
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Automatic Generation of Mechanical Models for
Machine Learning Systems

Scientific Students’ Association Report

Author:

Balázs Kovacsics

Advisor:

Richárd Szabó
dr. Oszkár Semeráth

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1
1.1 Context . 1
1.2 Problem statement . 1
1.3 Objectives . 2
1.4 Contribution . 2
1.5 Added value . 2

2 Preliminaries 3
2.1 Running example . 3
2.2 Manufacturing steps . 3

2.2.1 Turning and boring . 4
2.2.2 Milling . 4
2.2.3 Drilling . 5
2.2.4 Sawing . 6

2.3 Computer-aided design . 6
2.3.1 Geometric representations . 6
2.3.2 Boundary representation . 7
2.3.3 Modeling algorithms . 8
2.3.4 CAD exchange formats . 8

2.4 Design space exploration . 9
2.5 Related works . 9

3 Overview of the approach 11
3.1 Defining the generation method . 11
3.2 Generation process . 12
3.3 Architecture . 12

4 The geometric model generator 14
4.1 Representation of manufacturing steps . 14

4.1.1 Turning and boring . 14
4.1.2 Milling . 14
4.1.3 Drilling . 15
4.1.4 Sawing . 16

4.2 Implementation . 16
4.2.1 Entities . 17
4.2.2 Operations . 18
4.2.3 Random variables . 19
4.2.4 Execution engine . 19

4.3 Limitations . 21

5 The structural model generator 22
5.1 Defining the metamodel of the blueprints 22
5.2 Implementation . 23

5.2.1 Transformation rules . 23
5.2.2 Interfacing with the geometric model generator 23
5.2.3 State coding . 23

5.3 Exploration strategies . 24
5.4 Defining the model fitness . 24

6 Evaluation 25
6.1 Performance measurements . 25

6.1.1 RQ1-2: Distribution of execution time and scalability 25
6.1.2 RQ3: Evaluation of different strategies 26

6.2 Interfacing with expert systems . 28

7 Conclusion 29

List of Figures 30

Bibliography 30

Appendix 33
A.1 Blueprint metamodel . 33

Kivonat

A számítógéppel támogatott tervezést és gyártást (CAD és CAM) évtizedek óta széles
körben alkalmazzák a gépészeti alkatrészek termék-életciklusa folyamán, a 3D gépészeti
modellek és műszaki rajzok készítésétől, a gyártástechnológiai módszerek meghatározásán
keresztül, a CNC megmunkáló gépek programkódjának generálásáig. Ez a folyamat tipi-
kusan magas szintű mérnöki tudást igényel, bár manapság vannak törekvések arra, hogy
ezt a folyamatot gépi tanulás alapú intelligens rendszerekkel támogassák.

Mivel a mérnöki munkaórák költségesek, a gyárthatósági elemzés és költségbecslés ma-
ga is egy jelentős fix költséggel jár, ezért, ha az alkatrész gyártása az aktuális tervek alapján
kivitelezhetetlennek vagy gazdaságtalannak bizonyul, akkor ez a költség teljes mértékben
veszteséggé válik. Következésképpen ennek a folyamatnak a részleges kiváltása automa-
tizált eszközökkel jelentősen növelni tudja a produktivitást, és csökkenteni a költségeket.
Azonban ilyen komponensek tanítása során több nehézséggel is szembekerülünk. Először
is hiányoznak szabadon rendelkezésre álló gépészeti tervrajzok, mivel nagy részük ipari ti-
tok. A különböző CAD/CAM szoftverek specializált és inkompatibilis adatformátummal és
modellezési stílussal rendelkeznek. Legvégül az alulreprezentált és kiegyensúlyozatlan taní-
tó adathalmazok miatt ezen eszközök használata sok esetben few-shot/zero-shot learning
feladattá válik: ekkor a MI komponensnek olyan bemenetre kell választ adnia, amelyhez
hasonló nem, vagy csak kis mennyiségben szerepelt a tanítóhalmazban.

A dolgozat célja egy nagy mennyiségű, változatos és/vagy valósághű adathalmazt
előállítani képes módszer kidolgozása, amely használható tanítóhalmazként a költségbecs-
lésre és megmunkálási lépésekkel kapcsolatos javaslattételre képes intelligens rendszerek
számára, valamint ezen rendszerek validálására, mérésére és összehasonlító elemzésére.

A dolgozatban bemutatom (i) a gépészeti modellek generálásához használt módszert,
(ii) a fent említett intelligens rendszerek tanítására, validálására és összehasonlítására
használható stratégiákat, (iii) lehetséges generálási módszerek összehasonlító elemzését,
valamint (iv) a generálási módszer használatát egy létező, ipari prototípus szakértői rend-
szer vizsgálatára.

A dolgozat eredménye egy mesterségesen generált gépészeti modelleket előállító műkö-
dő prototípus keretrendszer, mely használható a költségbecslő eszközök tanítóhalmazának
gazdagítására, valamint ezen eszközök tesztelésére, validálására, mérésére és összehasonlí-
tó elemzésére, melynek eredményeképpen jobb minőségű gyártási költség becslésére képes
eszközök fejleszthetők.

i

Abstract

Computer-aided design and manufacturing (CAD/CAM) have been extensively used in
the manufacturing industry for decades throughout the lifecycle of mechanical parts, from
creating 3D mechanical models and manufacturing drawings, to making decisions about
manufacturing methods and even generating the programming of CNC machines. This
process traditionally requires significant engineering expertise, but there have been recent
efforts to support this process with the use of machine learning-based intelligent systems.
As engineering man-hours are typically expensive, manufacturability analysis and cost es-
timation incur a significant fixed cost, which might even turn into a complete loss if man-
ufacturing the current design proves to be infeasible or simply uneconomical. Therefore,
substituting a part of this process with an automated tool can greatly improve productivity
and reduce costs. However, due to the scarcity of data (most of it being proprietary), the
specialized and incompatible data formats and modeling styles used by different CAD/-
CAM software, and underrepresented and imbalanced training data, the use of these tools
frequently results in the problem of few-shot/zero-shot learning.
The objective of this report is to propose a method for providing a high amount of diverse
and/or realistic data, to be used as learning input by such intelligent systems used for cost
estimation and advising about manufacturing steps, and also to validate, benchmark and
compare these systems.
In the report, I am presenting (i) a general overview of how the mechanical models are
being generated, (ii) strategies for using the data to train, validate and compare such
intelligent systems, (iii) an evaluation of multiple possible generation methods and (iv)
using the generating method for evaluating an existing prototype industrial expert system.
The outcome of the report is a working prototype system producing artificially generated
mechanical models, usable for enriching the training data of estimator tools, and for the
testing, validation, benchmarking and comparison of such tools, ultimately resulting in
better quality tooling used for manufacturing cost estimation.

ii

Chapter 1

Introduction

1.1 Context

Computer-aided design and manufacturing (CAD/CAM) have been extensively used in
the manufacturing industry in the last decades. Those models are used in the complete
lifecycle of the design and manufacturing mechanical parts:

1. from cost estimation

2. to making decisions about manufacturing methods,

3. through the 3D modeling of the mechanical object

4. and manufacturing drawings,

5. and even generating the programming of CNC machines.

This process traditionally requires significant engineering expertise, but there have been
recent efforts to support this process with the use of machine learning-based intelligent
systems.

1.2 Problem statement

As engineering man-hours are typically expensive, manufacturability analysis and cost
estimation incur a significant fixed cost. This can be a complete loss if manufacturing
the current design proves to be infeasible or simply uneconomical. Therefore, the early
detection of infeasible or costly task can be critical in such processes. Thus substituting a
part of this process with an automated tool can greatly improve productivity and reduce
costs.
However, most of the existing design data is proprietary, which makes the number of
existing models scarce. This is especially problematic for machine learning approaches,
which require a large number of models for training. Moreover, the specialized and in-
compatible data formats and modeling styles used by different CAD/CAM software, and
underrepresented and imbalanced training data, the use of these tools frequently results
in the problem of few-shot/zero-shot learning.

1

1.3 Objectives

The objective of this report is to propose a method for providing a high amount of diverse
and/or realistic data, to be used as learning input by such intelligent systems used for cost
estimation and advising about manufacturing steps, and also to validate, benchmark and
compare these systems.

1.4 Contribution

In the report, I am presenting:

• An approach which can automatically derive a large number of mechanical blueprint
usable for testing and training machine learning components.

• The approach is parameterized with different strategies and metrics for using the
data to train, validate and compare such machine learning systems.

• I evaluate my approach of multiple possible generation methods.

1.5 Added value

The outcome of the report is a working prototype system producing artificially generated
mechanical models, usable for enriching the training data of estimator tools, and for the
testing, validation, benchmarking and comparison of such tools, ultimately resulting in
better quality tooling used for manufacturing cost estimation. Additionally, such blueprint
generation can greatly help the testing of design tools.

2

Chapter 2

Preliminaries

2.1 Running example

In the following example, we’re going to examine the execution of an internal turning
operation, performed on a cylindrical body. In the case of example A, the open curve used
as the input of this operation is a straight line that goes inward from the front face of the
cylinder, towards the symmetry axis. This results in a valid turning operation, where the
output is still a single body. In example B, on the other hand, the line used as the input
of the turning operation goes outward from the cylinder face, and even crosses the outline
of the cylindrical surface. As a result, after performing the turning operation, the body
falls apart into two pieces, which is not considered valid by the generator (figure 2.1).
After examining the validity of the results, let’s look at the complexity of the valid one.
If our complexity metric is defined by the ratio of surface area to volume, this operation
clearly increases this metric, as the surface increased, but the volume decreased as a result
of performing the operation.

2.2 Manufacturing steps

As the purpose of this work is to generate mechanical models similar to ones used in
a conventional manufacturing process, only machining steps were considered, additive
manufacturing (3D printing) is out of scope for the current implementation. The following
machining operations were selected for usage in the model generator:

• Turning and boring

• Milling

• Drilling

• Sawing

The following section provides a quick overview of the properties of these machining op-
erations [22].

3

Figure 2.1: Example A (left) shows the execution of a valid turning operation, and ex-
ample B (right) shows an invalid one, both displayed in section view

2.2.1 Turning and boring

Turning and boring are machining operations performed with a single-edged cutting tool.
Turning usually refers to working on the external surface of the workpiece, while boring
is performed on an internal surface, usually created by a preceding drilling operation.
Apart from this distinction, they have the same basic setup: the primary rotating motion
is performed by the workpiece, and the feed motion is executed by the tool, resulting in
a machined feature with axial symmetry. As the workpiece is rotated at high speed, to
ensure precision, typically the initial raw workpiece is also symmetric, or at least balanced
around the axis of rotation (having e.g. a hole drilled through the center, or slots milled
in a circular pattern, created in a previous operation (figure 2.2)). A special, significantly
more challenging use case of this operation is the machining of thin-walled workpieces,
which has widespread usage in the aerospace industry[9][13], therefore covering this case
in the generation method increases both the diversity and the potential complexity of the
resulting models.

2.2.2 Milling

Milling is a machining operation performed with a multi-edged cutting tool. The primary
rotating motion is performed by the tool, while the feed motion can be executed by either
the tool or the workpiece (or in some cases, especially in multi-axis CNC machines, by
both). Based on the number of possible axes of the feed motion (irrelevant of whether
it is performed by the tool or the workpiece), milling operations can be grouped into the
following categories:

4

Figure 2.2: A complex workpiece machined by turning, with pre-existing milled surfaces
in a hexagonal pattern

Source: https://www.intermacheng.co.uk/cnc-machining/cnc-turning/

• 2D milling: the feed motion can be performed on the two axes perpendicular to
the rotational axis of the tool. This kind of milling can only be used to machine
planar-faced features.

• 2.5D milling: in addition to the above, feed motion is also possible along the ro-
tational axis of the tool, but cutting can not be performed along it simultaneously
with the other two axes. This makes the creation of closed pockets and the rough
machining of slanted surfaces possible (figure 2.3).

• 3D milling: the feed motion can be performed on all translational axes. This enables
the creation of any surface which is accessible from a single direction, i.e. one that
doesn’t have any overhanging parts (these are also called 2.D surfaces).

• 5D milling: the feed motion can be performed on all translational axes, and the
two rotational axes perpendicular to the axis of primary rotation. This enables the
creation of arbitrarily complex surfaces, and also makes it possible to optimize the
cutting angles.

Figure 2.3: A rough milling performed on a workpiece, with visibly distinct Z-steps

Source: https://www.solidcam.com/imachining/imachining-3d

2.2.3 Drilling

Drilling is a machining operation where both the primary rotating motion, and the feed
motion, which is parallel to the axis of rotation, are performed by a multi-edged cutting

5

https://www.intermacheng.co.uk/cnc-machining/cnc-turning/
https://www.solidcam.com/imachining/imachining-3d

tool. This setup makes it possible to create, or enlarge existing cylindrical and conical
holes in the workpiece. Drilled holes can be either blind holes, or through holes, depend-
ing on whether they exit on the other end of the workpiece. A cylindrical enlargement
of the entrance of a hole is called counterboring, while a conical enlargement is called
countersinking, both of which are performed frequently on holes created to accommodate
screws.

2.2.4 Sawing

Sawing is performed with narrow multi-edged cutting tools, which makes it possible to cut
the workpiece with only a minimal amount of material waste. In CNC sawing machines,
the typically used tool is a band saw, which consists of a continuous loop of metal band
moving in a single direction. In these machines, the feed motion is usually performed by
the workpiece.

2.3 Computer-aided design

Mechanical CAD software are based on geometric modeling kernels, which provide the ge-
ometric data representation and low-level modeling algorithms. The modeling operations
and other tools available to the user in the CAD software are an abstraction layer over
the kernel, implemented as combinations of modeling algorithms[11].

2.3.1 Geometric representations

The basic principles of geometric representations used by most solid modeling kernels
belong to one of the following [11]:

• Constructive solid geometry (CSG): solid bodies are created from geometric prim-
itive bodies (typically cuboids, prisms, pyramids, cylinders, cones and spheres) us-
ing Boolean operations. This method guarantees that the resulting geometries will
always be valid, but finding the correct combination of operations for complex ge-
ometries can be difficult, or even impossible in some cases.

• Boundary representation (B-rep): geometric entities are defined with explicit math-
ematical descriptions, and topological entities are defined with these geometric en-
tities bounded by topological entities of a lower dimension. This method provides
an easier process for defining complex geometries than CSG, and a wider range of
construable geometry, but the results are not guaranteed to be valid, thus extensive
checking, and in some cases repairing of geometries is needed.

• Implicit modeling: solid volumes are defined by a signed distance function, with
negative values representing points inside the given volume. This approach, like
CSG, also provides strong validity guarantees, but interacting directly with implicit
models is not simple, so it’s mostly used for refining models created with a different
method (usually B-rep)[4].

As geometric modeling kernels are immensely complex pieces of software, implementing
one from scratch for the model generator was not an option. Most modern CAD software

6

are based on B-rep kernels, and the STEP format also uses it for the representation of ge-
ometric data. The most stable and feature-rich open source B-rep kernel is OpenCascade,
making it the ideal choice (of free alternatives) for implementing the model generator [1].
As the OpenCascade library is written in C++, the language was also used for implement-
ing the model generator, enabling native interfacing with the library.

2.3.2 Boundary representation

The B-rep implementation of the OpenCascade library uses the following geometric and
topological entity types[1].
Topological entities:

• Vertex: a 0D topology positioned at a geometric point

• Edge: a piece of a geometric curve, bounded by vertices at its ends

• Wire: a sequence of edges connected by their vertices

• Face: a part of a geometric surface, bounded by wires

• Shell: a collection of faces connected by edges of their wire boundaries

• Solid: a finite closed part of 3D space bounded by shells

• Compound solid: a collection of solids connected by faces of their shell boundaries

Geometric curves:

• Line

• Conics: circle, ellipse, hyperbola, parabola

• Bounded curves: B-spline and Bezier curves

• Offset curve: a curve at constant distance from a basis curve in a direction perpen-
dicular to both its tangent and a reference direction

Geometric surfaces:

• Elementary surfaces: plane, cylindrical, conical, spherical, toroidal

• Bounded surfaces: B-spline and Bezier surfaces

• Offset surface: a surface at constant distance from a basis surface in the direction
of its normal

• Swept surfaces: surfaces constructed by sweeping a curve with another curve, special
cases are surfaces of a linear extrusion and those of a revolution

To preserve consistency, the library does not provide direct access to the data stored in
these entities, they can only be interacted with through the use of modeling algorithms.

7

2.3.3 Modeling algorithms

The OpenCascade library provides several ways to create and modify geometries and
topologies[1]. The lower-level APIs enable the direct creation of geometric entities
(Geom* classes), and piecewise bottom-up building of topological ones (BRepBuilderAPI_*
classes). High-level APIs provide the following functionalities:
Creating primitive topologies:

• Boxes

• Cylinders

• Cones

• Spheres

• Toruses

Kinematic modeling operations:

• Prisms (sweeping a curve along a straight path)

• Revolutions (sweeping a curve around an axis)

• Pipes (general swept bodies)

• Lofts (interpolation between a series of cross-sections)

Boolean operations:

• Common (intersection)

• Fuse (union)

• Cut (subtraction)

Local modifications:

• Shelling (removing a set of faces and creating a thick-walled body from the remaining
ones)

• Tapering faces

• Chamfering and filleting edges

2.3.4 CAD exchange formats

Each CAD software has its own data representation formats, which are generally propri-
etary in case of commercial software. In addition to the geometric data itself, these may
also contain information about the design history, parametric formulas, geometric dimen-
sioning and tolerancing (GD&T), and other kinds of metadata [17]. Even if the geometric
data format is known, different CAD systems may represent the same entities in incom-
patible ways, especially if they are not based on the same geometric modeling kernel. To

8

make the data exchange between these systems possible, several CAD-neutral data for-
mats exist, which are supported by most industrial CAD software [25]. Some proprietary
software have their own open exchange formats, like Autodesk’s DXF [2]. There are also
standardized exchange formats, the older, no longer maintained and nowadays seldom
used ANSI standard IGES [21], and the ISO standard STEP format [7]. STEP supports
several different so-called application protocols (APs) for the exchange of different data
types. The recently developed AP242 unifies several older protocol versions, providing a
way to exchange both geometric data and several kinds of metadata[6].
Based on these considerations, a data exchange format had to be chosen for the model
generator as well, to enable the conversion of its internal geometric representation into
one which provides interoperability with other CAD systems. The OpenCascade library
supports both IGES and STEP formats[1], of which STEP was selected to be used for the
model generator.

2.4 Design space exploration

Design space exploration (DSE) is a technique of searching for solutions within the possible
design alternatives, which meet a specific set of criteria. For the model generator, the
VIATRA-DSE library was selected to be used, which has the following properties [3]:

• Model-driven: the problem is represented as a typed attributed graph, which is stored
as an Eclipse EMF[23] model, and constraints are defined with VIATRA graph query
patterns.

• Rule-based: the model is modified according to graph transformation rules, and
solutions are defined as a sequence of rule applications (called a trajectory), that
transform the model from the initial state into the desired state.

• Multi-Objective Optimization: multiple objectives can be defined for the exploration,
which can either be hard (which must be satisfied by a goal state) or soft (which
should be optimized). Objectives can be derived from the model or from the trajec-
tory.

• Meta-heuristic strategies: these techniques are widely used in optimization problems.
VIATRA-DSE contains multiple built-in exploration strategies, such as depth and
breadth first search, fixed-priority strategy, hill climbing strategy, and evolutionary
algorithms. It is also possible to integrate custom-defined strategies.

2.5 Related works

Related work is based on the [19] paper.
Hybrid approaches divide the model generation into multiple sub-tasks and use a differ-
ent underlying technique for resolving each one. The PLEDGE model generation tool
[20] combines metaheuristic search for model structure generation with an SMT-solver
based implementation for handling attributes, providing a scalable implementation. The
Evacon tool [12] generates tests for object-oriented programs by implementing search-
based evolutionary testing, followed by symbolic execution. Autograph [16] is using a
sequential combination of a tableau-based approach for generatiing the model structure,
with an SMT-solver based approach for handling attributes. These approaches combine

9

the techniques sequentially, which restricts mutually dependent structural and numerical
constraints. Additionally, these techniques do not assure completeness of model genera-
tion. Another category of hybrid approaches involves assessing multiple components of the
model generation task in parallel. This requires the implementation of a certain decision
procedure such as DPLL(T) [10, 15] to iterate between underlying techniques, or combine
them by sharing variables in their proofs [14]. Such decision procedures are presented
alongside their associated properties (e.g. soundness and completeness) at an abstract
level in [15, 8], which allows for formal reasoning about their implementations. However,
those approaches handle graph-based models inefficiently [24, 18], thus the scalability of
those techniques is limited.

10

Chapter 3

Overview of the approach

3.1 Defining the generation method

To ensure that the generated mechanical models are sufficiently complex and diverse,
but at the same time realistic, a well-defined generation method had to be determined.
Initially, a declarative approach of using mathematical constraints to define the geometries
was considered, but ultimately rejected, as it was too difficult to find precise mathematical
definitions for all but the most simple mechanical components. The chosen approach is
a step-by-step procedural generation of the CAD models, where each step is a relatively
accurate representation of real-life manufacturing methods.
In summary, the system is parameterized with the following:

• possible modeling steps (operations)

• geometric and structural validity conditions

• complexity requirement for the results

• model size constraints

• desired number of distinct results

Within the constraints defined by these parameters, the system executes a series of model-
ing steps, which results in a set of valid and sufficiently complex mechanical models (figure
3.1).

Model generatorModel editing
steps

Mechanical
models

possible operations, validity,
complexity, size, number of

models

Figure 3.1: A high-level overview of the model generator

11

3.2 Generation process

The model generator is split into two parts: a geometric and a structural generator. The
role of the structural generator is to create the list of operations for a model (called a
blueprint), following a set of rules defined for the blueprint structure. It also makes deci-
sions about the complexity of a model, and if it fulfills the requirement, adds the current
blueprint to the set of solutions. The geometric generator is responsible for performing
the operations on the geometric model, checking the results for consistency and feasibility,
and storing the results of already performed operations for further processing. It also
manages the exporting of the geometric models to a CAD exchange format (figure 3.2).

Initialize with empty
blueprint

Select an unexplored
next operation

Execute structural
operation

Geometry consistent
and feasible? Store geometric entity

Add operation to
blueprintComplex enough?

False

True

False

Execute geometric
operation

Blueprint
registry

Geometric
registry

Store solution

Solution
store

True
Enough solutions?

Start

End

True

False

Legend

Geometric generator

Structural generator

Figure 3.2: Flow of the generation process

3.3 Architecture

The structural generator uses design space exploration (DSE) techniques to search for
blueprints that satisfy the defined validity and complexity requirements. This is achieved
by representing the blueprint as a graph, where the nodes are the modeling operations,
and directed edges designate that the output of an operation is used as the input of the
other. A set of rules is created to define the allowed graph transformations on the blueprint
in a certain state. These graph transformation and DSE capabilities are provided to the
structural generator by the VIATRA library, while the metamodel of the blueprint itself
is defined using the Eclipse Modeling Framework (EMF).
The geometric generator uses the OpenCascade geometric modeling kernel to create, mod-
ify and examine the generated models. Modeling operations are implemented using a
combination of the low-level modeling algorithms provided by the kernel. Geometric vali-
dation is performed both by using the built-in model checking functionalities of the kernel
(e.g. self-intersection of edges), and examining additional user-defined properties of the
results (e.g. an operation resulting in multiple bodies). The generator is also capable of
evaluating the same operation structure with randomized input parameters, which already
provides a limited capability of generating diverse models in isolation, without a structural
generator component.
Both the structural and the geometric generator have external dependencies, which also
impose constraints on their implementation. The structural generator is implemented in
Java, for compatibility with the EMF and VIATRA libraries, while the geometric generator
is implemented in C++ for native interfacing with the OpenCascade library. As a result,
the two parts are running in separate processes, which introduces the need for a way to

12

provide interoperability, and an orchestration service. The resulting architecture is shown
on figure 3.3.

Blueprint exploration
manager

Geometric model
generator

Graph transformation
and DSE library

(Viatra)
OpenCascade library

Structural registry Geometric registry

Orchestrator

Figure 3.3: Architecture of the model generator

13

Chapter 4

The geometric model generator

Based on the desired properties of the generation method, defined in the previous chapter,
the actual capabilities required of the geometric model generator were determined as such:

• Geometric modeling: the ability to create and modify geometric entities

• Evaluation of geometric models: the ability to evaluate the validity of geometric
entities

• CAD data exchange: the ability to export these geometric entities in a standard
exchange format

• Generating geometrically diverse models: the ability to evaluate a series of operations
with varying parameters in ways that result in a high amount of complex and diverse
mechanical models

4.1 Representation of manufacturing steps

4.1.1 Turning and boring

This operation is implemented in the model generator as an algorithm that receives an
axially symmetric solid body, which represents the workpiece, and an open curve repre-
senting the path of the cutting tool (figure 4.1). The curve is not allowed to intersect
either the axis of rotation or itself, as that would result in the body falling apart into
multiple pieces. It is also possible to create a new solid body using an open curve, which
is a simplification being equivalent to applying an external turning operation on the entire
length of a cylinder (figure 4.2).
To represent the case of thin-wall turning in the generator, a separate operation is imple-
mented for creating symmetric bodies with a constant wall thickness, also using an open
curve as input (figure 4.3).

4.1.2 Milling

This operation is implemented as an algorithm that receives a solid body, which represents
the workpiece, and a closed curve representing the boundary of the cutting tool path. The
removal of material from the solid body can be performed either inside or outside these

14

Figure 4.1: A cylinder with external and internal turning (boring) applied, normal and
section views

Figure 4.2: A turned solid created directly from an open curve

Figure 4.3: A thin-walled turned solid in section view

bounds (figure 4.4). Similarly to the turning operations, it is also possible to create a new
solid body using a closed curve, which is a simplification being equivalent to applying an
external milling operation on the entire height of a rectangular block (figure 4.5). Applying
these operations on a body repeatedly, at different depths, allows the creation of features
similar to those possible with 2.5D milling (figure 4.6).

4.1.3 Drilling

The model generator has the capability of creating cylindrical blind or through holes
on planar faces. As holes regularly occur in linear or rectangular patterns on real-life
mechanical parts, the modeler is also able to mirror these holes along midplanes of the
bounding box of the target face (figure 4.7). Extending the capabilities with the creation of

15

Figure 4.4: A rectangular block with external and internal milling applied

Figure 4.5: A milled solid created directly from a closed curve

Figure 4.6: Repeated milling operations at different depths, using the same curve scaled
to different sizes

counterbored and countersunk holes, and performing the drilling operation on non-planar
faces have been considered, but not yet implemented.

4.1.4 Sawing

This function is implemented in the model generator as an operation that is capable of
splitting the workpiece with an arbitrary plane, keeping only one of the halves (figure 4.8).

4.2 Implementation

The model generator defines a set of operations, which either create or modify entities,
optionally using other entities as input. These operations can be used to create execution

16

Figure 4.7: A pair of holes created on the top face of the workpiece, mirrored along the
midplane parallel with the X axis

Figure 4.8: A solid block cut with an angled plane

nodes, and a set of these connected nodes defines an execution graph. This graph can
be evaluated by the execution engine, with the final result being a single entity. As the
parameters of operations are defined with random variables, evaluating the same graph
multiple times will result in structurally similar, but distinct entities.

4.2.1 Entities

The model generator defines different entity types, which are backed by OpenCascade
topological entities, extended with additional metadata to determine the operations that
are allowed to be performed on them. The following entity types exist in the generator:

• OpenCurve: a bounded, open planar curve, represented by the TopoDS_Wire topo-
logical entity type. It can be used as an input for turning operations.

• ClosedCurve: a periodic planar curve, also represented by the TopoDS_Wire topo-
logical entity type. It can be used as an input for milling operations, and curves can
be combined by Boolean operations.

• SolidBody: a solid body represented by the TopoDS_Solid topological entity type.
Contains an optional axis of symmetry member, which can be one of the world axes
(X, Y, Z).

17

4.2.2 Operations

The operations defined in the model generator are either creation or modification oper-
ations, and they may or may not expect a second entity as input (interface hierarchy:
figure 4.9). The non-entity parameters of operations are random variables of arithmetic,
enumeration or Boolean types, which are set at the time of construction, and sampled at
the time of execution. The subject and input entities are received as parameters each time
the operation is executed. The specific operations implemented in the generator are the
following:

• Open curve creation:

– CreateLine: creates a straight line between two points.
– CreateArc: creates an arc of a circle defined by three points.
– CreateOpenSpline: creates a spline of a given degree, with a list of control

points as input.

• Closed curve creation:

– CreateRectangle: creates a rectangle with the specified width and height.
– CreateCircle: creates a circle with the specified radius.
– CreateClosedSpline: creates a periodic spline of a given degree, with a list of

control points as input.

• Closed curve modification:

– BooleanClosedCurve: creates planar faces from the input curves, applies the
specified boolean operation on them, and outputs the outer bound of the re-
sulting face.

• Solid body creation:

– CreateBox: creates a rectangular box with the specified length, width and
height.

– CreateCylinder: creates a cylinder with the specified radius, height and axis.
The axis of symmetry is stored in the result.

– CreateRevolvedBody: creates a body with a revolve kinematic modeling opera-
tion, using an open curve as input.

– CreateRevolvedThinWall: creates a body with a revolve kinematic modeling
operation, using an open curve as input, then applies a shelling operation on
the result with the specified wall thickness.

– CreateExtrudedBody: creates a body with an extrude kinematic modeling op-
eration, using a closed curve as input.

• Solid body modification:

– AddHolesToFace: Create a cylindrical blind or through hole on a planar face
of the body, with the specified radius, depth and clearance (minimum distance
from the face bounds). The hole can optionally be mirrored along either of the
midplanes of the face bounding box.

18

– SplitWithPlane: Split the body by a plane, specified with an origin point, and
degrees of orientation and inclination. The result contains only one half of the
split body.

– ExternalTurning: Remove material on the external surface of a symmetric body,
along a path defined by an open curve.

– InternalTurning: Remove material from the inside of a symmetric body, along
a path defined by an open curve.

– ExternalMilling: Remove material from a body at a specified depth, outside an
area defined by a closed curve.

– InternalMilling: Remove material from a body at a specified depth, inside an
area defined by a closed curve.

<<Interface>>

Operation

+ GetOperationName(): const char*

<<Interface>>

CreateOperation<OutputType>

+ Execute(): OutputType

<<Interface>>

CreateOperationWithInput<OutputType, InputType>

+ Execute(input: InputType): OutputType

<<Interface>>

ModifyOperation<OutputType>

+ Execute(subject: OutputType): OutputType

<<Interface>>

ModifyOperationWithInput<OutputType, InputType>

+ Execute(subject: OutputType, input: InputType): OutputType

<<Interface>>

BooleanOperation<OutputType>

+ Execute(subject: OutputType, input: OutputType): OutputType

Figure 4.9: The interface hierarchy of operations

4.2.3 Random variables

All non-entity parameters of an operation are random variables, which can be evaluated
to different numeric values each time the operation is executed. The data stored in a
RandomVariable object is either an exact numeric value, returned without modification at
the time of each evaluation, or a value distribution defined by the minimum and maximum
values of the range, and the distribution type (in the current implementation, this is either
a uniform or a Gaussian normal distribution). With an optional parameter, the rounding
of floating point types to the nearest integer value can also be enabled. Random boolean
and enumeration parameters are derived from the arithmetic types, returning a range of
integers between 0 and 1, or the maximum value of the enumeration type, respectively.

4.2.4 Execution engine

The model generator is able to create execution graphs from a series of operations, using
ExecutionNode objects. Each execution node contains an operation, and references to
other execution nodes, which act as the sources of subject and input entities to the opera-
tion, if necessary (type hierarchy: figure 4.10). As the source nodes have to be specified at
the time of construction, the resulting directed graphs are guaranteed to be acyclic, thus

19

their evaluation can be safely implemented with a simple recursive traversal algorithm.
A special type of execution node exists for storing and later returning already generated
entities, which can also be used as inputs to other execution nodes. An example of a sim-
ple execution graph (figure 4.11), and the resulting entities of repeated evaluations (figure
4.12) are visible below. Note that even though the input of the external and internal
turning are the same node, it is re-evaluated each time encountered during the evaluation,
resulting in different curves.

<<Interface>>

ExecutionNode<OutputType>

+ ProduceOutput(): OutputType

CreateOperationNode<OutputType>

 - operation: CreateOperation<OutputType>

+ CreateOperationNode(
	 operation: CreateOperation<OutputType>)

+ ProduceOutput(): OutputType

CreateOperationWithInputNode<OutputType, InputType>

 - operation: CreateOperationWithInput<OutputType, InputType>
 - inputNode: ExecutionNode<InputType>

+ CreateOperationWithInputNode(
	 operation: CreateOperationWithInput<OutputType, InputType>,
	 inputNode: ExecutionNode<InputType>)

+ ProduceOutput(): OutputType

ModifyOperationNode<OutputType>

 - operation: ModifyOperation<OutputType>
 - subjectNode: ExecutionNode<OutputType>

+ ModifyOperationNode(
	 operation: ModifyOperation<OutputType>,
	 subjectNode: ExecutionNode<OutputType>)

+ ProduceOutput(): OutputType

ModifyOperationWithInputNode<OutputType, InputType>

 - operation: ModifyOperationWithInput<OutputType, InputType>
 - subjectNode: ExecutionNode<OutputType>
 - inputNode: ExecutionNode<InputType>

+ ModifyOperationWithInputNode(
	 operation: ModifyOperationWithInput<OutputType, InputType>,
	 subjectNode: ExecutionNode<OutputType>,
	 inputNode: ExecutionNode<InputType>)

+ ProduceOutput(): OutputType

StoredResultNode<OutputType>

 - result: OutputType

+ StoredResultNode(result: OutputType)

+ ProduceOutput(): OutputType

Figure 4.10: The type hierarchy of execution nodes

CreateCylinder

ExternalTurning

CreateOpenSpline

InternalTurning

Figure 4.11: An execution graph consisting of a cylinder, and an external and internal
turning operation with open splines as inputs

20

Figure 4.12: The results of repeated evaluations of a single execution graph

4.3 Limitations

As shown in the previous sections, the implemented geometric generator is capable of
producing structurally similar solid bodies with varying parameters, partially fulfilling the
main goal of the project. However, the automatic generation of structurally diverse models
is not possible with this generator alone. To achieve this goal, a structural generator was
implemented, which creates diverse blueprint structures, and drives this generator to create
and evaluate the geometric models.

21

Chapter 5

The structural model generator

Based on the desired properties of the generation method, defined earlier, the capabilities
required of the structural model generator were determined as such:

• Structural modeling: the ability to create and modify the blueprint structure, and
realize its geometry with the help of the geometric generator

• Evaluation of structural models: the ability to evaluate the validity and complexity
of a generated model, based on its structure (available to the structural genera-
tor directly), and its geometry (accessible through the interface of the geometric
generator)

• Generating structurally diverse models: the ability to combine a limited set of op-
erations in ways that result in a high amount of complex and diverse mechanical
models

5.1 Defining the metamodel of the blueprints

The metamodel has to be able to represent the series of operations that make up a
blueprint, in a way that can be repeatedly evaluated with identical results. In order to
achieve this, the random parameters of the operations also have to be reproducible, which
can be achieved by using a set of pre-generated seeds for the random generator. The
root object of the model is the blueprint itself, which stores the list of possible random
seeds, and the list of already performed operations. The operations store the random seed
used to create them, the parameters of the specific operation generated from that random
seed, and optionally subject and input geometries, represented by earlier operations which
created them. Upon successfully performing an operation, the identifier of the geometric
result, returned by the geometric model generator, is also stored in the operation, to be
used as an input of future operations. The operation hierarchy contains abstract types
for each output entity type (solid body, closed curve, open curve), which can be used to
search for a suitable input of another operation. The resulting complete metamodel is
visible on figure A.1.1.

22

5.2 Implementation

Using the previously defined metamodel, the generator is implemented with the help of the
VIATRA-DSE library. The blueprint can be modified by a set of transformation rules,
which create and evaluate operations, and append them to the list in the blueprint if
the result is valid. After each transformation, the model fitness has to be calculated, for
which a set of complexity objectives are used. The exploration is performed according to a
strategy, which makes the decision about the next step based on the model fitness of the
current state. The DSE library requires the coding of the model state by a state coder, to
be able to store and compare different states.

5.2.1 Transformation rules

The transformation rules consist of two parts: a pattern to be matched on the model, and
an action to be performed using this match. Each operation type has its own transfor-
mation rule. Patterns are defined using the graph query language of VIATRA [3], each
of them matching a random seed in the blueprint, and optionally input operations (an
example pattern is shown below 5.1). Actions are defined as Java classes, each of them
constructing the corresponding operation, using the random seed for generating the pa-
rameters, then sending the operation to the geometric modeler, which creates and validates
the resulting geometry. If the geometric operation is successful, the operation is added to
the blueprint, otherwise the model state does not change.
pattern
internalTurningPrecondition(

blueprint : Blueprint, seedOption : SeedOption, subject : SolidBodyOperation, input :
OpenCurveOperation

) {
find leafSolidBody(blueprint, subject);
find symmetricSolid(subject);
find openCurve(blueprint, input);
Blueprint.seedOptions(blueprint, seedOption);

}

Listing 5.1: Graph query pattern for the internal turning operation

5.2.2 Interfacing with the geometric model generator

The geometric model generator is accessed by the structural generator via a Thrift [5]
RPC interface. It is used both for performing geometric operations on the model, and
for querying geometric information used for calculating the model fitness. The structural
generator does not use the geometric modeler’s capabilities of generating random values
and building complex execution graphs, as these tasks are performed by the structural
modeler itself in this setup. Instead, all operations are created with exact values as
parameters, and executed as a graph consisting of only a single operation node, with
stored result nodes used for the inputs. The result of the executed operation is used to
create a new stored result node, which can later provide the input of a future operation.

5.2.3 State coding

Coding of the model state is required by the VIATRA-DSE library, as the state has to
be represented in a format which is efficiently storeable and comparable, and independent
of specific model structures. In the generator, state coding is implemented with a simple

23

string serialization of the list of operations, each containing the operation name, and the
random seeds of the current operation and the inputs. This representation was chosen
for its simplicity, to be used as a proof-of-concept only, as it is not particularly memory-
efficient, but it can be easily improved in later iterations.

5.3 Exploration strategies

The exploration strategy defines how should the model transformations be performed in a
certain state. The VIATRA-DSE library contains several built-in exploration strategies,
such as depth and breadth first search, best first strategy, fixed-priority strategy, hill
climbing, evolutionary algorithms[3], and it is also possible to define new ones. In the
generator, the built-in breadth first, depth first, and best first strategies were used during
the evaluation.

5.4 Defining the model fitness

The model fitness is used by the exploration strategy to define whether a specific model
fulfills the search objective, and the effect of a certain transformation on the fitness can also
influence the direction of the exploration in some strategies. In our case, the objective is
to create models that are sufficiently complex, thus fitness should be defined as some kind
of complexity metric. The current implementation of the generator defines two objectives:

• Solid body complexity: this has been defined as the ratio of the surface area and the
volume of the body, multiplied by the diagonal of its bounding box, to be independent
of the absolute size (as surface area scales by the square, and volume scales by the
cube of the dimensions). This is the primary goal, thus it has been defined as a
hard objective, which has to be over a certain limit for a model to be considered a
solution.

• Curve complexity: this has been defined as the length of the curve, divided by the
diagonal of its bounding box, to be independent of the absolute size. This objective
is needed because otherwise curve creation would have no effect on the fitness, which
would adversely effect the diversity when using strategies that consider incremental
fitness changes. As it does not directly correlate with the complexity of the solid
body, which is our main interest, it is not defined as a hard objective.

Like in the case of the state coder, the complexity metrics used for measuring the model
fitness are only used as a proof-of-concept, more refined metrics should be determined for
future use.

24

Chapter 6

Evaluation

6.1 Performance measurements

Various measurements were conducted to answer the following research questions:

• RQ1: How is the execution time distributed between the generators, and how much
is the communication overhead?

• RQ2: How does the generation method scale in relation to the number of desired
solutions?

• RQ3: How does the usage of different execution strategies affect the execution time?

6.1.1 RQ1-2: Distribution of execution time and scalability

Setup: in this measurement, the generation of 10, 50, 100, 500 and 1000 models was
performed, using a breadth first search strategy, with a solid body complexity objective
of 50 (calculated as defined in section 5.4).
Time spent performing the following actions were measured:

• executing an operation in the structural generator

• executing an operation in the geometric generator

• calling operation execution on the geometric generator from the structural generator

• calculating model fitness in the structural generator

• examining geometric properties in the geometric generator

• calling geometric property examination on the geometric generator from the struc-
tural generator

• exporting a solution to STEP in the structural generator

• exporting a solution to STEP in the geometric generator

• calling export to STEP on the geometric generator from the structural generator

25

Figure 6.1: Relative distribution of execution times

The communication overhead is calculated from the difference between time spent calling
an action on the geometric generator from the structural generator, and actually per-
forming it in the geometric generator. The total time of the exploration process is also
measured, and time not spent in any of the above actions is categorized as "Exploration",
which is mostly time spent in the internals of the VIATRA-DSE. To account for the ran-
domness of the exploration method, the measurements were performed 20 times, of which
the first 5 were ignored to reduce the effect of the Java VM warm-up on the results, and
the median value of the remaining was taken.
Analysis of the results:

• RQ1: figure 6.1 shows the relative distribution of time between the generators and
their actions at different numbers of generated models. It is clearly visible that
most of the time (80-90%) is spent with performing the geometric operations. The
communication overhead between the processes is between 2-5%, which is not in-
significant, but not high enough to consider giving up the advantages of modularity
and native interfacing provided by this architecture.

• RQ2: figure 6.2 shows the absolute execution times, with distribution between the
generators and their actions, at different numbers of generated models. The increase
in execution time slightly below linear, which is most likely the result of reusing
partial solutions as the exploration progresses.

6.1.2 RQ3: Evaluation of different strategies

Setup: in this measurement, the generation of 10, 50 and 100 models was performed,
using breadth first search, depth first search and best first strategies, with a solid body
complexity objective of 50 (calculated as defined in section 5.4). The timeout for the
exploration was 5 minutes. To account for the randomness of the exploration method, the
measurements were performed 20 times, of which the first 5 were ignored to reduce the
effect of the Java VM warm-up on the results, and the median value of the remaining was
taken.

26

Figure 6.2: Absolute execution times

Figure 6.3: Execution times of different strategies

Analysis of the results: figure 6.3 shows the execution times of the different strategies. In
case of the depth first search strategy, about 40% of the executions timed out without
finding a single solution, and other executions timed out after finding only a few solutions.
The best first strategy was relatively fast with finding 10 models, but became significantly
slower at 50, and timed out with only a partial result at 100 models. The performance of
breadth first search was already examined in the previous questions, it is only displayed
here as comparison. The most likely explanation of the poor performance of the other
strategies is that they are going on trajectories which try to optimize the soft objective,
without increasing the solid body complexity metric. This issue should be fixed by refining
the fitness metrics.

27

6.2 Interfacing with expert systems

As the generator outputs STEP files, the expert system used for analyzing mechanical
parts and advising about their manufacturing process should be able to read these files.
Considering that the same format would be most likely used to export manually created
models from CAD software, this is a reasonable expectation of such systems.
Training these systems could be performed by supervised learning, feeding the created
models and their calculated complexities as training data. An adversarial training setup
can also be created by calculating one of the DSE objectives from the output of the
analyzer, with the explorer trying to find models that are complex according to the expert
system’s metric, but not according to its own.

28

Chapter 7

Conclusion

In this report, I suggested a novel way of generating diverse mechanical models using
a combined approach of generating and evaluating a geometric and a structural model
in parallel. The approach was implemented with an architecture using VIATRA-DSE
for performing design space exploration on the structural model, and OpenCascade for
creating and analyzing the geometric model. The performance of the implementation
was measured, analyzing its scalability and the efficiency of the distributed architecture.
Finally, suggestions were made regarding using the generator as a source of training data
for manufacturing-related expert systems.

29

List of Figures

2.1 Example A (left) shows the execution of a valid turning operation, and
example B (right) shows an invalid one, both displayed in section view . . . 4

2.2 A complex workpiece machined by turning, with pre-existing milled surfaces
in a hexagonal pattern . 5

2.3 A rough milling performed on a workpiece, with visibly distinct Z-steps . . 5

3.1 A high-level overview of the model generator 11
3.2 Flow of the generation process . 12
3.3 Architecture of the model generator . 13

4.1 A cylinder with external and internal turning (boring) applied, normal and
section views . 15

4.2 A turned solid created directly from an open curve 15
4.3 A thin-walled turned solid in section view 15
4.4 A rectangular block with external and internal milling applied 16
4.5 A milled solid created directly from a closed curve 16
4.6 Repeated milling operations at different depths, using the same curve scaled

to different sizes . 16
4.7 A pair of holes created on the top face of the workpiece, mirrored along the

midplane parallel with the X axis . 17
4.8 A solid block cut with an angled plane . 17
4.9 The interface hierarchy of operations . 19
4.10 The type hierarchy of execution nodes . 20
4.11 An execution graph consisting of a cylinder, and an external and internal

turning operation with open splines as inputs 20
4.12 The results of repeated evaluations of a single execution graph 21

6.1 Relative distribution of execution times . 26
6.2 Absolute execution times . 27
6.3 Execution times of different strategies . 27

A.1.1Blueprint metamodel . 34

30

Bibliography

[1] Project overview. https://dev.opencascade.org/about/project_overview, 2011.
Accessed: 2022-10-25.

[2] DXF Reference. https://help.autodesk.com/view/OARX/2018/ENU/?guid=
GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3, 2018. Accessed: 2022-10-25.

[3] Viatra. https://wiki.eclipse.org/VIATRA, 2018. Accessed: 2022-11-01.

[4] Implicit modelling for complex geometry. https://www.3dcadworld.com/
implicit-modelling-for-complex-geometry/, 2020. Accessed: 2022-10-30.

[5] Apache thrift. https://thrift.apache.org/, 2022. Accessed: 2022-11-01.

[6] ISO/TC 184/SC 4. Industrial automation systems and integration — Product data
representation and exchange — Part 242: Application protocol: Managed model-based
3D engineering. International Organization for Standardization, ISO 10303-242:2020
edition, 2020. URL https://www.iso.org/standard/66654.html.

[7] ISO/TC 184/SC 4. Industrial automation systems and integration — Product data
representation and exchange — Part 1: Overview and fundamental principles. In-
ternational Organization for Standardization, ISO 10303-1:2021 edition, 2021. URL
https://www.iso.org/standard/72237.html.

[8] Martin Brain, Vijay D’Silva, Leopold Haller, Alberto Griggio, and Daniel Kroening.
An abstract interpretation of dpll(t). In Roberto Giacobazzi, Josh Berdine, and
Isabella Mastroeni, editors, Verification, Model Checking, and Abstract Interpretation,
pages 455–475, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-
35873-9.

[9] Lisa Croppi, Niccolò Grossi, Antonio Scippa, and Gianni Campatelli. Fixture
optimization in turning thin-wall components. Machines, 7:68, 10 2019. DOI:
10.3390/machines7040068.

[10] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare
Tinelli. Dpll(t): Fast decision procedures. In Rajeev Alur and Doron A. Peled, editors,
Computer Aided Verification, pages 175–188, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg. ISBN 978-3-540-27813-9.

[11] C.M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann
series in computer graphics and geometric modeling. Morgan Kaufmann, 1989. ISBN
9781558600676. URL https://books.google.hu/books?id=GYhRAAAAMAAJ.

[12] Kobi Inkumsah and Tao Xie. Improving structural testing of object-oriented programs
via integrating evolutionary testing and symbolic execution. In 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, pages 297–306, 2008.

31

https://dev.opencascade.org/about/project_overview
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://help.autodesk.com/view/OARX/2018/ENU/?guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3
https://wiki.eclipse.org/VIATRA
https://www.3dcadworld.com/implicit-modelling-for-complex-geometry/
https://www.3dcadworld.com/implicit-modelling-for-complex-geometry/
https://thrift.apache.org/
https://www.iso.org/standard/66654.html
https://www.iso.org/standard/72237.html
http://dx.doi.org/10.3390/machines7040068
https://books.google.hu/books?id=GYhRAAAAMAAJ

[13] Hareendran Manikandan and Tufan Chandra Bera. Modelling of dimen-
sional and geometric error prediction in turning of thin-walled compo-
nents. Precision Engineering, 72:382–396, 2021. ISSN 0141-6359. DOI:
https://doi.org/10.1016/j.precisioneng.2021.05.013. URL https://www.
sciencedirect.com/science/article/pii/S0141635921001562.

[14] Greg Nelson and Derek C Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–
257, 1979.

[15] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat modulo
theories: From an abstract davis–putnam–logemann–loveland procedure to dpll(t).
J. ACM, 53(6):937–977, November 2006. ISSN 0004-5411.

[16] Sven Schneider, Leen Lambers, and Fernando Orejas. Automated reasoning for at-
tributed graph properties. STTT, 20(6):705–737, 2018.

[17] Stephen J. Schoonmaker. The CAD guidebook : a basic manual for understanding
and improving computer-aided design. Marcel Dekker, 2003. ISBN 9780824708719,
0824708717.

[18] Oszkár Semeráth, András Vörös, and Dániel Varró. Iterative and incremental model
generation by logic solvers. In FASE, pages 87–103. Springer, 2016.

[19] Oszkár Semeráth, Aren A. Babikian, Anqi Li, Kristóf Marussy, and Daniel Varró.
Automated generation of consistent models with structural and attribute constraints.
In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS ’20, page 187–199, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450370196. DOI:
10.1145/3365438.3410962. URL https://doi.org/10.1145/3365438.3410962.

[20] Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand. Practical constraint
solving for generating system test data. ACM Trans. Softw. Eng. Methodol., 29(2),
April 2020. ISSN 1049-331X.

[21] IGES-PDES Organization Staff. And U. S. Pro-IPO-100 1993: Initial Graphics
Exchange Specification Version 5.2. U. S. Product Data Association, 1993. ISBN
1885389000, 9781885389008.

[22] Attila Szmejkál and Péter Ozsváth. Járműszerkezeti Anyagok és Technológiák II.
Typotex Kiadó, 2011.

[23] Eclipse Modeling Framework. The Eclipse Project, 2019. http://www.eclipse.org/
emf.

[24] Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth. Towards the
automated generation of consistent, diverse, scalable and realistic graph models. In
Graph Transformation, Specifications, and Nets - In Memory of Hartmut Ehrig, vol-
ume 10800 of LNCS, pages 285–312. Springer, 2018.

[25] Xun Xu. Integrating Advanced Computer-Aided Design, Manufacturing, and Numer-
ical Control: Principles and Implementations. Information Science Reference, 2009.
ISBN 1599047144, 9781599047140. DOI: 10.4018/978-1-59904-714-0.

32

http://dx.doi.org/https://doi.org/10.1016/j.precisioneng.2021.05.013
https://www.sciencedirect.com/science/article/pii/S0141635921001562
https://www.sciencedirect.com/science/article/pii/S0141635921001562
http://dx.doi.org/10.1145/3365438.3410962
https://doi.org/10.1145/3365438.3410962
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://dx.doi.org/10.4018/978-1-59904-714-0

Appendix

A.1 Blueprint metamodel

33

B
lu

e
p
ri

n
t

O
p
e
ra
ti
o
n

ra
n
d
o
m

S
e
e
d
 :

E
Lo

n
g

re
su

lt
ID

 :
 E

Lo
n
g

C
re

a
te

B
ox

le
n
g
th

:
E
D

o
u
b
le

=
0

.0

w
id

th
:

E
D

o
u
b
le

=
0

.0

h
e
ig

h
t

:
E
D

o
u
b
le

=
0

.0

S
p
lit

W
it

h
P
la

n
e

re
la

ti
v
e
Po

si
ti

o
n
X

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
Po

si
ti

o
n
Y

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
Po

si
ti

o
n
Z

:
E
D

o
u
b
le

=
0

.0

o
ri

e
n
ta

ti
o
n
D

e
g
re

e
s

:
E
D

o
u
b
le

=
0

.0

in
cl

in
a
ti

o
n
D

e
g
re

e
s

:
E
D

o
u
b
le

=
0

.0

S
e
e
d
O

p
ti

o
n

se
e
d
 :

 E
Lo

n
g

S
o
lid
B
o
d
y
O
p
e
ra
ti
o
n

C
lo
se
d
C
u
rv
e
O
p
e
ra
ti
o
n

O
p
e
n
C
u
rv
e
O
p
e
ra
ti
o
n

C
re

a
te

C
y
lin

d
e
r

le
n
g
th

:
E
D

o
u
b
le

=
0

.0

ra
d
iu

s
:

E
D

o
u
b
le

=
0

.0

a
x
is

:
W

o
rl

d
A

x
is

=
X

C
re

a
te

E
x
tr

u
d
e
d
B

o
d
y

p
ro
fi
le

D
ia

g
o
n
a
l
:

E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
H

e
ig

h
t

:
E
D

o
u
b
le

=
0

.0

a
x
is

:
W

o
rl

d
A

x
is

=
X

C
re

a
te

R
e
v
o
lv

e
d
B

o
d
y

le
n
g
th

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
R

a
d
ia

lO
ff

se
t

:
E
D

o
u
b
le

=
0

.0

a
x
is

:
W

o
rl

d
A

x
is

=
X

C
re

a
te

R
e
v
o
lv

e
d
T
h
in

W
a
ll

le
n
g
th

:
E
D

o
u
b
le

=
0

.0

w
a
llT

h
ic

kn
e
ss

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
R

a
d
ia

lO
ff

se
t

:
E
D

o
u
b
le

=
0

.0

a
x
is

:
W

o
rl

d
A

x
is

=
X

A
d
d
H

o
le

sT
o
Fa

ce

d
ia

m
e
te

r
:

E
D

o
u
b
le

 =
 0

.0

cl
e
a
ra

n
ce

 :
E
D

o
u
b
le

 =
 0

.0

re
la

ti
v
e
D

e
p
th

 :

E
D

o
u
b
le

O
b
je

ct
m

ir
ro

rX
 :

 E
B

o
o
le

a
n
 =

 f
a
ls

e

m
ir

ro
rY

 :
 E

B
o
o
le

a
n
 =

 f
a
ls

e

a
x
is

 :
 W

o
rl

d
A

x
is

 =
 X

re
v
e
rs

e
A

x
ia

lD
ir

e
ct

io
n

:
E
B

o
o
le

a
n
 =

 f
a
ls

e

E
x
te

rn
a
lM

ill
in

g

re
la

ti
v
e
P
ro
fi
le

D
ia

g
o
n
a
l
:

E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
O
ff

se
tU

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
O
ff

se
tV

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
H

e
ig

h
t

:
E
D

o
u
b
le

=
0

.0

a
x
is

:
W

o
rl

d
A

x
is

=
X

re
v
e
rs

e
A

x
ia

lD
ir

e
ct

io
n

:
E
B

o
o
le

a
n

=
fa

ls
e

E
x
te

rn
a
lT

u
rn

in
g

re
la

ti
v
e
Le

n
g
th

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
A

x
ia

lO
ff

se
t

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
R

a
d
ia

lO
ff

se
t

:
E
D

o
u
b
le

=
0

.0

W
o
rl

d
A

x
is

X Y Z

In
te

rn
a
lM

ill
in

g

re
la

ti
v
e
P
ro
fi
le

D
ia

g
o
n
a
l
:

E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
O
ff

se
tU

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
O
ff

se
tV

:
E
D

o
u
b
le

=
0

.0

re
la

ti
v
e
H

e
ig

h
t

:
E
D

o
u
b
le

=
0

.0

a
x
is

:
W

o
rl

d
A

x
is

=
X

re
v
e
rs

e
A

x
ia

lD
ir

e
ct

io
n

:
E
B

o
o
le

a
n

=
fa

ls
e

In
te

rn
a
lT

u
rn

in
g

re
la

ti
v
e
Le

n
g
th

 :
 E

D
o
u
b
le

 =
 0

.0

re
v
e
rs

e
A

x
ia

lD
ir

e
ct

io
n
 :

 E
B

o
o
le

a
n
 =

 f
a
ls

e

re
la

ti
v
e
R

a
d
ia

lO
ff

se
t

:
E
D

o
u
b
le

 =
 0

.0

C
re

a
te

C
ir

cl
e

ra
d
iu

s
:

E
D

o
u
b
le

 =
 0

.0

C
re

a
te

R
e
ct

a
n
g
le

w
id

th
:

E
D

o
u
b
le

=
0

.0

h
e
ig

h
t

:
E
D

o
u
b
le

=
0

.0

C
re

a
te

C
lo

se
d
S
p
lin

e

b
o
u
n
d
U

 :
 E

D
o
u
b
le

 =
 0

.0

b
o
u
n
d
V

 :
 E

D
o
u
b
le

 =
 0

.0

d
e
g
re

e
 :

 E
In

t

B
o
o
le

a
n
C

lo
se

d
C

u
rv

e

o
p
e
ra

ti
o
n
Ty

p
e
 :

B

o
o
le

a
n
O

p
e
ra

ti
o
n
Ty

p
e

=
IN

T
E
R

S
E
C

T

B
o
o
le

a
n
O

p
e
ra

ti
o
n
Ty

p
e

IN
T
E
R

S
E
C

T

S
U

B
T
R

A
C

T

U
N

IO
N

R
e
la

ti
v
e
Po

in
t2

D

u
 :

 E
D

o
u
b
le

 =
 0

.0

v
 :

 E
D

o
u
b
le

 =
 0

.0

C
re

a
te

A
rc

b
o
u
n
d
U

 :
 E

D
o
u
b
le

 =
 0

.0

b
o
u
n
d
V

 :
 E

D
o
u
b
le

 =
 0

.0

C
re

a
te

Li
n
e

b
o
u
n
d
U

:
E
D

o
u
b
le

=
0

.0

b
o
u
n
d
V

:
E
D

o
u
b
le

=
0

.0C
re

a
te

O
p
e
n
S
p
lin

e

b
o
u
n
d
U

 :
 E

D
o
u
b
le

 =
 0

.0

b
o
u
n
d
V

 :
 E

D
o
u
b
le

 =
 0

.0

d
e
g
re

e
 :

 E
In

t

[0
..
*]

o
p
e
ra

ti
o
n
s

[0
..
*]

 s
e
e
d
O

p
ti

o
n
s

[0
..
1

]
su

b
je

ct

[0
..
1

]
in

p
u
t

[0
..
1

]
su

b
je

ct
[0

..
1

]
su

b
je

ct

[0
..
*]

 c
o
n
tr

o
lP

o
in

ts
[3

..
3
]

p
o
in

ts

[2
..

2
]

p
o
in

ts

[0
..
*]

co
n
tr

o
lP

o
in

ts
[1

..
1
]

p
o
s
it

io
n

F
ig

ur
e

A
.1

.1
:

Bl
ue

pr
in

t
m

et
am

od
el

34

	Kivonat
	Abstract
	Introduction
	Context
	Problem statement
	Objectives
	Contribution
	Added value

	Preliminaries
	Running example
	Manufacturing steps
	Turning and boring
	Milling
	Drilling
	Sawing

	Computer-aided design
	Geometric representations
	Boundary representation
	Modeling algorithms
	CAD exchange formats

	Design space exploration
	Related works

	Overview of the approach
	Defining the generation method
	Generation process
	Architecture

	The geometric model generator
	Representation of manufacturing steps
	Turning and boring
	Milling
	Drilling
	Sawing

	Implementation
	Entities
	Operations
	Random variables
	Execution engine

	Limitations

	The structural model generator
	Defining the metamodel of the blueprints
	Implementation
	Transformation rules
	Interfacing with the geometric model generator
	State coding

	Exploration strategies
	Defining the model fitness

	Evaluation
	Performance measurements
	RQ1-2: Distribution of execution time and scalability
	RQ3: Evaluation of different strategies

	Interfacing with expert systems

	Conclusion
	List of Figures
	Bibliography
	Appendix
	Blueprint metamodel

