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Kivonat

A mély tanulási módszerek komoly áttörést hoztak a beszédfelismerés, a gépi fordítás
és a képfeldolgozás területén. Más alkalmazási területeken azonban nem rácsokon, hanem
gráfokon mintavételezett jelekkel kell dolgoznunk. Jelenleg egyre nagyobb érdeklődés övezi
a gráfokkal dolgozó mélytanuló algoritmusokat, ezek ugyanis lehetővé teszik a valóságban
előforduló komplex hálózatok modellezését.

Jelen dolgozatban csúcsok osztályozásával és élek előrejelzésével kapcsolatos problémák
megoldását mutatom be. Ehhez egy variációs autoenkódert használok különféle gráf kon-
volúciós rétegekkel, köztük egy újszerű, a Lánczos-algoritmus alapján tervezett spektrális
réteggel. Az egyes feladatokat saját érdeklődésemnek megfelelően, a bioinformatika nyi-
tott kihívásai közül választottam.

Az első feladatban a csúcsok osztályozását és élek előrejelzését nagyméretű gráfokon valósí-
tom meg. Ebben az esetben a batch-enként történő tanítás elkerülhetetlen, de az össze-
függő adatszerkezet miatt nemtriviális módszert igényel. A problémát a Cluster-GCN-hez
hasonló módon, véletlen részgráfok képzésével oldom meg.

A második feladatban gén ontológiák osztályozását hajtom végre a STRING adatbázis
fehérje-fehérje kölcsönhatási hálózatai alapján. A kísérletileg mért hálózatok egy multi-
gráfot alkotnak, ami a gráf konvolúció egy idáig feltérképezetlen alkalmazási területe.
Megmutatom, hogy az autoenkóder eredményesen rekonstruálja a multigráfot, a rejtett
változók alapján pedig azonosíthatók a gén ontológiák.

Végül, a harmadik feladatban, betegség-gén kölcsönhatások előrejelzését kísérlem meg a
DisGeNet tudásbázis alapján. Feltételezem, hogy az autoenkóder által rekonstruált, de
az eredeti adathalmazban nem szereplő élek valójában újonnan felfedezett betegség-gén
kapcsolatok. A feltételezést szakirodalmi bizonyítékkal próbálom alátámasztani.

A kiértékelés igazolja, hogy a gráf konvolúció alkalmazásával sikeresen elvégezhetjük a
legfontosabb, gráfokkal kapcsolatos modellezési feladatokat, a tervezett architektúrával
pedig state-of-the-art eredmények érhetők el.

i



Abstract

Deep learning has achieved great progress in speech recognition, machine translation and
image processing. In other applications, however, we often have to work with signals
defined on graphs rather than grids. Recently there has been a lot of interest in try-
ing to apply deep learning to graph-based data, as models of this kind can capture the
interactions between components in real-world networks.

In this work, I propose a method that addresses the task of node classification and link
prediction on graphs. I use a variational autoencoder with different graph convolutional
layers, including a novel layer design based on the Lanczos algorithm. I chose the particular
tasks from the open challenges in bioinformatics.

First I solve the problem of node classification and link prediction on large graphs. In
this case, training in batches is inevitable, but requires a non-trivial method due to the
connected data structure. I manage to cut the graphs into random batches inspired by
Cluster-GCN.

Next I perform gene ontology classification based on the protein-protein interaction net-
works of STRING. Here the measured networks form a multigraph, a scenario not yet
explored from the perspective of graph convolutions. I demonstrate that the autoencoder
not only reconstructs the multigraph, but the latent variables are powerful predictors of
gene ontologies.

Finally, I attempt to predict disease-gene interactions based on the DisGeNet knowledge
platform. I hypothesise that links not present in the original dataset but reconstructed by
the autoencoder are newly discovered connections between diseases and genes. I also look
for evidence in the literature to reinforce my hypothesis.

The evaluation confirms that by applying graph convolutions, we can accomplish the most
important graph-related modeling tasks, and the proposed architecture is able to provide
state-of-the-art results.

ii



Chapter 1

Introduction

1.1 Graph convolutional neural networks

In the past decade, the success of neural networks has advanced the research on ma-
chine learning and data science. Deep learning paradigms revolutionized many important
tasks that once heavily relied on human feature engineering, including speech recognition,
machine translation and image processing. Two particularly relevant examples are con-
volutional neural networks and autoencoders [1]. The revolution is also attributed to the
growing computational power of modern GPUs and the availability of vast databases. Neu-
ral networks has proven to be exceptional in capturing the hidden patterns of Euclidean
data, i.e. signals that was sampled on regular grids like speech, text and images.

Many applications would require the same success to be repeated for graph based data
[2]. A trivial example would be an E-commerce system, where vertices represent users
and products, and edges represent the ”user buys product” relation between them. Two
prototypical tasks are node classification and link prediction. In our example, node classi-
fication would help us to collect information about users, and link prediction would help us
to recommend products the user has not purchased yet. However the complexity of graph
based data poses several challenges to the deep learning community. As graphs are highly
irregular, generalizing the basic operations like convolutions (or even translations) is not
a straightforward line of thought. A core assumption in deep learning is the independence
and identical distribution (iid) of data points. This assumption obviously does not hold
for graphs as datapoints (vertices) can be connected to each other.

The centerpiece of my work is the generalization of convolution and filters to graph based
data. Starting from spectral graph theory, I build up the mathematical foundations re-
quired to implement graph filters, using [3] as a primary reference. Once the different
graph filters are implemented, using them in graph convolutional layers is almost trivial.
Since autoencoders are suitable for both node classification and link prediction 1 even in

1In applied graph theory, vertices and edges are commonly called nodes and links, respectively. In this
work, I use these terms as synonyms as well.
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unsupervised scenarios, I propose a variational autoencoder [4] [5] with alternating fully
connected (FC) and graph convolutional (GC) layers. Node classification is basically a
downstream task that I delegate to classifiers after the latent variables are determined.
Link prediction is based on the comparison between the original graph and the one recon-
structed by the autoencoder.

The first difficulty I encountered was the scalability issue of neural networks operating on
large graphs. If data points were independent, training in batches could keep the majority
of data out of memory, but that is irrelevant in our case. A number of methods have been
suggested to resolve this issue, yet none of them was adapted to autoencoders. I adapted
the method of Cluster-GCN [6] to my architecture, where equally sized subgraphs are
formed by the METIS algorithm [7]. Accordingly, this work is a pioneer to report link
prediction results on large graphs like the Reddit and the PPI datasets [8].

1.2 Applications in bioinformatics

Network biology is the most common paradigm today to represent, interpret and visualize
biological data [9]. It is applicable from the molecular level to the medical practice, and
even led to new biological discoveries [10]. Combined with deep learning techniques, it
allows us to discover drugs, classify gene ontologies and predict disease-gene interactions
without conducting expensive wet lab experiments. I perform gene ontology classification
and disease-gene interaction prediction to demonstrate the capabilities of the proposed
graph convolutional variational autoencoder (GC-VAE).

Gene ontology classification is a node classification problem, where vertices represent pro-
teins and edges represent the molecular interactions between them. Gene ontologies cover
three domains: cellular component, molecular function and biological process; all of them
contain several attributes of the protein [11]. I downloaded the underlying graph from the
STRING database [12]. It was derived from multiple measurement methods, meaning that
multiple edges may connect the same vertices. This is the first time a graph convolutional
neural network is employed in a multigraph scenario. I was able to achieve comparable re-
sults to the ones reported in [13] and [14], but GC-VAE requires only a fraction of memory
to train.

Disease-gene interaction prediction is a link prediction problem, where vertices represent
diseases and genes, and edges represent the ”genetic mutation causes disease” relation
between them. I downloaded the underlying graph from the DisGeNet knowledge platform
[15]. Considering that the graph is bipartite, this problem is equivalent to a recommender
system at its core. GC-VAE is significantly ahead of current state-of-the-art reported in
[16]. In conclusion, I emphasize that interactions not present in the original dataset but
reconstructed by the autoencoder are possibly newly discovered relations between diseases
and genes.

2



Chapter 2

Background

2.1 Spectral graph theory

Spectral graph theory is a topic in modern graph theory that deals with the spectral
properties of the graph Laplacian matrix. It yields an analogy for harmonic analysis
of graph signals, introducing essential concepts like graph convolution and graph filters.
Therefore, this section provides a brief overview about the mathematical background of
my work. For detailed information, I recommend the book Spectral Graph Theory by
Chung and Graham [17].

2.1.1 Definitions

Notations. Let G = (V, E) be a simple undirected graph, where V is the set of vertices
and E is the set of edges. N = |V| denotes the cardinality of V. Vectors are noted with
bold lower case letters, and matrices are noted with bold upper case letters. Furthermore,
I is the identity matrix, δij is the Kronecker delta and δi is the i-th orthogonal unit vector.

Adjacency matrix. The adjacency matrix A ∈ RN×N of a graph is a matrix whose
element Aij is equal to the weight of the edge pointing from vertex i to vertex j, with
Aij = 0 meaning there is no edge between vertices i and j.

Degree matrix. The degree matrix D is determined by A: D = diag
(∑

j Aij

)
.

Graph Laplacian. The graph Laplacian L = D−A is the centerpiece of spectral graph
theory. It is the discretized version of the continuous Laplacian ∆ 1 which admits the
squared frequencies k2 as eigenvalues and the Fourier modes e−ikx as eigenfunctions. A
complete theory of harmonic analysis, vector calculus and PDEs is associated with the
graph Laplacian in analogy with the continuous case.

1It also generalizes the discrete Laplacian used in digital signal processing.
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Normalized graph Laplacian. In neural networks, it is more appropiate to use the
normalized graph Laplacian whose entries are constrained to the interval [0, 1]:

Ln = D−1/2LD−1/2 = I −D−1/2AD−1/2 (2.1)

Graph signal. A graph signal is a vector x ∈ RN whose component xi is associated with
vertex i.

2.1.2 Graph Fourier transform

The graph Laplacian admits a spectral decomposition

L = ΦΛΦT (2.2)

where Λ is a matrix whose i-th diagonal is the i-th eigenvalue λi, and Φ is a matrix
whose i-th column is the i-th eigenvector ϕi. Since L is a symmetric matrix, both Λ and
Φ are real matrices, and Φ is orthogonal as well. The Graph Fourier Tranform (GFT)
transforms a graph signal from the vertex domain to the spectral domain:

FGx = x̂ = ΦTx (2.3)

GFT is invertible:
Φx̂ = ΦΦT︸ ︷︷ ︸

I

x = x (2.4)

Basically GFT and its inverse are change-of-basis transformations, switching between the
canonical basis and the basis formed by the eigenvectors of the graph Laplacian.

2.1.3 Graph frequencies

Now we can justify the interpretation of λi as the squared frequencies and ϕi as the
Fourier modes. Frequency measures how fast a signal changes along an arbitrary path
in the graph. We express that by the quadratic variation over edges, also known as the
Dirichlet form:

xTLx =
1

2

∑
(i,j)∈E

Aij (xi − xj)
2 ≥ 0 (2.5)

Substituting an eigenvector ϕk yields

ϕT
kLϕk =

1

2

∑
(i,j)∈E

Aij

(
ϕki − ϕkj

)2
= ϕT

k λkϕk = λk ≥ 0 (2.6)

The faster a Fourier mode ϕk changes, the larger its associated frequency
√
λk is. Con-

sequently, a general signal that changes rapidly along an arbitrary path must have high-
frequency components.

4



Now we derive the lower and upper bound of the spectrum (even though the lower bound
was already implied by the Dirichlet form). Let λk be an eigenvalue of the Laplacian and
ϕk be the associated eigenvector. For any vertex i the following identity holds:

λkϕki = Diiϕki −
∑

(i,j)∈E

ϕkj (2.7)

Fixing vertex i specifically as the one where |ϕki| is maximal results

|Dii − λk|ϕki| ≤
∑

(i,j)∈E

ϕkj ≤Dii|ϕki| → |Dii − λk| ≤Dii (2.8)

Therefore
0 ≤ λk ≤ 2Dii (2.9)

Figure 2.1: Illustration of a simple denoising experiment. A graph signal loaded with
additive Gaussian noise is convolved with a Tikhonov filter in the spectral domain.

2.1.4 Graph filters

Any function g : R≥0 → R, λ→ g(λ) defines a graph filter G:

G =
∑
i

ϕig(λi)ϕ
T
i = Φg(Λ)ΦT := g(L) (2.10)

5



We call g(λ) the frequency response of the filter. In the spectral domain, convolution is
still a multiplication between the filter g(Λ) and the signal x̂:

ŷi = g(Λii)x̂i (2.11)

In the vertex domain, we can interpret convolution as an operation that computes the
weighted sum of signal components over each neighborhood in the graph, the same way
classical convolution works (but it is usually defined through translations which is hard to
interpret for graphs).

2.2 Implementation of graph filters

The naive implementation consists of first diagonalizing L to acquire Λ and Φ, then
computing the filter matrix G = Φg(Λ)ΦT , and finally filtering the graph signal: y = Gx.
The time complexity of this algorithm is O(N3) due to the diagonalization, and the space
complexity is O(N2) as Φ is a dense matrix in general. These costs are restrictive for a
graph with more than a few thousands of vertices. In this section, I explore the possibilities
to implement graph filters in an efficient manner [3].

2.2.1 Smoothing filters

Smoothing filters were first used by Kipf and Welling in [18], and since then it has been the
most popular filtering technique in neural networks. We add a semi-loop to each vertex in
the graph: Ā = A + I, D̄ = diag

(∑
j Āij

)
and L̄ = D̄ − Ā. The symmetric Laplacian

smoothing [19] of a graph signal x is then defined as:

g(L̄)x = (1− γ)x+ γD̄
− 1

2 ĀD̄
− 1

2x = (I − γD̄
− 1

2 L̄D̄
− 1

2 )x (2.12)

where γ is a parameter which controls the weighting between the value on the current
vertex and the values on its neighbors. We can simplify this expression by fixing γ = 1:

g(L̄)x = (I − D̄
− 1

2 L̄D̄
− 1

2 )x = D̄
− 1

2 ĀD̄
− 1

2x (2.13)

This is exactly the graph filtering scheme Kipf and Welling suggested. It computes the
filtered signal as the weighted average of itself and its neighbors’. If we apply the smoothing
filter multiple times (like stacking multiple layers in a neural network), vertices in the same
cluster will tend to have similar values, which eases several graph-related tasks like node
classification and link prediction. Multiple applications are in fact required to reach higher
order neighbors, but after a few convolutions the signal may become too smoothed over the
graph [20]. The time complexity of one filtering operation is proportional to the number
of edges, i.e. O(|E|).

6



2.2.2 Polynomial filters

In general, we can approximate the filter g(λ) with a suitable K-order polynomial:

g(L)x = Φg(Λ)ΦTx ≃ Φ

(
K∑
k=0

gkΛ
k

)
ΦTx =

K∑
k=0

gkLkx (2.14)

Polynomial filters are also known as finite impulse response (FIR) filters, which realize the
moving average (MA) filtering of a signal.

Using Legendre polynomials has an edge over using general ones, as they form an ortho-
gonal basis in L2 over the interval [−1, 1]:∫ 1

−1
Pk(λ)Pl(λ)dλ =

2

2k + 1
δkl (2.15)

This property implies that every function g ∈ L2 ([−1, 1]) expands into a convergent
Legendre series

g(λ) =
∞∑
k=0

gkPk(λ) (2.16)

with the Legendre coefficients

gk =
2k + 1

2

∫ 1

−1
Pk(λ)g(λ)dλ (2.17)

In neural networks, orthogonality can facilitate the optimization of the gk coefficients. Our
filter is evaluated over the interval [λmin, λmax], so we must map the eigenvalues to the
interval [−1, 1] using the transformation

L̂ =
2

λmax − λmin
L− I (2.18)

Since λmin = 0, we only estimate λmax, for instance via power iteration. To compute the
Legendre polynomials of the Laplacian, we can use Bonnet’s recursion formula:

P0(L̂) = I, P1(L̂) = L̂, Pk(L̂) =
2k − 1

k
L̂Pk−1(L̂)− k − 1

k
Pk−2(L̂) (2.19)

We truncate the infinite sum in Equation 2.16 at a finite order K as in Equation 2.14.
Since K-order polynomials are localized to K-order neighbors in the vertex domain, they
cannot approximate sharp changes (e.g. bandpass filters) in the spectral domain due to the
uncertainty principle. Increasing K may improve the accuracy, but decrases the sparsity
of LK . This is not at all stressed in the literature, but leads to serious complexity issues
as real-world graphs typically have a small diameter. As soon as K reaches the diameter,
LK describes a fully-connected graph, equally demanding in memory complexity as the
naive implementation.

7



2.2.3 Distributed ARMA filters

We can obtain a more accurate approximation via a rational design:

g(L)x = Φg(Λ)ΦTx ≃ Φ

(
I +

L∑
l=0

plΛ
l

)−1

ΦTΦ︸ ︷︷ ︸
I

(
K∑
k=0

qkΛ
k

)
ΦTx =

(
I +

L∑
l=0

plLl

)−1( K∑
k=0

qkLk

)
x

(2.20)

Rational filters are also known as infinite impulse response (IIR) filters, which realize the
auto-regressive moving average (ARMA) filtering of a signal.

ARMA filters are more versatile at approximating various shapes of filters, especially ones
with sharp changes in the frequency response. Still, traditional rational filters are not
straightforward to use in neural networks. As the qk coefficients follow an unknown path
during optimization, they can acquire poles arbitrarily close to the eigenvalues. In this
case, there is no guarantee that the matrix inversion is stably calculated.

Figure 2.2: Applying a bandpass filter with poles at λ = 2 and λ = 4. The convolution
product diverges as the underlying graph has an eigenvalue at λ = 2.

The distributed ARMA filtering scheme elaborated in [21] completely circumvents matrix
inversion. Their first point is that any ARMAK filter can be expanded into a sum of
ARMA1 filters through partial fraction decomposition:

g(λ) =
K∑
k=1

rk
1− λ− pk

(2.21)

The parameters pk and rk are the poles and the residues of the poles, respectively. Their
second point is that the frequency response of an ARMA1 filter can be recovered by the
Personalized PageRank algorithm [22]. It propagates information on the graph by per-
forming a random walk with restarts, iterating until convergence the first order recursion

8



x(t+1) =
1

p
Px(t) − r

p
x(0) (2.22)

where P = D− 1
2AD− 1

2 = I−Ln is the probability matrix with eigenvalues 1−λi and x(0)

is an arbitrary graph signal. Expanding the recursion allows us to analyze its behavior in
the limit:

x(∞) = lim
t→∞

(
1

p
P
)t

x(0) − r

p

t∑
τ=0

(
1

p
P
)τ

x(0) (2.23)

The first term converges to zero as t → ∞ for |p| < 1 because the eigenvalues of P
are within the interval [−1, 1], exhibiting a special case of Equation 2.9 (Dii = 1). The
second term represents a geometric series that converges to the matrix r(P− pI)−1 with
eigenvalues

g(λ) =
r

1− λ− p
(2.24)

This is exactly the frequency response of an ARMA1 filter. One recursive update has
the time complexity of O(|E|), and in practice, only a few recursive updates are required.
We obtain the ARMAK filter by connecting in parallel K ARMA1 filters. The resulting
filtering operation is

g(L)x =

K∑
k=1

rk(P− pkI)
−1x (2.25)

Since the parallel ARMA1 filters work separately from each other, the computation of an
ARMAK filter can be distributed across multiple processing units.

2.2.4 Lanczos filters

Given the graph Laplacian L ∈ RN×N and a graph signal x ∈ RN , the Lanczos algo-
rithm computes an orthonormal basis V K ∈ RN×K of the Krylov subspace KK(L,x) =

span{x,Lx, ...,LxK}. It also produces scalars that can be arranged into a tridiagonal
matrix HK ∈ RK×K , satisfying

HK = V T
KLV K =



α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βK

βK αK


(2.26)
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Algorithm 1: Lanczos algorithm
Input: symmetric matrix L ∈ RN×N , nonzero vector x ∈ RN , K ∈ N
Output: V K = [v1, ...,vK ] with orthonormal columns, scalars α1, ..., αK ∈ R

and β2, ...βK ∈ R
1 v1 ← x/||x||2
2 for i = 1, ..., K do
3 αi = vT

i Lvi

4 v̂i+1 = Lvi − αivi

5 if i > 1 then
6 v̂i+1 ← v̂i+1 − βj−1vi−1

7 end
8 βi = ||v̂i+1||2
9 vi+1 = v̂i+1/βi

10 end

We can approximate the filter as

g(L)x = V KV T
K︸ ︷︷ ︸

I

g(L)V KV T
K︸ ︷︷ ︸

I

x ≃ V Kg(HK)V T
Kx = V Kg(HK)δ1||x||2 (2.27)

where the last equality follows from the orthonormality of Lanczos vectors. The time
complexity of the Lanczos algorithm is O(K|E|). Typically K ≪ N , rendering the di-
agonalization of g(HK) negligible. Lanczos filters are special in the sense that they can
adapt to the underlying spectrum of L, a phenomenon well-understood for Krylov sub-
space approximations [23]. If the eigenvalues are not regularly spaced, this method still
yields accurate approximations.

2.3 Variational autoencoders

Kingma and Welling successfully combined latent variable models and deep learning [4].
The resulting framework, known as a variational autoencoder (VAE), provides a compu-
tationally efficient way for optimizing latent variable models jointly with a corresponding
inference model using stochastic gradient descent. This framework has found many ap-
plications, ranging from representation learning and generative modeling to graph-related
tasks. Kipf and Welling were the first to address link prediction on graphs by exploiting
the power of VAEs and smoothing filters [5]. In this section, I give a concise introduction
to variational autoencoders. For detailed information, I recommend the review paper by
Kingma and Welling [24].
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2.3.1 Introduction

Suppose we have a dataset that consists of independent, identically distributed (iid) sam-
ples of a variable x. We assume that this observed variable x is generated by a latent
variable z in some random process. This random process occurs in two steps: (1) it
generates a latent sample coming from the prior distribution pθ(z) (2) the latent sample
generates an observed sample coming from the likelihood distribution pθ(x|z).

In representation learning, we are interested in the posterior distribution pθ(z|x), while
in generative modeling, we are interested in mimicing the random process. According to
Bayes’ theorem:

pθ(z|x) =
pθ(z)pθ(x|z)

pθ(x)
(2.28)

where pθ(x) is the likelihood of the data, also called the model evidence. The denominator
can be computed by marginalizing out the latent variable from the numerator:

pθ(x) =

∫
z
pθ(z)pθ(x|z)dz (2.29)

Even for moderately complicated functions, this integral is intractable, thus so is the
posterior distribution pθ(z|x).

2.3.2 Approximate posterior

The encoder part of the VAE is the inference model qϕ(z|x). It is a neural network
with parameters ϕ optimized such that qϕ(z|x) ≈ pθ(z|x), i.e. the inference model
approximates the intractable posterior. In the case of normal distribution with a diagonal
covariance matrix:

µ, logσ = EncoderNeuralNetworkϕ(x)

qϕ(z|x) = N (z;µ,diag(σ2))
(2.30)

2.3.3 Evidence lower bound

The optimization objective of the VAE is the evidence lower bound. For an inference
model qϕ(z|x), the log-likelihood of the data can be expressed as

log pθ(x) = Eqϕ(z|x)[log pθ(x)]

= Eqϕ(z|x)

[
log pθ(x|z)pθ(z)

pθ(z|x)

]
= Eqϕ(z|x)

[
log pθ(x|z)pθ(z)

qϕ(z|x)
qϕ(z|x)
pθ(z|x)

]
= Eqϕ(z|x)

[
log pθ(x|z)pθ(z)

qϕ(z|x)

]
︸ ︷︷ ︸

=Lθ,ϕ(x)

+Eqϕ(z|x)

[
log qϕ(z|x)

pθ(z|x)

]
︸ ︷︷ ︸
=DKL(qϕ(z|x)||pθ(z|x))

(2.31)
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Here the second term is the Kullback-Leibler (KL) divergence between qϕ(z|x) and
pθ(z|x), and the first term is called the evidence lower bound (ELBO). Since the KL
divergence is non-negative, the ELBO is indeed a lower bound on the log-likelihood:

Lθ,ϕ(x) = log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) ≤ log pθ(x) (2.32)

Maximizing the ELBO with respect to the parameters ϕ and θ concurrently optimizes
the inference model and the generative model:
(1) it minimizes the KL divergence which, by definition, measures the difference between
the reference distribution and its approximation;
(2) it maximizes the log-likelihood of the data.

Figure 2.3: A variational autoencoder learns stochastic mappings between the observed
variables xi, whose distribution is typically complicated, and the latent variables zi, whose
distribution can be relatively simple. The encoder approximates the intractable posterior
pθ(z|x).
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2.3.4 Optimization of the ELBO

In a dataset of iid samples, the ELBO objective is the sum over individual-datapoint
ELBOs. The individual-datapoint ELBO Lθ,ϕ(x) is intractable, thus so is its gradient
∇θ,ϕLθ,ϕ(x). However, we can still perform stochastic gradient descent (SGD) with good
unbiased estimators.

Obtaining unbiased estimators w.r.t the generative model parameters θ is straightforward:

∇θLθ,ϕ(x) = ∇θEqϕ(z|x) [log(pθ(x|z)pθ(z))− log(qϕ(z|x))]

= Eqϕ(z|x) [∇θ(log(pθ(x|z)pθ(z))− log(qϕ(z|x)))]

≃ ∇θ(log(pθ(x|z)pθ(z))− log(qϕ(z|x)))

= ∇θ log(pθ(x|z)pθ(z))

= ∇θ log(pθ(x|z)) +∇θ log(pθ(z))

(2.33)

In the last three lines, z is a random sample from qϕ(z|x), a simple Monte Carlo estimator
of the expected value.

Obtaining unbiased estimators w.r.t. the inference model parameters ϕ is more challeng-
ing, because the ELBO’s expectation is parameterized by qϕ(z|x), that itself is a function
of ϕ:

∇ϕLθ,ϕ(x) = ∇ϕEqϕ(z|x) [log(pθ(x|z)pθ(z))− log(qϕ(z|x))]

̸= Eqϕ(z|x) [∇ϕ(log(pθ(x|z)pθ(z))− log(qϕ(z|x)))]
(2.34)

2.3.5 Reparameterization trick

Since gradients of the random variable z cannot be computed, the randomness in z is
externalized by reparameterizing z as a deterministic function of ϕ, x, and a noise sample
ϵ. Expectations are then parameterized by the distribution of ϵ, so the ELBO becomes

Lθ,ϕ(x) = Eqϕ(z|x) [log(pθ(x|z)pθ(z))− log(qϕ(z|x))]

= Ep(ϵ) [log(pθ(x|z)pθ(z))− log(qϕ(z|x))]
(2.35)

Following the derivation of Equation 2.33:

∇ϕLθ,ϕ(x) = ∇ϕEp(ϵ) [log(pθ(x|z)pθ(z))− log(qϕ(z|x))]

= Ep(ϵ) [∇ϕ(log(pθ(x|z)pθ(z))− log(qϕ(z|x)))]

≃ ∇ϕ(log(pθ(x|z)pθ(z))− log(qϕ(z|x)))

= −∇ϕ log(qϕ(z|x))

(2.36)

In the last two lines, the sample z is dependent on a noise sample ϵ from p(ϵ). Now the
series of operations resulting the ELBO can be expressed as a computational graph which
gradients can flow through w.r.t. ϕ and θ. This algorithm is commonly referred to as
Auto-Encoding Variational Bayes (AEVB).
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Algorithm 2: The Auto-Encoding Variational Bayes algorithm
Input: D dataset
Output: ϕ,θ learned parameters

1 ϕ,θ ← initialize parameters
2 while SGD not converged do
3 M∼ D (random batch of data)
4 ϵ ∼ p(ϵ) (random noise for every datapoint in M)
5 Compute Lϕ,θ(M, ϵ) and its gradients ∇ϕ,θLϕ,θ(M, ϵ)

6 Update ϕ,θ using SGD optimizer
7 end

2.3.6 Factorized Gaussian posteriors

The ELBO requires the computation of the log posterior:

log(qϕ(z|x)) = log p(ϵ)− log
∣∣∣∣det

(
∂z

∂ϵ

)∣∣∣∣ (2.37)

where the second term is the logarithm of the Jacobian determinant of the transformation
from ϵ to z. The most common choice is a factorized Gaussian encoder with a diagonal
covariance matrix:

µ, logσ = NeuralNetworkϕ(x)

qϕ(z|x) = N (z;µ,diag(σ2)) =
∏
i

N (zi;µi,σ
2
i ) =

∏
i

qϕ(zi|x) (2.38)

N (zi;µi,σ
2
i ) is the PDF of the univariate Gaussian. After reparameterization:

ϵ ∼ N (0, I)

µ, logσ = EncoderNeuralNetworkϕ(x)

z = µ+ σ ⊙ ϵ

(2.39)

where ⊙ denotes the element-wise product between the standard deviation and the noise
sample. The Jacobian matrix of the transformation from ϵ to z is

∂z

∂ϵ
= diag(σ) (2.40)

The determinant of a diagonal matrix is the product of its diagonal terms:∣∣∣∣det
(
∂z

∂ϵ

)∣∣∣∣ =∏
i

σi (2.41)
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Therefore the log-posterior is

log(qϕ(z|x)) = log
∏
i

N (ϵi; 0, 1)− log
∏
i

σi =
∑
i

logN (ϵi; 0, 1)− logσi (2.42)

Algorithm 3: Unbiased estimation of individual-datapoint ELBO for VAE with a
factorized Gaussian inference model and a factorized Bernoulli generative model.

Input: D dataset, ϕ,θ parameters
Output: L: unbiased estimator of individual-datapoint ELBO Lθ,ϕ(x)

1 µ, logσ ← EncoderNeuralNetworkϕ(x)

2 ϵ ∼ N (0, I)

3 z ← µ+ σ ⊙ ϵ

4 p← DecoderNeuralNetworkθ(z)

5 Llog(qϕ(z|x)) ← −
1
2

∑
i ϵ

2
i + log(2π) + logσ2

i

6 Llog(pθ(z)) ← −
1
2

∑
i z

2
i + log(2π)

7 Llog(pθ(x|z)) ←
∑

i xi logpi + (1− xi) log(1− pi)

8 Ltotal = Llog(qϕ(z|x)) + Llog(pθ(z)) − Llog(pθ(x|z))
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Chapter 3

Batch Learning on Large Graphs

3.1 The proposed architecture

The proposed architecture is similar to the one used for link prediction by Kipf and
Welling [5]. However I further enhanced it by feature encoding-decoding [25], more flexible
convolutional filters [3] and a batch creation algorithm to avoid the scalability issues [6].
The input data consists of two matrices: the node adjacency vectors in the form of an
adjacency matrix A ∈ RN×N , and the node feature vectors in the form of a feature matrix
X ∈ RN×D. Possibly a subgraph of the original graph is fed into the VAE, such that
the number of nodes is M ≪ N . The inference model maps the nodes to points in a
low-dimensional vector space by stacking two graph convolutional layers. The generative
model reconstructs both the adjacency and feature information, using a bilinear and a fully
connected layer, respectively. In this section, I give detailed information on each phase
of the encoding-decoding scheme, the loss adjustments that supplement the optimization
process, the different convolutional filters I tested, and the batch creation algorithm.

3.1.1 Encoder

The encoder part maps the nodes to points in a low-dimensional vector space. It computes
µ ∈ RN×F and σ ∈ RN×F , which parameterize the probability distribution of the F -
dimensional stochastic embeddings Zi for each node i:

Zi|A,X ∼ N (µi,diag(σ2
i )) (3.1)

The individual stochastic embeddings are considered independent, thus the posterior is a
factorized Gaussian:

q(Z|A,X) =
N∏
i=1

q(Zi|A,X) (3.2)
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µ and σ are obtained by stacking two graph convolutional (GC) layers:

µ(enc) = GC(ReLU(GC(X,A,ϕ0)),A,ϕ1,µ)

logσ(enc) = GC(ReLU(GC(X,A,ϕ0)),A,ϕ1,σ)
(3.3)

Here ReLU is the rectified linear unit, a nonlinear function applied element-wise:

ReLU(x) = max(0, x) (3.4)

In the first layer, the weights ϕ0 are shared between the parameters, while in the second
layer, the weights ϕ1 are parameter-specific. The exact formula used for the different GC
layers is discussed later.

A and X both determine a posterior with µ
(enc)
A , σ(enc)

A and µ
(enc)
X , σ(enc)

X respectively.
These parameters are inferred by two independent encoder, and the posteriors are mixed
element-wise by the following rules:

µ(enc) =
1

2
µ
(enc)
A +

1

2
µ
(enc)
X

σ(enc) =

√(
1

2
σ
(enc)
A

)2

+

(
1

2
σ
(enc)
X

)2 (3.5)

In some datasets A and X are not equally powerful predictors. Considering that case, an
uneven weighting between the posteriors may help to achieve better results, but that is
left for future work.

3.1.2 Decoder

The decoder part reconstructs both the adjacency and feature information:

p(A,X|Z) = p(A|Z)p(X|Z) (3.6)

The adjacency matrix A can be modelled as a set of independent Bernoulli variables,
whose parameters stem from a bilinear layer:

p(A|Z) =
N∏

i,j=1

γ
Aij

ij (1− γ)(1−Aij) (3.7)

Aij |Z ∼ Bernoulli(γij) (3.8)

γ = sigmoid(ZTθAZ) (3.9)
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The feature matrix X should be modelled with respect to the properties of the data.
For the datasets I experimented with, features are best modeled as independent normally
distributed variables (just like the stochastic embeddings), whose parameters stem from
two fully connected (FC) layers:

p(X|Z) =
N∏
i=1

p(Xi|Z) (3.10)

Xi|Z ∼ N (µi,diag(σ2
i )) (3.11)

µ(dec) = Zθµ,X

logσ(dec) = Zθσ,X

(3.12)

Figure 3.1: Block diagram of the proposed architecture. The adjacency matrix and the
feature matrix both determine a posterior whose parameters are inferred by two independent
encoders. The decoder part reconstructs both adjacency and feature information.

3.1.3 Loss function

VAEs are optimized by maximizing the evidence lower bound:

Ltotal = Llog(qϕ(Z|A,X)) + Llog(pθ(Z)) − Llog(pθ(A,X|Z)) (3.13)

The first term is the log-posterior loss:

Llog(qϕ(Z|A,X)) = −
1

2

N∑
i=1

F∑
j=1

ϵ2ij + log(2π) + logσ2
ij (3.14)
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The second term is the log-prior loss:

Llog(pθ(Z)) = −
1

2

N∑
i=1

F∑
j=1

Z2
ij + log(2π) (3.15)

The third term is the log-likelihood loss that can be factorized into an adjacency specific
term and a feature specific term:

Llog(pθ(A|Z)) =

N∑
i=1

N∑
j=1

[
Aij logγij + (1−Aij) log(1− γij)

]
(3.16)

Llog(pθ(X|Z)) = −
1

2

N∑
i=1

D∑
j=1

(
Xij − µij

σij

)2

+ log(2π) + logσ2
ij (3.17)

According to Kipf and Welling [5], the adjacency specific loss requires a few adjustments.
Since real-world graphs tend to have very sparse adjacency matrices, the ratio of positive
samples (edges) to negative samples (non-edges) is negligible. To avoid near-zero edge
reconstruction probability, false negatives Aij and false positives 1−Aij should contribute
equally to the adjacency loss:

L̂log(pθ(A|Z)) =
N∑
i=1

N∑
j=1

1

2

[
Aij

d
log(γij) +

1−Aij

1− d
log(1− γij)

]
(3.18)

where d =
∑

ij Aij

N2 denotes the density of the adjacency matrix.

3.1.4 Graph convolutional layers

Graph convolutional layers operate in two steps. The first step is a linear transformation
W that maps the input matrix X ∈ RN×I to the output matrix X ′ ∈ RN×O:

X ′ = XW (3.19)

The second step is the actual graph filtering that maps the input matrix X ′ ∈ RN×O to
the output matrix Y ∈ RN×O:

Y = GC(X ′) (3.20)

Graph filters are applied channel-wise, therefore they preserve the dimension of the under-
lying vector space. All the generic graph filters discussed in Chapter 2 has a fixed number
of (possibly) channel-specific parameters that are optimized through Ltotal. This is a novel
view on graph convolutional layers. Compared to the ones in the literature [26][27][28], it
results simpler operations with less parameters involved, i.e. these novel layers are easier
to implement and less prone to overfit the data.
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Filter Formula Parameters Degrees
smoothing D̄

− 1
2 ĀD̄

− 1
2X - -

polynomial
K∑
k=0

gkPk(L̂)X polynomial coefficients gk K

ARMA
K∑
k=1

lim
t→T

[
1
pk
PX(t) − rk

pk
X(0)

]
poles pk, residues rk T, K

Lanczos V Kg(HK)V T
KX

an arbitrary function g,
applied as g(HK)

K

Table 3.1: The different graph filters I tested. See Chapter 2 for the details.

3.1.5 Batch creation

In a batch creation process, nodes are partitioned into disjoint sets of approximately equal
cardinality: V = [V1, ...,VC ] where Vc denotes the c-th set of nodes. The corresponding
subgraphs are

Ḡ = [G1, ...,GC ] = [(V1, E1), ..., (VC , EC)] (3.21)

where Ec only consists of the edges between nodes in Vc. Nodes can be re-indexed arbi-
trarily, thus the adjacency matrix can also be partitioned into C2 submatrices:

A = Ā+∆ =


A11 . . . A1C

... . . . ...
AC1 . . . ACC

 =


A11 . . . 0

... . . . ...
0 . . . ACC

+


0 . . . A1C

... . . . ...
AC1 . . . 0

 (3.22)

Ā is the adjacency matrix of Ḡ, and ∆ consists of the off-diagonal blocks of A. Now the
individual matrices can be fed into a neural network with graph convolutional layers to
compute the loss on each subgraph Acc. Rather than randomly partitioning the graph,
it is beneficial to use graph clustering algorithms, which are conditioned to keep as many
edges in Ḡ as possible. As a result, the original adjacency matrix A can be replaced by its
block-diagonal approximation Ḡ. In all my experiments, I use METIS [29], an easy-to-use,
computationally efficient serial graph partitioning library.

There are two potential issues related to graph clustering. First, graph clustering algo-
rithms tend to group similar nodes together, such that the distribution of a batch could
be different from the distribution of the original dataset (leading to biased estimators).
Second, some edges are inherently removed, so some edges are inevitably excluded from
the link prediction process. To address these issues, the authors of Cluster-GCN [6] pro-
posed a stochastic multiple clustering approach. I adopted this approach to the variational
autoencoder in my experiments. I partition the graph using METIS into C clusters in a
preprocessing step. Then, instead of considering one cluster as a batch, I randomly choose
M clusters without replacement and form a subgraph that includes both the within-cluster
and the between-cluster edges. Hence different nodes are incorporated in a batch and there
are no inherently removed edges.
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Algorithm 4: Graph VAE enhanced by stochastic multiple clustering.
Input: adjacency matrix A, feature matrix X

Output: ϕ, θ learned parameters
1 ϕ,θ ← initialize parameters
2 Partition graph nodes into C clusters [V1, ...,VC ] by METIS
3 while Adam not converged do
4 Randomly choose M clusters [c1, ..., cM ] without replacement
5 Form the subgraph Ḡ with nodes [Vc1 , ...,VcM ] that includes both the

within-cluster and between-cluster edges
6 ϵ ∼ N (0, I)

7 Compute Lϕ,θ(Ā, X̄, ϵ) and its gradients ∇ϕ,θLϕ,θ(Ā, X̄, ϵ) on subgraph Ḡ
8 Update ϕ,θ using Adam optimizer
9 end

3.2 Experiments

GraphSAGE [8] was the first inductive representation learning method that scales for
large graphs. The authors composed two datasets, Reddit and PPI, which I use in my
experiments to demonstrate the capabilities of the proposed architecture (referenced as
GC-VAE). In this section, I show that GC-VAE is suitable for node classification and link
prediction, the two most fundamental tasks in graph based deep learning. Node classifi-
cation is basically a downstream task that I delegate to random forest classifiers that fit a
model on the mean of the posterior and the nodel labels. I compare the node classification
results of GC-VAE to GraphSAGE [8] and the current state-of-the-art Cluster-GCN [6].
Link prediction is based on the comparison between the original adjacency matrix and the
reconstructed one based on the mean of the posterior. As far as I know, this work is a
pioneer to report link prediction results on large graphs like Reddit and PPI using a neural
network. I also examine how different graph convolutional layers perform (summarized in
Table 3.1).

3.2.1 Datasets

Reddit is a network of communities based on people’s interests. The authors of Graph-
SAGE constructed a large graph where nodes are Reddit posts commited in September,
2014. If the same user commented on two posts, a link is drawn between them. Node la-
bels correspond to communities (also called the subreddit) that the post belongs to. Node
features are GloVe CommonCrawl word vectors [30]; for each post, the following vectors
are concatenated: (i) the average node embedding of the post title, (ii) the average em-
bedding of all the post’s comments, (iii) the post’s score, (iv) the number of comments
committed on the post.
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Protein-protein interactions (PPIs) are the cornerstone of all biological processes. In the
PPI network, nodes are human proteins, and if a physical contact with molecular docking
occurs between two proteins, a link is drawn between them. Node labels correspond
to the cellular functions of the protein. One protein may have many cellular functions,
implying a multi-label classification task. Node features are gene sets, motif gene sets and
immunological signatures, collected from the Molecular Signatures Database [31].

Dataset #Nodes #Links #Labels #Features
Reddit 232,965 11,606,919 41 602

PPI 56,944 818,716 121 50

Table 3.2: Dataset statistics

3.2.2 Details

I implemented GC-VAE 1 in TensorFlow [32]. Parameters are initialized following [33].
For the Reddit dataset, the number of partitions is C = 1500 and the number of clusters
per batch is M = 20. For the PPI dataset, the number of partitions is C = 50 and the
number of clusters per batch is M = 1. GC-VAE was trained for 1000 epochs, using the
Adam optimizer [34] with learning rate as 0.01. GC layers stacked in the encoder part has
512 hidden units. I also divided the log-posterior loss and the log-prior loss by a constant
factor 1000. The same model executes a node classification and a link prediction task. All
the reported results are averaged over 10 training processes.

3.2.3 Node classification results

I kept the original train/validation/test split of the datasets for the sake of correct compari-
son. For the Reddit dataset, they wanted to classify the posts committed in the last 10 days
based on the ones committed in the first 20 days, resulting a split 153932/23699/55334.
For the PPI dataset, they wanted to classify the proteins that are active in 2 specific hu-
man tissues based on the ones that are active in 20 other human tissues, resulting a split
44906/6514/5524. In the dowstream task, I utilized the random forest classifier imple-
mented in scikit-learn [35] with default parameters. I report the micro-averaged F1 score
for GC-VAE with different GC layers, as well as for the baseline methods GraphSAGE
and Cluster-GCN.

For the Reddit dataset, high order filters perform reasonably better than first-order filters.
Due to their ability to reach higher order neighbors, they are more flexible in mixing the
node features of small communities across the graph. For the PPI dataset, different filters
are approximately level in terms of accuracy. In this case, increasing the degree K decreases
model performance, which is not surprising as PPI is a typical small-world network with
an average path length about 2.5.

1Code to reproduce the experiments is available at https://github.com/daniel-unyi-42/GC-VAE.
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Model Reddit PPI
micro-F1 degrees micro-F1 degrees

MLP (only features) 58.5 - 42.2 -
GraphSAGE 94.5 - 61.2 -
Cluster-GCN 96.6 - 99.4 -

Smoothing GC-VAE 86.5 - 97.2 -
Polynomial GC-VAE 90.2 K=4 97.2 K=1

ARMA GC-VAE 90.3 K=4
T=2

96.2 K=1
T=2

Lanczos GC-VAE 90.3 K=4 97.3 K=1

Table 3.3: Node classification results, with micro-averaged F1 score as metric.

Even though GC-VAE achieves promising results, it only approaches the current state-of-
the-art, Cluster-GCN, for both datasets. It is probably due to the fact that Cluster-GCN
directly maps node features to node labels through multiple smoothing filters. Substituting
the smoothing filters of Cluster-GCN with higher-order ones seems an interesting line of
future research.

3.2.4 Link prediction results

I randomly masked 15% of the edges in the original adjacency matrix, with 5% used
for validation and 10% used for testing. I used the same number of positive samples
(edges) and negative samples (non-edges) for validation and testing. All of the edges
contribute to the final accuracy, and the non-edges that contribute were sampled with
equal probability. I report the area under the precision-recall curve (PR-AUC) score for
GC-VAE with different GC layers. Since this work is the first one to report link prediction
results on these large graphs, there are no baseline methods to compare to.

For the Reddit dataset, the results are underwhelming (Table 3.4). Based on the success of
Cluster-GCN, which is a deeper model, I suspect that stacking more layers would probably
yield better results. It also means that feature embeddings are stronger predictors of node
labels than adjacency embeddings (in this particular case). For the PPI dataset, the
results can be considered as baseline for future work.
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Model Reddit PPI
PR-AUC degrees PR-AUC degrees

Smoothing GC-VAE 64.3 - 83.8 -
Polynomial GC-VAE 65.0 K=4 84.0 K=1

ARMA GC-VAE 64.6 K=4
T=2

82.6 K=1
T=2

Lanczos GC-VAE 65.5 K=4 84.0 K=1

Table 3.4: Link prediction results, with PR-AUC score as metric.
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Chapter 4

Applications in Bioinformatics

4.1 Gene ontology classification

Gene ontology classification is a node classification problem, where vertices represent pro-
teins and edges represent the molecular interactions between them. Gene ontologies cover
three domains: cellular component, molecular function, and biological process; all of them
contain several attributes of the protein [11]. I downloaded the underlying graph from the
STRING database [12]. It was derived from multiple measurement methods, meaning that
multiple edges may connect the same vertices. This is the first time a graph convolutional
neural network is employed in a multigraph scenario. I was able to achieve comparable
results to the ones reported in [13] and [14]. However GC-VAE requires only a fraction
of memory to train, owing to sparse matrix multiplications and the stochastic multiple
clustering approach.

4.1.1 Background

The accurate annotation of proteins plays a vital part in understanding life at the molecular
level, with serious implications in medicine and pharmacology. Due to the prevalence of
whole genome sequencing technology, the number of identified proteins that we know
nothing about has grown overwhelmingly large. Experimental characterization is difficult
and expensive, so much that in silico annotation is perhaps the most important open
challenge in current bioinformatics. Sequence information is publicly available, coupled
with experimental data that supports in silico annotation. One example is protein-protein
interaction (PPI) networks, which provide a rich source of information for graph based
deep learning methods. PPI networks derived from multiple measurement methods form
a multigraph, a scenario addressed by very few research works, notably [13] and [14].
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4.1.2 Dataset

Currently the Gene Ontology (GO) resource is the most exhaustive, publicly available
database concerning the attributes of proteins [11], including (i) cellular component, the
location of a gene product’s activity relative to biological structures, (ii) molecular func-
tion, the activity of a gene product at the molecular level, (iii) biological process, a larger
biological program in which a gene’s molecular function is utilized. This knowledge is
strictly structured by the GO standard, in a form amenable to bioinformatic tools which
support modern biological research. GO itself is a directed acyclic graph, where nodes
represent classes and edges represent specific relations between them. The members of
the ontology development team keep the database up-to-date with regard to new scientific
discoveries.

Node labels correspond to the GO classes. Node features are 640-dimensional feature
vectors generated by node2vec [36]. More helpful node features could be gained from
sequence information and other resources as well (see the PPI dataset in Chapter 3), but I
intended to compare GC-VAE to baseline methods that only utilize the underlying graph
structure. In fact, the baseline methods cannot incorporate node features at all, another
advantage of GC-VAE that should be exploited in the future.

The underlying graph is a protein-protein interaction (PPI) network stemming from the
STRING database [12], same as the one introduced in [14]. Multiple edges may connect
the same vertices, drawn from multiple channels of information: genomic context predic-
tions, lab experiments, co-expression, automated textmining and previous knowledge in
databases. The multigraph I used can be naturally decomposed into 6 simple graphs, each
of which contains the same number of vertices, but a different number of edges. Statistics
for each individual graph is shown in Table 4.1.

PPI network # Nodes # Links
co-expression 6,400 628,026
co-occurence 6,400 5,328

database 6,400 66,972
experimental 6,400 439,990

fusion 6,400 2,722
neighborhood 6,400 91,220

Table 4.1: The statistics of individual PPI networks.
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Figure 4.1: GO is similar to a family tree. As an example, the child class ”hexose biosyn-
thetic process” has two parent classes: ”hexose metabolic process” and ”monosaccharide
biosynthetic process”. It represents that a biosynthetic process is a subtype of metabolic
process, and hexose is a subtype of monosaccharide.

4.1.3 Architecture

Multigraph node classification requires a number of modifications on the proposed archi-
tecture. I approximated the posterior for each individual PPI network Gi, with µ

(enc)
i and

σ
(enc)
i as parameters. Then I concatenated these parameters: µ = concat(µ(enc)

0 , ...,µ
(enc)
N )

and σ = concat(σ(enc)
0 , ...,σ

(enc)
N ). As a result, GC-VAE drawns the latent sample from a

collective posterior. The final loss is the sum of individual losses, computed based on the
reconstruction of individual PPI networks.

I applied GC-VAE with distributed ARMA filters (K=1, T=2). The number of partitions
is C = 4 and the number of clusters per batch is M = 1. GC-VAE was trained for 1000
epochs using Adam with learning rate as 0.01. GC layers stacked in the encoder part has
32 hidden units. All the reported results are averaged over 10 training processes.

In the downstream task, I ran the same 5-fold cross-validation procedure as the baseline
methods. Proteins are split into a training set, comprising a random 80% of proteins, and
a test set, comprising the remaining 20% of proteins. An SVM classifier fits a model on
the training set and classifies the gene ontologies on the test set. 5-fold cross validation is
performed within the training set to select the optimal hyperparameters (γ in the radial
basis kernel and the weight regularization parameter).
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4.1.4 Results

I report the micro-averaged F1 score in Table 4.2 across three levels of difficulty: (i) Level
1 consists of the 17 most general categories, (ii) Level 2 consists of 74 categories, (iii) Level
3 consists of the 153 most specific categories. Both GC-VAE and the baseline methods
face a decline as gene ontologies become more refined. The performance of GC-VAE is
comparable to the baseline methods, with a few percent drop in accuracy.

Model Level 1 Level 2 Level 3
Mashup [14] 58.2 53.6 50.4
deepNF [13] 57.8 52.6 50.0

GC-VAE 57.8 51.2 49.4

Table 4.2: GO classification results, with micro-averaged F1 score as metric.

The real advantage of GC-VAE over the other methods is its scalability. For instance,
deepNF has to store the PPMI matrix representations of each individual graph, multiple
dense matrices whose size grows quadratically with the number of nodes. GC-VAE avoids
this by the stochastic multiple clustering approach explained in Algorithm 4.

4.2 Disease-gene interaction prediction

Disease-gene interaction prediction is a link prediction problem, where nodes represent
diseases and genes, and links represent the ”genetic mutation causes disease” relation
between them. I downloaded the underlying graph from the DisGeNet knowledge platform
[15]. Considering the graph is bipartite, i.e. there are no interactions between the disease
nodes and the gene nodes, this problem is equivalent to a recommender system. GC-VAE
is significantly ahead of current state-of-the-art results reported in [16]. In conclusion, I
hypothesise that links not present in the original dataset but reconstructed by GC-VAE
are newly discovered connections between diseases and genes. I also look for evidence in
the literature to reinforce my hypothesis.

4.2.1 Background

As a consequence of affordable genome sequencing, genomics has become an integrant part
of clinical practice. Exploring human genetic variation allowed us to identify thousands
of disease-associated variations. Nevertheless, drawing connections between diseases and
these variations still remains an open challenge. Bioinformatic tools aim to automate
manual assessment, as it requires plenty of time and domain knowledge.
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4.2.2 Dataset

Currently the DisGeNet knowledge platform [15] is the most exhaustive, publicly avail-
able database of diseases and associated genes and genomic variants. The disease-gene
interactions (GDI) network has 81,746 interactions between 9,413 genes and 10,370 dis-
eases. In the absence of node features, I used 128-dimensional feature vectors generated
by node2vec [36]. My goal is two-fold. One is to compare GC-VAE to baseline methods
by randomly masking 30% of the interactions, with 20% used for validation and 10% used
for testing. The other one is to show how to use deep learning for scientific discovery: I
rank the most confident link predictions that are missing from the original dataset. As I
mentioned earlier, I also search for literature evidence that these links are in fact newly
discovered connections between diseases and genes.

4.2.3 Architecture

The architecture is the same as the one used for link prediction earlier in Chapter 3. Due
to the relative simplicity of the underlying graph structure, I only consider GC-VAE with
smoothing filters. The number of partitions is C = 4 and the number of clusters per
batch is M = 1. GC-VAE was trained for 100 epochs using Adam with learning rate as
0.01. When the validation accuracy stops increasing, early stopping is applied. GC layers
stacked in the encoder part has 32 hidden units. All the reported results are averaged over
10 training processes.

4.2.4 Results

Link prediction results are measured by area under the precision-recall curve (PR-AUC),
as it is common in link prediction tasks. GC-VAE performs significantly better than any
other method, including the one by Kipf and Welling [5] it is built on. At the same
time, it requires significantly less memory to train. These results imply that GC-VAE is
a promising method for solving large-scale recommendation problems, by reformulating
matrix completion as a link prediction task on a bipartite graph.

Model PR-AUC
node2vec [36] 82.8

VGAE [5] 90.2
SkipGNN [16] 91.5

GC-VAE 96.9

Table 4.3: Link prediction results on DisGeNet.
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Gene Disease Evidence
EGFR schizophrenia [37]
OXT intellectual disability [38]

VEGFA craniofacial abnormalities [39]
AKT1 neoplasm metastasis [40]
PPRG malignant neoplasm of breast [41]
MMP9 myocardial ischemia [42]

Table 4.4: Predicted disease-gene interactions.

Table 4.4 gives a few examples of disease-gene interactions that GC-VAE predicted with
high confidence. These interactions are not present in DisGeNet, but other references
clearly confirm their existence. For instance, the authors of [37] conclude that ”...although
it is still uncertain whether increased receptor number or decreased ligand concentration has
a more dominant role in schizophrenia, the abnormal up-regulation of EGFR expression
is more consistent with the dopaminergic hyper-function hypothesis of schizophrenia...”.

Figure 4.2: Visualization of disease-gene embeddings using t-SNE. We can see that
GC-VAE distinguishes inherently between diseases and genes. Otherwise it would predict
links between gene-gene and disease-disease nodes, deterring the PR-AUC score by a large
margin.
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Summary

The recent emergence of graph based deep learning methods has opened a whole new line
of research. It has found applications in network analysis, recommender systems, bioin-
formatics and many other fields. In this work, I addressed the task of node classification
and link prediction on large, real-world networks. In Chapter 2, I introduced the theoret-
ical background of my work: spectral graph theory, implementations of graph filters, and
variational autoencoders.

In Chapter 3, I proposed a new architecture named GC-VAE, which is built on the one
used for link prediction by Kipf and Welling [5]. My contributions include (i) a method
for encoding and decoding normally distributed feature vectors jointly with the adjacency
vectors, (ii) a novel view on graph convolutional layers, resulting filters that are easier to
implement and less prone to overfit the data, (iii) the batch creation algorithm of Cluster-
GCN adapted to autoencoders. This method is able to solve node classification and link
prediction problems concurrently, providing a framework for the most important graph-
related modeling tasks. Experiments confirm that it is able to provide competitive node
classification results, however methods that map node features to node labels directly per-
form better in general. I also reported link prediction results on two benchmark datasets
for the first time, as previous link prediction methods run out of memory for graphs with
more than a few thousands of nodes.

In Chapter 4, I demonstrated the capabilities of GC-VAE by classifying gene ontologies
and predicting disease-gene interactions, addressing two open challenges in current bioin-
formatics. I concluded that the proposed method is able to achieve state-of-the-art results,
requiring significantly less memory to train than previous methods. Finally, I showed how
influential deep learning can be in bioinformatic research; I found many evidences in the
literature that interactions predicted by GC-VAE but not present in the original database
are newly discovered connections between diseases and genes.
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