

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Elektronikai Technológia Tanszék

Rozs Egon

TDK Dolgozat 2020/21

Gőzfázisú forrasztóállomás újszerű validációja szenzorokkal

Konzulens Dr. Géczy Attila

BUDAPEST, 2021

Tartalom

1. Bevezetés
2. Újraömlesztéses forrasztás1
3. Jelfeldolgozás elméleti háttere
3.1. Mintavételezés alapjai
3.2. A mért jel karakterizálása5
4. Felhasznált eszközök5
4.1. National Instruments
4.1.1. LabView
4.1.2. myDAQ
4.2. MATLAB
4.3. Nyomásmérők
4.4. V-M.O.L.E
5. Kísérletterv
6. Elvégzett feladatok, eredmények
6.1. Mérőprogram megtervezése LabView környezetben13
6.2. Adatgyűjtés15
6.3. Adatfeldolgozás MATLAB alkalmazásával15
7. Összefoglalás
8. Hivatkozások
9. Ábrajegyzék

1. Bevezetés

Ebben a dolgozatban az áramlás- és többletnyomás-mérőérzékelők alkalmazhatóságát vizsgálom ipari gőzfázisú újraömlesztéses forrasztó kemencében, a munkaterület és a forrasztási ciklus validációja érdekében. A vizsgált kemence az újraömlesztéses forrasztási módszertan egy jellegzetes alkalmazását mutatja, mind prototípus, mind ipari gyártási szinten. Az érzékelő alkatrészeket korábbi tapasztalatok, előzetes kísérletek alapján választottam. A dolgozatban a nyomásmérőkkel szerzett régi és új tapasztalatokat egyesítem az áramlásérzékelők újszerű alkalmazásával - a szenzorfúziót klasszikus hőmérsékletmérésekkel bővítem. A munkatérben található hőátadó közeg dinamikáját az áramlásérzékelőkkel szerzett tapasztalatokkal bővítem; az érzékelő nyomás (idő) függvénye a gőzoszlop dinamikus növekedéséről is információt ad. A többletnyomás-érzékelővel a munkatér hidrosztatikai feltárását is ki lehet bővíteni. A kapott eredményeket a gőzfázisú forrasztás az adott géptípus szerinti működésével vetem össze, kiemelve mindkét nyomásérzékelő tipikus jelalakjait a rendszerciklus lépéseinek és a készenléti állapotnak a tükrében. A szenzorfúzió lehetővé teszi a géptípus pontos szabályozást, javítva a forrasztási minőséget és csökkentve az üresjárati időt. Az érzékelőfúziós munkám koncepciója összhangban van az ipar 4.0 trendjeivel és digitális vezérlés direktíváival.

2. Újraömlesztéses forrasztás

Az újraömlesztéses (reflow) forrasztás a szerelési folyamat fontos fázisa, különösen a felületszerelt technológia (SMT) területén. Az alkatrészek elhelyezése után az előzőleg nyomtatott forraszpaszta belsejébe a megömlesztés szakasz következik, amelyben a forraszpaszta megolvad és tartós forrasztási kötést hoz létre [1]. Az illesztések kiváló minősége érdekében ezt a melegítési folyamatot pontosan kell szabályozni.

Az újraömlesztéses forrasztás általános fűtési módszerei három különböző megközelítéssel történnek; az első az infravörös sugárzásos fűtés. A módszer általános hibái a beeső sugarak miatti egyenetlen fűtés, a nehéz hőmérsékleti profil kompozíció és a különböző sugárzásfűtéssel kapcsolatos forrasztási hibák [2]. A második és a tömeggyártásban legszélesebb körben alkalmazott újraömlesztéses módszer a kényszerkonvekciós fűtés, ahol a hőátadás szabályozott gázáramlással történik elkülönített munkazónákban. [3]. A harmadik módszer a gőzfázisú forrasztás (Vapour Phase Soldering - VPS). Ez filmszerű kondenzáción alapuló hőátadáson

alapul. Az 1980-as évek után ez a technológia kikerült a figyelem középpontjából. Ennek oka az volt, hogy az eljárás során használt hőátadó közegben mérgező komponens volt [4]. Napjainkban az inert és kémiailag stabil PFPE-alapú Galden-folyadékok [5] lehetővé teszik a tiszta és ártalmatlan reflow-eljárásokat [6]. Ez az anyag újra bevezette a gyártók körében a gőzfázisú forrasztási módszert. A VPS-eljárás során a gőzölgő közeg a kemencében oszlik el és telítődik [7], és a hidegebb nyomtatott áramköri lap (PCB) egy gőz "takaróba" vagy más szóval "oszlopba" merül. A hőátadás akkor következik be, amikor a hideg PCB felületein kondenzáció indul meg.

A VPS újbóli megjelenése során különböző új kemencekonstrukciók és vezérlési paradigmák jelentek meg a piacon. Ezek egyike volt a "heat level" vagyis hőszintezésen alapuló VPS-megközelítés (HL-VPS) [7]. Először a PCB-t egy betöltési magasságban lévő mintatartóra helyezik. Ezután lezárják a kamrát, és a PCB-t leeresztik a munkatérbe. Általában ekkor már telített gőzök vannak jelen a munkatérben. A HL-VPS-ben a gőz alulról kerül a szerelvény felületére, miután a lap elérte a forrasztáshoz meghatározott alsó pozíciót. A munkaterületszabályozás a kemence különböző magassági pontjain lévő termoelemes érzékelők mérésein alapul. Ezek visszajelzést adnak a hőátadó közeg felmelegedéséről és esetleges felforralásáról. A mérési pontok általában a forrásban lévő folyadékkal egy szinten, a PCB-vel egy magasságban, és a forrasztási szint felett egy meghatározott magasságban helyezkednek el. Ha a PCB szintje felett megnövekedett hőmérsékletet mérnek, akkor az adott érzékelő jelzést küld, hogy a gőz ezen függőleges pozíció felett megjelent, mivel a fűtött szerelvény ilyenkor már nem von el jelentősebb mennyiségű gőzt a kondenzációval. A túlterjedő gőz tehát felmelegíti a felső termoelemet, és egy beprogramozott késleltetés után (az ún. heat delay, amely egy meghatározott ideig tartja a maximális hőmérsékletet) a kemence leállítja (vagy ahogy a szakzsargon mondja: megszakítja, "break"-eli) a forrasztási folyamatot. Végül a nyomtatott áramkört a betöltési magasságba emelik. A fűtőberendezés teljesítménye százalékos beállításokkal szabályozható, és a fűtési időkésleltetések (a második tartományban) programozhatók a forrasztási folyamat csúcshőmérsékleten történő meghosszabbítására. Egy forrasztási munka (amely szakaszos feldolgozással is elvégezhető) összesen 10-15 percet vesz igénybe.

A fűtési teljesítmény okoz a folyamat tranzienseiben; továbbá befolyásolja a gőzoszlop magasságát, így következésképpen szabályozhatja a forrasztás hőmérsékleti profilját, beleértve a fűtési gradienst is. Ez a megközelítés jelentős előrelépést jelentett a hagyományos, telített gőz alapú forrasztási elvekhez képest, és ebben a dolgozatban a HL-VPS-re összpontosítottam.

Fontos kiemelni, hogy ennek a megközelítésnek megvannak a gyakorlati korlátai. Az eljárásnak vannak üresjáratai a közeg típusának felismerésére a forráspont-hőmérséklet azonosításával (ezt "közegfelismerésként" jegyezzük meg). A hűtés is hosszú időt vehet igénybe, ami meghosszabbítja a forrasztási munkát.

A Galden gőz koncentrációja és az ebből következő telített gőzoszlop a forrás miatt alulról növekszik. A Galden-gőz térfogati sűrűsége 20-szor nagyobb, mint a levegő sűrűsége. Következésképpen még a telítetlen gőzök (levegő-Galden keverék) is képesek nem elhanyagolható mennyiségű energiát tárolni. Így ennek a keveréknek az energiája még mindig elegendő lehet a munkaterületet figyelő hőmérséklet-érzékelők felmelegítéséhez. A dinamikus koncentrációváltozások mérésének igénye csövekkel történő nyomásalapú érzékeléssel elégíthető ki. Ez a megközelítés akkor került bevezetésre, amikor az érzékeny, differenciális áramlásérzékelős nyomásmérést szabványos VPS-kemencékben valósították meg. Ez a megközelítés növelheti a termelékenységet [8] a kemencék üresjárati idejének csökkentésével. A dinamikus gőzkoncentráció-monitorozás információt szolgáltathat a telített gőzoszlop alakulásáról. A [8]-ban azonban a hidrosztatikus nyomás kimutatása korlátozott volt az akkor rendelkezésre álló készülék miatt.

Dolgozatom motivációja tehát az volt, hogy a dinamikus gőzkoncentráció monitorozást kibővítsem. Újszerű, National Instruments eszköz alapú, gyors mintavételezéssel, két különböző típusú (dinamikus átfolyásmérő és gauge, többletnyomás) szenzor alkalmazásával vizsgáljam a gőztakaró változását, ezzel megfigyelve a folyamat egyes részeleteit. Ehhez áttekintem a jelfeldolgozás elméleti hátterét, áttekintem a szenzorokat és azok illesztését, valamint elemzem a szenzorokkal és a külön erre a célra kialakított szondarendszerrel a kapott eredményeket. A munkám csatlakozik a tanszék korábbi kísérleteinek sorába, újszerű eredményeim pedig mind az alkalmazott tudomány, mind pedig a készülékek vezérlése tekintetében előrelépést jelent.

3. Jelfeldolgozás elméleti háttere

3.1. Mintavételezés alapjai

A beérkező jelet először kondicionálni kell, hogy a mérőelektronika képes legyen a feldolgozására [9]. Illetve, hogy ezt a rendszert ne tudja túlvezérelni a mérendő jel esetleges túl

nagy értékre való növekedése. A mérendő jelet bizonyos esetekben transzformálni is szükséges (pl. áramból feszültséget lásd 4-20 mA-es rendszerből 1-5 V-os). Túl nagy- vagy kis méretű jelek esetén a bemenő jelek erősítésére is szükség lehet, továbbá a nem kívánt frekvenciájú zavarjelektől is célszerű megszabadítani a mérendő jelet.

Amennyiben a mérendő jel előkészítése megfelelő, megkezdhető annak feldolgozása. A jelfeldolgozó eszközök rendszerint digitális eszközök ebből az következik, hogy nem tudja teljesen pontosan visszaadni a mért jelet, mert kvantált mind a mintavételezés időpontja, mind annak az értéke.

Az értékkészletét növelhetjük, ha az értékeket egy több bites analóg-digitális konverterrel (továbbiakban AD) alakítjuk át, illetve a precizitás növelhető, ha a mérendő jelhez jobban megfelelő referencia feszültséggel dolgozunk. Ezt a minimális értéket LSB-nek (least significant bit) szokás nevezni, aminek értéke kiszámítható a következő módszerrel:

$LSB = A_{max}/2^n$ differenciális esetben $LSB = (A_{max} - A_{max})/2^n$.

Ahol n az ADC bitszáma, A pedig a mérendő feszültség/áram referencia értéke.

A mintavételezés másik fontos paramétere, a mintavétel gyakorisága, amit mintavételifrekvenciának hívunk. Ez az érték mutatja meg, hogy mennyiszer méri meg a bemenő jelet másodpercenként. A mintavételezés során figyelni kell arra, hogy az egyes komponensek átlapolódhatnak egymásra, ami miatt hibás értékeket kaphatunk, így a mintavételi frekvenciát úgy kell megválasztanunk, hogy ezt elkerüljük. A Shannon tétel egy szélesen alkalmazott ökölszabály annak érdekében, hogy ez a feltétel teljesüljön. Ez a tétel kimondja, hogy egy folytonos idejű jel elvileg minden hiba nélkül visszaállítható abban az esetben, ha a mintavételifrekvencia értéke kétszerese a legnagyobb frekvenciájú komponensnek. Amennyiben ennek értéke nem ismert azonban a mérendő jel frekvenciájának nagyságrendjét ismerjük alkalmazhatunk átlapolódásgátló szűrőket. Fontos továbbá megemlíteni, hogy korábbi mérések alapján a tízszeres mintavételezés az ideális hiszen ekkor a teljes dinamika és alak jellege megfigyelhető a mérendő jeleknek [10].

Az átalakítás után a feldolgozó egység már képes kezelni és műveleteket végrehajtani a jellel. A feldolgozó egység segítségével ekkor már képesek vagyunk az adatokat továbbítani tetszőleges adattárolókra vagy PC-re.

3.2. A mért jel karakterizálása

A jel digitalizálása után következhet az elemzése. Célszerű elemezni az idő és frekvencia tartományban is. Ezek során jobb rálátást kaphatunk a mért folyamatok jellegéről. Az időtartománybeli ábrázolás gond nélkül megoldható hiszen, ha ismerjük a mintavételezési frekvenciát akkor tudjuk azt is, hogy mennyi időnként vett mintát a jelből, így könnyedén ábrázolható a jel az időtartományban. A frekvencia tartománybeli ábrázolása azonban ennél összetettebb, mivel további számításokat igényel.

A frekvencia tartománybeli analízisre azért van szükség, mert gyakran több információval szolgál, mint a jel időtartománybeli alakja, hiszen itt látható az, hogy milyen frekvenciájú jelekből tevődik össze és azt, hogy ezek közül melyek azok, amik a leginkább dominálnak. Ahhoz, hogy tudjuk ezt vizsgálni. A jelet át kell transzformálni frekvencia tartományba. Ehhez segítségünkre van a [11] Fourier-transzformációnak nevezett eljárás. Az analitikus eljárás használhatósága viszont korlátozott a benne lévő integrálás miatt, így a jelfeldolgozásban gyakrabban alkalmazzák az FFT (Fast Fourier Transform) nevű eljárást. Mivel ez egy numerikus számítási módszer így könnyedén kiszámítható PC segítségével.

4. Felhasznált eszközök

A feladatom első fele az volt, hogy készítsek egy olyan VI-t, aminek segítségével mi tudjuk beállítani a mintavételi frekvenciát az eszköz időosztása/mintavételi frekvenciája szerint. Továbbá, hogy a mért értékeket egy szöveges fájlba mentsem ki.

A második pedig az, hogy különböző módszerekkel vizsgáljam meg a jelet. Ezen feladatokhoz a MATLAB nevű numerikus számításokra optimalizált környezetet használtam.

4.1. National Instruments

A mintavételezést és ezen minták mentését az NI eszközeinek segítségével oldottuk meg mind hardware mind software oldalról. A fejlesztőkörnyezet a korábban is említett LabView aktuális 2020-as verziója volt [12], a mintavételező céleszköz pedig az NI myDAQ [13] nevű eszköze volt.

4.1.1. LabView

A LabView [12] egy grafikus fejlesztőkörnyezet. Ennek a környezetnek óriási előnye, hogy sokkal közelebb van a villamosmérnöki szemlélethez, mint írott társaik, ugyanis az algoritmizálás után nem kell kódokat bevinni, hanem egy kapcsolási rajzokra emlékeztető ábrarendszer segítségével megrajzolhatjuk a program működését. Továbbá grafikus mivolta miatt, egy jól megírt VI (virtual instrument a LabView-ban létrehozott program neve) könnyebben átlátható, gyorsabban javítható és fejleszthető.

4.1.2. myDAQ

A myDAQ (1. ábra) egy NI [13] által forgalmazott kompakt adatfeldolgozó USB-eszköz. Az eszköz rendelkezik analóg bemenetekkel (AI 2 db differenciális bemenet (A0- és A0+ egy bemenetnek tekintendő) és egy hozzájuk tartozó közös analóg föld (AGND)), analóg kimenetekkel (AO 2 db és egy hozzájuk tartozó közös analóg föld (AGND)), általános célú digitális vonalakkal (DIO 8 db és leválasztott digitális föld (DGND)), audio be (Audio In) és kimenettel (Audio Out), tápegység kimenetekkel (5 V (alapesetben DGND digitális föld tartozik hozzá), ± 15 V (AGND analóg földelés tartozik a tápokhoz)) és digitális multiméterrel (DMM). Látható, hogy mindennel rendelkezik, ami egy egyszerűbb szabályzástechnikai vagy méréstechnikai feladatokhoz szükséges lehet.

1. ábra NI myDAQ eszköze

Mivel a feladatomhoz egy analóg csatorna kellett, így a specifikációból ezeknek a paramétereit emeltem át. Két darab differenciálisan mérő analóg csatornája van, amik 16 biten ábrázolják a mért értéket. A bemenő jelet a \pm 10 V \pm 2 V tartományon belül tudja mérni DC csatolt üzemmódnak megfelelően. Az mintavételezési sebességének elméleti maximuma 200 kS/s (kiloSample/S), ami annyit tesz, hogy hány mintát tud venni másodpercenként. Fontos megjegyezni azonban, hogy a bemenete multiplexált tehát, ha több csatornát használunk akkor ezt a számot el kell osztani a csatornaszámmal esetünkben kettővel. Az eszköz egy aluláteresztő szűrővel van ellátva, ami 400 kHz értékig nem szűri ki a komponenseket.

2. ábra A myDAQ blokk diagramja

A blokk diagramon (2. ábra) látható az eszköz funkcionális elrendezése. Látható, hogy az elrendezés rendelkezik több biztonsági megoldással, például védelem az USB-n keresztül érkező túláram ellen, illetve a DMM rész teljesen le van választva galvanikusan a többi részegységről.

Érdemes megfigyelni, hogy az eszköz 5 V-os kimenete nem rendelkezik semmiféle szabályzással, így direktben az USB 5 V-ját kapja meg, amennyiben a későbbi visszamérések függnek ettől az 5 V-tól biztosan elő fog fordulni valamekkora elektromos zaj a PC-ből USBn keresztül érkező 5 V-ban ugyanis előfordulnak ingadozások (ennek megoldására szoktak alkalmazni regulátorokat).

4.2. MATLAB

A [14] MATLAB a MathWorks által fejlesztett software. Alapvetően numerikus számításokra alkalmazható azonban mára már szinte bármire használható a rengeteg beépített alprogramjának köszönhetően. Alapvetően a feladatom elvégzése során a numerikus számítási képességeire szorítkoztam mivel igyekeztem minél önállóban és minél inkább alapelemekből felépíteni az egész jelfeldolgozást. Azonban a félév vége során alkalmaztam a Signal Analyzer Toolbox-ot. Ez egy jelanalizáló beépített alprogramja a MATLAB-nak.

4.3. Nyomásmérők

A nyomásmérők közül az egyik "gauge" [15] a másik pedig egy differenciális elven mérő átfolyás nyomásmérő eszköz volt. Két fajta gauge szenzort használtunk [16]. Az egy bemenettel rendelkező lényege, hogy egy vékony membrán egyik oldala a külvilág fel van interface-elve, a másik oldala pedig egy beköthető portra van kötve. Az ambiens nyomásra adódó többletnyomás a membrán alakváltozásának köszönhetően egy mérhető jel formájában jelenik meg. A két bemenettel rendelkező esetén annyi a különbség, hogy a másik oldal nem fixen a külvilág felé van kapuzva, hanem a membrán mindkét felére köthetünk tetszőleges pontokat. A differenciális átfolyásmérő-nyomásmérő [17] esetén két bemenet van, és ezen bemenetekre érkező nyomás különbségét képes mérni. A mérési elve, hogy a kétoldalán kialakuló nyomáskülönbség hatására a benne lévő fűtött közeg alakváltozást szenved el az átfolyó közeg hatására, amit két oldalra elhelyezett hőmérő elemek érzékelnek, és a változásból átfolyás/áramlás értéket képesek számolni.

Az általunk használt Gauge nyomásmérő a következő átviteli karakterisztikával rendelkezik.

Kimenet $(Pa) = (V_{ki}-0.1*VCC)/((0.8*VCC/(P_{max}-P_{min}))+P_{min})$

A képletben szereplő paraméterek a következők. A Vki a szenzor által kibocsátott feszültség. A VCC a szenzor tápjára kapcsolat feszültség (jellemzően 5 V érték). A P_{max} az eszköz által érzékelni képes maximális nyomásérték, tehát a mérési tartomány maximuma. A P_{min} a legkisebb érzékelhető nyomásértéke az eszköznek, tehát a mérési tartomány minimuma.

Kimenet (Pa) = $((V_{ki}-0.25V)/3.75V)^{2*500}$

Az általunk használt nyomásmérő eszközök az alábbi táblázatban foglalnak helyet (1.táblázat). Mindegyik eszköz analóg kimenetű, erősített, hőfokkompenzált.

Eszköz	Típus	Mérési tartomány	Kép
Sensirion SDP1108-R	Differenciális- átfolyás/áramlásmérő	0-500 Pa	Hi LO SENSIRION COMMANY COMMENT
Honeywell HSC series	Gauge – többletnyomás Differenciális portok külvilág felé interfészelve többletnyomást mérnek.	0-600 Pa	
Honeywell HSC series	Gauge többletnyomás Egy port a szondázáshoz, egy rés a tok alján a külvilághoz.	0-1 PSI	

1. Táblázat – a mérőeszközök/szenzorok felsorolása

4.4. V-M.O.L.E.

A hőmérsékletet is érdemes egyfajta szenzorfúzióként mérni a nyomásrtékek mellett. A V-M.O.L.E (3. ábra). egy hőprofil készítésre specializált eszköz, képes egyszerre három csatornán mérni különböző hőelemek jeleit és ezeket dokumentálni [18]. Az eszközt másodpercenkénti mintavételezéssel használtuk. Az eszközről az adatokhoz USB interface segítségével lehet hozzáférni.

3. ábra V-M.O.L.E. eszköz

Az eszköz képes -200 °C-tól 1271 °C-ig hőmérsékletet K típusú hőelemekkel (maximum 3 csatornán), a normál működési tartománya -40 °C-tól 85 °C-ig tart. Pontossága ±1°C felbontóképessége pedig 0.056 °C. Az eszköz képes akkumulátorról üzemelni.

5. Kísérletterv

A kísérlet célja az volt, hogy karakterizáljam [19] egy VPS (gőzfázisú forrasztás) kemence hőmérséklet és nyomás görbéit (4. ábra) a folyamat során a fent említett szenzorokból előállított szenzor klaszterrel (5. ábra). Az ábrán látható paramétereket a megfelelő szenzorral lehetett mérni. A gőzhőmérsékletet a V-M.O.L.E. eszközzel, a gőzoszlop hidrosztatikai nyomását a gauge típusú szenzorokkal, a gőzdinamikát pedig a differenciális szenzorral.

4. ábra A rendszerrel megfigyelt jellemzők

A karakterizálást a tanszéken megtalálható egyik VPS kemencén végeztem. A kemence az Asscon Quicky 450 (6. ábra) típus volt [20]. A típus alapvetően laboratóriumi használatra lett szánva tehát prototípus és esetleg kisszériás gyártásra alkalmas. Jellemzően felhasználási módjai: ideális hőprofil meghatározás, kisszériás gyártás, minőség-ellenőrzés a kész termék esetén, alkatrészek javításánál például alkatrészek ki- és beforrasztásnál. A kemence maximum 45 cm x 45 cm méretű és 6 cm vastagságú PCB-n használható.

A kemencében található forrasztási közeg a Galden PFPE volt [5], abból is a 230 °C forrásponttal rendelkező változat. Ez a Solvay cég egyik termékcsaládja, ami teljesen megfelel az RoHS (Restriction of Hazardous Substances) előírásoknak. Ezen felül ez a termékcsalád jól lefedi az összes olyan tipikus hőmérsékletet, aminél a forrasztás folyamata szóba jöhet. Továbbá sokszori felhasználás esetén sem fog elmozdulni az eredeti értékről a forráspontja. Ezen felül a levegőnél nagyobb sűrűségű anyag, így az előfűtési és a fűtési ciklus inert atmoszférában történik. Fontos megjegyezni, hogy nem korrozív és nem reakcióképes az általunk PCB gyártás során használt anyagok tekintetében. Illetve egyáltalán nem tűz- vagy robbanásveszélyes, ami a magas hőmérsékleten történő használathoz elengedhetetlen.

5. ábra A mérési elrendezésben szereplő eszközök és azok összekötésének blokkvázlata. A három szenzor együtt valósítja meg a szenzor klasztert

A folyamat paraméterei közül a fűtőteljesítményt (60-80-100%), illetve a kamra környezettől való izoláltságát változtattuk (zárt és nyitott rendszer). Illetve a nyomásmérők bemeneteit más pontokra kötöttük. A mérési elrendezést az 5. ábra mutatja, a konkrét elrendezés részleteit alább fejtem ki.

A szenzorok bekötéséhez a következő eszközöket kellett bevezetnünk a VPS kamrába. Szabvány K-típusú hőelem, ez ±1°C pontossággal képes hőmérsékletet mérni, illetve PFA borítással rendelkezik. Ezen felül bevezettünk a kamrába két darab szilikon csövet. Mindkettő 1.5 m hosszúságú és 2 mm átmérőjű volt. Ezek a szilikon csövek csatlakoztak a nyomásmérő szenzorok megfelelő portjaira.

Zárt és nyitott kamra esetén differenciális átfolyás és gauge szenzorokat alkalmaztam, mégpedig kétféleképpen: azon esetekben amikor 2 bemenetű szenzorunk volt a negatív port nem volt bekötve, tehát az atmoszféra nyomása volt rajta. Ezek célja az volt, hogy megtudjuk azt, hogy a zártságot tudjuk-e a mérni a megvalósított szenzor klaszterrel. A következő eset az volt amikor mindkét bemenetet a kamrán belülre helyeztem el. A "pozitív" bemenet került a PCB tartó szintjére, a "negatív" bemenet pedig a kamra tetejére, arra a szintre, ahol megáll a mintatartó a behelyezési lépéshez. Ennek célja, hogy ezen megoldással kizárólag a Galden által keltett nyomásgörbét és a kamra aljában kialakult többletnyomást tudjuk figyelni a kamra felső szekciójához képest. Azon esetekben amikor a külvilágra van kapcsolva a nyomásmérő a Galden által összenyomott levegő többletnyomása hozzáadódhat a méréshez, bár ez nagyságrenddel kisebb, mint a Galden többletnyomása.

A táp és föld jeleket, pedig egy külső szabályozható tápegységgel állítottuk elő. A megvalósított szenzor klaszter kimeneti jeleit az adatgyűjtő eszközünkbe kötöttük be. Mivel az adatgyűjtő differenciális módon működik, így a megfelelő csatorna pozitív bemenetére a szenzor kimenetét kötöttük. Az AGND lábat pedig közösítettük a két csatorna negatív bemenetével, illetve a tápegység földjével.

A hatodik ábra külön is bemutatja az Asscon VPS kemencét, felülről nyitott mintatartóval.

6. ábra Asscon Quicky 450 munkaállomás, tetején nyitott ajtóval.

6. Elvégzett feladatok, eredmények

6.1. Mérőprogram megtervezése LabView környezetben

Először a VI-t kellet megalkotnom a LabView rendszerben, amely képes volt a szenzorok jelének fogadására. A mérőprogramomnak olyannak kellett lennie, hogy a mintavételezési frekvenciát tetszőlegesen megváltoztathassuk anélkül, hogy a VI-t meg kelljen állítani vagy, hogy a mérést újra kellene indítani és az, hogy helyezzek el egy kirajzoló felületet, hogy mérés közben is megfigyelhető legyen a rendszer állapota. További kitétel pedig az volt, hogy minél alapvetőbb funkciókat alkalmazzak, hogy akár egy harmadik féltől származó hardware-el is használható legyen a rendszer.

7. ábra A készített VI kapcsolási rajza és felhasználói interfésze.

A feladatomat a LabView 2020-as verziójában oldottam meg. A következőképpen (7. ábra). A program írásakor a könnyű olvashatóságot tekintettem alapelvnek azon felül, hogy tudja a szenzorok analóg kimenetével kapcsolatos elvárásokat is teljesíteni.

A program működése pedig a következő. Első lépésként ahhoz, hogy be tudjunk olvasni létre kell hozni egy taskot (ez egy virtuális csatorna ebben az esetben) a használt fizikai csatornák értelmezéséhez és ezeket fel kell paraméterezni a DAQmx Create Channel használatával. A mi esetünkben egy feszültségmérőt paraméterezünk fel, ami -10-10 V közötti értékeket képes feldolgozni. Ezután meg kell adnunk, hogy mit használjon órajelgenerátornak a DAQmx Timing alkalmazásával és azt, hogy milyen üzemmódban mintavételezzen (folytonos, egy darab, előre megadott elemszámig). Mivel nekem folytonos mintavételezés kellett, így a continuous samples üzemmódot állítottam be. Illetve az egyszerűség kedvéért az eszköz belső órajelét alkalmaztam. A task ezután használható a szükséges I/O műveletekhez, így elindítható, amit a DAQmx Start Task végez el. Az itt található ciklus felel azért, hogy az eszköz folyamatosan olvassa a kijelölt bemenetet a DAQmx Read-el. Látható, hogy analóg jelformát vár 1 csatornáról n darabszámig. Ennek a tasknak van egy egyéb kimenete (double típusú), amin megadja a mért értéket. Ezeket az adatokat használtam az interfészen kijelzésre, illetve ezeket mentettem ki data.lvm néven egy szöveg fájlba. Ha a ciklusból kijut a taskot leállítom amire DAQmx Stop Task-ot használtam és letörlöm teljesen a taskot DAQmx Clear Task alkalmazásával. Erre azért van szükség mert ezzel tudom garantálni azt, hogy minden úgy működik, ahogy a specifikáció kéri. Látható egy kis logikai "áramkör" az olvasási ciklusban. Ennek kettős funkciója van, egyrészt az, hogy a program leálljon, ha a stop gombra kattintunk az interfészen, másrészt így valósítottam meg a frekvencia állítást. Stop esetén a VI leáll. Set Frequency gomb megnyomásakor kilép az olvasási ciklusból, törli a taskot és létrehozza újra

az interfészen szövegdobozba beírt mintavételezési sebességgel. Ez a folyamat természetesen időbe telik nagyságrendileg 0.6 másodperc szükséges hozzá, ami még mindig jobb, mintha le kellene állítani a programot és újra elindítani.

6.2. Adatgyűjtés

A mérés célja az volt, hogy dokumentáljuk a VPS kemence nyomásának változását az időben a folyamat során. Ehhez természetesen csatlakoztatni kellett a feldolgozó egységet a nyomásmérőkhöz. A gauge egy kicsi méretű lemezre volt forrasztva, a differenciális egy kompakt egység volt. A következő összeköttetéseket kellett megvalósítani kis kábelek segítségével. Az eszközök a myDAQ-tól kapta a tápfeszültségét az 5V-os kimenetről. Az eszközök kimenetét az analóg 0+ (gauge) és 1+ (differenciális), a földjeit az analóg 0-(gauge) 1- (differenciális) bemenetre kötöttük. Célszerű ezután az eszközöket közösen földelni ezért a 0-,1- bemeneteket összekötöttem az AGND csatlakozással. A különböző mérési módokhoz találhatók szöveges, kapcsolási rajzokkal is ellátott leírások a myDAQ kézikönyvében.

A korábbi féléves tapasztalatok alapján az ideális mintavételi frekvencia 1 KS/s/csatorna volt, így a méréseket ezzel a frekvenciával végeztük mindkét csatornán. Ez jelentősen túlmintavételezi a perc-nagyságrendben zajló folyamatokat, ezzel az eddigieknél részletesebb eredményeket is kaphatunk a nyomásviszonyokat tekintve.

6.3. Adatfeldolgozás MATLAB alkalmazásával

Az adatfeldolgozás során több szempontból is megvizsgáltam a mérések eredményeit. Elsőként a két nyomásmérő elektromos jeleit hasonlítottam össze egymással adott fűtőteljesítmény esetén.

8. ábra Nyomásmérők elektromos jelei (többletnyomás/gauge-átfolyás/diff) 60%-os fűtőteljesítmény esetén zárt kamrában.

9. ábra Nyomásmérők elektromos jelei (többletnyomás-átfolyás) 80%-os fűtőteljesítmény esetén zárt kamrában.

10. ábra Nyomásmérők elektromos jelei (többletnyomás-átfolyás) 100%-os fűtőteljesítmény esetén zárt kamrában.

Jól látható a (8-9-10. ábra) ábrák alapján, hogy maga a folyamat jóval rövidebb ideig tartott nagyobb teljesítmény alkalmazásával. Továbbá az is, hogy a nyomásmérők jóval nagyobb jeleket adtak ki a teljesítmény emelésével, ami nagyobb nyomásértékeket is jelent. Látható továbbá az ábrákon, hogy a differenciális nyomásmérő sokkal dinamikusabb viselkedést mutatott, mint a gauge szenzor.

Ezután megnéztem, hogy ezek az elektromos jelek pontosan mekkora nyomásértéket jelentenek.

11. ábra Nyomásmérők által mért nyomás (többletnyomás-átfolyás) 60%-os fűtőteljesítmény esetén zárt kamrában.

12. ábra Nyomásmérők által mért nyomás (többletnyomás-átfolyás) 80%-os fűtőteljesítmény esetén zárt kamrában.

13. ábra Nyomásmérők által mért nyomás (többletnyomás-átfolyás) 100%-os fűtőteljesítmény esetén zárt kamrában.

Jól látható az (11-12-13. ábra) ábrákon, hogy a nyomásgörbék komoly emelkedést mutatnak a teljesítmény növelésével. Továbbá látható az is, hogy a jelleggörbék alakja hasonló, habár a mért értékek különböznek egymástól a nyomásmérők működése miatt. Látható, hogy a differenciális nyomásmérő által mért értékek néhány Pa nagyságrendűek, míg a gauge esetén ugyan ezek az értékek néhány tíz Pa nagyságrendűek. Gyors számításokat követően arra jutottam, hogy a differenciális nyomásmérő nem adja egy az egyben vissza a többletnyomás differenciálját, inkább csak karakterében jellemzi a dinamikus folyamatokat.

Több információ nyerhető ki azáltal, ha a nyomásértékek mellett a hőmérsékleti görbéket is ábrázoljuk. Így a következő lépés az volt, hogy az áltagolt nyomásértékeket ábrázoljam egy ábrán (14-15-16. ábra) a hőmérséklet változásával együtt.

14. ábra Nyomás- és hőmérsékleti görbék 60%-os fűtőteljesítmény esetén.

15. ábra Nyomás- és hőmérsékleti görbék 80%-os fűtőteljesítmény esetén.

16. ábra Nyomás- és hőmérsékleti görbék 100%-os fűtőteljesítmény esetén.

Jól látható, hogy a hőmérséklet egyre meredekebb növekedésével a nyomás is egyre meredekebben növekszik.

A korábbi eredményeket összevetettem a frissen mért eredményekkel és a következőkre jutottam.

Amint a fenti fúziós ábrák is mutatják, a hőmérsékleti adatok teljesen más jellegűek, mint az áramlási vagy a többletnyomás-érzékelő adatai. A hőmérséklet egy ugrásválasz szerű telítődést mutat exponenciális jelleggel, de csak a hőmérséklet szempontjából. Figyelemre méltó, hogy a kemence mintatartó merülését és kiemelését éles csúcsok kísérik. Mindkét nyomásjel-csúcs az első perc körül később érkezik, mint a hőmérséklet-csúcs, ami az egész mérési folyamat kezdetét jelenti – ez a mintatartó mozgatás jellemzője, a nyomásmérőkkel ezt is identifikálni lehet. Azt is meg kell jegyezni, hogy a szondáknak a munkaterületbe történő behelyezésekor enyhe előmelegedés következik be a mintatartó tényleges mozgása előtt. Az áramlásérzékelő jele a gőzoszlop emelkedésének növekvő dinamikáját mutatja, majd ennek a folyamatnak a lassulását 8-10 perc körül. Ahogy a hidrosztatikai (többletnyomás) értelemben vett gauge értékek elérik az állandósult állapotot, a dinamika is nyugalmi szintre esik vissza. Ahogy fentebb is írtam, az áramlásjel (a dinamika időbeli változása) nem tekinthető közvetlenül a mérőeszköz-alapú hidrosztatikai viszonyok deriváltjának. A nyomáscsúcsok egyaránt megjelennek a telítődés/nyugalmi szint beállása után - éles változások figyelhetők meg 700s körül, ami a nyomtatott áramköri mintatartónak a fűtés után a rakodótérig történő felmozdítását mutatja. Érdekes látni, hogy a hőmérsékletben törés következik be, ami összhangban van a mérőnyomás-csökkenéssel. A hőmérséklet és a nyomás törése közötti ~10s különbség, valamint az áramlási jel intenzív pozitív változása rávilágít a rendszer vezérlésének fűtési késleltetésére, ami ennyire volt beállítva a kemencén (heat delay: 10s).

A teljesítmény 80 és 100 %-ra történő növelése (amint az a fenti ábrasoron látható) felgyorsítja a folyamatot. A hőmérséklet nem haladhatja meg a ~230 °C-ot, míg a maximumokat a hőátadó közeg forráspontja korlátozza. Másrészt az áramlási jel (a dinamika) gyorsabb telítődést és jelentősebb csúcsokat is mutat.

Összességében ugyanazok a jellemzők maradnak meg az esetek összességében, egy csúcsot mutatva az elején, majd növekvő áramlást (a telített gőzoszlop felépülését, majd a folyamat végén egy szünetet láthatunk a teljesítmény növelésénél.

Tovább vizsgáltam a differenciális nyomásmérők jeleit egymással egy közös ábrán (17. ábra). Látható, hogy a teljesítmény növekedésével növekszik a jelek csúcsértéke és meredeksége. Továbbá ahogy az már korábban említésre került a folyamathoz szükséges idő lecsökken.

17. ábra Differenciális átfolyás-nyomásmérők feszültségjelei a teljesítmény függésében.

Mivel ez az ábra zajjal terhelt, így átlagolást hajtottam végre a jeleken. Amiknek az eredménye a (18.ábra) lentebb látható. Ezen ábra segítségével ugyanazok a következtetések vonhatóak le nagyobb bizonyossággal.

18. ábra Differenciális átfolyás-nyomásmérők feszültségjelei a teljesítmény függésében. Miután kiértékeltem a zárt kamrákat, a nyitott kamrák következtek.

19. ábra Nyomásmérők által mért nyomás 60%-os fűtőteljesítmény esetén nyitott kamrában.

Látható (19-20. ábra), hogy többletnyomás szenzor kimeneti jele zajjal terhelt (aminek karaktere hasonló, de szűréssel együtt sem igazán használható). A differenciális átfolyás szenzor jele egy két kiugró értéktől eltekintve konstans nulla érték körül mozog. A folyamat átfutási ideje változott, ami 19-20 ábra közt eltérő a betáplált kemence teljesítmény függvényében. Az átfolyásmérőt korábban nem karakterizálták ilyen szempontól, úgyhogy összehasonlítottam a zárt és nyitott kamra differenciális átfolyás-nyomásértékeit.

21. ábra 60%-os teljesítmény esetén nyitott és zárt kamrában mérhető átfolyás-nyomásgörbék.

22. ábra 100%-os teljesítmény esetén nyitott és zárt kamrában mérhető átfolyás-nyomásgörbék.

Az ábrákból látható (21-22. ábra), hogy a differenciális nyomásmérő jóval érzékenyebb zárt esetben a nyomásváltozásokra. Ebből kifolyólag a differenciális nyomásszenzorok alkalmazásával meg lehet állapítani, hogy a kemence hermetikusan zárt állapotban van vagy sem, ami remek munkavédelmi alkalmazása lehet ezen szenzoroknak a későbbiekben.

Korábban is láttuk a tanszéki kísérletek során, hogy a gőzfázisú forrasztókemencék működési biztonsági és egészségvédelmi (OSH) szempontjait a tartály nyitott vagy zárt állapotát figyelembe véve a gauge-típusú érzékelők képesek feltárni. A fentiek alapján az átfolyás-áramlásérzékelők is "kiszagolhatják" a kemence szivárgását is, ha a fedőfedélnél nem megfelelően záródik vagy sérült a szigetelés. Ezek az eredmények tovább bővítik az áramlásérzékelők alkalmazási lehetőségeit.

Megjegyzendő, hogy a különböző Y tengelyek különböző tartományokra vannak beállítva, de egyértelmű, hogy a különböző állapotok (nyitott-zárt) jelentősen eltérő jelformákkal rendelkeznek, amelyek abszolút értékei különböző nagyságrendbe esnek, így feltételezhető, hogy az áramlásérzékelő képes bemutatni a kemence szivárgó állapotát – ehhez pedig elég egy threshold vizsgálat, nézve, hogy átlépünk-e egy bizonyos jelszintet.

Ezután megvizsgáltam a mért jeleket frekvencia tartományban (23.-24. ábra).

23. ábra Differenciális átfolyásmérő jelének FFT-je zárt kamrában.

24. ábra Differenciális Nyomásmérő jelének FFT-je nyitott kamrában.

Látható, hogy nyitott esetben jóval kisebbek a jelszintek, továbbá, hogy jóval egyenletesebben oszlik el a spektrum. Zárt esetben viszont látható, hogy a teljesítmény növelésével az alacsonyfrekvenciás tagok egyre számottevőbbé válnak – ez a működés rendes formáját jelzi. Feltételezhető, hogy a nyitott esetben lezuhanó alapjel eltűnik az alsó

frekvenciakomponensek közül – adott esetben tehát az FFT vizsgálat is mutathatja a kemence állapotát, ha nem threshold vizsgálatot akarunk végezni.

A következőkben megvizsgáltam, hogyan viselkednek a szenzorok abban az esetben, ha mindkét mérőpontjuk a kamra belsejébe csatlakozik. Ezen mérések elkészítésénél csupán alacsonyfrekvenciás mintavételezést alkalmaztam (4 S/s), mivel itt csupán az időtartományban történő vizsgálatok voltak relevánsak.

A mérések alapján látható, hogy mindkét szenzorral karakteres jeleket kapunk, de a zaj jóval nagyobb, mint a másik esetben, az értelmezhető karakterisztikát már-már torzítja (25.-26. ábra). A 100%-os esetben látható, hogy a tálca mozgása ismét nagyobb jeleket eredményezett, mint a mért folyamatunk. A másik módszerrel értelmezés és fúzió szempontjából tisztább eredményeket kapunk, javasolt tehát a kétkapus szenzorok második portjának a külvilág felé történő interface-elése.

25. ábra 100%-os teljesítmény esetén zárt kamrában mérhető átfolyás-nyomásgörbék abban az esetben, ha mindkét port be van vezetve a kamrába.

26. ábra 100%-os teljesítmény esetén zárt kamrában mérhető gauge nyomásgörbék abban az esetben, ha mindkét port be van vezetve a kamrába.

7. Összefoglalás

A TDK-ra készített munkám során megismerkedtem a LabView-myDAQ és MATLAB által nyújtott lehetőségekkel jelfeldolgozás tekintetében. Továbbá rálátást nyertem a különböző szenzorok együttműködésével létrehozható rendszerekkel kapcsolatban, és alkalmaztam a tudást elektronikai gyártásban jellemző reflow forrasztóállomásnál, amely jellegéből adódóan igényelte a többszenzoros karakterizáció igényét.

A mérések alapján kijelenthető, hogy mindhárom szenzortípusnak meg van a maga szerepe a VPS kemence paramétereinek megfigyelésében. A következő pontokban szedem össze a konklúziókat.

A három különböző komponens szenzorfúziója eddig nem látott részletességgel teszi lehetővé a hőszintű VPS-módszer különböző lépéseinek validálását.

Az újonnan bevezetett differenciális áramlás/átfolyás érzékelő visszajelzést adhat a fűtési teljesítmény változásáról. Minél nagyobb a teljesítmény, annál gyorsabb a fűtés és annál nagyobbak a dinamikus jelcsúcsok. Ez a szokásos hőmérséklet-visszacsatolás esetében nem állapítható meg. Ezt eddig a bemutatott gőzfázisú forrasztóállomás működési alapelvével párhuzamban még nem mutatta be senki az irodalomban, tehát egy fontos új eredménynek tartom a megállapításokat.

Az áramlásérzékelők képesek érzékelni az állítólag zárt, de munkavédelmi szempontból aggályos tartály szivárgási állapotát. Ez megerősíti a korábban publikált gauge-alkalmazás kibővítésének lehetőségét ezzel a szenzorral is.

A jövőben a nyomtatott áramköri szerelvény terhelések széles skáláját vizsgáljuk meg a gauge többletnyomásmérő és az áramlásérzékelő-visszacsatolás szempontjából. A pontosabb adatgyűjtés érdekében újonnan bevezetett és érzékenyebb VI további finomítása is a jövő feladatát képezi.

A részben a munkámból készült konferenciacikket elfogadták a szingapúri 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC) konferencián [17].

8. Hivatkozások

[1] Acciani, G.;Brunetti, G.;Fornarell, G. "Application of Neural Networks in Optical Inspection and Classification of Solder Joints in Surface Mount Technology" IEEE Trans.Ind.Inf 2006,2, 200-209

[2] Eftychiou, M.A; Bergman, T.L.; Masada, G.Y. "A Detailed Thermal Model of the Infrared Reflow Soldering Process" J. Electron. Packag. 1993, 115, 55

[3] Illés, B; Harsányi, G. "Investigating direction Characteristics of the heat transfer coefficient in forced convection felow oven" Exp. Therm. Fluid Sci. 2009,33, 642-650

[4] Suihkonen, D. "Vapour-phase for lead-free reflow" Glob. SMT Packag. 2007, 7, 30-32

[5] "*Galden LS & HS Vapor Phase Soldering Fluids*", Technical Data Sheet Available online: <u>www.solvay.cn/zh/binaries/Galden-LS-HS-Vapor-Phase-Fluids_EN-220537.pdf</u> (accessed on 12 December 2020)

[6] Zabel, C. "Condensation Reflow Soldering – The Soldering process with Solutions for Future Technological demands" ASSCON Systemtechnik-Elektronik GmbH: Königsbrunn, Germany, 2006

[7] Leicht, H, Thumm, A. "Today's Vapor Phase Soldering-an Optimized Reflow Technology for LeadFreeSoldering"SMATIConference2008Availableonline:https://smtnet.com/library/files/upload/Vapor-Phase-Soldering.pdf(accesed on 14 December 2020)

[8] Geczy, A; Illes, B, Peter, Z.S.; Illyefalvi-Vitez, Z.S. "*Characterization of Vapour Phase Soldering Process Zone with Pressure Measurements*" Solder Surf. Mt. Technol. 2013, 25, 99-106

[9] Wikipedia: *Analog-to-digital converter* <u>https://en.wikipedia.org/wiki/Analog-to-digital_converter</u> (revision: 7 October 2021, at 15.28 (UTC)

[10] Bogdan Mihai "Sampling rate and aliasing on virtual laboratory" Journal of Electronics Engineering October 2009, 121-124

[11] Wikipedia: *Fourier transform* https://en.wikipedia.org/wiki/Fourier_transform (revision: 8 October 2021, at 12:27 (UTC)

[12] "*What Is LabVIEW"* <u>https://www.ni.com/hu-hu/shop/labview.html</u> (accessed on 28 October, 2021).

[13] "*What Is myDAQ?*" <u>https://www.ni.com/hu-hu/shop/engineering-education/portable-student-devices/mydaq/what-is-mydaq.html</u> (accessed on 28 October, 2021).

[14] "What Is MATLAB" https://www.mathworks.com/discovery/what-is-matlab.html

(accessed on 28 October, 2021).

- [15] Kyle Horsman "What's the Difference Between Gauge, Absolute, Differential, and Sealed Pressure?"<u>https://www.machinedesign.com/mechanical-motion-</u> systems/pneumatics/article/21834115/whats-the-difference-between-gauge-absolute-differentialand-sealed-pressure Dec. 12, 2014
- [16] "TruStability Board Mount Pressure Sensors", Technical Datasheet. Available online:<u>https://sensing.honeywell.com/honeywell-sensing-trustability-hsc-series-high-accuracyboard-mount-pressure-sensors-50099148-a-en.pdf</u> (accessed on 12 December, 2020).
- [17] "*Datasheet SDP1108-R*", Technical Datasheet. Available online:<u>https://sensing.honeywell.com/honeywell-sensing-trustability-hsc-series-high-accuracyboard-mount-pressure-sensors-50099148-a-en.pdf</u> (accessed on 28 October, 2021).

[18] "V.-M.O.L.E"., Technical Datasheet, Available online:

https://www.ecd.com/portals/5/products/vmole/V-MOLE-Datasheet.pdf (accessed on 26 October, 2021)

[19] Attila Géczy, Mohamed Amine Alaya, Egon Rozs, Dániel Straubinger, Balázs Illés "*Flow and Gauge Sensor Fusion in Vapour Phase Soldering Ovens for Optimized Process Control*" 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC)
[20] ASSCON Quicky 450 VPS, Technical Datasheet. Available online https://www.ascon.de/e/pages/products/vp450.html (accessed on 12 December 2020).

9. Ábrajegyzék

1. ábra NI myDAQ eszköze	.6
2. ábra A myDAQ blokk diagramja	.7
3. ábra V-M.O.L.E. eszköz1	0
4. ábra A rendszerrel megfigyelt jellemzők1	0
5. ábra A mérési elrendezésben szereplő eszközök és azok összekötésének blokkvázlata. A három	
szenzor együtt valósítja meg a szenzor klasztert1	1
6. ábra Asscon Quicky 450 munkaállomás, tetején nyitott ajtóval1	.3
7. ábra A készített VI kapcsolási rajza és felhasználói interfésze1	4
8. ábra Nyomásmérők elektromos jelei (többletnyomás/gauge-átfolyás/diff) 60%-os fűtőteljesítmény	
esetén zárt kamrában1	.6
9. ábra Nyomásmérők elektromos jelei (többletnyomás-átfolyás) 80%-os fűtőteljesítmény esetén zárt	5
kamrában1	.6
10. ábra Nyomásmérők elektromos jelei (többletnyomás-átfolyás) 100%-os fűtőteljesítmény esetén	
zárt kamrában 1	.7
11. ábra Nyomásmérők által mért nyomás (többletnyomás-átfolyás) 60%-os fűtőteljesítmény esetén	
zárt kamrában 1	.8
12. ábra Nyomásmérők által mért nyomás (többletnyomás-átfolyás) 80%-os fűtőteljesítmény esetén	
zárt kamrában 1	.8
13. ábra Nyomásmérők által mért nyomás (többletnyomás-átfolyás) 100%-os fűtőteljesítmény esetén	
zárt kamrában 1	.9
14. ábra Nyomás- és hőmérsékleti görbék 60%-os fűtőteljesítmény esetén	20
15. ábra Nyomás- és hőmérsékleti görbék 80%-os fűtőteljesítmény esetén	20
16. ábra Nyomás- és hőmérsékleti görbék 100%-os fűtőteljesítmény esetén	21
17. ábra Differenciális átfolyás-nyomásmérők feszültségjelei a teljesítmény függésében	22
18. ábra Differenciális átfolyás-nyomásmérők feszültségjelei a teljesítmény függésében	23
19. ábra Nyomásmérők által mért nyomás 60%-os fűtőteljesítmény esetén nyitott kamrában	23
20. ábra Nyomásmérők által mért nyomás 100%-os fűtőteljesítmény esetén nyitott kamrában	24
21. ábra 60%-os teljesítmény esetén nyitott és zárt kamrában mérhető átfolyás-nyomásgörbék	24
22. ábra 100%-os teljesítmény esetén nyitott és zárt kamrában mérhető átfolyás-nyomásgörbék2	25
23. ábra Differenciális átfolyásmérő jelének FFT-je zárt kamrában2	26
24. ábra Differenciális Nyomásmérő jelének FFT-je nyitott kamrában2	26
25. ábra 100%-os teljesítmény esetén zárt kamrában mérhető átfolyás-nyomásgörbék abban az	
esetben, ha mindkét port be van vezetve a kamrába2	27

26. ábra 100%-os teljesítmény esetén zárt kamrában mérhető gauge nyomásgörbék abban az esetbe	en,
ha mindkét port be van vezetve a kamrába.	28