and Michele Tucci. From software architecture
to analysis models and back: Model-driven refactoring aimed at availability improve-
ment. Inf. Softw. Technol., 127:106362, 2020.

[25] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture, volume 45, pages 1–17. USA, 2003.

[26] Robert I. Davis and Alan Burns. Response time upper bounds for fixed priority
real-time systems. In RTSS, pages 407–418. IEEE, 2008.

[27] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–
197, 2002.

39

http://dx.doi.org/10.1109/ICSA-C.2019.00036
http://dx.doi.org/10.1007/978-3-319-66335-7_20
http://dx.doi.org/10.1007/978-3-030-17465-1_10
https://doi.org/10.1007/978-3-030-17465-1_10

[28] Kaylanmoy Deb, Manikanth Mohan, and Shikhar Mishra. A fast multi-objective evo-
lutionary algorithm for finding well-spread Pareto-optimal solutions. Technical Re-
port 20032002, IIT Kanpur, 2003. URL https://www.egr.msu.edu/~kdeb/papers/
k2003002.pdf.

[29] Rolf Drechsler and Detlef Sieling. Binary decision diagrams in theory and practice.
International Journal on Software Tools for Technology Transfer, 3(2):112–136, 2001.

[30] Johannes Eder and Sebastian Voss. Usable design space exploration in autofocus3. In
OSS4MDE@MODELS, volume 1835 of CEUR Workshop Proceedings, pages 51–58.
CEUR-WS.org, 2016. URL http://ceur-ws.org/Vol-1835/paper08.pdf.

[31] Martin Fleck, Javier Troya, and Manuel Wimmer. Search-based model transforma-
tions with MOMoT. In ICMT@STAF, volume 9765 of LNCS, pages 79–87. Springer,
2016.

[32] Máté Földiák, Kristóf Marussy, Dániel Varró, and István Majzik. System archi-
tecture synthesis for performability by logic solvers. In Proceedings of the 25th
International Conference on Model Driven Engineering Languages and Systems,
MODELS ’22, page 43–54, New York, NY, USA, 2022. Association for Comput-
ing Machinery. ISBN 9781450394666. DOI: 10.1145/3550355.3552448. URL
https://doi.org/10.1145/3550355.3552448.

[33] Simos Gerasimou, Giordano Tamburrelli, and Radu Calinescu. Search-based synthesis
of probabilistic models for quality-of-service software engineering. In ASE. IEEE,
2015.

[34] Sinem Getir, Lars Grunske, André van Hoorn, Timo Kehrer, Yannic Noller, and
Matthias Tichy. Supporting semi-automatic co-evolution of architecture and fault
tree models. J. Syst. Softw., 142:115–135, 2018.

[35] Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias Kuntz, and
Matthias Volk. Model-based safety analysis for vehicle guidance systems. In SAFE-
COMP, pages 3–19. Springer, 2017.

[36] Stephen Gilmore and Jane Hillston. The PEPA workbench: A tool to support a
process algebra-based approach to performance modelling. In Günter Haring and
Gabriele Kotsis, editors, Computer Performance Evaluation, Modeling Techniques
and Tools, 7th Int. Conf., Vienna, Austria, May 3-6, 1994, Proceedings, volume 794
of LNCS, pages 353–368. Springer, 1994.

[37] Fred W. Glover, Manuel Laguna, and Rafael Martí. Principles and strategies of tabu
search. In Handbook of Approximation Algorithms and Metaheuristics, Second Edi-
tion, Volume 1: Methologies and Traditional Applications, pages 361–377. Chapman
and Hall/CRC, 2018.

[38] László Gönczy, Zsolt Déri, and Dániel Varró. Model transformations for performa-
bility analysis of service configurations. In Michel R. V. Chaudron, editor, Models in
Software Engineering, Workshops and Symposia at MODELS 2008, Toulouse, France,
September 28 - October 3, 2008. Reports and Revised Selected Papers, volume 5421
of LNCS, pages 153–166. Springer, 2008.

[39] Sebastian I. J. Herzig, Sanda Mandutianu, Hongman Kim, Sonia Hernandez, and
Travis Imken. Model-transformation-based computational design synthesis for mis-
sion architecture optimization. In IEEE Aerospace Conf. IEEE, 2017.

40

https://www.egr.msu.edu/~kdeb/papers/k2003002.pdf
https://www.egr.msu.edu/~kdeb/papers/k2003002.pdf
http://ceur-ws.org/Vol-1835/paper08.pdf
http://dx.doi.org/10.1145/3550355.3552448
https://doi.org/10.1145/3550355.3552448

[40] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

[41] Nafiseh Kahani, Mojtaba Bagherzadeh, James R Cordy, Juergen Dingel, and Daniel
Varró. Survey and classification of model transformation tools. Software & Systems
Modeling, 18(4):2361–2397, 2019.

[42] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective design
space exploration. In Monterey Workshop, pages 33–54. Springer, 2010.

[43] Aleksandr A Kerzhner, Michel D Ingham, Mohammed O Khan, Jaime Ramirez, Javier
De Luis, Jeremy Hollman, Steven Arestie, and David Sternberg. Architecting cellu-
larized space systems using model-based design exploration. In AIAA SPACE 2013
Conference and Exposition, page 5371, 2013.

[44] Joshua D. Knowles and David Corne. Approximating the nondominated front using
the pareto archived evolution strategy. Evol. Comput., 8(2):149–172, 2000.

[45] Heiko Koziolek and Franz Brosch. Parameter dependencies for component reliability
specifications. Elec. Note. Theor. Comput. Sci., 253:23–38, 2009.

[46] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive validation of OCL
models by integrating SAT solving into USE. In TOOLS, volume 6705 of LNCS,
pages 290–306, 2011.

[47] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik.
Symbolic optimization with SMT solvers. In POPL, pages 607–618. ACM, 2014.

[48] Hung-Yau Lin, Sy-Yen Kuo, and Fu-Min Yeh. Minimal cutset enumeration and
network reliability evaluation by recursive merge and bdd. In Proceedings of the Eighth
IEEE Symposium on Computers and Communications. ISCC 2003, pages 1341–1346.
IEEE, 2003.

[49] Juan Pablo López-Grao, José Merseguer, and Javier Campos. From UML activity
diagrams to stochastic Petri nets: application to software performance engineering.
In WOSP, pages 25–36. ACM, 2004.

[50] István Majzik, András Pataricza, and Andrea Bondavalli. Stochastic dependability
analysis of system architecture based on UML models. In Architecting Dependable
Systems, pages 219–244. Springer, 2002.

[51] Anne Martens, Heiko Koziolek, Steffen Becker, and Ralf Reussner. Automatically
improve software architecture models for performance, reliability, and cost using evo-
lutionary algorithms. In Proc. 1st Joint WOSP/SIPEW Int. Conf. Perf. Eng., pages
105–116. ACM, 2010.

[52] Kristóf Marussy, Oszkár Semeráth, and Dániel Varró. Automated generation of con-
sistent graph models with multiplicity reasoning. IEEE Trans. Softw. Eng., 48:1610–
1629, 2022.

[53] D.M. Miller and R. Drechsler. Negation and duality in reduced ordered binary decision
diagrams. In 1997 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-1997,
volume 2, pages 692–696 vol.2, 1997. DOI: 10.1109/PACRIM.1997.620354.

41

http://dx.doi.org/10.1109/PACRIM.1997.620354

[54] Michael K. Molloy. Performance analysis using stochastic petri nets. IEEE Transac-
tions on computers, 31(09):913–917, 1982.

[55] Moulaye Ndiaye, Jean-François Pétin, Jean-Philippe Georges, and Jacques Camerini.
Practical use of coloured Petri nets for the design and performance assessment of
distributed automation architectures. In PNSE, pages 113–131. CEUR-WS, 2016.
URL http://ceur-ws.org/Vol-1591/paper10.pdf.

[56] James L Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252, 1977.

[57] Antoine Rauzy. Mathematical foundations of minimal cutsets. IEEE Transactions
on Reliability, 50(4):389–396, 2001.

[58] Arend Rensink. Isomorphism checking in GROOVE. Electron. Commun. Eur. Assoc.
Softw. Sci. Technol., 1, 2006.

[59] Thomas W Reps, Mooly Sagiv, and Reinhard Wilhelm. Static program analysis via
3-valued logic. In CAV, pages 15–30, 2004.

[60] Sven Schneider, Leen Lambers, and Fernando Orejas. Symbolic model generation for
graph properties. In FASE, volume 10202 of LNCS, pages 226–243. Springer, 2017.

[61] Oszkár Semeráth, András Szabolcs Nagy, and Dániel Varró. A graph solver for the
automated generation of consistent domain-specific models. Gothenburg, Sweden,
2018 2018. ACM, ACM.

[62] Oszkár Semeráth, Aren A Babikian, Sebastian Pilarski, and Dániel Varró. Viatra
solver: a framework for the automated generation of consistent domain-specific mod-
els. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 43–46. IEEE, 2019.

[63] Oszkár Semeráth, Aren A. Babikian, Anqi Li, Kristóf Marussy, and Dániel Varró.
Automated generation of consistent models with structural and attribute constraints.
In Eugene Syriani, Houari A. Sahraoui, Juan de Lara, and Silvia Abrahão, editors,
MoDELS ’20: ACM/IEEE 23rd International Conference on Model Driven Engi-
neering Languages and Systems, Virtual Event, Canada, 18-23 October, 2020, pages
187–199. ACM, 2020. DOI: 10.1145/3365438.3410962. URL https://doi.org/
10.1145/3365438.3410962.

[64] Jaroslaw Skaruz, Artur Niewiadomski, and Wojciech Penczek. Evolutionary algo-
rithms for abstract planning. In PPAM, volume 8384 of LNTCS, pages 392–401.
Springer, 2013.

[65] Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand. Practical constraint
solving for generating system test data. ACM Trans. Softw. Eng. Methodol., 29(2):
11:1–11:48, 2020.

[66] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer,
Manuel Ohrndorf, and Matthias Tichy. Henshin: A usability-focused framework for
EMF model transformation development. In ICGT@STAF, volume 10373 of LNCS,
pages 196–208. Springer, 2017.

[67] Mirco Tribastone and Stephen Gilmore. Automatic translation of UML sequence
diagrams into PEPA models. In Fifth Int. Conf. on the Quantitative Evaluaiton of
Systems (QEST 2008), 14-17 September 2008, Saint-Malo, France, pages 205–214.
IEEE Computer Society, 2008.

42

http://ceur-ws.org/Vol-1591/paper10.pdf
http://dx.doi.org/10.1145/3365438.3410962
https://doi.org/10.1145/3365438.3410962
https://doi.org/10.1145/3365438.3410962

[68] Kishor S. Trivedi, Gianfranco Ciardo, Manish Malhotra, and Robin A. Sahner. De-
pendability and performability analysis. In SIGMETRICS, volume 729 of LNCS,
pages 587–612. Springer, 1993.

[69] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó, István
Ráth, Zoltán Szatmári, and Dániel Varró. EMF-IncQuery: An integrated develop-
ment environment for live model queries. Sci. Comput. Program., 98(1):80–99, 2015.

[70] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and
Zoltán Ujhelyi. Road to a reactive and incremental model transformation platform:
three generations of the viatra framework. Software & Systems Modeling, 15(3):609–
629, 2016.

[71] Liudong Xing and Suprasad V Amari. Fault tree analysis. Handbook of performability
engineering, pages 595–620, 2008.

[72] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results. Evol. Comput., 8(2):173–195, 2000. DOI:
10.1162/106365600568202.

43

http://dx.doi.org/10.1162/106365600568202

	Kivonat
	Abstract
	Introduction
	System architecture design
	Aims of this work

	Background
	Requirements and meta-model
	Functional requirements and well formedness constraints
	Extra-functional requirements
	Meta-model

	Modeling and partial modeling
	Concrete models
	Partial models
	Refinements of partial models

	Graph queries on concrete and partial models
	Reliability analysis and fault trees
	Fault trees

	Decision diagrams
	Efficient handling of Reduced Ordered Binary Decision Diagrams

	Overview
	Architecture of the stochastic graph query evaluation
	Architecture synthesis for performability
	Soundness and completeness
	Architecture synthesis options for logic solvers

	Performability analysis with graph queries
	Probabilistic predicates
	Efficient representation of probabilistic predicates
	Binary decision trees
	Decision diagrams and reduced ordered decision diagrams
	Probabilistic predicate evaluation with ROBDD

	Traversing ROBDD for event probability

	Syntesis
	Partial models for performability analysis
	Approximations over partial models

	Approximating concretization of partial models
	State-space exploration by refinements
	Optimizing synthesis by logic solvers

	Evaluation
	Measurements setup
	Case studies
	Compared approaches for concrete models
	Measurements for applicability in a logic solver
	Execution environment

	RQ1: Performance of concrete model evaluation
	RQ2: Performance of incremental evaluation
	RQ3: Performance of logic solver
	RQ4: Runtime analysis
	Threats to validity

	Related works
	Model Transformation
	Stochastic analysis methods
	Design Space Exploration
	Application of Decision Diagrams

	Conclusion and future works
	Acknowledgements
	Bibliography

