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Abstract

An ideal motor movement configuration is being developed for a special 3D laser

scanner which uses active triangulation. The result of a scanning process is a point

cloud, which may have missing parts. These can appear for example where a concave

part of the scanned object is hidden by some other part of the object itself. These

missing parts can be detected, and the scanner can be reconfigured for the following

scan.

In order to achieve a better scan, the transformations of the scanner’s motors

will be adjusted in such a way that these missing parts will be seen from a better

angle. These transformations can be calculated from the results of the previous

scans. The point cloud is analyzed, for example, normal vectors are calculated for

the points, and the transformations for the following scan are calculated. These

transformations are created so that it is the most likely to scan every part of the

object based on the previously scanned point cloud.

The calculations also contain a list of points that must be visible from each

scanned point (for example the camera and the laser) and it also contains an ideal

point that is used for optimization purposes.

This paper contains the details of the transformation calculations, a simulator

that is created for testing the calculations in 2D, and numerical and visual repre-

sentation of the results with this simulator.

This method will be used for automated scans, where previous scans of the same

object will make it possible for the scanner to create a better and better scanning

configuration.
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Hungarian abstract

Görbületkövető 3D szkennelési módszer és ennek 2D szimulációja

Egy ideális motormozgást konfiguráló modul került kifejlesztésre egy speciális

3D lézer szkennerhez, mely akt́ıv triangulációval működik. Egy szkennelési folyamat

eredménye egy pontfelhő, melynek lehetnek hiányos részei. Ezek például a szkennelt

objektum olyan konkáv részeinél fodrulhatnak elő, ahol a tárgy egyik része kitakarja

egy másik részét. Ezeket a hiányzó részeket detektálni lehet, majd a szkennert újra

lehet konfigurálni egy következő szkenneléshez.

Egy jobb szkennelés eléréséhez a szkenner motorjainak mozgását előálĺıtó tran-

szformációk úgy vannak tervezve, hogy a hiányzó részek jobb szögből látszódjanak.

Az új transzformációkat a korábbi szkennelések eredményeiből lehet kiszámolni. A

pontfelhő részletesen elemzésre kerül, például normálvektorokat kell számı́tani, és

ezek seǵıtségével a következő transzformáció kiszámı́thtó. Ezek a transzformációk

úgy vannak kialaḱıtva, hogy a korábbi szkennelések alapján a legvalósźınűbb legyen,

hogy a szkennelt tárgy minden része látszódni fog.

A számı́tások tartalmaznak továbbá olyan pontokat, melyeknek mindenképpen

látszódni kell az éppen szkennelt pontból (ilyen például a kamera és a lézer), valamint

használ egy ideális pontot, ami az optimalizáció alapját képzi.

Részletesen bemutatásra kerülnek a transzformációk kiszámı́tásának lépései, egy

2D szimulátor, mely a számı́tások ellenőrzéséhez, megjeleńıtéséhez és teszteléshez

készült, valamint az eredmények numerikus és vizuális reprezentálása.

A módszer automatikus szkennelésekhez lesz használva, ahol az adott objektum

korábbi szkennelései alapján egyre jobb és jobb szkennelést fog tudni késźıteni a

szkenner.
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1 Introduction

1.1 Context

A 3D scanner [7] is being developed for which several software modules are needed.

Different parts are created by different members of the team, which are integrated

into a common project. The scanner creates a point cloud from each scan – as a

result of several steps of the scanning pipeline. After the analyzation of this point

cloud, further scans may be needed (because for example missing parts). Usually, it

can be said that a general transformation setup (for example a 360° rotation) will

provide an approximation of the geometry of the object, but there may be much

better ways to scan it. In this paper, the steps of this optimization process are

described in detail.

1.2 Problem statement

This scanner now has only manual transformation setup interface, where a fixed

rotation and translation can be provided. The scanner will perform these trans-

formations and create images with a given frequency. These fixed transformations

and this frequency cannot adapt to the surface of the scanned object. This will

usually result in such point clouds where the points are unevenly distributed along

the scanned surface.

The goal is to create a scanning method that can adapt to the geometry of the

scanned object and that can be used by the scanner to create a better scan.

It will also be a task to implement some changes to the scanner software so that

it can use this method but this is not included in this paper.

1.3 Case study

A simple 360° pure rotational transformation is used as a general scanning approach.

Usually, a few hundred images are created during a scan like this. This was the case

when the scan of Figure 1 was created. In this case, 360 images were created, so

there is an image from every whole angle of the object.

The object was placed on the scanner so that its vertical centre was approx-

imately at the centre of rotation. A triangulation and normal vector calculation

was performed on the point cloud and as a result, a shaded model can be seen in

Figure 1. The areas and perimeters of the triangles are also calculated from this
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Figure 1: Triangle mesh of a 360° pure rotational scan

triangulation for further analyzation. The triangles with too big perimeter are in-

adequate since there is not enough information from that region. These parts are

highlighted in Figure 1 and Figure 2. The triangle mesh in Figure 1 contains about

120,000 triangles and their circumferences are represented by Figure 2.
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Figure 2: Distribution of the triangle circumferences of the triangle mesh in

Figure 1 on a logarithmic scale

So as it was expected, some parts could not be scanned properly with this setup.

It can be seen from Figure 2 that most of the triangles are accepted based on their

circumferences (98.5%), but there are a few that are too big.
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2 Background

2.1 Scanner hardware

The laser scanner developed to this task has two degrees of freedom. A rotational one

around a vertical axis and a translational one about a horizontal axis. Combinations

of the possible transformations provide a good opportunity to scan a quite wide range

of objects (of course heavily concave parts cannot be scanned). The hardware, which

can be seen in Figure 3, has six very important components: the controller, the laser,

the camera, the two step motors and the turntable.

Figure 3: The 3D scanner with the laser, the camera, the two motors, the

controller and the turntable

2.2 Scanning workflow

First of all, the scanner is calibrated with a checkerboard at a fixed position on

the turntable, and a homography matrix is generated from the image of the checker-

board. After this point, the scanner always knows the exact position of the turntable

and the camera, since the camera is fixed, and the movement of the turntable is con-

trolled by the step motors, which are controlled by the computer.

The details of a scanning process are calculated on the computer, then these are

sent to the controller. The two step motors of the scanner do the transformations:

rotate and translate the turntable, on which the scanned object is placed, in front

of the camera and the laser. The laser emits a vertical line onto the scanned object,

then the controller triggers the camera to take a picture of the object and finally the
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camera sends the image to the computer. The computer then makes further steps

like image processing, line tracking, tessellation, mesh generation, error correction

and finally the scanned point cloud is visually displayed.

2.3 Data structure handled by the scanner

As it was mentioned, the scanning pipeline consists of several steps. At a certain

point, the line tracker module provides a list of consecutive points from a single

image of the laser beam illuminated object and these are going to be stored.

The smallest data structure element is a point. The consecutive list of points

provided by the line tracker is called a stripe. The result of a scanning transforma-

tion, which can be translational and rotational at the same time, consists of several

stripes. The group of these stripes is called a batch. A scanning process consists of

several transformations and the group of batches (created by the transformations)

form a cloud.

This data structure is created by the line tracker and it is provided stripe by

stripe when they are ready.

(a) The whole bear (b) The left eye (c) The pupil

Figure 4: A bear with a camera and its left eye zoomed

These stripes can be processed one by one with the mesh generator. It is also

important that the points of these stripes are already at the correct position, which

is calculated previously from the homography matrix, so the stripes do not need to

be moved anywhere.

Finally, there can be more scanned objects in the scene each represented by a

cloud, these are called a project.
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3 Solution requirements

Given the hardware with one rotational and one translational degree of freedom, the

laser, and the camera. It is also given that the hardware can only perform these two

transformations and the position of the laser and the camera is basically fixed but

they may be changed in the future. The setup and the results of the previous scans

are stored, and these are accessible later as well, so they can be used for planning

the next scan.

A scanning plan is needed for the scanner to perform its next scan. Considering

the most general case, this is an ordered list in which all element contains a trans-

lational and a rotational data. An example of such transformation plan can be seen

in Table 1.

Index Rotation (degree) Translation (mm)

1 0 0

2 36 10

3 72 20

4 108 30

5 144 40

6 180 50

7 216 40

8 252 30

9 288 20

10 324 10

Table 1: An example scanning plan

The execution of the scanning plan is the task of the scanner. First, it must

translate and rotate its turntable to the required position then trigger the camera to

take a picture. Then the camera sends the captured image to the computer where

the image processing is done. When the line tracking is done, they form a stripe,

and this is added to the current batch of the point cloud. Finally, this must be

repeated for all entries of the scanning plan. The pseudocode of this process is given

by Algorithm 1. It depends on the software of the controller how fast the motors

are moved. The only requirement is to reach all the desired positions.

A further requirement is that the created stripes must be equally distributed

around the scanned object as far as possible. It is not a good solution to have all

the stripes on one side and nothing on the other side of the scanned object. This is

of course not possible at the first scanning since the scanner does not know anything
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about the scanned object, but later all the previous scans of the object are available.

Furthermore, sometimes different parts of an object are desired to be scanned in a

more detailed way, which means that such requirements can be additional parame-

ters of the scanning plan creation process. Such detail requirements can be given as

a function of the position on the perimeter.

Algorithm 1 Execution of a transformation plan

1: Input: scanningP lan contains the transformations to execute

2: Output: batch is the structure that contains the stripes

3: for all transformation ∈ scanningP lan do

4: turnTable.setRotation(transformation.rotation)

5: turnTable.setTranslation(transformation.translation)

6: image = camera.createImage()

7: stripe = linetracker.track(image)

8: batch.add(stripe)

9: end for

Furthermore, the first few iterations might not result in a perfect scan either, so

this iterative method must be continued. It is very important to create a module for

analyzing these results and evaluating the stopping criteria based on some previously

provided parameters. These parameters can be for example:

� the maximum number of iterations that can be performed

� the maximum number of stripes that can be created

� the maximum distance between two stripes

� the maximum available time for a scanning process (a detailed scanning process

may last longer)
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4 Reducing the problem

Assuming that there are some previously scanned batches of the object (this can be

a simple 360° rotational scan), the parts to be repaired can be calculated. This will

typically be a point cloud which can be divided into connected groups. These are

called error groups. This basically means, that certain parts of the object should be

repaired, and these parts are distinguished from each other.

Visually, an error group means a piece of the surface that should be repaired,

and this can be described by a list of points [12]. As an example, the error groups

of a scanned object can be seen in Figure 5a.

The point cloud now means the group of those points that describe one error

group. This may be the whole point cloud if there aren’t any distinguished error

groups. To repair this point cloud, transformations are needed for the scanner,

with which it can scan the object again. To calculate these transformations, the

analyzation of this point cloud is needed.

4.1 Perpendicular projection to the horizontal plane

(a) The whole object

(b) The projected points of the error groups

Figure 5: A scanned object and its error groups projected to the horizontal plane

As the scanner can only translate the scanned objects along a horizontal line

and rotate it around a vertical axis, the error groups are projected to the horizontal

plane for further calculations. The vertical positions can be disregarded because

the transformations can only be made in the horizontal plane. This means that
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the vertical positions do not influence the transformations. Now the projected point

cloud can be visualised as a planar set of points. This can be seen in Figure 5, where

Figure 5a is the original 3D mesh and Figure 5b shows the projected point clouds.

These points are to be approximated by a curve so that the scanner can schedule

its next scan along this approximation.

The point cloud now means the group of those points that describe one error

group. To repair this point cloud, a transformation plan is needed for the scanner,

with which it can scan the object again. To calculate this, the analyzation of the

point cloud is needed.

4.2 Curve approximation

There are several approaches for approximating a set of two-dimensional points with

a line. For example, the least squares [3], moving least square, improved moving least

squares [8] or the weighted least square methods. These are used in the iterative

closest point algorithm [1]. This method always monotonically converges to the

nearest local minimum of a mean-square distance metric.

This could be further improved by feature extraction [4, 16, 10], spline approx-

imations [17, 5] or by identifying more 2D primitives. These features can be cate-

gorised and handled similarly.

Another approach is to calculate an average point for each stripe of the projected

error group and this will represent that particular stripe. In this case, the projected

error group will be represented by the same number of points as the number of

stripes that were included in the error group. These points can now be connected,

and the resulting polygon will be the approximating curve.

The two-dimensional point cloud that is to be repaired now represented by an

approximating curve. This curve either represents an error group or the whole point

cloud of the object if there are no error groups.

4.3 Scanning the approximating curve

Given the approximating curve that is to be rescanned, so the question is how this

should be done. The turntable should somehow be transformed so that each part

of the curve gets in front of the camera and the laser. Since the hardware has two

degrees of freedom (the translation and the rotation), there are usually infinitely

many combinations of these transformations that will be adequate for this.
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4.3.1 Scanning a point of the approximating curve

A single point of the approximating curve can usually be scanned with infinitely

many transformation setups. From the point of view of the laser, the best position

to illuminate a point is where the normal vector of the point intersects the laser.

In this case, it is the least probable to have something between the laser and the

scanned point that can hide the laser beam. From the point of view of the camera,

almost the same is true, since this is the least probable position to have something

between the camera and the scanned point, that can hide the point from the camera.

x

y

Pideal

Plaser

Pcamera

Pscanned

Figure 6: The ideal position for scanning Pscanned, which is a point of the

approximating curve (this is now a circle)

Consequently, the best position for the scanned point would be such position

from where its normal points in the direction of the camera and the laser at the

same time. This is impossible, so an intermediate solution should be found. The

solution is to place the actually scanned point in such a position, where

1. the line formed by the scanned point and its normal as a direction vector is

the perpendicular bisector of the line segment formed by the camera and the

laser and

2. the normal vector of the scanned point points towards the point that is halfway

between the camera and the laser (this means that the normal vector does not

point in the opposite direction).

This can be seen in Figure 6 where the approximating curve is a circle, Pscanned

is the scanned point and Pideal is the point that is halfway between the camera and

the laser.
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5 Ideal transformation for scanning a point

The ideal scanning position is now given, so the scanner must be transformed to this

position and trigger the camera to create a picture. The question is how to achieve

such position (such position can be seen in Figure 6).

A general point is given by its coordinates, which may be a calculated value

from the parametric approximating curve. This can be seen in figure Figure 7.

The scanner must perform a rotation and a translation to get to the ideal scanning

position from this (Figure 6). If the proper rotation of this transformation is given

then the translation can easily be calculated, since the rotated point only needs to

be translated to the x-axis (so that the laser illuminates it).

x

y

O

C

A

(a) A zoomed picture

x

y

O

C

A

(b) The whole turntable

Figure 7: A general point which is to be scanned on the approximating curve

5.1 Translate A to the x-axis

The first step is to translate the turntable along the y-axis so that A lies on the

x-axis, this translated point is denoted by A′. The length of this transformation is

given by the y-coordinate of the original point A. The translated points are denoted

by O′, C ′ and A′ and their corresponding y-coordinates are given by Eq. (1), Eq. (2)

and Eq. (3) respectively. The result of this translation can be seen in Figure 8.

O′y = −Ay (1)

C ′y = Cy − Ay (2)

A′y = 0 (3)
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x

y

O’

C ’

A’

Figure 8: The turntable is translated so that A is on the x-axis (this is A′)

5.2 Translate and rotate so that A′ stays on the x-axis

The second step is to rotate and translate the turntable until C ′, A′ and Pi are

collinear while A′ stays on the x-axis. To achieve this, the equation of the line

formed by A′ and Pi must be satisfied by point C ′. In the following expressions, α

in the subscript of a point means that the point is obtained by rotating the turntable

by α and translating the turntable along the y-axis so that the image of A is on the

x-axis. The equation of line A′ and Pi after an α rotation about the centre of the

turntable can be given by the point-slope formula Eq. (4).

y − y1 = m(x− x1) (4)

To parametrize the formula, a few calculations should be made. The centre of

the turntable O′ stays on the y-axis (given by Eq. (5)) and the scanned point A′

stays on the x-axis (given by Eq. (6)) after this α rotation.

O′x = O′α,x = 0 (5)

A′α,y = 0 (6)

O′α,y is calculated by rotating the A′−O′ point around the origin by α then the

negative of the result’s y-coordinate is taken. This is the distance that the turntable

should be translated by along the y-axis so that A′ stays on x-axis after the rotation

(so A′α,y = 0). The result of the calculations is shown by Eq. (7).
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O′α,y = −
[
0 1

] [cosα − sinα

sinα cosα

][
A′x −O′x
A′y −O′y

]
=

= −
(

(A′x −O′x) sinα + (A′y −O′y) cosα
)

=

= O′y cosα− A′x sinα (7)

A′α,x is obtained by taking the x-coordinate of the A′ − O′ point after rotating

it by α around the origin. The result of the calculations is shown by Eq. (8).

A′α,x =
[
1 0

] [cosα − sinα

sinα cosα

][
A′x −O′x
A′y −O′y

]
=

= (A′x −O′x) cosα− (A′y −O′y) sinα =

= A′x cosα +O′y sinα (8)

C ′α is obtained by rotating C ′ around O′ by α then translating it by O′α − O′.
Rotating C ′ around O′ is obtained by rotating the C ′ − O′ point around the origin

by α and translating it by O′. The result of the calculations is shown by Eq. (9).

C ′α =
[
1 0

] [cosα − sinα

sinα cosα

][
C ′x −O′x
C ′y −O′y

]
+

[
O′x

O′y

]
+

[
O′α,x −O′x
O′α,y −O′y

]
=

=

[
(C ′x −O′x) cosα− (C ′y −O′y) sinα +O′x +O′α,x −O′x
(C ′x −O′x) sinα + (C ′y −O′y) cosα +O′y +O′α,y −O′y

]
=

=

[
C ′x cosα− (C ′y −O′y) sinα

C ′x sinα + (C ′y −O′y) cosα +O′α,y

]
(9)

With the calculated values O′α, A′α, C ′α and the ideal point Pi, the point-slope

formula can be parametrized in the following way. The slope m of the point-slope

formula is expressed from points Pi and A′α (Eq. (10)).

m =
Pi,y − A′α,y
Pi,x − A′α,x

=
Pi,y

Pi,x − (A′x cosα +O′y sinα)
(10)

Pi is used as the point of the point-slope formula, so the x1 and y1 parameters

are substituted by Pi,x and Pi,y respectively (Eq. (11), Eq. (12)).

x1 = Pi,x (11)
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x

y

A’

aC  ’

O’a

A’a
a rotation

Figure 9: The turntable is rotated so that after a translation, the ideal position is

achieved, this can be seen in Figure 10

y1 = Pi,y (12)

Thus the point-slope formula (Eq. (4)) can be parametrized in the following way

shown by Eq. (13).

y − Pi,y =
Pi,y

Pi,x − (A′x cosα +O′y sinα)
(x− Pi,x) (13)

This formula should be satisfied by point C ′α, so the x and y parameters are

substituted by C ′α,x and C ′α,y respectively (Eq. (14), Eq. (15)).

x = C ′α,x (14)

y = C ′α,y (15)

Thus the final form of the point-slope formula with the parameters substituted

can be expressed. The result of the calculations is shown by Eq. (16).

C ′α,y − Pi,y =
Pi,y

Pi,x − (A′x cosα +O′y sinα)
(C ′α,x − Pi,x)

C ′α,y − Pi,y =
Pi,y(C

′
α,x − Pi,x)

Pi,x − (A′x cosα +O′y sinα)
(16)

This expression contains only constants and the calculated C ′α,x and C ′α,y, which

can also be substituted. The result of the calculations is shown by Eq. (17).

19



x

y

Pi

aC  ’

O’a

A’a

Figure 10: The turntable is rotated and translated so that C ′α, A′α, and Pi are

collinear

C ′x sinα + (C ′y −O′y) cosα +O′α,y − Pi,y =

=
Pi,y(C

′
x cosα− (C ′y −O′y) sinα− Pi,x)
Pi,x − (A′x cosα +O′y sinα)

(17)

This expression contains only constants and the calculated O′α,y, which can also

be substituted. The result of the substitution is shown by Eq. (18).

C ′x sinα + (C ′y −O′y) cosα +O′y cosα− A′x sinα− Pi,y =

=
Pi,y(C

′
x cosα− (C ′y −O′y) sinα− Pi,x)
Pi,x − (A′x cosα +O′y sinα)

(18)

The left-hand side can be simplified since the O′y cosα terms cancel out, thus

the final formula is Eq. (19).

C ′x sinα + C ′y cosα− A′x sinα− Pi,y =

=
Pi,y(C

′
x cosα− (C ′y −O′y) sinα− Pi,x)
Pi,x − (A′x cosα +O′y sinα)

(19)

Since all the parameters are known except α, this equation can be solved. The

equation is implicit and α seems to be very hard to express. The final scanner

position is shown by Figure 10.
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5.2.1 Rotation angle calculation

The calculated implicit equation in Section 5.2 (Eq. (19)) is going to be used fre-

quently so its evaluation must be fast.

The following proposed solution uses an iterative method for finding the solution

for Eq. (19). An angular error is calculated during the iterations that shows the

required modification for the next iteration. This angular error is the counter-

clockwise directed angle from line C ′A′ to A′Pi and it is always just an estimation

of the required angle. This angle can be seen in Figure 11a.

A rotation by this estimated angular error usually moves point A′ from the x-

axis, so in this case, the next step is to perform a translation so that A′α gets to the

x-axis again. The amount of this translation is simply the y coordinate of the rotated

A′α point. This translation can be seen in Figure 12 where the rotated position is

shown by Figure 12a and the translated is shown by Figure 12b. The estimated

angular error for the next iteration can now be seen in Figure 12b as well.

Pi

x

y

C ’

O’

A’

a

(a) The estimated angular error

x

y

A’

Pi

aC  ’

O’a

A’a
a rotation

(b) The rotation

Figure 11: A rotation by the estimated angular error during the first iteration
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(b) After the translation, where the new

estimated angular error α′ can be seen

Figure 12: The translation during the first iteration, so that A′α is on the x-axis

again and the new estimated angular error can also be seen
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Figure 13: A rotation by the estimated angular error during the second iteration
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(b) After the translation, where the new

estimated angular error α′ can be seen

Figure 14: The translation during the second iteration, so that A′α is on the x-axis

again and the new estimated angular error can also be seen

In the beginning, the estimated angular error (this can be seen in Figure 11a) is

72.473°. After the first iteration, this angular error (which can be seen in Figure 12b)

is only −18.233°. After the second iteration, this angle is below 4°. For a better

understanding of the algorithm, the second iteration is also visualized. This can be

seen in Figure 13 and Figure 14.

This process converges very fast, which means that it can be used for real-time

calculations as well. After fourteen iterations the error is less than 10−8 degrees

which is more than enough for positioning the turntable to the right position. The

errors until the fourteenth iteration are shown by Table 2 and these values are also

visualized on a logarithmic scale in Figure 15.

It can also be seen in Table 2 that the sign of the angular error is alternating.

This means that each calculated angular error is an upper estimation of the required

rotation.
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Figure 15: The absolute values of the estimated angular errors represented on

logarithmic scale

Iteration number Angular error (degree)

0 72.47264769

1 -18.23258286

2 3.623134483

3 -0.799097069

4 0.172897496

5 -0.037570399

6 0.008156432

7 -0.001771097

8 3.85E-04

9 -8.35E-05

10 1.81E-05

11 -3.94E-06

12 8.55E-07

13 -1.86E-07

14 4.03E-08

Table 2: The estimated angular errors after the iterations
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5.2.2 Java implementation of the rotation angle calculation

The provided Java class (Code 1) calculates the required angle for positioning a

point to the ideal scanning position. This solves the implicit equation presented in

Section 5.2 with the method described in Section 5.2.1.

Code 1: The class that calculates the required angle for the ideal position

1 // RotationCalculator.java

2 public class RotationCalculator {

3 public static double calculateRotationDeg(double Ax, double

Cx, double Cy, double Oy, double Pix, double Piy, double

maxAngleErrorDeg) {

4 double Oay, Aax, Cax, Cay;

5 double errorAngle = Math.PI;

6 double maxErrorAngle = maxAngleErrorDeg / 180.0 * Math.PI;

7 double angle = 0;

8

9 while(Math.abs(errorAngle) > maxErrorAngle) {

10 // Calculated parameters

11 Oay = Oy * Math.cos(angle) - Ax * Math.sin(angle);

12 Aax = Ax * Math.cos(angle) + Oy * Math.sin(angle);

13 Cax = Cx * Math.cos(angle) - (Cy - Oy) * Math.sin(angle);

14 Cay = Cx * Math.sin(angle) + (Cy - Oy) * Math.cos(angle)

+ Oay;

15 // Calculate the error by angle PiAa and AaCa

16 double anglePiAa = Math.atan2(Piy, Pix - Aax);

17 double angleAaCa = Math.atan2(-Cay, Aax - Cax);

18 errorAngle = anglePiAa - angleAaCa;

19

20 angle += errorAngle;

21 }

22 return Math.toDegrees(angle);

23 }

24 }

The function in Code 1 receives the parameters required for solving the equation.

The values of these parameters are based on the position where the turntable is

shifted so that A′ is on the x-axis. This position can be seen in Figure 8. The

function also has a maximum error parameter, which is an angle in degrees that the
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error of the resulting angle cannot exceed. The variables in the function are named

by omitting the ′ symbols so A′ is called A for example.

The algorithm was tested with some data shown by Table 3. These are the real

values of Figure 11a and the errors at the iterations are shown by Table 2.

Variable name Value

Ax 22.986

Cx 4.406

Cy 9.873

Oy -15.108

Pix 53.72

Piy 30.189

maxAngleErrorDeg 0.0000001

Table 3: The test parameter values

Code 2: The evaluation of the original formula Eq. (19)

1 if(Math.abs(errorAngle) <= maxErrorAngle){

2 // Parameters of the original formula

3 double left = Cx * Math.sin(angle) + Cy * Math.cos(angle) -

Ax * Math.sin(angle) - Piy;

4 double right = (Piy * (Cx * Math.cos(angle) - (Cy - Oy) *

Math.sin(angle) - Pix)) / (Pix - (Ax * Math.cos(angle) +

Oy * Math.sin(angle)));

5

6 System.out.println("Angle: " + Math.toDegrees(angle));

7 System.out.println("Error: " + Math.toDegrees(errorAngle));

8 System.out.println("Formula left-hand side: " + left);

9 System.out.println("Formula right-hand side: " + right);

10 }

A debugging code snippet Code 2 is inserted to the 15th line of Code 1 for check-

ing. This evaluates the left-hand side and right-hand side of the original formula

Eq. (19) and prints the results, which are:

Angle: 57.20613059610286

Error: 4.030173709079121E-8

Formula left-hand side: -40.460407189504586

Formula right-hand side: -40.46040720646222
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5.3 Translate A to the x-axis again

The required angle is already calculated in Section 5.2. After this rotation, the last

required transformation is to translate the turntable so that the scanned point gets

to the x-axis.

5.4 Evaluation

A method was proposed for positioning the turntable of the scanner in a position

that is generally ideal both from the point of view of the camera and the laser for

scanning a given point. This basically requires three steps, two of which are trivial

translations and the third is the rotation that is calculated in Section 5.2.

x

y

O

C

A

(a) A general position

x

y

Pi

aC  ’

O’a

A’a

(b) The final ideal position

Figure 16: The method transforms the turntable so that the scanned point gets to

the ideal scanning position

This method is ideal if a single point is to be scanned or if the approximating

curve does not have too concave parts. On the other hand, there may be more

difficult situations as well if the approximating curve is more complex. The shadow

effect, for example, may also appear and hide the scanned point from either the laser

or the camera. Some of these cases are impossible to be scanned with this hardware

(described in Section 2.1) but a few of these can be handled in some way. These are

described in Section 6.
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6 Scanning some more concave parts

In this section, a method is introduced for scanning certain concave parts of the

approximating curve that cannot be scanned with the method described in Section 5.

It is obvious that certain parts of come approximating curves cannot be scanned with

the hardware described in Section 2.1, an example of this is shown by Figure 17.

Figure 17: The highlighted parts are obviously impossible to be scanned

The interesting cases are those, that can still be scanned with the hardware,

but not with the method of Section 5. An example for this position is shown by

Figure 18.

x

y

Pideal

Plaser

Pcamera

Pscanned

(a) The ideal position based on Section 5

x

y

Pideal

Plaser

Ptarget

Pcamera

Pscanned

(b) A possible position for scanning

Figure 18: A point that cannot be scanned with the method of Section 5, but it

can be scanned in some other ways

It can be seen in Figure 18a that the normal vector of point Pscanned points in

the direction of the ideal point Pideal and Pscanned is on the x-axis. This satisfies

the two conditions of the ideal position stated in Section 4.3.1 but the laser cannot

illuminate the scanned point. This means that this point cannot be scanned this

way, while Figure 18b shows a possible position for scanning.
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6.1 Closest angle to ideal that is still scannable

It can be seen in Figure 18 that there are other possible transformations as well from

which Pscanned can be scanned. All of these are other than the ideal transformation

of Section 5. From these cases, the transformation closest to the ideal is the best.

All possible angles from where Pscanned can be scanned is to be calculated first.

These can be obtained by rotating the ideal point around the origin and calculating

the corresponding scanning angle with the method described in Section 5.1 using

Code 2. The rotated ideal point is called Ptarget, which can also be seen in Figure 18b.

The best angle from these is the one for which the rotation angle of the ideal point is

the smallest, thus the scanner transformation is as close to the ideal transformation

as possible.

The transformation applied in Figure 18b is a good transformation since Pscanned

can be scanned, but this is not the best. The transformation that is as close to the

ideal transformation as possible can be seen in Figure 19b.

x
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Plaser

Ptarget

Pcamera

Pscanned

46° rotation

(a) A possible position for scanning

x

y

Ptarget

Plaser

Pcamera

Pideal

Pscanned

34° rotation

(b) The best position for scanning

Figure 19: The best scanning position can be achieved by rotating the ideal point

around the origin by 34° in this case

6.1.1 Determining if a point can be scanned from a position

A point can be scanned from a certain position if it can be seen from both the

position of the camera and laser. Otherwise, if there is something between the

camera and the scanned point then the camera cannot see the laser beam, if there is

something between the laser and the scanned point then the laser cannot illuminate

the scanned point.

When a point to be scanned and transformation to be applied is given then it
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should be calculated whether these conditions are true or false. An approximating

curve is also provided which is basically the current knowledge about the shape of

the scanned object on which the scanned point lies. From these, two lines can be

created. The camera line from Pcamera to Pscanned and the laser line from Plaser to

Pscanned. These lines can be seen in Figure 18 and Figure 19.

For the camera, the closest intersection to Pcamera of the approximating curve

and the camera line is to be calculated. If this intersection is not Pscanned then the

camera cannot see the scanned point, thus this point cannot be scanned from this

position. The very same process should be done for the laser. If the Pscanned is the

first intersection in both cases, then the point can be scanned from this position.

6.1.2 Considering a safety angle

An important fact must not be forgotten, that the best transformation described in

Section 6.1 is calculated based on an approximating curve. This curve may be very

detailed and can approximate the object very well, but it is always the averaged

cross-section of the scanned object. This means that even if the approximating

curve is the best possible approximation, some parts of the scanned object may

have somewhat different cross-sections.

If the best transformation is calculated, which can be seen in Figure 19b, either

the laser line or the camera line may pass very close to some other part of the object.

This phenomenon can be observed in Figure 19b where the laser almost intersects

the corner of the object.

In order to avoid this problem, the calculated best transformation should be

modified by a safety angle. The best magnitude of this safety angle may vary

between different objects. A larger safety angle will provide a smaller probability

to have something between the scanned point and the camera or the laser. On the

other hand, a smaller safety angle also has advantages. With a smaller safety angle,

more concave parts might be scanned.
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Figure 20: The extremities from where Pscanned can still be scanned
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7 Creating a scanning plan

Based on the methods described in Section 5 and Section 6, a completely automated

surface adaptive scanning process can be created. At first, there is no information

about the geometry of the scanned object. It is to be scanned first somehow, then

based on the results, a new scanning configuration can be created.

7.1 Iterative scanning method

The first scanning is a 360° rotational scan without any translations. The trans-

lational data of the scanning plan, therefore, consists of only zeroes. As a general

approach, this scanning triggers the camera to take a photo at each whole angle,

but this can be modified to be more or less frequent.

Index Rotation (degree) Translation (mm)

1 0 0

2 1 0

3 2 0

... ... ...

358 357 0

359 358 0

360 359 0

Table 4: The very first scanning plan for each scanning

The next scanning plan is going to be calculated based on the result of the

previous scan. The result of a scanning is a batch (Section 2.3), which consists of

stripes. These stripes are projected onto the y = 0 plane and an averaged point

is calculated to each stripe that will represent the stripe. This provides a list of

two-dimensional points. Then the normal vectors to the points are either calculated

from the two-dimensional list of points or they can also be calculated by averaging

the normal vectors of the points of the corresponding stripe. This second method

is only possible if the normal vectors of the points of the scanned batch were or can

be calculated. A few methods for calculating them are mentioned in Section 7.1.1.

Finally, the elements of the transformation plan are calculated from these point by

the methods described in Section 5 and 6.

The further scanning plans can always be calculated from the result of the pre-

vious scan. Iterating this process will generate a better and better scanning plan.
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One more improvement is still needed: the polygon described by the averaged list of

points should be resegmented. The details of this process can be found in Section 7.2.

7.1.1 Normal vector calculation

A proper normal vector calculation is not a trivial task for complex 3D point clouds.

There are several methods for solving this, for example [9]. This method is based on

a cross-curve moving mask method with which unit normal vectors can be calculated.

Another approach can be found in [13], which uses fitted directional tangent vectors

and a local Voronoi mesh with proposed mesh growing heuristic rules to calculate

the normal of a point.

A third method should also be mentioned [14], in which first an elliptic Gabriel

graph is constructed to determine neighbouring points. Given the local neighbours

for each point, the normal vector of each point can be approximately calculated. A

common approach is fitting quadric curves or surfaces [13, 2] and principal compo-

nent analysis [15, 6, 11].

7.2 Resegmenting the approximating curve

The approximating curve, in this case, is a polygon formed by the averaged points

of the stripes. The sides of this polygon have different lengths which means that the

scanned points are unevenly distributed along the perimeter (or on the surface in

3D). This can be improved for the next scan by evenly resegmenting this polygon.

The resegmentation may be based on

1. fixed number of segments or

2. fixed length of the segments.

In both cases, the points and their normal vectors should be interpolated. This

can be done by taking the weighted average of the positions and the normal vectors

of the neighbouring points.

This is going to be very important because usually the scanned points of the first

only rotational scan may be unevenly distributed along the scanned object. This

can be demonstrated with an object that has rectangular cross-section (Figure 22).

At first, the scanner knows nothing about the scanned object, so it will perform

a 360° only rotational scan with 30 triggers this time (similar to Table 4), from

which 26 could successfully be scanned. The result can be seen in Figure 22b where
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(b) The scanned cross-section of the

object is the highlighted polygon

Figure 22: The result of the first scan of the object

the shadow effect can also be recognised. These parts could not be scanned because

either the camera or the scanner was hidden by some other part of the scanned

object.

x

y

(a) The scanned polygon is resegmented

x

y

(b) The object is rescanned

Figure 23: The result of the second scanning of the object

Based on the data of the first scan and the resegmentation, the second scan is

much better. The scanned points are pretty much uniformly distributed, and all 30

triggers could be scanned. This can be seen in Figure 23.
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8 Simulator

Since the hardware is not yet ready for processing the scanning plans described

in Section 3, a simulator is needed for testing. What’s more, a simulator is also

useful for scanning some test objects designed for especially this task. The simu-

lator contains the scanning plan calculation module as well (an extended version

of Code 1) so the whole iterative scanning method described in Section 7.1 can be

tested, visualised and animated.

8.1 The simulation workflow

The simulator reads a list of two-dimensional points from the provided file. These

points are the consecutive points of the perimeter of the averaged cross-section of the

scanned object. This perimeter is first going to be scanned with a simple rotational

transformation. The scanning plans of the following scans are calculated from the

previous scan results based on the iterative method described in Section 7.1. For

each scan, a trigger number can be provided which means that the next scanning

plan is going to have these many entries. Based on the trigger number, the perimeter

is resegmented into this many equal parts. A further parameter, the safety angle,

can also be set for the scans.

The simulator can play the scanning process step-by-step or it can also animate

the whole process. It can as well save the image of every position and create a video

from these.

8.2 Scanning results of handmade polygons

These point sequences are created for testing the algorithms and the designed meth-

ods for executing the scanning plans. Therefore, these point sequences usually con-

tain only a few points that specify the polygon, which is going to be scanned.

8.2.1 Scanning a wide rectangle

The scan of a simple rectangle is the first example. The first and most important

thing to point out is that the table is not only translated, but also rotated when

the sides of the rectangle are being scanned. This can be seen in Figure 27a where

the almost horizontal parts are increasing a bit. It can also be observed, that the

perimeter after the third scan (Figure 26) is segmented into perfectly equal parts.

The numeric details of these transformation plans can be found in Appendix A.
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Figure 24: The first scan of the wide

rectangle

Figure 25: The second scan of the wide

rectangle

Figure 26: The third scan of the wide rectangle
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Figure 27: The rotation and translation functions of the first (Figure 24), second

(Figure 25) and the third (Figure 26) scan of the wide rectangle
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8.2.2 Scanning a concave hole

Scanning a more concave part is always an interesting thing. Previously, these

objects could only be scanned after a very detailed and time-consuming manual

configuration. It can be seen, that the fifth scanning plan (Figure 31) was good

enough for scanning every part of the perimeter at evenly distributed points.

Figure 28: The first scan of the hole Figure 29: The second scan of the hole

Figure 30: The third scan of the hole Figure 31: The fifth scan of the hole
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8.2.3 Scanning a complex concave polygon

The following quite complex polygon is designed to have some difficult parts to

scan. It can be seen, that the step-by-step method works nicely on this complex

example as well. To scan such an object with manual configuration would almost

be impossible. There were 300 triggers used for this scan, which can be further

increased for a more detailed result. It can also be observed, that only the fifth

scanning could create an evenly distributed point sequence (Figure 34).

Figure 32: The first scan of the complex

polygon

Figure 33: The second scan of the

complex polygon

Figure 34: The third scan of the

complex polygon

Figure 35: The fifth scan of the complex

polygon
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8.3 Scanning results of point clouds which were generated

by the scanner hardware

A scanning plan can now be created for scanning the object mentioned in the case

study (Section 1.3) again. It can be seen in the case study, that some parts of the

object could not be scanned since the shadow effect. The calculated functions of

the scanning plan can be seen in Figure 38 and the numeric values can be found in

Appendix B.

Figure 36: The earlier scan of the object Figure 37: The scan result of the object
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Figure 38: The rotation and translation functions of the scanning based on which

the next scanning process can be done
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8.4 Scanning results of a Kawasaki Chain Roller

The functionality of the implemented method was also tested on the constructed

image of a special engineering component of a motorbike. This piece is a Ufo Chain

Roller Kawasaki Kxf 250-450 2013 which can be seen in Figure 39a and the point

sequence created for representing it can be seen in Figure 39b.

(a) The Kawasaki Ufo Chain Roller
(b) The point sequence representing the

chain roller

Figure 39: The chain roller and the point sequence created for its representation

Figure 40: The first scan of the

chain roller

Figure 41: The second scan of the

chain roller
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Figure 42: The third scan of the

chain roller

Figure 43: The sixth scan of the

chain roller

8.5 Observing the safety angle

The safety angel is very important. It makes sure that the shadow effect is avoided

as far as possible. On the other hand, a large safety angle may reduce the proba-

bility that a point can be scanned. A few images from the scanning process of the

previously presented concave hole (Section 8.2.2) visualizes this safety angle very

well.

It can be seen in Figure 44 that the normal vector of the scanned point is as

close to the ideal point as possible, but it keeps a safety distance from the other

parts of the object. More images from the scanning of this hole can be found in

Appendix C.

(a) Laser line is close to the object (b) Camera line is close to the object

Figure 44: The camera line and the laser line are not allowed to get too close to

other parts of the scanned object to avoid the shadow effect
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9 Conclusions and future work

9.1 Conclusions

The main task was to somehow scan an object with the provided 3D laser scanner as

precisely as possible. This is exquisitely solved for the one-dimensional case, which

is the ideal scan of a point whose normal vector is given. A Java code snippet that

calculates the required transformation was also provided. The two-dimensional case,

which is the scanning of a polygon that is given by a sequence of points, is perfectly

solved as well. A simulator was also implemented for this task with which several

test results were presented.

The three-dimensional case can be solved by averaging and projecting the point

cloud of the scanned object to two-dimensions. Examples were provided for this

as well, in which the resulting point cloud of the scanning was projected onto the

y = 0 horizontal plane, averaged for each stripe and then this was scanned as a

two-dimensional point sequence.

The safety angle, as a further improvement was added to this method. This

parameter can be adjusted before the scanning starts and was designed for avoiding

the shadow effect problem. This parameter basically adjusts the ”courage” of the

algorithm which means that more concave parts can be scanned with a smaller safety

angle, but this increases the possibility of the shadow effect phenomenon.

This means that the basics of the adaptive scanning method are presented in

this paper. While the first scan is arbitrary, since there is no information about

the scanned object, the further scans can be done based on the calculated scanning

plans. This contains the required translation and rotation pairs for each trigger of

the scans, which can be performed by a 3D scanner that has a rotational and a

translational degree of freedom.

9.2 Future work

The currently proposed method can generate a scanning plan from a previous scan

result, but it cannot decide whether it will be better than the previous one or not.

This means that either someone tells the scanner that there is no need for further

scans or a fixed number of scans are created each time. This can be solved by

creating an adaptive termination condition that analyses the result of a scan and

decides if that can be improved or not. The scanning details like precision, available

time or the maximum number of scans could still be used as a parameter, but the
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scanner must automatically decide when to finish. This is important because these

parameters could be set in advance and then the whole scanning process would be

automatic.

The resegmentation process is now based on a fixed number which means that

the perimeter is going to be divided into this many equal parts. It would be better

to resegment the perimeter in such a way that not the number of segments, but

the length of the segments is given. In this case, the number of segments would be

variable. An adaptive way may also be interesting, where more concave or more

convex parts would be segmented into smaller pieces.

There are some objects whose cross-section cannot be approximated well enough

because it may vary a lot. In this case, vertically dividing the object into parts and

approximating their cross-sections may be a better solution. The two extremities

of this idea are the not divided, which is the case now, and the totally divided

case, where each division contains only one point. The first has too big error from

averaging while the second is time-consuming. A solution between these may further

improve the precision of the scans.

The scanning plans described in this paper can now only be executed by the sim-

ulator since the controller of the scanner is not yet updated for handling such plans.

This means that the corresponding parts of the controller should be developed.

Another interesting point would be to specify the shape of the largest possible

unit wide hole that can still be scanned. This would allow us to check if a certain

part of an object can be scanned or not without performing any scans.
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A Rectangle scanning plan details

Index Scan 1 Scan 2 Scan 3

1 0.00 32.56 32.56

2 5.14 56.81 39.16

3 10.29 66.44 66.84

4 15.43 70.15 96.56

5 20.57 72.89 104.77

6 25.71 75.80 104.93

7 30.86 79.07 105.10

8 36.00 82.51 105.28

9 41.14 86.06 105.45

10 46.29 89.69 105.63

11 51.43 92.25 105.82

12 56.57 95.90 104.95

13 61.71 99.52 105.11

14 66.86 103.07 105.29

15 72.00 106.71 105.49

16 77.14 106.97 106.91

17 82.29 107.22 107.15

18 87.43 106.20 106.14

19 92.57 106.44 106.38

20 97.71 106.69 106.63

21 102.86 106.95 106.90

22 108.00 107.23 107.18

23 113.14 107.52 107.47

24 118.29 107.90 107.85

25 123.43 108.25 108.21

26 128.57 110.98 108.60

27 133.71 114.24 109.02

28 138.86 117.76 109.47

29 144.00 121.79 109.97

30 149.14 139.52 116.52

31 154.29 165.61 150.97

32 159.43 187.50 188.44

33 164.57 208.55 211.70

34 169.71 216.03 215.50

35 174.86 217.42 216.86

Index Scan 1 Scan 2 Scan 3

36 180.00 218.95 218.37

37 185.14 239.37 224.73

38 190.29 251.64 254.63

39 195.43 254.24 279.53

40 200.57 255.84 285.17

41 205.71 259.19 285.33

42 210.86 262.86 285.50

43 216.00 266.59 285.68

44 221.14 270.46 285.87

45 226.29 274.40 286.07

46 231.43 278.36 286.28

47 236.57 282.24 287.69

48 241.71 287.15 287.91

49 246.86 288.24 288.20

50 252.00 288.55 288.51

51 257.14 288.87 288.84

52 262.29 289.21 289.18

53 267.43 289.57 289.55

54 272.57 288.49 288.48

55 277.71 288.85 288.84

56 282.86 289.23 289.23

57 288.00 289.65 289.66

58 293.14 290.08 290.10

59 298.29 290.66 290.70

60 303.43 293.13 293.19

61 308.57 293.93 294.02

62 313.71 295.96 294.88

63 318.86 298.73 295.99

64 324.00 302.99 297.51

65 329.14 323.05 302.40

66 334.29 347.58 339.07

67 339.43 363.44 382.35

68 344.57 383.36 388.89

69 349.71 390.64 390.61

70 354.86 391.41 391.39

Table: Rectangle scanning plan: rotation details (angles in degrees)

49



Index Scan 1 Scan 2 Scan 3

1 0 -10.76 -10.76

2 0 -15.99 -11.56

3 0 -16.75 -17.00

4 0 -16.01 -18.71

5 0 -15.05 -17.31

6 0 -14.04 -15.97

7 0 -13.00 -14.63

8 0 -11.91 -13.29

9 0 -10.78 -11.96

10 0 -9.61 -10.63

11 0 -8.37 -9.30

12 0 -7.17 -7.96

13 0 -5.97 -6.63

14 0 -4.78 -5.30

15 0 -3.60 -3.97

16 0 -2.31 -2.70

17 0 -1.03 -1.39

18 0 0.32 -0.01

19 0 1.61 1.30

20 0 2.89 2.61

21 0 4.17 3.91

22 0 5.45 5.21

23 0 6.71 6.51

24 0 7.97 7.79

25 0 9.22 9.07

26 0 10.18 10.33

27 0 11.00 11.59

28 0 11.67 12.84

29 0 12.12 14.07

30 0 9.27 14.27

31 0 2.47 6.67

32 0 -4.40 -5.32

33 0 -9.96 -11.39

34 0 -11.03 -11.33

35 0 -10.36 -10.61

Index Scan 1 Scan 2 Scan 3

36 0 -9.76 -9.97

37 0 -14.68 -10.88

38 0 -16.47 -17.29

39 0 -15.65 -19.02

40 0 -14.60 -17.87

41 0 -13.79 -16.55

42 0 -12.95 -15.22

43 0 -12.05 -13.90

44 0 -11.11 -12.57

45 0 -10.13 -11.26

46 0 -9.12 -9.94

47 0 -8.10 -8.70

48 0 -7.16 -7.40

49 0 -5.95 -6.11

50 0 -4.68 -4.82

51 0 -3.43 -3.54

52 0 -2.18 -2.26

53 0 -0.94 -1.00

54 0 0.46 0.43

55 0 1.71 1.69

56 0 2.94 2.95

57 0 4.16 4.20

58 0 5.38 5.43

59 0 6.56 6.64

60 0 7.42 7.51

61 0 8.52 8.63

62 0 9.37 9.73

63 0 10.01 10.76

64 0 10.21 11.66

65 0 5.80 11.69

66 0 -1.50 1.23

67 0 -6.61 -12.72

68 0 -11.66 -13.29

69 0 -12.53 -12.56

70 0 -11.58 -11.60

Table: Rectangle scanning plan: translation details (translation in centimeters)
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B Scanning plan for the next scan of an object

Index Rotation Translation

1 49.61 -5.57

2 56.66 -5.09

3 62.57 -4.49

4 65.27 -3.64

5 85.55 -4.00

6 38.74 0.61

7 9.95 3.70

8 11.86 4.58

9 19.20 4.94

10 30.60 4.67

11 48.08 3.28

12 69.83 0.72

13 88.04 -1.47

14 102.11 -2.96

15 115.09 -4.21

16 135.36 -6.38

17 149.66 -7.22

18 166.39 -7.93

19 170.51 -7.19

20 174.73 -6.46

21 177.46 -5.63

22 173.54 -4.27

23 161.40 -2.04

24 142.40 1.05

25 145.81 1.66

26 151.42 1.96

27 157.12 2.18

28 164.09 2.14

29 170.22 2.16

30 177.99 1.83

31 184.51 1.64

32 190.46 1.49

33 196.59 1.23

34 202.69 0.91

35 208.84 0.50

Index Rotation Translation

36 217.07 -0.45

37 223.16 -0.97

38 229.51 -1.60

39 236.15 -2.37

40 243.13 -3.26

41 247.77 -3.53

42 253.89 -4.23

43 259.78 -4.88

44 265.96 -5.60

45 271.92 -6.26

46 277.84 -6.90

47 283.58 -7.47

48 289.02 -7.93

49 294.40 -8.35

50 299.42 -8.66

51 303.39 -8.68

52 307.08 -8.63

53 312.49 -8.99

54 319.87 -9.79

55 327.76 -10.53

56 333.38 -10.70

57 338.29 -10.67

58 344.75 -10.90

59 349.72 -10.76

60 355.69 -10.75

61 363.83 -10.96

62 366.42 -10.26

63 370.43 -9.76

64 373.97 -9.18

65 377.30 -8.56

66 382.06 -8.11

67 389.13 -7.87

68 398.28 -7.73

69 404.62 -7.22

70 404.68 -6.19

Table: Transformation details for configuring the scanner for the following scan
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C Details of the scanning process of the hole
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