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Abstract

Deep generative models have achieved remarkable success in various data domains, in-
cluding images, time series, and natural languages. However, there remain substantial
challenges for combinatorial structures, including graphs, despite them being abundant in
the world.

Among different graph types, directed acyclic graphs (DAGs) are of particular interest to
machine learning researchers, as in many problems data is represented in that form, includ-
ing Neural Architecture Search, Social Network Profiling, or Bayesian Network Structure
learning. Our work concerns the latter problem. We aim to create a model which approx-
imates well the posterior of Bayesian Networks and can also be sampled effectively so that
it is suitable for generative purposes.

Markov Chain Monte Carlo (MCMC) algorithms, the ubiquitous tool for sampling from
a high-dimensional, multimodal probability distributions, typically rely on random local
updates to propagate configurations of a given system in a way that ensures that generated
configurations will be distributed according to a target probability distribution asymptot-
ically. Despite MCMC algorithms being able to generate unique and novel DAGs, them
lacking speed can create a bottleneck.

Our contribution is to try to solve this problem by replacing the present MCMC algorithm
with a neural network-based generative model. We used state-of-the-art models adjusted
specifically to our problem. This includes leveraging a Variational Autoencoder (VAE) as
our generative model with Graph Neural Networks (GNNs) incorporated as encoder and
decoder. In addition to generation, numerous examinations were conducted in the latent
space regarding its smoothness and also the interpolation and extrapolation possibilities.
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Chapter 1

Introduction

In recent years deep generative models have undergone rapid progression for a wide variety
of data domains, such as continuous data (e.g., images) and sequences (e.g., time series
and natural language sentences). Representative methods, including generative adversarial
networks (GAN) and variational autoencoders (VAE), learn a distribution, parameterized
by deep neural networks from a set of training examples. Amid the tremendous progress,
combinatorial structures, particularly graphs, remain substantial challenges for deep gen-
erative models.

Graphs are essential data structures that concisely encapsulate the flow of information in
many important real-world domains. For example, relations between entities in knowledge
graphs and social networks are well captured by graphs, and they are also good for mod-
eling the physical world, e.g. molecular structure and the interactions between objects
in physical systems. Thus, the ability to capture the distribution of a particular family
of graphs has many applications. [21] For instance, by sampling graphical models, new
configurations can be discovered that have certain global properties that are needed, for
example, in molecule discovery. Obtaining the sentence structural information in text
sequence which can be exploited to augment original sequence data by incorporating the
task-specific knowledge, requires the ability to model graph distributions. [30] Distribu-
tions on graphs can also provide priors for Bayesian structure learning of graphical models.

Probabilistic models of graphs have been studied extensively from multiple perspectives.
One approach is based on random graph models, which refer to the Erdős-Rényi (ER)
or G(n,m), where all graphs with n nodes and m edges are assigned equal probabilities.
[9] These have proven effective at modeling domains such as social networks as they are
designed to capture certain robust graph properties, such as degree distribution and diam-
eter. On the other hand, they struggle with more richly structured domains where small
structural differences can be functionally significant, such as in chemistry or representing
meaning in natural language, as they oversimplify the underlying distributions of graphs.

With the growing amount of graph-structured data, there is an increasing demand for
developing deep models that are capable of complex graph generation.

To name a few, GraphRNN treats graph generation as a sequential generation problem
and generates nodes and edges step by step; MoFlow [34] designs an invertible mapping
between the input graph and the latent space and generates the graph (node feature and
edge feature matrices) in one single step; MolGAN [8] designs a GAN-based graph genera-
tive model where a discriminator is used to ensure the properties of the generated graphs;
GDSS [18] designs a score-based graph generative model which adds Gaussian noise to
both node features and structures and reconstructs from Gaussian noise to obtain gener-
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ated graphs during inference and DVAE[35] uses an asynchronous message passing scheme
to encode and synthesize graphs. Additionally, many other graph-generative methods are
utilized for deep graph generation. [37]

In our work, we adopted DVAE, one of the state-of-the-art models for DAG learning, in a
Bayesian Network Structure learning task.

Our article is structured as follows:

• Chapter 2 summarizes the most important concepts for deep graph generation, in-
cluding:

– Graphs
– Neural networks
– Graph neural networks
– Graph generation approaches
– Bayesian networks
– Markov Chain Monte Carlo methods

• Chapter 3 explains two applications of DAG generation: Neural Architecture Search
and Bayesian Network Structure Learning

• Chapter 4 summarizes our work, and proposes solutions to existing problems for
future works

2



Chapter 2

Research

We conducted a comprehensive survey on the current graph generative methods, examining
both neural network- and random graph model-based methods. In the next section, we
summarise the most relevant concepts.

2.1 Graphs

A graph is a structure amounting to a set of objects in which some pairs of the objects are
in some sense "related". A graph is represented as G = (V, E) where V is the set of vertices
or nodes, and E is the set of edges. Let vi ∈ V to denote a node and eij = (vi, vj) ∈ E
to denote an edge pointing from vj to vi. The neighborhood of a node v is defined as
N(v) = {u ∈ V |(v, u) ∈ E}. The adjacency matrix A is a n × n matrix with Aij = 1 if
eij ∈ E and Aij = 0 if eij /∈ E. A graph may have node attributes X, where X ∈ Rn×d is a
node feature matrix with xv ∈ Rd representing the feature vector of a node v. Meanwhile,
a graph may have edge attributes Xe, where Xe ∈ Rm×c is an edge feature matrix with
xe

v,u ∈ Rc representing the feature vector of an edge (v, u). [31]

2.1.1 Directed graph

A directed graph is a graph with all edges directed from one node to another. An undi-
rected graph is considered as a special case of directed graphs where there is a pair of
edges with inverse directions if two nodes are connected. A graph is undirected if and only
if the adjacency matrix is symmetric.

2.2 Neural network

An artificial neural network (or simply neural network) consists of an input layer of neurons
(or nodes, units), one or two (or even three) hidden layers of neurons, and a final layer of
output neurons. Figure 5.1 shows a typical architecture, where lines connecting neurons
are also shown. Each connection is associated with a numeric number called weight. The
output, hi, of neuron i in the hidden layer is,
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hi = σ

 N∑
j=1

Vijxj + T hid
i

 , (2.1)

where σ(·) is called activation (or transfer) function, N the number of input neurons, Vij

the weights, xj inputs to the input neurons, and T hid
i the threshold terms of the hidden

neurons. The purpose of the activation function is, besides introducing nonlinearity into
the neural network, to bound the value of the neuron so that the neural network is not
paralyzed by divergent neurons.[28] A common example of the activation function is the
sigmoid (or logistic) function defined as

σ(u) = 1
1 + exp(−u) . (2.2)

Figure 2.1: Architecture of a neural network [28]

2.3 Graph neural networks

Graph neural networks were proposed by Gori et al [16] in 2005 to construct a framework
for neural networks that are capable of processing graph-structured data.

The intuitive idea underlying the proposed approach is that nodes in a graph represent
objects or concepts, and edges represent their relationships. Each concept is naturally
defined by its features and related concepts. Thus, we can attach a state to each node
that is based on the information contained in the neighborhood. The state contains a
representation of the concept denoted by and can be used to produce an output, i.e.,
a decision about the concept.[26] The representation of the target node is learned by
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iteratively updating the state of the node using the information propagation mechanism
of the graph until a global equilibrium state is attained.[31] [36]

The related notions are defined as follows: let the input graph be G = (V, E, XV , XE),
V = v1, v2, ..., vn represents the set of nodes, and E = {(i, j)| when vi is adjacent to vj}
is the set of edges. xi denotes the feature vector of node vi, and XV = {x1, x2, ..., xn}
is the set of feature vectors of all nodes. x(i, j) denotes the feature vector of edge (i, j),
and XE = {x(i, j)|(i, j) ∈ E} is the set of feature vectors of all edges. The input graph G
is converted into a dynamic graph Gt = (V, E, XV , XE , Ht) in the graph neural network
model, where t = 1, 2, ..., T represents time and Ht = (h(t)

1 , h
(t)
2 , ..., h

(t)
n ) , h(t)i represents

the state vector of node vi at time t, which depends on the graph Gt−1 at time t− 1. The
equation of h

(t)
i is as follows:

h
(t)
i = fw(xi, xco(i), ht−1

ne(i), xne(i)) (2.3)

where fw (·) denotes the local transformation function with parameter w, xne(i) is the set
of feature vectors of all nodes adjacent to node vi, xco(i) is the set of feature vectors of all
edges connected to node vi, and h

(t)
ne(i) is the set of state vectors of all nodes adjacent to

node vi at time t. GNN updates the node status in an iterative manner.[36]

These early studies fall into the category of recurrent graph neural networks (RecGNNs).
Amid the high computational cost, RecGNNs are conceptually important and inspired
later research on convolutional graph neural networks. In particular, the idea of message
passing is inherited by spatial based convolutional graph neural networks. [31]

2.3.1 Convolutional graph neural networks

Convolutional neural networks achieved remarkable results in image processing, and this
success motivated the idea of generalizing the operation of convolution to non-Euclidian
data. The idea of ConvGNNs is to build a node’s representation by aggregating its own
and its neighbor’s features. Similarly to CNNs ConvGNNs stack multiple layers of filters
to extract higher-level features. Graph convolutional networks can be categorized into two
groups: Spectral-based and Spatial-based ConvGNNs.

2.3.1.1 Spectral based ConvGNNs

Spectral GNNs can be summarized into a general form: first transforming the spatial
signal X through an MLP, then applying spectral filters parameterized by a polynomial of
the normalized Laplacian L̂, and finally applying another MLP to the filtered signal. By
designing/learning the polynomial coefficients, spectral GNNs can simulate a wide range
of filters (low-pass, band-pass, high-pass) in the spectral domain, enabling GNNs to work
on not only homophilic but also heterophilic graphs [29]

Spectral ConvGNNs are based on a branch of mathematics called graph signal processing.
They use the normalized Laplacian representation of graphs which is defined as L̂ =
In −D− 1

2 AD− 1
2 where D is the diagonal matrix of node degrees Dii =

∑
j(Ai,j). The

normalized graph Laplacian is a real symmetric positive semidefinite, which allows it to be
factored as L̂ = UΛUT where U = [u0, u1, ..., un−1] ∈ Rn×n is eigenvector matrix ordered
sorted by eigenvalues in ascending order and Λ is the spectrum, i.e the diagonal matrix
of eigenvalues. The eigenvalues of this matrix form an orthonormal space, UT U = I A
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graph signal is vector of features of all the nodes of a graph where the i-th component is
the value of the i-th node.

The graph Fourier transform performs a projection between the input graph signal and
the orthonormal space whose basis is derived by the eigenvectors of the normalized Graph
Laplacian. It is given by the equation F(x) = UT x, and its inverse F−1(x̂) = UT x̂, where
x̂ represents the resulted signal from the graph fourier transform.

In this orthonormal space graph filters are defined on signals as x =
∑

i x̂iui These filters
then can be used to extract information about the graph struture and its features

Now the graph convolution of the input signal x with a filter g ∈ Rn is defined as

x ∗G g = F−1(F(x)⊙F(g)) = U(UT x⊙UT g) (2.4)

where ⊙ denotes the element-wise product. If we denote a filter as gθ = diag(UT g), then
the spectral graph convolution is simplified as

x ∗G gθ = UgθUT x (2.5)

Though various models have emerged, spectral GNNs’ expressive power is still under-
researched. Moreover, these models differ mainly in the basis choices of the spectral
filters, and it was proven by Wang et al. [29] that that even without nonlinearity, spectral
GNNs can be universal under mild conditions. They proposed a novel spectral GNN called
JacobiConv, that used Jacobi basis. JacobiConv outperforms the previous state-of-theart
method on real-world datasets without using nonlinearity.

2.3.1.2 Spatial based ConvGNNs

On the other hand spatial based ConvGNNS does not operate in the signal space. Instead
they define graph convolution based on the node’s spatial relations. [31]

Images can be seen as special graphs each pixel acts as a node and is connected to its
nearby pixels. Applying a filter is taking the weighted average of a pixel and its neighbors
across multiple channels. Similarly, spatial-based graph convolution updates the central
node by convolving its representation with its neighbors. From another point of view, they
rely on information propagation similarly to RecGNNs.

The basic assumption of spatial based graph convolution is that each node vi is additionally
identified by its coordinates pi ∈ Rt . In the case of images, pi is the vector of two
dimensional pixel coordinates, while for chemical compounds, it denotes location of the
atom in two or three dimensional space (depending on the representation of chemical
compound). In contrast to standard features xi , pi is not changed across layers, but only
used to construct a better graph representation. For this purpose the aggregation function
is defined as:

h̄i =
∑

j∈Ni

ReLU(UT (pj − pi) + b)⊙ hj (2.6)

6



where U ∈ Rt×d, b ∈ Rd are trainable parameters, d is the dimension of hj and ⊙ is
element-wise multiplication. The pair U, b plays a role of a convolutional filter which
operates on the neighborhood of vi . The relative positions in the neighborhood are
transformed using a linear operation combined with nonlinear ReLU function. This scalar
is used to weigh the feature vectors hj in a neighborhood. By the analogy with classical
convolution, this transformation can be extended to multiple filters. Ū = [U(1), ..., U(k)]

and B = [b(1), ..., b(k)] define k filters. The intermediate representation h̄i is then a vector
defined by:

h̄i(Ū, B) = h̄i(U(1), b(1))⊕ ...⊕ h̄i(U(k), b(k)) (2.7)

where ⊕ denotes the vector concatenation. Finally, MLP transformation is applied to
transform these feature vectors into new representation. [7] Spatial models are preferred
over spectral models due to efficiency, generality, and flexibility issues. Spectral models are
less efficient than spatial models, as they either need to perform eigenvector computation or
handle the whole graph at the same time. Spatial models are more scalable to large graphs
as they directly perform convolutions in the graph domain via information propagation.
Another complication with spectral models is that they rely on a graph Fourier basis and
generalize poorly to new graphs. They assume a fixed graph, meaning that perturbations
to a graph would result in a change of eigenbasis. Spatialbased models, on the other hand,
perform graph convolutions locally on each node where weights can be easily shared across
different locations and structures. Spatial-based models can also operate on undirected
graphs, which makes them more suitable for NAS and BNSL tasks. [31]

2.3.2 Latent variable approaches

In latent variable architectures, graphs are transformed into a low-dimensional latent
representation, which follows a stochastic distribution. Then a sample is drawn from
this latent distribution and decoded into a graph structure. A variety of latent variable
approaches have been proposed, but most of them follow the encoder-sampler-decoder
pipeline.

2.3.2.1 Encoder

The encoding function maps discrete graph objects to continuous, latent vectors. For an
encoder to be capable of creating new, meaningful samples, the latent space must satisfy
two important conditions: continuity and completeness.

• Continuity: continuity means that two vectors close to each other in latent space
must have similar properties after decoding

• Completeness: the network has to decode the sampled latent vectors into "mean-
ingful" objects

To fulfill these reuqirements probabilistic generative models are employed as encoders.
Formally, the encoder outputs the parameters of a stochastic distribuition folowing a prior
distribution.

Despite probabilistic models, without the regularization of the latent space, they can also
significantly overfit the data and can learn distributions with close-to-zero variance and
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deviating expected value, therefore acting as a normal autoencoder. Different models
enforce this structural condition in different ways.

2.3.2.2 Sampler

The following step in the generation process is to sample a latent representation from the
learned distribution. The sampler usually follows one of the following strategies: random
sampling, controllable sampling

Random sampling During random sampling, latent code is randomly selected from
the learned distribution.

Controllable sampling On the other hand, controllable sampling attempts to sample a
vector that possesses the desired properties. The downside of controllable sampling is that
it requires additional optimization of the latent space. Controllable generation modifies
the randomly sampled or the encoded vector in a way that, after decoded, the generated
graph possesses the desired properties. There are three frequently used approaches:

• Disentangled sampling separates the dimensions of the latent space and associates
each variable with one property, forcing the latent variables to be disentangled from
each other. With this approach, a desired property change of the generated graph
can be achieved by modifying its latent representation.

• Conditional sampling concatenates a conditional code to the latent vector, which
can explicitly control the properties of the generated graphs.

• Traverse-based sampling uses direct optimization in the continuous latent space
to obtain samples witch the required properties. It can also control the generated
graph properties by using heuristic-based search approaches (e.g interpolation, ex-
trapolation) in the latent space.

2.3.2.3 Decoder

The decoder receives the sampled latent vector as its input and reconstructs a graph
structure from it. Decoders can be divided into two categories: sequential generators and
one-hot generators.

Sequential generators iteratively reconstruct the graphs, usually node by node, edge by
edge. To use this approach graph nodes have to follow an ordering for the generation, in
the case of DAGs, this can be their topological order. Sequential generation benefits from
the flexibility that the number of nodes can be unknown beforehand. Another advantage
of this approach is that after each step, constraint checks can be performed to ensure that
the generated graph obeys certain restrictions. On the downside when generating large
graphs with long sequences, the accumulated error can build up, resulting in a diversion
from the original graph.

In contrast, one-shot generation regenerates/generates the graph as an adjacency matrix
with optional node and edge features in a single step. The latent representation is fed into a
neural network which outputs the adjacency and feature matrices. Many different neural
networks can be utilized for this task, such as Convolutional Neural Networks (CNN),
Graph Neural Networks (GNN), and multi-layer perceptron (MLP). One-shot generation
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does not suffer from accumulating error during generation, but lacks flexibility as the
number of nodes has to be known in advance. It also suffers from scalability issues as it
scales as O(n2) with respect to the number of nodes n, in the graph.

2.3.2.4 Deep generative models

Normalizing flows Normalizing flows are a series of invertible functions which create a
mapping between the latent variables and the graphs via the change of variable theorem.
The change of variables formula describes how to evaluate the densities of a random
variable that is a deterministic transformation from another variable.

Formally, in a normalizing flow model, the mapping between the latent variables, Z and
the observed variables X given by fθ : Rn −→ Rn, is deterministic and invertible such that
X = fθ(Z) and Z = f−1

θ (X).

Using change of variables, the marginal likelihood p(x) is given by

pX(x; θ) = pZ(f−1
θ (x))

∣∣∣∣∣det
(

∂f−1
θ (x)
∂x

)∣∣∣∣∣ (2.8)

Normalizing-flow-based models are usually trained by minimizing the negative log-
likelihood over the training data.

Generative adverserial networks A generative adversarial network[15] is a kind of
machine learning framework which consists of two main components the generator and
the discriminator, embodied by neural networks. These two components play a zero-sum
game, where the generator generates realistic objects (e.g graphs) and the discriminator
tries to distinguish between real and artificial objects.

min
fG

max
fD

LGAN(fG, fD) = EG∼p(G)[logfD(G)] + Ez∼p(z)[log(1− fD(fG(z)))] (2.9)

GANs are especially popular in the computer vision domain, although they often suffer
from various phenomena, such as posterior collapse or the vanishing gradient problem.

Variational autoencoder Variational autoencoder [19] (VAE) estimates the distribu-
tions of graphs p(G) by maximizing the Evidence Lower Bound (ELBO) as follows:

LVAE = Ez∼qϕ(z|G)log(pθ(G|z))−DKL(qϕ(z|G) ∥ pθ(z))) (2.10)

The first term is the reconstruction loss, a measure of similarity between the input and the
reconstructed graph. The latter is a regularization term, that enhances the disentangle-
ment of the latent space. This regularization appears in the form of KL divergence, which
is an asymmetric measure of distribution similarity, it drives the learned distribution to
the prior, usually Gaussian distribution.

The problem with VAE is that the sampling from a distribution that is parameterized
by our model is not differentiable, in other words, to implement an encoder and decoder
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as a neural network, backpropagation has to flow through random sampling and that is
not possible. The reparameterization trick is a way to rewrite the expectation so that the
distribution with respect to which we take the gradient is independent of parameter θ. To
achieve this, we need to make the stochastic element in q independent of θ.

This eliminates the need to backpropagate through a sampling node by treating the sam-
pling as noise.

z = µ + σ ⊙ ϵ (2.11)

Latent variable approaches have had a big impact on generative tasks, especially in the
image domain. For example, Ramesh et al. developed a model called Dall-e [22], which
uses a VAE-based architecture for text-to-image generative tasks. For the same problem,
Yu et al. developed the Google Parti [33] an autoregressive model using a GAN encoding
architecture. The success of these models suggests that latent variable approaches may be
well suited for non-Euclidean data generation tasks.

2.3.3 Graph analytics tasks

With the graph structure and node content information as inputs, the outputs of GNNs
can focus on different graph analytics tasks with one of the following mechanisms:

2.3.3.1 Node-level

Outputs tackle node regression and classification problems. Recurrent and Convolutional
GNNs can produce high-level node features by information propagation or graph convolu-
tion. With the help of MLPs or a softmax output layer, GNNs are capable of performing
node-level tasks in an end-to-end manner.

2.3.3.2 Edge-level

Edge-level tasks include edge classification and link prediction. With the utilization of
a similarity function or a neural network label or connection, strength prediction can be
performed on GNN outputs.

2.3.3.3 Graph-level

Graph-level outputs relate to the graph classification or generation tasks. To achieve a
compact representation on the graph level, GNNs are often combined with pooling and
readout operations. Graph generative tasks can be classified into two categories: graph
structure learning and generative sampling.

• Graph structure learning simultaneously learns an optimized graph structure
along with representations for downstream tasks. Unlike graph generation that aims
to generate new graphs, the purpose of graph structure learning is to improve the
given noisy or incomplete graphs.[37]

• Generative sampling learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets
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such as citation networks, graph generative sampling could serve as an alternative
approach to generate large-scale graphs by sampling subgraphs from a large graph
and reconstructing a new graph. [37]

2.4 Graph generation

Many real-world systems may be considered networks of discrete object networks. These
networks that exhibit non-regular topological features are called complex networks and
are subject to intense research in a variety of fields including social science, biological, and
information science.

The analysis of these networks includes answering questions about the properties of their
nodes, the types of connections, their topology, and so on. These complex networks can
be realistically represented as graphs, on which different operations can be performed
to understand their underlying structure and mechanisms. Despite their commonality,
scientists often suffered from a lack of actual data available for proper analysis, which led
to the need for scalable, synthetic data.

With the emergence of machine learning and neural networks, many new models have
been developed that outperform classical algorithms.

The concepts appearing in graph modeling can be categorized into three main groups:
Generative, Feature-driven, and Domain-specific approaches.

• Generative: the generative class represents mechanisms that qualitatively explain
graph patterns. After a graph has been constructed according to the specified rules,
begins a discovery phase to find out what features it has. Then its feature similarity
to real-world graph patterns can be analyzed and the generative rules can be modified
according to the results.

• Feture-driven: feature-driven class aims to design a model, which quantitatively fit
the required graph features. The development process is to design or tune a model,
that satisfies the given the set of desired features.

• Domain-specific class includes graph generating methods with additional network
attributes, such as community structure or edge weights.

• Latent attributes: the concept assumes that connections between nodes depend on
some deep-rooted properties of the nodes represented by their attributes.

2.4.1 Generative approach

Based on the ER model which is the most widely used and yet the least realistic model of
a random graph, designers of RG models developed many algorithms trying to explain the
phenomenas apperaing in real world complex networks. These algorithms can be grouped
into many different categories from which we will comprise the following: Classic, Local
rules, Recursion and Latent attributes

2.4.1.1 Classsic

The naive interpretation of randomness is to connect each pair of nodes independently.
The ER model, which is possibly the most widely known model, connects each pair of nodes
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on a set of n nodes, with a constant probability p. Although the ER model has unrealistic
properties, it is rich with theoretical results. Another well-known construction, named the
small-world model, aims to achieve both low diameter together and high clustering. The
Watts-Strogatz model starts with a regular lattice, where each node has an equal amount
of neighbours. Each edge is then replaced with a random edge with probability p. [9].

2.4.1.2 Local rules

Local rules mean that the graph’s growth is governed by rules affecting a node and its
neighbors. An example of these rules is called triadic closure, which is well observable in
social networks. It states that if the nodes u and v have a common neighbor the probability
of the edge (u, v) is higher than in the same they don’t share common connection.

2.4.1.3 Recursion

Recursive algorithms grew from the observation that networks are formed by larger com-
munities composed of smaller communities and so on, forming a scale-free, self-similar,
hierarcical structure. One of the most influential model, R-MAT [3] produces a graph by
recursively sampling edges from a partitioned adjacency-matrix.

2.4.1.4 Latent attributes

The motivation of this idea a sociological theory called homophily, which claims similarities
attract. For example people of close age, interest, geographical location are more likely to
be connected in the network. This concecpt is incorporated in the model by expressing
edge probability as a function of node attributes. Pij = f(−→a i,

−→a j)

Geometric approaches In geometric approaches[6] node attributes are interpreted as
geometrical coordinates, and it proved to be productive in modeling ad hoc wireless net-
works, sensor-actuator networks, and the Internet, where physical distance between the
nodes directly influences their connectivity. The attempts to adapt complex networks
for geometric framework led to the assumption that hyperbolic geometry underlies their
structure. For example, power-law exponent is a function of the space curvature. In other
words, a more-relevant distance metric on graphs is based on the shortest path (geodesic
line), and it is rather hyperbolic than Euclidean. Moreover, hierarchical structure and
treelike patterns, common in real networks, better fit into hyperbolic space.

In the Embedding based random graph model (ERGG), each node of a directed graph
is associated with a vector ri being a triple ui, vi , and Zi . Link probability is based
on a directed softmax model, where the conditional probability of the edge i −→ j is
P (j|i) = exp(ui · vj − Zi), with Zi being a normalization coefficient. At the construction
phase, edge i −→ j is created if P (j|i) is above a threshold tG. Representations {ri} and
the threshold are learned to fit best to a given graph G.

As a resume, we note that the selection of graph geometry could be treated as the selection
of metric in the node vectors space. The simplest geometry is Euclidean, but the hyperbolic
metric is more sophisticated and efficient.

Node labeling The core assumption in the concept of node labeling is that edge prob-
ability is defined by the similarity of node labels. In Random typing graphs (RTG), a
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random typing process is used to generate character sequences terminating with “space.”.
Each node represents a unique word. At each algorithm step, two label nodes are created
by generating one letter l. Each letter has its typing probability pl. If a connection exists
between the created nodes the edge weight is incremented, otherwise a connection is made.

2.4.2 Feature-driven class

2.4.2.1 Analytical solution

Carefully designed algorithms can generate graphs that satisfy the desired constraints and
characteristics. Such models are mathematically tractable and allow precise control of the
graph features, making them useful for analysis. The disadvantage of these models is that
they are poorly representative of real networks with complex properties such as subgraph
distribution. These models also suffer from low accuracy when several feature constraints
are formulated. A common method is to modify the graph in an iterative madder, satis-
fying the desired charateristics one-by-one, however several non-trivial problems have not
been solved using analytical methods such as implementing a target degree sequence and
connected components together. Nevertheless, they are still widely used because they have
been studied extensively and can serve as null models. Also, in practice approximating
the given constants is a sufficient trade-off for the ability to control a large number of
parameters. These RG models can serve as generators for benchmark graphs, one of the
most common algorithm in this category is called LFR , which is capable of generating
complex, directed weighted graphs with overlapping community structure.

2.4.2.2 Graph editing

Edge switching The conventional approach to graph randomizing is edge switching or
edge rewiring. It is recurrently performed on the Graph in a way that the set of Constraints
C remains content. Pairwise edge switching is the most common edge-switching operation,
since it does not change the node degrees: a pair of edges i −→ j, k −→ l is rewired into
i −→ l, k −→ j. Markov chain’s are often used by this class of graph generators. Given an
input graph G0, at each step the algorithm picks a random pair of edges to be switched.
This way the chain has a stationary distribution uniform over all graphs with the same node
degrees and it is also irreducible. In the case of more-elaborate constraints C, a standard
Monte Carlo sampling techniques are employed to achieve a Markov chain with a wished
stationary distribution corresponding to C. For example Ying Xiaowei and Wu Xintao
[32] use the Metropolis-Hastings algorithm to generate graphs with a target distribution
of features g(S). Unfortunately, MCMC following comlex requirements suffer from two
problems: the method may not be ergodic, i.e not all valid states could be reachable via
allowed steps and an increase in chain convergence time.

Representation editing: Another way of graph editing is rather than modifying graph
G itself, modify its representation R(G) given that it reflects the graph features properly.
Then the problem is shifted to finding adequate representations and operations of trans-
forming G to R(G) and backwards.

It was an important observation by Gutfraind et al [17] that the properties of real networks
that should be preserved during generation are not only those measured at the finest
resolution but also those that can be measured at the coarse resolutions. Their model called
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Musketeer used a hierarchical construction of aggregators that was capable of replicating
several real-world original networks, but without the guarantee of planarity.

The ERGG model can be classified not only as a geometric latent variable approach but
also as a feature driven, graph editing solution. In ERGG the editing occurs at the level
of vector representation of its nodes. After embedding the input graph in the vector
space, the new graphs are constructed by samplingprobability distribution approximating
the distribution of the node vectors with a small Gaussian noise mixed into the samples.
Finally, new nodes are connected with edges giving a new graph. Expirements show that
besides reproducing main graph features, these models provide variability of graphs, that
are generated from one input graph, close to natural variability within a domain.[10] [9]

2.4.3 Domain specific class

The above RG models usually work on simple, directed graphs, however many real world
applications require the graphs to possess more complex features, such as a given com-
munity structure, or node and edge properties, like weights. The domain specific class
includes all RG concepts that are not covered by the above RG approaches. Although this
category is rather broad, most problems concern either community structures or weighted
edges.

2.4.3.1 Weighted edges

Weighted edge graphs appear in many complex network. Weight could represent the
strength of molecular bonds, the cost of travelling between nodes or the measure of
"friendship" in social networks. Many algorithms form weighted edges by summing the
multi-edges connecting two nodes, and are generalized to process such graphs.

2.4.3.2 Community structured

Many networks have been found to exhibit a "community structure", i.e. they are naturally
partitioned into communities or modules, with dense connections within communities but
sparser connections between communities. Communities are of particular interest both in
their own terms, as functional building blocks of networks, and for their insights into the
underlying mechanisms of how networks are formed. [20] Both generative and feature-
driven methods exist on this topic, but their essential concept is the same in most cases,
they try to attach a label to each nodes indicating which community the node belongs to.

With the development of deep neural networks, many of these fundamental concepts have
been adopted and used in the development of deep graph generation methods. For exam-
ple, VAEs both use the latent variable approach to encode graphs in lower dimensional
latent space and use representation editing to ensure that the generated graphs exhibit
the desired characteristics.

2.5 Bayesian networks

Bayesian networks (BNs) represent systems as a network of interactions between variables
from primary cause to final outcome, with all cause-effect assumptions made explicit.[4]
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Formally Bayesian networks are defined as as a pair (G,O) that encodes a joint probability
distribution over a finite set X = X1, ..., Xn of categorical variables. It is composed of:

1. A directed acyclic graph (DAG) G = {V, E} whose nodes V correspond to the vari-
ables in X and arcs E represent direct dependencies between variables

2. A collection of conditional mass functions O that define the behavior of each variable
Xi given its parents Πi in the graph[25]

Although the representation of the full joint table P (X) takes exponential space in the
number of variables n. This complexity can be avoided thanks to the so-called Markov
condition, which states that in a Bayesian network every variable is conditionally inde-
pendent of its non-descendant non-parents given its parents. By using this condition, it is
possible to represent the joint table in a compact form, as a multiplication of local mass
functions:

p(x) = p(x1, ..., xn) =
∏

i

p(xi|πi) (2.12)

, where x is an instantiation of all the variables in X , xi is the value of variable Xi in
x, πi is an instantiation of all the variables in the parent set Πi compatible with x. The
representation now takes still exponential space but only in the size of the largest parent
set.[25]

The ability to integrate multiple issues, interactions, and outcomes, combined with the
potential to investigate tradeoffs make BNs suitable for modeling environmental systems.
Furthermore, they are apt for utilising data and knowledge from different sources and
handling missing data. BNs readily incorporate and explicitly represent uncertain infor-
mation, and this uncertainty is propagated through to and expressed in the model outputs.
BNs are based on a relatively simple causal graphical structure, meaning they can be built
without highly technical modelling skills and be understood by non-technical users and
stakeholders. In BNs, variables are represented by nodes, which are linked by arcs that
symbolise dependent relationships between variables.[4]

2.6 Markov Chain Monte Carlo

The process through which probabilistic model quantities can be calculated is referred as
inference.

Due to the nature of probabilistic models exact inference is likely intractable, so we have to
resort to some form of approximation. This intractablility is caused by the summation of a
discrete distribution of many random variables or integration of a continuous distribution
of many variables during inference.

s =
∫

p(x)f(x)dx = Ep [f(x] (2.13)

To avoid these unmanageable calculations usually Monte Carlo sampling is used, which
draws independent samples from the probability distribution, then repeats this process
until the desired quantity is well approximated.
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However, Monte Carlo sampling does not behave well in high-dimensions. Firstly because
as the number of parameters increases, the volume of the sample space exponentially
grows, this is also known as the curse of dimensionality.

ŝn = 1
n

n∑
i=1

f(x(i)) (2.14)

Second, and perhaps most critically, random samples taken from the target distribution
with Monte Carlo Sampling are assumed to be independent and drawn independently. This
is typically not the case for inference with Bayesian structured or graphical probabilistic
models.

Markov chain is a method for systematically generating a sequence of random variables
where the current value probabilistically depends on the value of the prior variable. Specif-
ically, the subsequent variable selection depends only on the last variable in the chain.

P (Xn+1 = k|Xn = kn, Xn−1 = kn−1, ..., X1 = k1) = P (Xn+1 = k|Xn = kn) (2.15)

MCMC is essentially Monte Carlo integration using Markov chains. Monte Carlo inte-
gration draws samples from the required distribution and then forms sample averages to
approximate expectations. Markov chain Monte Carlo draws these samples by running a
cleverly constructed Markov chain for a long time. [13]

In cases when the next state probability distribution cannot be sampled directly the
Metropolis-Hastings algorithm can be a convenient solution.

They are based on a Markov chain whose dependence on the predecessor is split into two
parts: a proposal and an acceptance of the proposal. The proposals suggest an arbitrary
next step in the trajectory of the chain and the acceptance makes sure the appropriate
limiting direction is maintained by rejecting unwanted moves of the chain. [12]

More formally the Metropolis–Hastings algorithm generates a collection of states according
to a desired distribution P (x). To accomplish this, the algorithm uses a Markov process,
which asymptotically reaches a unique stationary distribution π(x) such that π(x) =
P (x) [23] A Markov process is uniquely defined by its transition probabilities P (x′|x), the
probability of transitioning from any given state x to any other given state x′. It has a
unique stationary distribution π(x) when the following two conditions are met: [23]

1. Existence of stationary distribution: there must exist a stationary distribution π(x).
Detailed balance is a sufficient condition for the existence of π(x), which requires
that x −→ x′ is reversible, i.e for every pair of states x, x′, the probability of being
in state x and transitioning to state x′ must be equal to the probability of being in
state x′ and transitioning to state x, π(x)P (x′|x) = π(x′)P (x|x′).

2. Uniqueness of stationary distribution: the stationary distribution π(x) must be
unique. This is guaranteed by ergodicity of the Markov process, which requires
that every state must satisfy the following constraints:

• Aperiodicity — the system does not return to the same state at fixed intervals
• Positive recurrence —the expected number of steps for returning to the same

state is finite
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Provided that specified conditions are met, the empirical distribution of saved states
x0, ....xT will approach P (x). The number of iterations (T) required to effectively es-
timate P (x) depends on the number of factors, including the relationship between P (x)
and the proposal distribution and the desired accuracy of estimation.

Markov chain Monte Carlo (MCMC) methods are powerful tools for inferring Bayesian
network (BN) structures from data [1]. BNMCMC is software which implements MCMC
methods for this specific problem.

To infer BN structures from data, the samplers in BNMCMC explore the discrete space
of candidate BNs. At each sampling iteration, these samplers iterate through all possible
neighbourhoods of a particular BN and sample the best scored one among them- The
neighbourhood of a particular BN consists of all networks that can be obtained by modi-
fying a pair of nodes by adding, deleting or reversing an edge. Experimental data is used
for learning the conditional probability tables (CPTs) of nodes of a candidate BN and a
score is evaluated using those CPTs by applying a probabilistic model which refers to the
posterior probability of the network given data. [1]
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Chapter 3

Applications

In the next section, we briefly describe the two main research areas of DAG generation.
Neural architecture search and Bayesian network structure learning both aims to automate
the design of models for specific datasets, thereby reducing the time and expert knowledge
required to solve these problems.

3.1 Neural Architecture search

For a given data set, finding a neural architecture that gives decent results in a relatively
short time is a difficult problem that requires expert knowledge and considerable hand-
tuning. These tasks are time consuming and the cost of data scientists is very high, even
compared to the cost of high-end GPUs in public clouds. In addition, human availability
is generally low and prone to errors. This problem is a really hot topic in today’s machine
learning community, and a whole new branch of ai, called Neural Architecture Search, has
grown up to solve it.

Neural Architecture Search (NAS) is the process of automating architecture engineering
and the logical next step in automating machine learning. Already by now, NAS methods
have outperformed manually designed architectures on some tasks such as image classifica-
tion, object detection or semantic segmentation. NAS can be seen as subfield of AutoML
and has significant overlap with hyperparameter optimization and meta-learning. We cat-
egorize methods for NAS according to three dimensions: search space, search strategy,
and performance estimation strategy [11]

• Search Space: The search space defines which architectures can be represented in
principle. Due to the substantial size of the search space, the search process can
be extremely time consuming. To address this problem, prior knowledge of typical
properties of architectures, well suited to the task, can be incorporated, thereby re-
ducing the size of the search space. However, human involvement can introduce bias
into the process, potentially preventing the discovery of new architectural building
blocks.

• Search Strategy: The exploration process of the search space (which is often
exponentially large or even unbounded) is defined by the search strategy. It has
to take into account the exploration-exploitation trade-off, i.e. it has to find well-
performing architectures in a limited time while avoiding premature convergence to
a region of suboptimal architectures. Seach strategies can be mainly categorized
into:
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– Reinforcement learning methods which train controllers to generate architec-
tures with high rewards in terms of validation accuracy

– Bayesian optimization based methods,which define kernels to measure architec-
ture similarity and extrapolate the architecture space heuristically

– evolutionary approaches which use evolutionary algorithms to optimize neural
architectures

– differentiable methods which use continuous relaxation/mapping of neural ar-
chitectures to enable gradient-based optimization. [35]

• Performance Estimation Strategy: The NAS typically seeks to find architec-
tures that yield high predictive performance on unseen data. Performance estimation
is the estimation of this performance: the most trivial approach is to test the ar-
chitecture against data using standard training and validation, unfortunately this
method is computationally expensive and limits the number of architectures that
can be evaluated. Much recent research has therefore focused on developing meth-
ods that reduce the cost of these performance estimates. [11]

3.2 Bayesian Network Structure Learning

Although Bayesian networks are a great tool for Bayesian inference, constructing the net-
work structure which truly represents the underlying causal mechanism based solely on
the observational data is far from trivial. Several researchers have studied this application,
which has been proven to be NP-Hard, therefore analytical algorithms, such as dynamic
programming or shortest path approaches, are only applicable for small-scale probems.
Also considering that the available observed data is usually incomplete, there may ex-
ist several similarly well performing network structures. These problems are tackled by
Bayesian network structure learning (BNSL), i.e the learning of a Bayesian network from
observational data. BNSL has been studied extensively during the last decade, one rea-
son for this is because it can be used to automatically construct Bayesian networks for
inferring possible causal relations. [27] Bayesian network learning has been widely used
in many scientific regions, including bioinformatics for the interpreting and discovering
gene regulatory pathways, variable selection for classification and algorithm design for
optimally solving the problems under certain conditions

The problem of learning the structure of a Bayesian network from a complete dataset of
d datapoints D = D1, ..., Dd corresponds to determining the set of directed arcs E for the
DAG G = (X, E), using some criterion that specifies the quality of a structure. This can
also be stated as choosing for each variable Xi its parent set i . The usual assumption is
for the data to be complete. The case of missing data currently represents a bottleneck
for structure learning, as few methods can properly manage it.

The task is computationally non-trivial due to the enormous size of the space of possible
graphs G, growing super-exponentially in the number of nodes n.There are two major
approaches for tackling this problem: score-based and constraint-based.

• Score-based: in the score-based approach, an evaluation score metric is defined
on the Bayesian networks, measuring how well the networks fit the data. Then the
method searches over the space of DAGs, aiming for the maximal scoring archi-
tecture. Commonly used scores include BIC and BDeu, mostly based on marginal
likelihood.
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• The constraint-based: Constraint-based algorithms identify conditional indepen-
dence constraints by using hypothesis tests to learn independences among the vari-
ables in the model. Following these constraints, the DAG is in turn built. Their
performance is critically determined by the adopted hypothesis test. [25] [14] This
approach works well with some other prior (expert) knowledge of structure but re-
quires lots of data samples to guarantee testing power. So it is less reliable when the
number of sample is small.

Due to the NP-hardness, however, exact algorithms such as dynamic programming or
shortest path approaches can only solve small-scale problems.

As both neural and Bayesian networks can be considered as DAGs, deep graph gener-
ative methods can be applied to solve these problems. For example, NASGEM[5] uses
an encoder-decoder architecture to encode neural networks in lower dimensional space,
similarly DVAE[35] uses a latent variable approach but with an asynchronous message
passing scheme. Both studies have achieved remarkable success, although this is still a
very nascent and unexplored area of machine learning.
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Chapter 4

Learning of graph posteriors

After an exhaustive scientific research in graph generation, we found that for learning
Bayesian Network structures a Variational Autoencoder model based on DVAE could
provide the best results.

4.1 D-VAE

D-VAE[35] is GNN architecture which,uses an asynchronous message passing scheme to
encode and decode DAGs. In contrast to the simultaneous message passing in traditional
GNNs, D-VAE allows encoding computations rather than structures.

4.1.1 Encoding

The encoder of D-VAE can be considered a graph neural network, which uses an asyn-
chronous message passing scheme. Every DAG fed into the network is expected to have a
single starting node. In case that there are multiple such nodes, a pseudo starting node is
added to the graph, connecting to all of them.

D-VAE uses an Update function U to update a node’s hidden state by its neighbours
messages. The hidden state therefore is given by:

hv = U(xv, hin
v ) (4.1)

where xv is the encoding of the node’s type and hin
v is the aggregate of the incoming

messages from v’s neighbours. hin
v is calculated by the aggregation function A:

hin
v = A(hu : u −→ v) (4.2)

where u −→ v is a directed edge from u to v and {hu : u −→ v} is the multiset of v’s
predecessors hidden states

Unlike in simultaneous message passing, in D-VAE the message passing for a node must
wait until all of it’s predecessors’s hidden states have been computed. To ensure that
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a node can start it’s message passsing when the algorithm reaches it D-VAE iterates on
nodes following a topological order of the DAG.

Once the hidden state of all nodes has been calculated, the hidden state of the terminating
node, the one without any successors, is used as the output of the encoder. This graph
state is then fed into two MLPs to obtain the mean and the variance parameters for the
posterior approximation. If there exists several nodes without successors, we again add a
virtual end node connecting all of them.

Although topological order is not necessarily unique for DAGs it was proven by Zhang et
al. [35] that all of them produces the same output under the condition that the aggre-
gation function is invariant to the order of its inputs. It was also shown that the DVAE
encoder maps its input injectively to the latent space if the aggregation and update func-
tions are injective. An important aspect of DVAE is that it encodes computations on
graph structures, and not the structures themself. Injectively encoding graph structures
would require solving the graph isomorphism problem, which is categorized as an NP hard
problem. Fortunately, here what we are really interested in are the calculations, not the
structures, as we do not aim to distinguish between two different G1 and G2 structures,
as long as they represent the same calculation.

For modeling and learning injective functions, we rely on neural networks, thanks to the
universal approximation theorem. We used gated sum as our A function:

hin
v =

∑
u−→v

g(hu)⊙m(hu) (4.3)

where m denotes a mapping network and g a gating network. The update function was
modelled by a gated recurrent unit (GRU), which treated inv as its input:

hv = GRUe(xv, hin
v ) (4.4)

4.1.2 Decoding

Similar to the encoder, the encoder uses an asynchronous message-passing protocol to
learn intermediate nodes and graph states. The decoder generates the hidden states of
nodes by updating them using another GRU, denoted by GRUd. For the latent vector z
to be decoded, we first apply an MLP to map z to h0 as the initial hidden state to be fed
to GRUd .

1. Compute vi’s type distribution using an MLP fadd_vertex (followed by a softmax)
based on the current graph state hG := hvi−1 .

2. Sample vi’s type. If the sampled type is the ending type, stop the decoding, connect
all loose ends (nodes without successors) to vi , and output the DAG; otherwise,
continue the generation.

3. Update vi’s hidden state by hvi = GRUd(xvi , hin
vi

), where invi = h0 if i = 1; oth-
erwise, invi is the aggregated message from its predecessors’ hidden states given by
equation (2.4).

4. For j = i− 1, i− 2, ..., 1:

4.1 compute the edge probability of (vj , vi) using an MLP fadd_vertex based on
hvj and hvi

4.2 sample the edge;
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4.3 if a new edge is added, update hvi using step 3

The above process iteratively samples new node types and then sequentially predicts
whether to connect the new node to the existing ones or not based on the current node’s
state. This algorithm requires the maintenance of hidden states for both the new and the
already existing nodes, unlike in RNNs where states for old nodes are not maintained.
Sampled edges always point from previous nodes towards the new vertex, therefore the
generated graph is guaranteed to be acyclic.

The generating process stops when in step 2 an end-type node is sampled.

Teacher forcing Teacher forcing is a training algorithm for recurrent neural networks.
Its core idea is that instead of feeding the previous output of the network into the network
in the next training step, the observed data is given as input thus forcing the RNN to stay
close to the ground-truth sequence.

As DVAE generates nodes sequentially this idea could be incorporated during training.
The loss consisted of 3 parts:

1. Negative log likelihood between the generated and the true node types

2. Cross entropy between the edge probabilities and the ground truth edges

3. KL divergence of the models mean and variance and a standard normal distribution

Figure 4.1: The encoder architecture

4.2 Posterior learning of small scale DAGs

First we wanted to test the model’s expressive power, so we constructed a smaller scale
problem. We investigated whether the model was capable of generating samples from a
smaller graph class with uniform distribution. To conduct this survey first we had to choose
a class of graphs with manageable size and generate all possible samples in that class. The
number of DAGs as a function of the number of vertices, G(n), is super-exponential in n
and is given by the following recursive equation:[24]
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Figure 4.2: The vertex decoder

Figure 4.3: The edge decoder

Figure 4.4: Add_vertex and add_edge block architectures

an =
n∑

k=1
(−1)k+1

(
n

k

)
2k(n−k)an−k (4.5)
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,with a0 = 1.

n number of DAGs

1 1
2 3
3 25
4 543
5 29.281
6 3.781.503

Table 4.1: Number of possible DAGs as a function of vertex number

Based on the values of the function and required training time we chose the DAGs con-
taining 4 vertices.

4.2.1 Generating 4 vertex DAGs

An important attribute of DAGs is that their adjacency-matrix is upper-triangular. We
used this property for generating all possible DAGs. We started with a DAG containing
the maximal number of edges and iteratively removed edge combinations until we reached
0 edges. During each iteration the node labels were permuted and the resulting graphs
were appended to a list. Duplications were filtered each iteration. Our algorithm was far
from optimal and but it was capable of generating 4 and 5 node graphs in reasonable time.

Input: n - number of vertices in graph
Output: results - list containing all possible DAGs with n vertices

1 maxEdges← n(n−1)
2

2 fullGraph← graph with upper-triangular adjacency-matrix
3 for i← 0 to maxEdges do
4 combinations ← generateCombinations(possibleEdges, i)
5 for combination in combinations do
6 currentGraph ← removeEdges(fullGraph, combination)
7 permutedGraphs ← permuteLabels(currentGraph)
8 for permutedGraph in permutedGraphs do
9 if results not contains permutedGraph then

10 results.append(permutedGraph)

4.2.2 Model

By default DVAE inserts a virtual starting and ending node during generation, and con-
nects nodes without predecessors to the start node and nodes without successors to the
end node. It was recommended that the training dataset also contained these virtual
nodes and edges. For these reasons we extended the DAGs with the necessary nodes
and edges. The available source for DVAE contained multiple models, each tailored to
a specific problem type, such as NAS or BNSL. We used DVAE_BN as each graph in
the dataset contained each nodetype only once, therefore acted as a Bayesian Network.
DVAE_BNs encoder differs from the standard DVAE encoder.
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One modification is that the aggregation function is changed to:

hin
v =

∑
u−→v

g(xu)⊙m(xu) (4.6)

Compared to the original update function, hu is replaced by the node type feature xu.
This is because of differences between the calculations on the neural architectures and on
Bayesian networks. In a neural network, the signal flows through the network, in a way
that the output of one layer is used as the input of the subsequent layers.

While in a neural network the focus is on the output of the final layer, in a Bayesian
network the graph represents the set of conditional relations between variables instead of
the computational process.

In DVAE_BN the graph state calculations is also modified, due to the decomposibility of
the score. Instead of using the ending node state, the graph state is calculated as the sum
of every individual node state.

4.2.3 Results

We ran the training with many different configurations, though we highlight only three
with interesting results. For the first configuration we used a 2 dimensional latent space,
with 64 GRU size. The second configuration was quite similar, but we added a Batch
Normalization layer to the add_edge and add_vertex components. Although the second
configuration was able to achieve lower train loss, on the test dataset it produced far worse
results. For our last configuration we removed the BatchNorm layer, doubledthe latent
dimensions and GRU hidden size to 4 and 128. As you can see the last configuration was
able to reconstruct the graphs with the greatest accuracy. We were able to achieve near 0
KL-divergence in all three cases.

Parameter Configuration 1 Configuration 2

Learning rate 10−4 10−4 10−4

Batch size 16 16 16
GRU size 64 64 128
Latent dimensions 2 2 4
Batch normalization No Yes No

Table 4.2: Configurations

We also conducted experiments in the latent space of the models. First we inspected the
locations of encoded graphs in the latent space for Configurations 2 and 3. To be able to
display the 4 dimensional space we used PCA on the latent variables, therefore reducing
its dimension to two. We also applied this transformation to the 2 dimensional case.

In the 4 dimensional case our model could achieve a much more symmetric encoding. In
our last experiment we sampled 1000 points from the latent space, decoded and each point
10 times, resulting in 10.000 sampled graphs. Unfortunately the results did not show order
in the latent space regarding the graph that the sampled was decoded to.

We also examined the fequency of the decoded graphs. With a uniform sampling distri-
bution each possible graph should have been sampled approximately 19 − 20 times. The
following table summarizes the statistics of the random generation process.
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Figure 4.5: Train and test results for Configurations.

Figure 4.6: The encoded graphs in the latent space. (1) Configuration 2 without PCA
(2) Configuration 2 wit PCA (3) Configuration 3 with PCA The colouring
is based on the graphs edge count

These experiments showed that, although with Configuration 4 we were able to achieve
some degree of order in the encoding of DAGs, the models were not able to generate graphs
with uniform distribution.
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Figure 4.7: The sampled points coloured according to the graphs they were decoded to.

Statistics Configuration 2 Configuration 3

Generated graphs 10000 10000
Valid graphs 8102 9940
Invalid graphs 1898 60
Average frequency of generated graph 15.11 18.51
Median frequency of generated graph 11 16
Variance of frequencies 12.71 12.42

Table 4.3: Configurations

Figure 4.8: Frequencies of the four vertex DAGs decoded from sampled latent point

4.3 Posterior learning of bigger DAGs

As the next step we changed our focus to a bigger scale problem, and wanted to test, if the
model was capable of learning BN structures with more nodes. As our dataset we chose
the ALARM dataset.

4.3.1 ALARM

The ALARM ("A Logical Alarm Reduction Mechanism") dataset was constructed from
expert knowledge to provide an alarm message system for patient monitoring. The domain
contains 37 discrete variables taking between 2 and 4 values.
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4.3.2 Conversion of Bayesian Network

The available ALARM network is stored in a format, called Bayesian Interchange Format
(BIF), however bnmcmc expected a different network format. To solve this problem we
developed a transformation script which output the necessarily formatted BN.

4.3.2.1 BIF

The BIF is a vehicle for interoperability of belief network tools and aims at facilitating
comparison and discussion of research results. The Interchange Format uses only ASCII
symbols and expects one stream to contain a single network. The basic unit of information
is a block: a piece of text which starts with a keyword and ends with the end of an
attribute list. Arbitrary characters are allowed between blocks. This allows the user to
insert arbitrarily long comments outside the blocks, and reserve the //, /* */, comments
to be placed inside blocks.

Blocks A block is a unit of information. The general format of a block is:

block-type block-name {
attribute-name attribute-value;
attribute-name attribute-value;
attribute-name attribute-value;

}

with as many attributes as necessary. The closing semicolon is mandatory after each
attribute. There are three possible blocks: network, variable and probability blocks. The
blocks occur in the following order: A network declaration block (one, must be first). A
series of variable declaration blocks and probability definition blocks, possibly inter-mixed.

Networks A network block defines the name of the network and lists the properties.

network Robot-Planning {
property version 1.1;
property author Nobody;

}

Variable Variable blocks define the variables in a network.

variable Leg {
type discrete[2] { long, short };
property temporary yes;

}

Probability Probability blocks specify the (conditional) probability tables (CPTs) for
these variables, and hence the topology of the network. The block indicates the variables
of the probability distribution right after the keyword probability.

probability ( Leg | Arm ) {
table 0.1 0.9 0.9 0.1;

}
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4.3.2.2 BNMCMC format

BNMCMC expected an xml formatted input. To generate this input we transformed
the bif file into another BN repsentation, that we fed into a program called BNF, that
converted it into XML format. The transformation script built a BN representation with
the following structure:

1. The first row of the file contained the number of nodes in the network

2. The subsequent rows were structured in the following way:

• Node id
• Node name
• List of valid values, delimitered with ","
• Other options
• List of parents
• Flattened list of the CPT rows, delimitered with ","

The different attributes were seperated by a semicolon (;).

4.3.2.3 Transformation

To transform the bif format we developed the following algorithm. The method first
extracts the blocks from the BIF file. Then, depending on the type of block, either the
possible values or the parents and CPT were saved in an object representing a node in
the network. Once the conversion was complete, the output file was fed into the BNF
program, which converted it into an XML file that could be fed into bnmcmc.

Input: BifFile - file containing the BN in bif format
Output: TranformedFile - file containing the BN in bnmcmc format

1 bnNodes - list of objects representing vertices in a Bayes Network varIx ← 0
2 blocks ← extractBlocks(BifFile)
3 for block in blocks do
4 type ← blockType(block)
5 if type is "variable" then
6 bnNode ← new BnNode
7 bnNode.values ← extractV alues(block)
8 bnNodes.append(bnNode)
9 if type is "probability" then

10 bnNode ← bnNodes[varIx]
11 bnNode.parents ← extractParents(block)
12 bnNode.distribution ← extractDistribution(block)
13 varIx ← varIx + 1

14 writeToF ile(bnNodes)
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4.3.3 Running the MCMC model

The available BN was sampled 1000 times, and then these data samples were fed into the
bnmcmc program. BNMCMC has many possible configurations but we only used a small
subset of them. The applied settings were the following:

• Heat profile: linear

• Burn in: 100

• Parameter prior: bdeu

• vss-bdeu-per-table: 10000

The MCMC method started on a randomized BN structure. We ran the simulation 100000
times each starting from a randomized BN structure and taking 100 steps after burn-in.
After each step the resulting structure was logged which we later transformed into a format
that could be fed into the neural network.

4.3.4 BNMCMC log processing

During the run bnmcmc logs and saves the visited structures into the specified format.
Currently there exist 3 available formats:

• adj: the graph structure is logged as an adjacency matrix

• plist: the struture is represented as child < parent1 : parent2 : ... >

• diff_txt: the structure alteration is logged as +/-parent,child, where + represents
the addition and - represents the deletion of an edge

For the sake of compactness we used the latter format as it requires significantly less
storage than the other two. As the neural network required the input to be in the form of
iGraph structures. We developed a transformation script process_mcmc which could
transform the logs into iGraph objects. Process mcmc:

1. Create a new directed iGraph object

2. Add nodes to the graph: the number of different variables in the original BN +2 for
start and end nodes

3. Set node types: the NN can only deal with numerical node types, so each original
nodetype is mapped to its index in the graph

4. Add edges:

4.1 Split each line on the operation characters (+ or -)
4.2 Add/remove edge based on operation
4.3 Filter non-acyclic graphs
4.4 Sort nodes by topological order
4.5 Connect nodes without predecessors to START node
4.6 Connect nodes without successors to END node
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4.7 Save graph in binary format

As this the process would have taken a significant amount of time, we used paralellization
to reduce the runtime.

4.3.5 Results

Despite the vast size of the dataset, we could only use 2000 samples during the training
process due to computational limitations. Another problem we have encountered is that
the training process is incredibly slow with this graph size. The cause of this problem
was that during decoding each generated node was "compared" with all the existing nodes
on whether to add a connection between them and then the current node’s state was
updated. This process takes about O(n2) and as n gets higher this significantly slows
down the learning process.

For this reason, we could not use DAVE_BN with this dataset, instead, we utilized the
encoder of DVAE combined with the decoder of another model called SVAE [2]. SVAEs
decoder generates the adjacency matrix in a one-shot manner, therefore the decoding
process is notably faster. We ran the training with a latent space size of 64 and 1024
GRU size and 10−4 learning rate. Similar to previous experiments we tried using batch
normalization to drive down training losses. Due to the computational limits, we only ran
the training for 500 epochs. It is clearly visible that after the 200 epoch the model stops
learning, and the training loss no longer decreases. Currently, we could not achieve better
results with this model, but we will continue our investigation with other hyperparameters
and model parameter combinations.

Figure 4.9: Training loss on the ALARM dataset

4.3.6 Future work

The existing solutions for slowness of the decoding process are to generate the nodes or
edges in a one-shot way, but that would ignore the node state changes after a connection
has been made. We have two proposals for future works to address this problem:
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• Batched node generation The nodes of DAGs can be divided into "levels" such that
each node in a partition must-have its predecessors from the preceding levels. This
partitioning creates subsets of nodes that are not related to each other. If instead of
generating nodes one by one, we could generate them partition by partition, it would
reduce the decoding time, since we could avoid checking possible connections inside
the partitions. The time gained depends to a large extent on the structure of the BN,
since the more elements there are in the partitions, the fewer possible connections
would need to be checked. In the worst case, each generated batch would contain
only 1 node, leading to the original asynchronous message passing.

• Batched edge generation Another option to reduce decoding time would be to gen-
erate several edges simultaneously. This could be achieved by encoding the edge
probabilities of the newly generated nodes in the current graph state instead of each
node. Hence, the adjacency matrix would be generated row by row (or column by
column). Even though this would mean that the graph state would be updated only
after all the connections to the new node have been established, it could significantly
reduce the generation time. Trivially, this method would require the graph state to
encode much more complex information about the graph.
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